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Church's Theorem: see Church's Thesis.

Church's Thesis: Church proposed at a meeting of the American

Mathematical Society in April 1935, "that the notion of an

effectively calculable function of positive integers should be

identified with that of a recursive function ...". This proposal has

been called Church's Thesis ever since Kleene used that name in his

Introduction to Metamathe-matics (1952). The informal notion of an

effectively calculable function (effective procedure, or algorithm)

had been used in mathematics and logic, when indicating that a class

of problems is solvable in a "mechanical fashion", by following fixed

elementary rules. Underlying epistemological concerns came to the

fore, when modern logic moved in the late 19-th century from

axiomatic to formal presentations of theories. Hilbert suggested in

1904 to take such formally presented theories as objects of

mathematical study, and metamathematics has been pursued

vigorously and syste-matically since the Twenties, see

FORMALIZATION, PROOF THEORY. In its pursuit concrete issues arose

that required for their resolution a delimitation of the class of

effective procedures. Hilbert's important "Entscheidungsproblem",

the decision problem for predicate logic, was one such issue. It was

solved negatively by Church and Turing - relative to the precise

notion of recursiveness, repectively machine-computabilty; the

result was obtained independently by Church and Turing, but is

usually called Church's Theorem. A second significant issue was the



general formulation of the INCOMPLETENESS THEOREMS as applying

to all formal theories (satisfying the usual representability and

derivability conditions), not just to specific formal systems like

that of Principia Mathematica.

According to Kleene, Church proposed in 1933 the identifica-

tion of effective calculability with ^-definability. That proposal

was not published at the time, but in 1934 Church mentioned it in

conversation to Godel who judged it to be "thoroughly unsatis-

factory". In his Princeton Lectures of 1934 Godel defined the

concept of a recursive function, but he was not convinced that all

effectively calculable functions would fall under it. The proof of

the equivalence between ^-definability and recursiveness (by Church

and Kleene) led to Church's first published formulation of the thesis

as quoted above. The thesis was reiterated in Church's A n

unsolvable problem of elementary number theory (1936). Turing

introduced in On computable numbers, with an application to the

Entscheidungsproblem (1936) a notion of computability by machines

and maintained that it captures effective calculability exactly; see

TURING MACHINES. Post's paper Finite combinatory processes.

Formulation 1 (1936) contains a model of computation that is

strikingly similar to Turing's. However, Post did not provide any

analysis; he suggested considering the identification of effective

calculability with his concept as a working-hypothesis that should

be verified by investigating ever wider formulations and reducing

them to his basic formulation. (The classical papers of Godel,



Church, Turing, Post, and Kleene are all reprinted in The Undecidable,

Davis (ed.), 1965.)

In his 1936-paper Church gave one central reason for the

proposed identification, namely that other plausible explications of

the informal notion lead to mathematical concepts weaker than or

equivalent to recursiveness. Two paradigmatic explications, calcul-

ability of a function via algorithms or in a logic, were considered by

Church. In either case, the steps taken in determining function

values have to be effective; and if the effectiveness of steps is, as

Church put it, interpreted to mean recursiveness, then the function

is recursive. The fundamental, interpretative difficulty in Church's

Mstep-by-step-argumenttf (was turned into one of the "recursiveness

conditions" Hilbert and Bernays (1939) used in their charac-

terization of functions that can be evaluated according to rules and)

was bypassed by Turing. Analyzing human mechanical computations

Turing was led to finiteness conditions that are motivated by the

human computor's sensory limitations, but ultimately based on

memory limitations. Then he showed that any function calculable by

a computor satisfying these conditions is also computable by one of

his machines. Both Church and Godel found Turing's analysis

convincing; indeed, Church wrote in a 1937-review of Turing's paper

that Turing's notion makes "the identification with effectiveness in

the ordinary (not explicitly defined) sense evident immediately".

This reflective work of partly philosophical and partly mathe-

matical character provides one of the fundamental notions in mathe-



matical logic. Indeed, its proper understanding is crucial for

(judging) the philosophical significance of central metamathe-

matical results - like Godel's Incompleteness Theorems or Church's

Theorem. The work is also crucial for computer science, artificial

intelligence, and cognitive psychology as it provides also there a

basic theoretical notion. For example, Church's Thesis is the corner-

stone for Newell and Simon's delimitation of the class of physical

symbol systems, i.e. universal machines with a particular archi-

tecture; see Newell's Physical symbol systems (1980). Newell

views the delimitation "as the most fundamental contribution of

artificial intelligence and computer science to the joint enterprise

of cognitive science". In a turn that had been taken by Turing in

Intelligent Machinery (1948) and Computing Machinery and

Intelligence (1950), Newell points out the basic role physical

symbol systems take on in the study of the human mind: H... the

hypothesis is that humans are instances of physical symbol systems,

and, by virtue of this, mind enters into the physical universe. ... this

hypothesis sets the terms on which we search for a scientific

theory of mind.M

Consis tency: Consistency is viewed in traditional, Aristotelian

logic as a semantic notion: two or more statements are called

consistent, if they are simultaneously true under some

interpretation. Compare, for example, W.S. Jevons, Elementary

Lessons in Logic, 1870. In modern logic there is a syntactic



definition that fits also complex, e.g. mathematical, theories since

Frege's Begriffsschrift, 1879. A set of statements is called

consistent with respect to a certain logical calculus, if no formula

(P & -P) is derivable from those statements by the rules of the

calculus; i.e., the theory is free from contradictions. If these

definitions are equivalent for a logic, we have a significant fact, as

the equivalence amounts to the completeness of its system of rules.

The first such COMPLETENESS THEOREM was obtained for sentential

or propositional logic by Paul Bernays in 1918 (in his

Habilitationsschrift that was partially published as Axiomatische

Untersuchung des Aussagen-Kalkuls der "Principia Mathematica",

1926) and, independently, by Emil Post, Introduction to a general

theory of elementary propositions, 1921; the completeness of

predicate logic was proved by Godel, Die Vollstandigkeit der Axiome

des logischen Funktionenkalkuls, 1930. The crucial step in such

proofs shows that syntactic consistency implies semantic

consistency.

Cantor applied the notion of consistency to sets. In his well-

known letter to Dedekind (1899) he distinguished between an

inconsistent and a consistent multiplicity; the former is such "that

the assumption that all of its elements 'are together' leads to a

contradiction", wheras the elements of the latter "can be thought of

without contradiction as 'being together1". Cantor had conveyed

these distinctions and their motivation by letter to Hilbert in 1897;

see, W. Purkert and H.J. llgauds, Georg Cantor, 1987. Hilbert pointed

out explicitly in 1904 that Cantor had not given a rigorous criterion



for distinguishing between consistent and inconsistent

multiplicities. Already in his Uber den Zahlbegriff (1899) Hilbert

had suggested to remedy the situation by giving consistency proofs

for suitable axiomatic systems; e.g., to give the proof of the

"existence of the totality of real numbers or - in the terminology of

G. Cantor - the proof of the fact that the system of real numbers is a

consistent (complete) set" by establishing the consistency of an

axiomatic characterization of the reals, in modern terminology: of

the theory of complete, ordered fields. And he claimed, somewhat

indeterminately, that this could be done "by a suitable modification

of familiar methods."

Since 1904 Hilbert pursued a new way of giving consistency

proofs. This novel way of proceeding, still aiming for the same goal,

was to make use of the FORMALIZATION of the theory at hand.

However, in the formulation of HILBERT's PROGRAM during the 1920's

the point of consistency proofs was no longer to guarantee the

existence of suitable sets, but rather to establish the instrumental

usefulness of strong mathematical theories T, like axiomatic set

theory, relative to finitist mathematics; cp. also PROOF THEORY.

That focus rested on the observation that the statement formulating

the syntactic consistency of T is equivalent to the reflection

principle Pr(a,'s') -> s; here Pr is the finitist proof predicate for T,

s a finitistically meaningful statement, and 's' its translation into

the language of T. If one could establish finitistically the

consistency of T, one could be sure - on finitist grounds - that T is

a reliable instrument for the proof of finitist statements.



There are many examples of significant relative consistency

proofs: (i) Non-Euclidean geometry relative to Euclidean, Euclidean

geometry relative to analysis; (ii) set theory with the axiom of

choice relative to set theory (without the axiom of choice), set

theory with the negation of the axiom of choice relative to set

theory; (iii) classical arithmetic relative to intuitionistic

arithmetic, subsystems of classical analysis relative to

intuitionistic theories of constructive ordinals. The mathematical

significance of relative consistency proofs is often brought out by

sharpening them to establish conservative extension results; the

latter may then ensure, e.g., that the theories have the same class of

provably total functions. The initial motivation for such arguments

are, however, very frequently philosophical: one wants to guarantee

the coherence of the original theory on an epistemologically

distinguished basis.

Formalism: see proof theory, Hilbertfs Program.

F o r m a l i z a t i o n : Formalizations of theories must satisfy

requirements that are sharper than those imposed on the structure

of theories by the axiomatic-deductive method; that method can be

traced back to Euclid's Elements. The crucial additional requirement

is the regimentation of inferential steps in proofs: not only axioms



have to be given in advance, but the rules representing

argumentative steps have also to be taken from a predetermined list.

To avoid a regress in the definition of proof and to achieve

intersubjectivity on a minimal basis, the rules are to be "formal" or

"mechanical" and must take into account only the form of

statements. Thus, to exclude any ambiguity, a precise and

effectively described language is needed to formalize particular

theories. The general kind of requirements was clear to Aristotle

and explicit in Leibniz; but it was only FREGE who presented in his

Begriffsschrift in addition to an expressively rich language with

relations and quantifiers an adequate logical calculus. Indeed,

Frege's calculus, when restricted to the language of predicate logic,

turned out to be semantically complete. Frege provided for the first

time the means necessary to formalize mathematical proofs.

Frege pursued a clear philosophical aim, namely, to recognize

the "epistemological nature" of theorems. In the introduction to his

Grundgesetze der Arithmetik, 1893, Frege wrote: "By insisting that

the chains of inference do not have any gaps we succeed in bringing

to light every axiom, assumption, hypothesis or whatever else you

want to call it on which a proof rests; in this way we obtain a basis

for judging the epistemological nature of the theorem." - The

Fregean frame was used in the later development of mathematical

logic, in particular, in PROOF THEORY. Godel established through his

INCOMPLETENESS THEOREMS fundamental limits of formalizations of

particular theories, like the system of Principia Mathematics or

axiomatic set theories. The general notion of formal theory emerged



from the subsequent investigations of Church and Turing clarifying

the concept of "mechanical procedure" or "algorithm"; see CHURCH'S

THESIS. Only then was it possible to state and prove the

Incompleteness Theorems for all formal theories satisfying certain

very basic representability and derivability conditions. Godel

emphasized repeatedly that these results do not establish "any

bounds for the powers of human reason, but rather for the

potentialities of pure formalism in mathematics"; see, Godel,

Collected Works, Volume I, 1986, page 370.

Proof theory: Proof theory is a branch of mathematical logic

founded by David Hilbert in the 1920's to pursue HUBERT'S PROGRAM.

The foundational problems underlying that program had been

formulated already around the turn of the century, for example, in

Hilbert's famous address to the International Congress of

Mathematicians in Paris (1900). They were closely connected with

investigations on the foundations of analysis carried out by Cantor

and Dedekind; but they were also related to their conflict with

Kronecker on the nature of mathematics and to the difficulties of a

completely unrestricted notion of set or multiplicity. At that time,

the central issue was for Hilbert the CONSISTENCY of sets in

Cantor's sense. He suggested that the existence of consistent sets

(multiplicities), e.g., that of real numbers, could be secured by

proving the consistency of a suitable, characterizing axiomatic

system; but there were only the vaguest indications on how to do



that. In a radical departure from standard practice and his earlier

hints Hilbert proposed four years later a novel way of attacking the

consistency problem for theories in Uber die Grundlagen der Logik

und der Arithmetik, 1904. This approach would require, first, to

give a strict FORMALIZATION of logic together with mathematics;

then, one would have to consider the finite syntactic configurations

constituting the joint formalism as mathematical objects and show

- by mathematical arguments - that contradictory formulas cannot

be derived.

Though Hilbert lectured on issues concerning the foundations

of mathematics during the subsequent years, the technical

development and philosophical clarification of (the aims of) proof

theory began only around 1920. That involved, first of all, a detailed

description of logical calculi and the careful development of parts

of mathematics in suitable systems. A record of the former is found

in Hilbert and Ackermann, Grundzuge der theoretischen Logik, 1928,

of the latter in Supplement IV of Hilbert and Bernays, Grundlagen der

Mathematik II, 1939. This presupposes the clear distinction

between metamathematics and mathematics introduced by Hilbert.

For the purposes of the consistency program metamathematics was

now taken to be a very weak part of arithmetic, so-called finitist

mathematics, believed to correspond to the part of mathematics

that was accepted by constructivists like Kronecker and Brouwer.

Additional metamathematical issues concerned the completeness

and decidability of theories. The crucial technical tool for the

pursuit of the consistency problem was Hilbert's e-calculus.



The metamathematical problems attracted the collaboration of

young and quite brilliant mathematicians (with philosophical

interests); among them were Paul Bernays, Wilhelm Ackermann,

Johan von Neumann, Jacques Herbrand, Gerhard Gentzen, and Kurt

Schutte. The results obtained in the twenties were disappointing

when measured against the hopes and ambitions: Ackermann, von

Neumann, and Herbrand established essentially the consistency of

arithmetic with a very restricted principle of induction. That limits

of finitist considerations for consistency proofs had been reached

became clear in 1931 through Godel's INCOMPLETENESS THEOREMS.

Also, special cases of the decision problem for predicate logic

(Hilbert's "Entscheidungsproblem") had been solved; its general

solvability was made rather implausible by some of Godel's results

in his 1931-paper. The actual proof of unsolvability had to wait

until 1936 for a conceptual clarification of "mechanical procedure"

or "algorithm"; that was achieved through the work of CHURCH and

TURING.

The further development of proof theory is roughly

characterized by two complementary tendencies: (i) the extension of

the metamathematical frame relative to which "constructive"

consistency proofs can be obtained, and (ii) the refined

formalization of parts of mathematics in theories much weaker than

set theory or even full second order arithmetic. The former

tendency started with work of Godel and Gentzen in 1933

establishing the consistency of full classical arithmetic relative to



intuitionistic arithmetic; it led in the seventies and eighties to

consistency proofs of strong subsystems of second order arithmetic

relative to intuitionistic theories of constructive ordinals. The

latter tendency reaches back to Weyl's book Das Kontinuum (1918)

and culminated in the seventies by showing that the classical

results of mathematical analysis can be formally obtained in

conservative extensions of first order arithmetic. For the

metamathematical work Gentzen's introduction of sequent calculi

and the use of transfinite induction along constructive ordinals

turned out be very important, as well as G6delfs primitive recursive

functionals of finite type. The methods and results of proof theory

are playing, not surprisingly, a significant role in computer science.

Work in proof theory has been motivated by issues in the

foundations of mathematics with the explicit goal of achieving

epistemological reductions of strong theories for mathematical

practice (like set theory or second order arithmetic) to weak,

philosophically distinguished theories (like primitive recursive

arithmetic). As the formalization of mathematics in strong theories

is crucial for the metamathematical approach, and as the

programmatic goal can be seen as a way of circumventing the

philosophical issues surrounding strong theories, e.g., the nature of

infinite sets in the case of set theory, Hilbert's philosophical

position is often equated with formalism - in the sense of Frege in

his Uber die Grundlagen der Geometrie (1903-1906) and also of

Brouwerfs inaugural address Intuitionism and Formalism (1912).

Though such a view is not completely unsupported by some of



Hubert's polemical remarks during the twenties, on balance, his

philosophical views developed into a sophisticated

INSTRUMENTALISM, if that label is taken in Ernest Nagel's judicious

sense (The Structure of Science, 1961). Hilbert's is an

instrumentalism emphasizing the contentual motivation of

mathematical theories; that is clearly expressed in the first chapter

of Hilbert and Bernays' Grundlagen der Mathematik I (1934). A

sustained philosophical analysis of proof theoretic research in the

context of broader issues in the philosophy of mathematics was

provided by Bernays; his penetrating essays stretch over five

decades and have been collected in Abhandlungen zur Philosophie der

Mathematik (1976).


