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1. Introduction

The Meno presents, and then rejects, an argument against the possibility of knowledge. The argument is

given by Meno in response to Socrates' proposal to search for what it is that is virtue:

Meno: How will you look for it, Socrates, when you do not know at all what it is? How will you aim to
search for something you do not know at all? If you should meet with it, how will you know that this is the
thing that you did not know?*

Many commentators, including Aristotle in the Posterior Analytics, take Meno's point to concern the
recognition of an object, and if that is the point there is a direct response: one can recognize an object
without knowing all about it. But the passage can also be understood straightforwardly as a request for a
discernible markoi truth, and as a cryptic argument that, without such a mark, it is impossible to acquire
knowledge from the instances that experience provides. We will try to show that the second reading is of

particular interest.

If there is no mark of truth, nothing that can be generally discerned that true and only true propositions
bear, Meno's remarks represent a cryptic argument that knowledge is impossible. We will give an
interpretation that makes the argument valid; under that interpretation, Meno's argument demonstrates
the impossibility of a certain kind of knowledge. In what follows we will consider Meno's argument in more
detail, and we will try to show that similar arguments are available for many other conceptions of

knowledge. The modern Meno arguments reveal a diverse and intricate structure in the theories of

1G. Grube, trans., Five Dialogues, Hackett, 1981. All quotations are taken from this translation.




knowledge and of inquiry, a structure whose exploration has just begun. While we will attempt to show
that our reading of the argument fits reasonably well with Plato's text, we do not aim to argue about
Plato's intent. It is enough that the traditional text can be elaborated into a systematic and challenging

subject of contemporary interest.?

2. The Meno

In one passage in the Meno, to acquire knowledge is to acquire a truth that can be given a special logical
form. To acquire knowledge of virtue is to come to know an appropriate truth that states a condition, or
conjunction of conditions, necessary and sufficient for any instance of virtue. Plato's Socrates will not

accept lists, or disjunctive characterizations.

Socrates: | seem to be in great luck, Meno; while | am looking for one virtue, | have found you to have a
whole swarm of them. But, Meno, to follow up the image of swarms, if | were asking you what is the nature
of bees, and you said that they are many and of all kinds, what would you answer if | asked you: "Do you
mean that they are many and varied and different from one another in so far as they are bees? Or are they
no different in that regard, but in some other respect, int heir beauty, for example, or their size or in some
other such way?" Tell me, what would you answer if thus questioned?

Meno: | would say that they do not differ from one another in being bees.

Socrates: Suppose | went on to say: "Tell me, what is this very thing, Meno, in which they are all the same
and do not differ from one another?" Would you be able to tell me?

Meno: | would.
Socrates. The same is true in the case of the virtues. Even if they are many and various, all of them have
one and the same form which makes them virtues, and it is right to look to this when one is asked to make
clear what virtue is. Or do you not understand what | mean?
There is something peculiarly modern about the Meno. The same rejection of disjunctive
characterizations can be found in several comtemporary accounts of explanation® We might say that

Socrates requires that Meno produce an appropriate and true universal biconditional sentence, in which a

2A view of inquiry related to that developed here has been championed by A. Goldman in his Epistemoiogy and Cognition,
Harvard, 1984. Recent commentaries on the Meno by historians of philosophy have varied in the importance they give to Meno's
paradox, but none of them give it the reconstruction considered here. Compare T. Irwin, Plato's ftforal Theory, Oxford, 1977,
J. Maravcsik, "Learning as Recollection” in G. Vlastos, ed, Plato |, Metaphysics and Epistemohgy, 1971; N. White, Plato on
Knowledge and Reality, 1978. In what follows, a variety of technical claims are asserted without proof. In all cases the claims are
simple applications of results shown in D. Osherson, M. Stob, and S. Weinstein, Systems That Learn, M.L.T. Press, 1985;
C. Glymour "inductive Inference in the Limit" Erkenntnis, 21, 1984; D. Osherson and S. Weinstein, "Identification in the Limit of
First-Order Structures" Journal of Philosophical Logic, 15,1986; D. Osherson and S.Weinstein, Identifiable Collections of Countable
Structures, Philosophy of Science, forthcoming; and, espectaliy, K. Kelly and C. Glymour, "Converging to the Truth and Nothing But
the Truth," Philosophy of Science, forthcoming; and D. Osherson and S. Weinstein, "Paradigms of Truth Detection," manuscript,
1988.

3For example, in H. Field, "Mental Representation” in N. Block, ed. Philosophy of Psychology, and in R. Stalnaker, Inquiry.




predicate signifying ‘is virtuous' flanks one side of the biconditional, and a conjunction of appropriate
predicates occurs on the other side of the biconditional. Let us so say. Nothing is lost by the anachronism

and, as we shall see, much is gained.

Statements of evidence also have a logical form in The Meno. Whether the topic is bees, or virtue, or
geometry, the evidence Socrates considers consists of instances and non-instances of virtue, of

geometric properties, or whatever the topic may be. Evidence is stated in the singular.

The task of acquiring knowledge thus assumes the following form. One is presented with, or finds, in
whatever way, a series of examples and non-examples of the feature about which one is inquiring, and
from these examples a true, universal biconditional without disjunctions is to be produced. In The Meno
that is not enough for knowledge to have been acquired. To acquire knowledge it is insufficient to produce
a truth of the required form; one must also know that one has produced a truth. What can this

requirement mean?

Socrates and Meno agree in distinguishing knowledge from mere true opinion, and they agree that
knowledge requires at least true opinion. Meno thinks the difference between knowledge and true opinion
lies in the greater reliability of knowledge, but Socrates insists that true opinion could, by accident as it

were, be as reliable as knowledge:

Meno:..But the man who has knowledge will always succeed, whereas he who has true opinion will only
succeed at times.

Socrates: How do you mean? Will he who has the right opinion not always succeed, as long as his
opinion is right?

Meno: That appears to be so of necessity, and it makes me wonder, Socrates, this being the case, why
knowledge is prized far more highly than right opinion, and why they are different.

Socrates answers each question, after a fashion. The difference between knowledge and true opinion is
in the special tie, the binding connection, between what the proposition is about and the fact of its belief.
And opinions that are tied in this special way are not only reliable, they are liable to stay, and it is that

which makes them especially prized:

Socrates: To acquire an untied work of Daedalus is not worth much, like acquiring a runaway slave, for it
does not remain, but it is worth much if tied down, for his works are very beautiful. What am | thinking of
when | say this? True opinions. For true opinions, as long as they remain, are afine thing and all they do is
good, but they are not willing to remain long, and they escape from a man's mind, so that they are not worth
much until one ties them down by an account of the reason why. And that, Meno my friend, is recollection,
as we previously agree. After they are tied down, in the first place they become knowledge, and then they
remain in place. That is why knowledge is prized higher than correct opinion, and knowledge differs from




correct opinion in being tied down.

Plato is chiefly concerned with the difference between knowledge and true opinion, and our
contemporaries have followed this interest. The recent focus of epistemology has been the special
intentional and causal structure required for knowing. But Meno's argument does not depend on the
details of this analysis; it depends, instead, on the capacity for true opinion that the capacity to acquire
knowledge implies. That is the capacity to find the truth of a question, to recognize it when found, to stick

with it after it is found, and to do so whatever {he truth may be.

Suppose that Socrates could meet Meno's rhetorical challenge and recognize the truth when he met it:
what is it he would then be able to do? Something like the following. In each of many different imaginable
(we do not say possible save in a logical sense) circumstances, in which distinct claims about virtue (or
whatever) are true, upon receiving enough evidence, and considering enough hypotheses, Socrates
would hit upon the right hypothesis about virtue for that possible circumstance, and would then (and only
then) announce that the correct hypothesis is indeed correct. Never mind just how Socrates would be
able to do this, but agree that, if he is in the actual circumstance capable of coming to know, then that
capacity implies the capacity just stated. Knowledge requires the ability to come to believe the truth, to
recognize when one believes the truth (and so to be able to continue to believe the truth), and to do so

whatever the true state of affairs may be.

So understood, Meno's argument is valid, or at least its premises can be plausibly extended to form a
valid argument for the impossibility of knowledge. The language of possible worlds is convenient for
stating the argument. Fix some list of predicates V, P1,..., Pn, and consider all possible worlds (with
countable domains) that assign extensions to the predicates. In some of these worlds there will be true
universal biconditional sentences with V on one side and conjunctions of some of the Pi or their negations
on the other side. Take pieces of evidence available from any one of these structures to be increasing
conjunctions atomic or negated atomic formulas simultaneously satisfiable in the structure. Let Socrates
receive an unbounded sequence of singular sentences in this vocabulary, so that the sequence, if
continued, will eventually include every atomic or negated atomic formula (in the vocabulary) that is
satisfiable in the structure. Let co range over worlds. With Meno, as we have read him, say that Socrates

can come to know a sentence, S, of the appropriate form, true in world co, only if

(i) for every possible sequence of presentation of evidence from world co Socrates eventually announces




that S is true, and

(i) in every world, and for every sequence from that world, if there is a sentence of the appropriate form
true in that world, then Socrates can eventually consider some true sentence of the appropriate form in
that world, can announce that it is true in that world (while never making such an announcement of a

sentence that is not true is that world), and

(iii) in every world, and for every sequence from that world, if no sentence of the appropriate form is true

in the world then Socrates refrains from announcing of any sentence of that form that it is true.

Meno’s argument is now a piece of mathematics, and it is straightforward to prove that he is correct: no
matter what powers we imagine Socrates to have, he cannot acquire knowledge, provided "knowledge” is
understood to entail these requirements. No hypotheses about the causal conditions for knowledge
defeat the argument unless they defeat the premises. Skepticism need not rest on empirical reflections
about the weaknesses of the human mind. The impossibility of knowledge can be demonstrated a priori.
Whatever sequence of evidence Socrates may receive that agrees with a hypothesis of the required form,
there is some structure in which that evidence is true but the hypothesis is false; so that if at any point

Socrates announces his conclusion, there is some imaginable circumstance in which he will be wrong.

We should note, however, that in those circumstances in which there is no truth of of the required form,
Socrates can eventually come to know that there is no such truth, provided he has an initial, finite list of all
of the predicates that may occur in a definition. He can announce with perfect reliability the absence of
any purely universal conjunctive characterizations of virtue if he has received a counterexample to every
hypothesis--and if the number of predicates are finite the number of hypotheses will be finite, and if no
hypothesis of the required form is true, the counterexamples will eventually occur. If the relevant list of
predicates or properties were not provided to Socrates initially, then he could not know that there is no

knowledge of a subject to be had.
3. Weakening Knowledge

Skepticism has an ellipsis. The content of the doubt that knowledge is possible depends on the requisites
for knowledge, and that is a matter over which philosophers dispute. Rather than supposing there is one
true account of knowledge to be given, if only philosophers could find it, our disposition is to inquire about

the possibilities. Our notion of knowing is surely vague in ways, and there is room for more than one




interesting doxastic state.

About the conception of knowledge we have extracted from Meno there is no doubt as to the rightness of
scepticism. No one can have that sort of knowledge. Perhaps there are other sorts that can be had. We
could weaken the set of possibilities that must be considered, eliminating most of the possible worlds, and
make requirements (i), (ii) and (iii) apply only to the reduced set of possibilities. We would then have a
revised conception of knowledge that requires only a reduced scope, as we shall call the range of
structures over which Socrates, or you or we, must succeed in order to be counted as a knower. This is a
recourse to which we will have eventually to come, but let us put it aside for now, and consider instead

what might otherwise be done about weakening conditions (i), (ii) and (iii).

Plato’s Socrates emphasizes this difference between knowledge and mere true opinion: knowledge stays
with the knower, but mere opinion, even true opinion, may flee and be replaced by falsehood or want of
opinion. The evident thing to consider is that for Socrates to come to know the truth in a certain worid,
Socrates be required to be able to find the truth in each possible world, and never to abandon it, but not
be required to announce that the truth has been found when it is found. Whatever the relations of cause
and intention that knowledge requires, surely Meno requires too much. He requires, as we have
reconstructed his argument, that we come to believe through a reliable procedure, a procedure or
capacity that would, were the world different, lead to appropriately different conclusions in that
circumstance. But Meno also requires that we know when the procedure has succeeded, and that seems
much like demanding that we know that we know when we know. Knowing that we know is an attractive
proposition, but it does not seem a prerequisite for knowledge, or if it is, then by the previous argument,
knowledge is impossible. In either case, the properties of a weaker conception of knowledge deserve our

study.

The idea is that Socrates comes eventually to embrace the truth and to stick with it in every case,
although he does not know at what point he has succeeded--he is never sure that he will not, in the
future, have to change his hypothesis. In this conception of knowledge, there is no mark of success. We
must then think of Socrates as conjecturing the truth forever. Since Socrates did not live forever, nor shall
we, it is better to think of Socrates as having a procedure that could be applied indefinitely, even without
the living Socrates. The procedure has mathematical properties that Socrates does not.

For Socrates to know that S in world ® in which S is true now implies that Socrates behavior accords with




a procedure with the following properties:

(i*) for every possible sequence of evidence from world co, after a finite segment is presented, the

procedure conjectures S ever after, and

(ii*) for every possible sequence of evidence from any possible world, if a sentence of the appropriate
form is true in that world, then after a finite segment of the evidence is presented the procedure

conjectures atrue sentence of the appropriate form ever after.

These conditions certainly are not suffident for any doxastic state very close to our ordinary notion of
knowledge, since Socrates' behavior may in the actual world accord with a procedure satisfying i* and ii*
even while Socrates lacks the disposition to act in accord with the procedure in other circumstances. For
knowledge, Socrates must have such a disposition. But he can only have such a disposition if there exists
a procedure meeting conditions i* and ii*. Is there? If the logical form of what is to be known is restricted
to universal biconditionals of the sort Plato required, then there is indeed such a procedure. If Socrates is
unable to acquire this sort of knowledge, then it is because psychology or sociology or biology, not in
virtue of mathematical impossibilities. Scepticism about this sort of knowledge cannot be apriori. There is

no general argument of Meno's kind against the possibility of acquiring this sort of knowledge.

The weakening of knowledge may be unPlatonic, but it is not unphitosophical. Francis Bacon's Novum
Organum describes a procedure that works for this case, and his conception of knowledge seems roughly
to accord with it. John Stuart Mill's canons of method are, of course, simply pirated from Bacon's method.
Hans Reichenbach used nearly the same conception of knowledge in his "pragmatic vindication" of
induction, although he assumed a very different logical form for hypotheses, namely that they are

conjectures about limits of relative frequencies of properties in infinite sequences.

So we have a conception of knowledge that, at least for some kinds of hypotheses, is not subject to
Meno's paradox. But for which kinds of hypotheses is this so? We are not now captivated, if ever we
were, by the notion that all knowledge is definitional in form. Perhaps even Plato himself was not, for the
slave boy learns the theorem of Pythagoras, which has a more complicated logical form. We are
interested in other forms of hypotheses: positive tests for diseases, and tests for their absence;
collections of tests one of which will reveal a condition if it is present. Nor are our interests confined to

single hypotheses considered individually. If the property of being a squamous cancer cell has some




connections with other properties amenable to observation we want to know all about thdse connections.
We want to discover the whole theory about the subject matter, or as much as we can of it. What we may
wish to determine, then, is what classes of theories can come to be known according to our weaker
conception of knowledge. Here, as | use the notion of theory, it means the set of all true claims in some
fragment of language. Wanting to know the truth about a particular question is then a special case, since
the question can be formulated as a claim and its denial, and the pair form a fragment of language whose
true claims are to be decided. What we wish to determine is whether all of what is true and can be stated

in some fragment of language can be known.

Either the possibility of knowledge depends on the fragment of language considered or it does not. If it
does, then many distinct fragments of language might be of the sort that permit knowledge of what can be
said in them, and the classification of fragments that do, and that do not, permit such knowledge becomes
an interesting task. For which fragments of language, if any, are there valid arguments of Meno's sort
against the possibility of knowledge, and for which fragments are there not? These are straightforward

mathematical questions, and their answers, or some of their answers, are as follows:

Consider any first order language (without identity) in which all predicates are monadic, and there are no
symbols taken to represent functions. Then any true theory in such a language can be learned, or at least

there are no valid Menoan arguments against such knowledge.

If the language is monadic but with identity, or if the language contains a predicate that is not monadic,
then neither the fragment that consists only of universally quantified formulas, nor the fragment that
consists only of existentially quantified formulas, nor any part of the language containing either of these

fragments, are such that every true theory in these fragments can be known.

In each of the latter cases an argument of Meno's kind can be constructed to show that knowledge is

impossible.

4. Times for All Things

The weakened conception of knowledge is still very strong in at least one respect. It requires for the
possibility of knowledge of an infinite wealth of claims that there be a time at which all of them are known;
that is, a single time after which all and only the truths in a fragment of language are conjectured. We

might instead usefully consider the following circumstance: When investigating hypotheses in a fragment




of language, Socrates is able, for each truth, eventually to conjecture it and never subsequently to give it
up; and 8ocrates is also able, for each falsehood, eventually notto conjecture it and never after to put it
forward. Plato's Socrateé illustrates that the slave boy can "recollect” the Pythagorean theorem from
examples and appropriate question, and presumably in Plato's view the slave boy could be made to
recollect any other truth of geometry by a similar process. But neither the illustration nor the view requires
that the slave boy, or anyone else, eventually be able to recollect the whole of geometry. There may be
no time at which Socrates knows all of what is true and can be stated in a given fragment of language.
Yet the disposition to follow a procedure that will eventually find every truth and eventually avoid every
falsehood is surely of fundamental interest to the theory of knowledge. Call a procedure that has the
capacity to converge to the whole truth at some moment, as in the discussion of the previous section, an
EA learning procedure, and call an AE learner a procedure that for each truth has the capacity to
converge to that truth by some moment, and for each falsehood avoids it ever after some moment. Every
EA learner is an AE learner, but is the converse true? Or more to the point, are there fragments of

language for which there are AE procedures but no EA procedures?

There are indeed. Consider the set of all universal sentences, with identity, and with any number of
predicates of any arity and any number of function symbols of any arity. By the negative result stated
previously, there is no EA procedure for that fragment of language, no procedure that, for every
(countable) structure, and every way of presenting the singular facts in the structure, will eventually
conjecture the theory (in the language fragment) true in that structure. But there is an AE procedure for
this fragment. If, for knowledge about a matter, Socrates is required only to have a disposition to follow an
AE procedure for the language of the topic, then no Menoan argument shows that Socrates cannot

acquire knowledge, even if Socrates does not know the relevant predicates or properties beforehand.

The improvement does not last. If we consider the fragment of language that altows up to one altemation
of quantifiers, whether from universal to existential or existential to universal, it again becomes impossible
to acquire knowledge; there are no AE procedures for this fragment that are immune from arguments of

Meno's kind.




5. Discovery and Scope

Whether we consider EA discovery or AE discovery, we soon find that arguments of Meno's kind
succeed. The same sort of results obtain if we further weaken the requirements for knowledge. We might,
for example, abandon Plato's suggestion that when a truth is known it is not subsequently forgotten or
rejected. We might then consider the requirement that Socrates be disposed to behave in accordance
with a procedure that as it considers more and more evidence about a question, is wrong in its
conjectures only finitely often, correct infinitely often, but may also suspend judgement infinitely often.
Osherson and Weinstein have shown that with even this remarkably weak conception there are questions
that cannot, in senses parallel to those above, be known. Or we might allow various sorts of approximate

truth; for many of them, arguments parallel to Meno's are available.

The conceptions of knowledge we have discussed place great emphasis on reliability. They demand that
we not come to our true beliefs by chance, but in accordance with procedures that would find the truth no
matter what it might be, so long as the procedures could be earried out. What the Meno arguments show
is that in the various senses considered, for most of the issues that might invite discovery, procedures so
reliable do not exist. The anti-skeptical response ought to be principled retreat. In the face of valid
arguments against the possibility of procedures so reliable, and hence against the possibility of
corresponding sorts of knowledge, let us consider procedures that are not so reliable, and regard the
doxastic state that is obtained by acting in accord with them as at least something better and more

interesting than accidental true belief.

For each of the requirements on knowledge considered previously, and for others, we can ask the
following kind of question: For each fragment of language, what are the classes of possible worlds for
each of which there exists a procedure that will discover the truths of that fragment for any world in the
class? The question may be too hard to parse. Let us define it in pieces. Let a discovery problem be any
(recursive) fragment F of a formal language, together with a class K of countable relational structures for
that fragment. One such dass K is the class of all countable structures for the language fragment, but any
subsets of this class may also be considered. A discovery procedure for the discovery problem is any
procedure that for every k in K and every presentation of evidence from k, "converges” to all of the
sentences in F that are true in k. "Convergence" may be in the EA sense, the AE sense, or some other

sense altogether (such as the weak convergence criterion considered two paragraphs previously).

What the results | have described tell us is that for many fragments F, if K is the set of all countable
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structures for F, then there are no discovery procedures for pairs <F,K>. That does not imply that there
are no discovery procedures for pairs <F, K> where K' is some proper subset of K. Must it be that for
knowledge, true belief have been acquired in accordance with a procedure that would lead to the truth in

every imaginable sequence?

Suppose we think of inquiry as posing discovery problems, a question or questions and a class of
possible worlds or circumstances that determine various answers to the question. Depending on which
world or circumstance is ours, different answers will be true. Successful inquiry, which leads to some kind
of knowledge, accords with a procedure that will converge to the truth of the matter, whatever it may be,
in each of these possible circumstances. It is possible for procedures to have the capacity to find the truth
in each of a class of circumstances without having the capacity to find the truth in every imaginable

circumstance.

When attention is restricted to a discovery problem that contains a restricted class of possible worlds or
circumstances, that restriction constitutes a kind of background knowledge brought to inquiry. The
background knowledge says that the actual circumstance is one of a restricted dass of circumstances or
possible worlds. The theory of recollection, Plato's solution to Meno's paradox, daims that inquiry is
conducted with a special sort of background knowledge, stamped in the soul before birth. Two different

reconstructions of Plato’s solution fit the story, and we offer them both without choosing between them.

In the first account, the correct definitions are stored in the soul and need only be brought to mind. The
presentation of examples and the process of recollection eventually brings forth the truth, and provides
knowledge, not because the process using that same background knowledge would succeed no matter
how the world (or rather the forms) might imaginably be, but because there is a guarantee that the world
(or, rather again, the forms) accords with knowledge the soul possesses. The background knowledge is
so complete that no inference from examples is required; examples only ease access to knowledge we

already have.

In the second account a complete list of definiens, each characterizing a distinct form, is stored in the
soul. An inquiry into the nature of virtue must then match instances of the usage of "virtue" with the
appropriate definiens in the list. In this case the process of recollections involves an inductive inference
from particular examples to a universal biconditional connecting a definiens in the list with a term denoting

the subject of inquiry. On the assumptions that no two forms are such that the same individuals
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participate in both, and that there are only finitely many forms, Socrates can eventually conjecture the
form of virtue, know that his conjecture is correct, and can do so no matter which definiens in the list

happens to represent the form of virtue.

On either reconstruction, Plato's reply to Meno's paradox has two aspects, and the slave boy's
rediscovery of the theorem of Pythagoras illustrates each of them. First, knowledge may be had by
means other than the means of inquiry. It may be inherited, innate, stamped on the soul, and not acquired
by generalization from examples given in this life. Second, given such prior knowledge, the task of
discovery or the acquisition of knowledge is reconcerved and becomes feasible, for the inquirer need not
be able to fix upon the truth in every imaginable circumstance, but only in those circumstances consistent

with prior knowledge.*

Plato has little to say in The Meno about what souls do that gives them the knowledge we recollect in
successful inquiry. We (or our souls) have background knowledge through a causal process that is not
itself inquiry. We could instead entertain the thought that we acquire background knowledge through

inquiry conducted in our past lives. The second alternative raises a number of interesting questions.

When we inquire into a question, the discovery problem we address depends upon our knowledge. The
class of alternative circumstances, and thus alternative answers, that need be considered is bounded by
our prior knowledge. If we know nothing, it is the class of all imaginable circumstances; if we know a great
deal, the class of alternative circumstances may be quite small. Suppose as we go through life (or
through a sequence of lives) we form conjectures about the answers to various questions, and while we
reserve the right to change these conjectures upon further evidence, in the meanwhile we use them as
though they were background knowlege for still other questions. Should evidence later arrive that causes
us to abandon our conjectures, we will also have to reconceive the discovery problems in which we had

taken those conjectures as backgound knowledge.’.

Since we are not only uncertain what discovery problems we shall face, but more profoundly, we may be

wrong in our construal of the discovery problems we presently face, it would seem only prudent to rely on

“Chomsky gave a strictly parallel answer to questions about how children learn their native language. "Cartesian Knquistics" ought
perhaps to have been called "Platonic linguistics."

*The result is a picture of inquiry something like that proposed by Issac Levi. Compare Levi's The Enterprise of Knowledge, M.L.T.
Press.
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learning procedures that have the widest posstole scope. We know from what has gone before that
Meno's argument, and derivatives of it, show that there is no procedure adequate for all discovery
problems, but some procedures may do better than others. We can characterize a dominance relation
between discovery procedures: Procedure A dominates procedure B provided A solves (in whatever
sense may be specified) every discovery problem B solves, but not vice versa. A procedure is then
maximal if no procedure dominates it. We might then take prudence to require that our manner of inquiry
accord with a maximal procedure. Some second thoughts are called for. In the well studied case in which
what is to be learned is not a theory but a language, it is known that every maximal procedure solves the
discovery problem that consists of learning any finite language on a fixed vocabulary, but no procedure
solves any larger problem, posed by any larger class of languages on that same vocabulary. There is no
maximal procedure that identifies even one infinite language. For problems that concern the learning of
theories, one should expect something analogous: the maximal procedures will be very sparse, and will

fail to solve discovery problems that are readily solved by other methods.

Since, in all likelihood, we cannot fix beforehand on maximal methods, prudence can only recommend
something more modest. When we recognize that one discovery procedure dominates another then,
ceteris paribus, it is prudent to use the dominant procedure rather than the dominated procedure.
Whether that is a sensible or feasible recommendation depends on the dominance structure of discovery
procedures. If, for example, there is a readily described infinite chain of procedures, later members of the
sequence dominating all earlier members, then the recommendation would give us a task worthy of
Sisyphus. We would ever be changing one procedure for another, without rest and without end.
Sometimes, much as the Existentialists say, the best thing to do is to stop preparing to make inquiries and

make them.

6. Hypermodern Meno

Methodology amounts to recommendations restricting procedures of inquiry. Any such restriction can be
thought of as determining a class of procedures, those that satisfy it. Besides methodology, psychology is
another source of restrictions on procedures, and computation theory still another. For example, we might
nowadays suppose that the discovery procedures available to us, even with the aid of machines, must be
computable procedures, and invoking Church's thesis, restrict our attention to the class of Turing

computable procedures for inquiry.
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For any restriction on discovery procedures, the preceding discussion should suggest the following sort of
question: What arguments of Meno’s sort can be made against all procedures of this class? More exactly,
for any restriction on discovery procedures, does the restriction also limit the class of discovery problems
that can be solved? For both the EA and AE conceptions of successful inquiry, the requirement that
procedures be computable limits the class of discovery problems that can be solved. There are discovery
problems that can be solved by EA procedures but not by any computable EA procedures, and there are
discovery problems that can be solved by AE procedures but not by any computable AE procedures.
Methodological principles that are often regarded as benign also limit discovery when they are imposed in
combination with the requirement of computability. A consistency principle applies to procedures that
always conjecture theories consistent with the evidence; a conservative principles applies to procedures
that never change a current conjecture unitl new evidence contradicts it. Either of these requirements, in
combination with the requirement of computability, restricts the class of discovery problems that can be
solved. It is easy to see that reverse is not true. That is, for every conservative, consistent, computable
procedure, there is an inconsistent or unconservative (or both) procedure whose scope includes all

discovery problems that can be solved by the first procedure.

When we investigate the restrictions on discovery that are implicit in methodological restrictions, we are
entertaining recommendations to hop from one procedure to another. The picture of inquiry sketched in
the previous section suggests the same thing for different reasons: as we reconceive the discovery
problems with which we are faced, we may change our minds about which methods are appropriate. In
that spirit, some philosophers have recommended methodological principles on empirical grounds:

procedures that accord with the principles have worked in the past.®

The effect of hopping from one procedure to another can only be itself some procedure for discovery that
mimics other procedures when given various pieces of evidence. From the inside, a hopping procedure
may feel different than a procedure that does not hop, but behaviorally, the disposition to hop from
procedure to procedure as evidence accumulates simply is a procedure, located somewhere in the vast
ordering of possible discovery procedures. Recommendations about when and how to change
procedures as evidence accumulates thus amount to restrictions on acceptable procedures, and form part

(thus far an uninvestigated part) of methodology as we have just construed that subject. Despite these

€Compare C. Glymour, Theory and Evidence, Princeton University Press, 1980, and R. Boyd, "Realism, Underdetermination and
a Causal Theory of Evidence,” Nous 7 (1973).
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caveats, if we are familiar with only a small set of methods, as seems to be the case, hopping among

them can constitute a better procedure.

Recommendations about preferences among procedures may also come from the study of the scope of
procedures, but that study cannot be algorithmic. There is no computable function that will tell us, for all
ordered pairs of indices of discovery procedures, whether the first member of the pair dominates the
second. We are instead landed somewhere within the analytical hierarchy of recursion theory, and just

where it is that we have landed is an open question.

The general notion of hopping among procedures suggests an apparent paradox: Can an effective
procedure that hops among procedures hop from itself to some other procedure? Can it hop back to
itself? In a sense it can. If we think of a hopping procedure as a program that simulates other programs,
then (by the recursion theorem) it can at various stages pursue a simuiatton of itself, or cease to simulate
itself, and thus accept or reject itself as a method. Of course, no procedure can behave differently than it

does.

7. Real Learning

Some people may think that results and questions such as those we have derived from the Meno paradox
are remote from real concerns about the acquisition of knowledge. One might complain that these are all
formal results, and because of that, for some reason mysterious to us, of no bearing on real science and
its philosophical study. The study of the connection between logical form and the possibility of successful
inquiry, in various senses, strikes us as both theoretically interesting and profoundly practical. For every
guestion that has a logical form, or at least a tolerable variety of possible logical forms among which we

may be undecided, these studies address the prospects for coming to know the answer.

Problems of a similar kind abound in the sciences, and questions (whose answers are in many cases
unknown) about the existence of Menoan arguments against the acquisition of knowledge affect very

practical issues about procedures of inquiry. We will give a few illustrations.
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7.1. Language Learning

Consider a child learning its first language. Somehow, within a few years, the child comes to be able to
produce and to recognize grammatical sentences in the native language, and to distinguish such
sentences from ungrammatical strings. Grammatical sentences of any possible language can be
regarded as concatenations of symbols from some finite vocabulary. If we fix the finite vocabulary then
the number of distinct sets of strings built from that vocabulary is of course infinite, and in fact
uncountably infinite. Suppose, however, we make the reasonable assumption that if a collection of strings
is the collection of grammatical strings of some possible human language, then the collection is
recursively enumerable. That is, for any set of strings of this kind there is a computable function such
that, if a string is in the collection, the computable function will determine that it is. So, restricting attention
to the languages that can be built on some particular vocabulary, the collection of possible natural
languages is restricted to the recursively enumerable sets of strings made from that vocabulary. For each
recursively enumerable set there is a program, actually an infinity of different programs, that when given
an arbitrary string will compute "yes" if and only if the string is in the set (and will not return anything
otherwise). The recursively enumerable sets can be effectively indexed in many different ways, so we
can imagine each possible language to have a name that no other possible language has, and in fact we

can imagine the name just to be a program of the kind just mentioned.

One way to think of the child’s problem is this: on the basis of whatever evidence the environment
provides, the child forms a sequence of programs that recognize a sequence of languages, until,
eventually, the child setties on a program that recognizes the actual natural language in the child’s
environment. Psychological investigation suggests that children use positive evidence almost exclusively.
That is, the evidence consists of étrings from the langauge to be learned, but does not include evidence

as to which strings are not in the language.

With this setting, due essentially to E. Mark Gold,” an important aspect of human development is made
formal enough to permit mathematical investigations to bear on issues such as the characterization of the
collection of possible human languages. For a language to be possible for humans, humans must be
capable of learning it. Assuming that any possible human language could have been leamed by any one

human, it follows that the collection of possible human languages must be identifiable, or learnable, in the

7Aspects of the framework were developed independently and slightly earfier by Hilary Putnam.
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sense that for every language in the collection a human child, if given appropriate positive evidence, can
form a program that recognizes that language. There are surprising results as to which collections of
languages are, and are not, leamable. Gold himself proved that any collection containing all finite
languages and at least one infinite language cannot be identified. Imposing psychologically motivated
constraints on the learner, Osherson and Weinstein have argued that any learnable collection of

languages is finite. A wealth of technical results are now available about language learning.

7.2. Statistical Inference

One of the prinicipal statistical tasks is to infer a feature of a population from features of samples drawn at
random from that population. One can view an ideal statistician as drawing ever larger samples, and
using the statistical estimator to guess the value of the quantity of interest in the population. Some of the
usual desiderata for statistical estimators are founded on this picture. For example, it is desired that an
estimator be consistent, meaning that whatever value the quantity has in the population, for any positive
epsilon the probability that the estimate of the quantity differs from the true value by more than epsilon
approaches zero as the sample size increases without bound. This is clearly a convergence criterion; it
implicitly considers a family of possible worlds, in each of which the quantity of interest has a distinct
value. When the quantity is continuous there will be a continuum of such possibilities. A consistent
estimator must, given increasing samples from any one of these possible worlds, converge with
probability one to a characterization of the value the quantity has in the world from which the data is

obtained.

7.3. Curve-Fitting

Every quantitative empirical science is faced with tasks that require inferring a functional dependency
from data points. Kepler's task was to determine from observations of planetary positions the function
giving the orbits of planets. Boyle's task was to infer the functional dependency of pressure and volume
from measures on gas samples. These sorts of challenges can usefully be viewed as discovery
problems. Data is generated by a process that satisfies an unknown functional dependency, but the
function is known (or assumed) to belong to some restricted class of functions. In principle, more data
points can be obtained without bound or limit, although in practice we may lose interest after a while. In
real cases, the data are subject to some error, but something may be known about the error-its bounds,
for example, or its probability distribution. The scientist's task is to guess the function from finite samples

of data points. The conjecture can be revised as more evidence accumulates.
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Many procedures have been proposed for this sort of discovery problem. Harold Jeffreys® for example,
proposed a procedure that uses Bayesian techniques together with an enumeration of the polynomial
functions. Nineteenth century computational designs, such as Babbage's, used differencing techniques
for computing polynomials, techniques that could (in the absence of error) be turned round into discovery

procedures. More recently Langley, et al.®

have tried doing exactly that, and have described a number of other procedures for inferring functional

dependencies from sample data.

For any of these procedures, and for others, the foremost questions concern reliability. For any procedure
we can and should ask under what conditions the conjectures will converge to an appropriate function.
We can ask such questions for many different senses of convergence, and for many different accounts of
what makes a function (other than the correct one) appropriate, but we should certainly try to formulate
the issues and answer them. Very little work of this kind has been done; neither Jeffreys, nor Langley and
his collaborators characterize exactly when their procedures will succeed, although in both cases it is
easy enough to find many classes of functions (e.g., classes including logarithmic, exponential and similar
transcendental functions) for which the procedure will fail in the long run. A more systematic study has
been done for a related class of problems in which the data are finite pieces of the graph of a recursive

function, and the discovery task is to identify the functlon by guessing a program that computes it.*°

7.4. Generating Functions

One of the characteristic kinds of discovery tasks, at least in the physical sciences, is the discovery of
generating functions. The idea is easiest to understand through an example. When monatomic gases are
heated they emit light, but only light of certain definite frequencies. For example, when atomic hydrogen
emits light, the spectrum contains a series of lines following a line whose wavelength is 6563 Angstroms.
In addition, the spectrum of hydrogen contains a number of other series of lines. The spectral likes of
other elements, notably the alkaline earth and alkali metal elements, can also be arranged in various

series. Here is a kind of discovery problem: given that one can obtain the spectrum of such a gas, and

8See his Scientific Inference, Cambridge University Press, 1973.
°See P. Langley, H. Simon, G. Bradshaw and J. Zytkow, Scientific Discovery, MLT. Press, 1986.

See Angluin and Smith, A Survey of inductive Inference Methods, Technical Report 250, Yale University Department of
Computer Science, 1982.
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can identify lines as lines of a common series, what is the function that determines the frequencies (or
wave-lengths) of the lines.in the series? For the principal hydrogen series, Balmer solved this problem in

1885. Balmer's formula is
1/X=R(1/4-1/n?)

where n is an integer greater than or equal to 3, X is the wavelength, and R is a constant (the Rydberg

constant). Balmer generalized his formulato give a parametric family

1A = R(1/m? - 1/n?)
for which series for m =1,3,4 and 5 have been found.

Balmer's formulas give a collection of discrete values for a continuous quantity, in this case the wave

number, and they specify that collection by giving a (partial) function of the positive integers.

There are other famous discoveries in the natural sciences that seem to have an analogous structure.
The central question in chemistry in the 19th century was the reliable determination of the relative weights
of atoms. Alternative methods yielded conflicting results until in 1859 Cannizzaro noted that the relative
vapors densities of compounds form series; for example, all compounds of hydrogen form a series, as do
all compounds of oxygen, and so forth for any element. Of the continuum of possible values for
compounds on hydrogen, only a discrete set of values is founded, and Cannizzaro discovered that the
vapor density of any hydrogen compound is divisible by half the vapor density of hydrogen gas.
Analogous results held for compounds of other elements. Cannizzaro's discovery was of crucial
importance in putting the atomic theory on a sound basis; Balmer's discovery formed the crucial evidence

for the early quantum theory of matter.

We can imagine a scientist faced with the following kind of problem: an infinite but discrete series of
values of a continuous quantity is given by some unknown function of a power of the integers, 1", or of the
positive integers, but the function may belong to a known class of functions of this kind. The scientist can
observe more and more members of the series, without bound, and can form a series of conjectures
about the unknown function as the evidence increases. The properties of discovery problems of this sort
have not been investigated either in the scientific or in the philosophical literature; and aside from the
obvious procedure of looking for common divisors of values of a quantity, we know of no discovery

procedures that have been proposed.
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7.5. Theoretical Quantities and Functional Decompositions

If you have only a number of resistance free batteries, wires of varying but unknown resistances, and a
device for measuring current through a circuit, you can discover Ohm's law, that voltage in a circuit equals
the current in the circuit muliplied by the resistance in the circuit, even though you have no device to
measure voltage or resistance, and even though at the beginning of the inquiry you have no belief that
there are properties such as voltage and resistance. Pick a wire to serve as standard, and let the current
through each circuit with each battery serve to a measure a property of each battery. Pick a battery to
serve as standard, and let the current through each circuit with each wire and that battery serve to
measure a property of each wire. You will then find, by simple curve fitting, that the relations between
these two properties and the current is described by Ohm's law. Langley, Simon, et al. give a discovery

procedure that solves this problem. But what is the general form of the problem?

Consider any real (or rational, or integer as the case may be) valued function of n-tuples of nominal
variables. In the circuits considered previously, for example, current | is a function of each pair of values
for the nominal pair (battery, wire). In general we have F(X1,..., Xn). Let F be equal to some composition
of functions on subsets of the nominal variables. For example, I(battery, wire) = V(battery) * R(wire),
where * is multiplication. A discovery problem consists of a set of functions on subsets of tuples of
nominal variables, and for each tuple and set of functions, a function that is a composition of (i.e., some
function of) that set. The learner's task is to infer the decomposition from values of the composite

function.

Evidently a lot of clever science consists in solving instances of problems of functional decomposition,
and thus discovering important but initially unmeasured properties. The properties of discovery problems

of this kind, and of algorithms for solving them, are almost completely unstudied.

7.6. "Underdetermination,"” or Answerable and Unanswerable Questions

A scientist often has in mind a particular question to which an answer is wanted. The aim is not to find the
whole truth about the world, but to find the answer to one particular question. There is a tradition in
philosophy, in physics, and even in statistics of considering contexts in which particular questions cannot
be answered. Philosophers talk about "underdeterminatton” in such contexts, whereas physicists tend to
talk about similar issues in terms of "physical meaningfulness" and statisticians in terms of "identifiability."

The examination of such issues is in structure very much like Gold's consideration of classes of
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languages that cannot be identified. Arguments consider a collection of alternative structures of some
kind, characterize the evidence generated from any structure, and establish that even "in the limit" some

structures in the collection cannot be distinguished.

Consider a question about the shape of space: what is its global topology? In relativity, the evidence we
can get at any time about that question is bounded by our past light cone; the discriminations we can
make at any time are then determined by the data in that light cone and whatever general laws we
possess. The general laws can be thought of as simply restricting the possible classes of space-time
models. As time goes by, more and more of the actual universe is in the past of an imaginary, immortal
observer. Are there collections of relativistic models for which such an observer can never determine the
global topology of space? It turns out that there are, and some of them are not too difficult to picture.
Imagine that space is a three-dimensional sphere, and that space-time is an infinite sequence of three
dimensional spheres. Suppose the radius of the sphere expands as time goes on. At any moment the
past light cone of an observer may include, at each past moment some but not all of the sphere of space
at that past moment. |If the radius of space expands fast enough, then at no moment will the past light
cone include all of space. Now consider another space-time made mathematically from the first by
identifying the antipodal points on the sphere of space at each moment. The shape of space will be
different in the two space-times. The sphere is simply connected-any closed curve on the surface of a
sphere, even a three dimensional sphere, can be contracted smoothly to a point. The projective space
obtained by identifying antipodal points on the sphere is not simply connected. The two spaces have
different topologies. Now imagine that space expands with sufficient rapidity that the past light cone of
any point never reveals whether one is in the spherical sphace of the projective space. Many other

classes of indistinguishable space-times have been described.**

7.7. Indistinguishability by a Class of Procedures

Issues of distinguishability also arise in settings that are remote from cosmology. In the social sciences,
engineering, parts of biology and epidemiology, we often rely on statistical models of causal relations.
Often an initial statistical model is thought to be in error, and a variety of algorithmic or quasi algorithmic
techniques have been developed to find revisions. Factor analysis is one way ; procedures that modify

an initial model by means of “fitting statistics" are another; procedures that try to match the empirical

See C. Glymour, Indistinguishable Space Times and the Fundamental Group, and D. Malament, "Indistinguishable Space
Times" both in J. Earman, ed., Foundations of Space Time Theories, University of Minnesota Press.
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constraints entailed by a model with those found in the data are still a third.

For each of these kinds of procedures the discovery framework poses a relevant question: For what
classes of models can the procedure succeed in identifying in the limit? What are the collections of
models such that given data generated from any one model in the collection, as the size of the sample

increases without bound the procedure will identify the model that actually generated the data?

Sometimes a variety of procedures share a feature; either they share a limit on the information they
consider in forming a hypothesis, or they share a limit on the hypotheses they consider. In the latter case
it is perfectly obvious that certain classes of models cannot be identified. In the former case, finding out
what classes of models can and cannot be identified may take some work. The discovery paradigm

empahsizes the importance of the work.

8. Conclusion

There is a lot of structure behind the words that translators have given to Plato's Meno and to Plato's
Socrates. The structure is, we hope, plausibly attributed even though it is remarkably modern. That
should be of no surprise to those who think philosophy really addresses enduring questions, and who

think the questtons of knowledge had the same force and urgency for the Ancients as for ourselves.




