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Abstract

Convergent realists desire scientific methods that converge reliably to informative, true theories

over a wide range of theoretical possibilities. Much attention has been paid to the problem of

induction from quantifier-free data. In this paper, we employ the techniques of formal learning

theory and model theory to explore the reliable inference of theories from data containing

alternating quantifiers. We obtain a hierarchy of inductive problems depending on the quantifier

prefix complexity of the formulas that constitute the data, and we provide bounds relating the

quantifier prefix complexity of the data to the quantifier prefix complexity of the theories that can

be reliably inferred from such data without background knowledge. We also examine the

question whether there are theories with mixed quantifiers that can be reliably inferred with

closed, universal formulas in the data, but not without.



1. Introduction: Induction and Reliability

Scientific inquiry may be viewed as a process that receives increasing evidence and that periodically

comes up with its current guess at a correct theory. This process is governed either by the natural

physical dispositions of the theorizing agent, or by explicit methodological rules. For the purposes of this

paper, we need not distinguish between the two cases.

A traditional criterion by which to judge a theorist or method of inquiry is its reliability. What we would

really like is a method that always outputs a true, informative hypothesis on any data sampled from any

theoretically possible world. Unfortunately, Hume's problem is the elementary observation that there can

be no such method (assuming that the problem is property inductive). A standard response to Hume's

problem, called convergent realism requires only that the theorist converge to the truth in each

theoretically possible world, no matter what order the data comes in. Converging to the truth is, of

course, much easier than producing the truth all the time. From the convergent realist's point of view, an

inductive problem is specified by a set of theoretically possible worlds, any one of which may be actual for

all the theorist knows. He solves the problem just in case he converges to a useful, true hypothesis in

each world the problem contains. The biggest inductive problem the theorist can solve (i.e. the set of all

worlds in which he converges to the truth) is called his inductive scope. A theorist's scope is the formal

correlate of its reliability. If one method's scope includes that of another, then the former is as reliable as

the latter.

When we demand only convergence to the truth, Hume's problem no longer applies trivially to all

inductive problems. It re-emerges for some problems (in the sense that no theorist can reliably converge

to the truth in each possible world admitted by the problem), but it does not apply to others. It is a

non-trivial project to map out where the dividing line falls. Moreover, we can weaken or strengthen the

criteria of convergence, and draw the line between the solvable and unsolvable problems for each such

definition. The result is a sort of topographical map of the intrinsic difficulties of inductive problems. We

are happy when our inductive problems are easily solvable with respect to a stringent notion of

convergence (i.e. one imposing strict limitations on numbers of mind-changes before convergence or

imposing tight constraints on computational resource consumption in formulating hypotheses). But when

difficult, pressing inductive problems arise, we still have to choose some approach to their solution (to sit

on our hands and do nothing is just to choose a very bad approach to the problem). If no method can

solve the problem under a strict criterion of success, it is time to ask whether the problem is solvable



under a slightly weaker notion of success. It is true that in the long run we are all dead; but for some

inductive problems, all methods are hopelessly unreliable in the short run.

The reliabilist perspective on methods of inquiry is not new. Peirce, Reichenbach, Savage, and

Putnam have all proposed analyses of the limiting correctness of proposed scientific methods. The

statistical and Bayesian convergence theorems are also in this spirit. Under the influence of Chomsky,

linguists, mathematicians and computer scientists have developed a rich formal study of the classes of

grammars that can be correctly inferred in the limit. These analyses have been extended to curve-fitting

[1], [2] to automatic computer programming [13], to concept learning [12], [7], [6], and to the inference of

complete true theories in specified formal languages [5] [8], [9]. The general approach common to these

studies is often referred to as formal learning theory. Formal learning theory is united by a simple, flexible

formal picture of inquiry. The basic elements of this picture are as follows:

• An evidence language and an hypothesis language

• A space of theoretically possible worlds

• A formal protocol by which the theorist obtains evidence

• A theorist that produces hypotheses on the basis of the current evidence provided through

the protocol.

• A criterion of hypothesis adequacy in a possible world

• A criterion of convergence of the theorist to an hypothesis on a given data presentation in a

given possible world.

Any precise way of filling out these elements is called an inductive paradigm. The formal learning

literature has examined many different paradigms, including those with stochastic theorists, stochastic

worlds, noisy data, approximately true hypotheses, experimental theorists who construct questions for

nature, computable theorists, quickly computable theorists, and a variety of criteria of convergence.



2. Induction from Data with Mixed Quantifiers
Despite the impressive variety of inductive paradigms examined, all previous studies in formal learning

theory have assumed that the evidence formulas are quantifier-free. That is, a finite set of evidence

formulas describes a finite number of relations holding over a finite subset of the universe under

investigation. Background knowledge may be universal, but the data may not be.

The restriction to quantifier-free evidence sentences is undesirable in a general theory of reliable

discovery methods. Many methodologists of the Nineteenth century, including William Whewell,

proposed that theorists take empirical laws as their inputs and produce general theories to explain them.

A reliable theorist should succeed over a broad range of possible worlds, in which different universal laws

will have to be explained.

Bayesian convergence theorems do not assume that the data is quantifier-free [4]. Conditionalization

is defined over all sentence types, and there is no reason why formal learning theory should not be

developed at the same level of generality.

For a more homely example, a foreign language textbook typically includes particular examples of texts

in the language together with general principles of grammar for the language in question. A reliable

learner of foreign languages from textbooks should be able to make use of such principles when they are

available.

Finally, some well known artificial intelligence learning systems tacitly depend upon universal data.

This reliance on universal data is often called the "closed world hypothesis" by A.I. programmers. One

version of the closed world hypothesis is this:

If the teacher shows you an object and points out such and such parts, the object has no further

parts that have not been pointed out.

For a standard artificial intelligence example, suppose that the teacher has shown you an arch, and

has pointed out its parts, which are a lintel and two posts. In logical notation, he has provided the

following data:



Arch{d)
Part-of{ajb)

Part-of(a,c)
Part-of(aJ)
Lintel(d)
Post(b)
Post(c)
On-top(d,b)
On-top(d,c)
—\Touches(b,c)

The closed world hypothesis is an assumption about the kind of data presented to the theorist. The

promise is that for each object x, a true, universal formula will eventually appear that tells you when you

which objects are not parts of x. As we shall see, it is not accidental, but rather necessary that Winston's

program receive these universal assurances if its performance is to be reliable.

Universal data of the form presented to Winston's program is available in many inductive applications.

In the case of learning about classes of artifacts, such as carburettors and disc brakes, complete

examples of such objects can be exhibited with the assurance that no parts are missing. The same is

often true in the case of learning the rules of games just by watching others play. In this setting, the

theorist may safely assume that nothing going on outside of the house is an essential part of a move or of

a board configuration of the game being observed. In other settings, it is less obvious that the data

includes universal assurances of the sort Winston's program receives. For example, a cell anatomist

must always be prepared for the discovery of yet another level of structure or function that has not yet

been noticed. Nature provides no assurance that every relevant structure of the cell has been observed.

As soon as we recognize that the data may contain universal quantifiers, the generalization to arbitrary

combinations of quantifiers suggests itself. For example, imagine an application in which a concept must

be learned over a domain of objects, some of which are artifacts and others of which are natural, like the

cell. The teacher might tell the student that the object has no more parts when the object under

discussion is discrete, and that each part has another part when the object can be analyzed into relevant

parts to infinity. The latter sort of information involves mixed quantification (for all/there is).

Finally, induction from quantified data is interesting from a purely formal point of view. In computation

theory, we know that some impossible problems are harder than others. If A can be solved given B but C



cannot be solved given B, then C is harder than A, even when both A and C are unsolvable. Similarly, if

inductive problem A can be solved from data B and inductive problem C cannot be solved from data B,

then C is harder than A, even if neither problem is solvable from the kind of data we actually have

available. So the study of induction from quantified data may provide a formal topography of the intrinsic

difficulties of unsolvable inductive problems.

In this paper we examine the following question: given that the data contains formulas up to a given

quantifier complexity (i.e. number of alternations between universal and existential quantifiers) how much

more complex (in terms of quantifiers) can a theory reliably inferred from this data be? The major result

of the paper is the AE hierarchy theorem. Simply put, this theorem shows that without the help of

background knowledge, a reliably inferred theory in a suitably rich language can involve one more

quantifier alternation than the data, but not three. The question about two quantifier permutations

remains open at every level but the first, which is settled in the negative.

Quantifiers in the data make negative results about inductive inference much harder to prove than in

the case of quantifier-free data. All negative results about learning from quantifier-free data can make

use of the fact that for any stage of inquiry, only finitely many relations among finitely many individuals

have yet been described. The "evil demon's" task is to mislead the theorist about the nature of her world

infinitely often by making the world look first one way and then another. With quantifier-free data, the

demon may freely reconfigure the relations over the unseen objects in complete isolation from what has

been said about those that have already been described in the data. But when quantifiers occur in the

data, these data impose constraints on all individuals at once. The demon must be far more facile if he is

not to trip over these constraints as he constructs data that make the world look first one way and then

another. To put it another way, quantifier-free data places only local constraints on what the demon can

do to mislead you. Quantified data, on the other hand, place global constraints on what the demon can

do to mislead you, so the demon must be very careful.

3. Formal Preliminaries



3.1. Languages

Both the hypothesis language H and the evidence language E are assumed to be fragments of some

countable first-order language L. The set of all atoms or negated atoms of L is denoted BAS. BAS is, of

course, the usual evidence language assumed in formal learning theory. We now proceed to define an

infinite hierarchy of stronger evidence languages.

Let s be a formula of L. Formula s is said to be nn if and only if s is logically equivalent to a prenex-

normal formula sf of L such that the quantifier prefix of s' begins with a universal quantifier and has at

most n-1 alternations between blocks of universal and existential quantifiers. Formula s is 2^ if s is

logically equivalent to a prenex normal formula s* of L such that the prefix of s' begins with an existential

quantifier and has at most n-1 alternations between existential and universal quantifiers. For example,

formula

is a n2 formula. It does not matter for the purposes of this classification that the existential quantifiers are

vacuous. But it is also a n1 formula, for it is logically equivalent to the result of eliminating its vacuous

quantifiers. To say that s is I7n is not to say that it fails to be ITn.r To establish a tower bound, one must

show that a formula does not belong to a given complexity class.

Now, let Lf be a subset of L. We say that L' is ITn [ I J if and only if each formula of L1 is a nn [Zn]

formula. For example, if L is a monadic predicate language with unary function symbols but no identity,

then L is U2 and I 2 . 1 Finally, we define nn(L) [In(L)J to be the greatest nn [ZJ subset of L. So long as L

has a binary, non-logical predicate or a binary function symbol and some predicate, nn(L) is nn but

neither n^ nor 1^. Similarly, Zn(L) is Zn, but neither Zn^ nor nn . By convention, no(L) = ZQ(L) = the

quantifier-free formulas of L. So the paradigms that allow only quantifier-free data are at the bottom of an

infinite hierarchy of paradigms, depending on how complex the evidence is permitted to be.

Finally, it is useful to define the closure T of a set r of formulas to be the set of all ctosed formulas in r,

where a closed formula is a formula with no free variables. So for example, l y L ) is the set of all closed

formulas in nn(L).

1After renaming bound variables to make them distinct the quantifier prefix may be shuffled at will until it either consists of
universal quantifiers followed by all existential, or all existential quantifiers followed by all universal.
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3.2. Theoretically Possible Worlds

From the point of view of first-order logic, we take "theoretical possibilities" to be relational structures.

In this paper we restrict our attention to countable structures. A relational structure for L makes each

sentence of L either true or false. For all the theorist knows, the actual world may be any structure in

which his background knowledge is true. The stronger the theorist's knowledge, the fewer possibilities he

need succeed over, so the easier his inductive task. Ideally, a theorist would like to be able to arrive at

the truth no matter which model of his background knowledge is the actual world. It is an interesting

question whether a given background theory generates a solvable inductive problem or not.

3.3. The Data Presentation

Let SR be a countable relational structure for L. Let the evidence language E be some arbitrary subset

of L. An assignment function for E and SR is a map from the variables of E to the domain of SR.

Assignment function g for E and SR is complete if and only if it is onto the domain of SR. That is, a

complete assignment assures that the evidence language "mentions" each domain element of SR. The

E-data of SR with respect to assigment g is the set of all E-formulas satisfied by g in SR (i.e. {e e E: SR

|=e[g]). Let t be an co-sequence of E-formulas. Let rng(t) denote the set of all formulas occurring in t.

Then define:

Sequence t is an E-environment for SR <=> there is a complete assignment g for SR, E such that

rng(t) = the E-data of SR with respect to g.

That is, an E-environment for a possible world is an enumeration of the set of all E-formulas satisfied in

SR by an assignment that makes sure everything in the structure's domain is mentioned. We will often

need to refer to the set of all formulas occurring in an environment t. This set is denoted rng(t).

If E has only finitely many distinct variables, and the domain of SR is infinite, SR has no E-environments.

This situation could be rectified in various ways. Here, we consider only evidence languages with

infinitely many variables.

It is often convenient to refer to the finite initial segment of an environment so far available to the

theorist. If e is an environment, then we denote the initial segment of e of length n by \.



3.4. Theorists

Our theorists will be passive investigators, rather like positional astronomers who can watch, but never

intervene in, the motions of the planets. That is, our theorists output theories periodically on the basis of

the initial data segment so far provided at the whim of the environment. A theorist cani output an infinite

theory or an infinite set of axioms for a theory; but he can output a finite decision procedure for the

axioms of an infinite theory.

Formally, let SEQ be the set of all finite sequences of formulas in E. A theorist is an arbitrary function

from SEQ to decision procedures for subsets of the hypothesis language H. In what follows, it simplifies

the presentation to speak as though the theorist outputs the axioms themselves, rather than their decision

procedure, and nothing in the results of the paper depends on the distinction.

The passivity of the theorist may seem an extreme limitation. We might prefer, for example, a more

energetic theorist who sends questions to his lab, and who then receives answers in return. But in our

present setting, the reliability results for passive observers hold for experimenters and conversely. This

would not be the case if we were to consider uncountable structures so that the mentioned objects were a

function of the theorist's choice. Nor would the equivalence between experimentation and passive

observation hold if, as is actually the case, the properties of observed objects were to depend on the

theorist's experimental intervention. The invariance between experiment and observation also breaks

down for questions of complexity and convergence time. Clearly, the experimentalist can obtain a crucial

datum whenever he wants, whereas the passive observer may have to wait arbitrarily long before it

comes in. The examination of the differences between observation and experiment is outside the scope

of this paper.

3.5. Convergence

So far we have specifed what we mean by possible worlds, investigators, and data presentations.

These elements comprise the ontology of our inductive paradigm. It remains to specify the normative

elements of the paradigm, which define success. From the point of view of reliability, the central notion is

that of a theorist's convergence to a theory. Here we consider two different notions, one properly more

stringent than the other.

Theorist 6 EA-converges to theory T on environment e if and only if there is an n such that for

all h, for all m > n, efeg |. h if and only if h e T.
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Theorist 9 AE-converges to theory T on environment e if and only if for all h there is an n such

that for all m > n, 9 ^ ) |= h « h e T.

The mnemonic "EA vs. AE" reflects the fact that the second definition results from the first definition if

we permute the universal quantifier on h with the existential quantifier on n. Hence it is immediate that

EA-convergence implies AE-convergence. The failure of the converse implication is presented in [8].

Intuitively, EA-convergence is convergence "all at once" to a theory. AE convergence is "piece-meal"

convergence to a theory, in which parts of the theory keep trickling in, but the complete theory is never

conjectured as such. Indeed, a theorist can AE-converge to a theory even when each conjecture he

makes is inconsistent with the theory. Nonetheless, a theorist always converges to a unique theory.

Moreover, for any particular prediction the AE-convergent scientist needs to make, there is a time after

which it is made correctly. AE convergence is the sort of convergence proposed by several

methodologists, including C.S. Peirce and Karl Popper. EA convergence is the sort of convergence

usually examined in formal learning theory.

3.6. Identification

A theorist identifies a structure just in case he converges to a "good" theory of the structure no matter

what order the data arrive in. We have just seen that convergence can come in different flavors. The

"goodness" of a theory in a possible world can vary as well. Recall that H is our hypothesis language,

which may be any subset of first-order language L. In this paper, we are very demanding, in that we

require the theorist to find the set of all H-formulas valid in his world. That is, we require that he converge

to the stongest possible true theory of his world that can be expressed in H, where free variables are

viewed as bound by implicit universal quantifiers. We denote the set of all H-formulas valid in SK by H(SR).

More formally,

Theorist 9 EA-identifies the H-theory of structure SR from E-data <=> for each E-environment t for

SR, 9 EA-converges to H(SR).

Theorist 9 AE-identifies the H-theory of structure 91 from E-data » f o r each E-environment t for

% 9 AE-converges to H(SR).
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The requirement that the theorist converge to the complete H-theory of his world is ameliorated by the

fact that H can be chosen as a fairly limited fragment of L.

3.7. Inductive Scope and Learning Problems

Recall that an inductive problem is posed by a set of theoretical possibilities, and that to solve a

problem is to converge to the truth regardless of which possibility is actual. Accordingly, we define

success over a set of possibilities in the following way.

0 EA-identifies the H-theories of collection K of worlds <=> 6 EA-identifies the H-theory of each

world 9? € K.

6 AE-identifies the H-theories of collection K of worlds <=> G AE-identifies the H-theory of each

world SR e K.

Other things being equal, the larger K is, the harder the inductive problem K poses. Since we are

considering only countable structures, the hardest problem that can arise is the set of all countable

structures for (E u H). We call this the unrestricted theorizing problem for E and H. The set of all

countable relational structures for (E u H) is denoted K(E u H).

Unrestricted theorizing problems are the special inductive problems that arise when the theorist has no

background knowledge. Therefore, unrestricted problems are of special epistemic interest. One natural

epistemological project is: given E, solve for H such that the unrestricted learning problem for E and H is

solvable. Another is to start with H and to solve for E so that the unrestricted learning problem for E and

H is solvable. Finally, one can fix E and H both, and look for interesting problems K that are solvable with

respect to E and H (there needn't exist a maximal one [10].) In this paper we pursue each of these

projects.

For simplicity in stating our results, we define the notation

• AE(G,H,E,K) « 8 AE-identifies the H-theory of each structure in K from E-data.

• AE(E,H,K) « t h e r e is a theorist 9 such that AE(9,E,H,K).

• AEcomp(E,H,K) « t h e r e is a computable theorist 9 such that AE(9,E,H,K)
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• AE(E,H) <=> AE(E,H,K(E u H))

• AEcomp(E'H> « A E comp( E ' H ' K ( E ^ H ) )

The parallel definitions hold for EA identification.

4. Basic Relations
These results are all immediate consequences of the fact that we require hypotheses to be valid in SR

but the evidence need only be satisfied in SR by some fixed interpretation.

L1 For all n, E, [AE(E, In) « AE(E, nn+1)]

L2 For all n, H, [AE(nn, H) « A E ^ , H)]

L3 For all n, E, [AE(E, nn) « AE(E,

Proof: L1 says that since hypothesis formulas must be valid in SR to be correct, nothing is

added or lost if we bind some of the free variables with universal quentifiers. L2 is the dual of

L1. Since the data is viewed as satisfied by a fixed interpretation, the result of binding free

variables with existential quantifiers adds no new information. And it does not decrease

information, because n n is a subset of In + 1 , so we retain copies of the formulas with free

variables. L3 is true for the same reason as L1. •

5. Universal data and the Osherson-Weinstein Condition
Osherson and Weinstein [11] have discovered an interesting characterization of AE identifiability when

the evidence language is BAS. An examination of the proof of the theorem, however, reveals that they

have actually demonstrated it for arbitrary evidence languages. All of the negative results in this paper

will make use of their condition.

Let K be a collection of countable structures, let s e H be an hypothesis, and let E be our evidence
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language.

K,s,E satisfy the Osherson-Weinstein condition <=» for each 3? e K, if SR |== s then there is a a e

SEQ(E) and a finite g:var(a) -> Dom(SR) such that for each SRf such that 9T | * s and for each

complete assignment f such that 9T |= off], there is a % e SEQ(E) such that 9T |« i[f] and for all

assignments g' 2 g, 911 * x[g'].

Osherson and Weinstein have shown that

Theorem OW1 (Osherson and Weinstein) [11]:

For each countable collection K of countable structures, AE(E,{s},K) <=> E,s,K satisfy the

Osherson-Weinstein condition and E, -. s, K satisfy the Osherson-Weinstein condition.

Proof: The proof of [11], proposition 31, suffices to show the theorem, D

An examination of Osherson and Weinstein's proof also reveals that the condition is necessary for

arbitrary collections of countable structures. And since failure to AE identify the complete theory in a

sub-language implies failure to identify the complete theory in a bigger language, we have as a corollary

that

Theorem OW2 (Osherson and Weinstein) [11]: If AE(E,H,K) then for each s e H, E,s,K

satisfy the Osherson-Weinstein condition and E, -. s, K satisfy the Osherson-Weinstein

condition.

Since we use the Osherson-Weinstein condition as a necessary condition in our negative proofs, and

since the condition is complicated, it is useful to drive the negation through it now for future reference.

E, s, K fail to satisfy the Osherson-Weinstein condition <=>

there is a 9t € K such that

1.SR|=sand
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2. for each a e SEQ[E], for each g: freevar(a) -» Dom(SR), if SR |= a[g] then there is an 9T

€ K and a surjection f: var(L) -» Dom(9T) such that

a. 9f | * s and

b. 9f |= c[f] and

c. for each x e SEQ[E] if 9T1= x[f] then there is a g' 2 g such that 91 |=r[g'].

6. Quantified Data and no Background Knowledge: The AE Hierarchy

Theorem
We now relate the quanatifier complexity of the data with the quantifier complexity of theories reliably

inferred from such data without the help of background knowledge. We refer to the following two

theorems collectively as the AE hierarchy theorem. First, we establish an easy upper bound on the data

complexity required for reliable inductive inference over arbitrary countable structures.

Theorem 1: Let L be an arbitrary first-order language.

Then for all n,AE(nn(L),nn+1(L))

The theorist constructed in the proof of Theorem 1 employs the following technique. As the data

increases, it considers ever larger fragments of its hypothesis language. At each stage, it weeds out the

hypotheses refuted by the data, and then conjectures the greatest initial segment of the remainder that is

consistent with the total data. The latter step ensures that the same false proposition is not conjectured

infinitely often in different logical forms. The interesting part of the argument is to show that each truth is

sure to be added by some time.

Proof of Theorem 1:

Choose an arbitrary first-order language L. Now suppose that a is a sequence of L-formulas.

Let lh(a) denote the length of a (or equivalent^, the cardinality of the domain of a, viewed as a
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function). Also, let data(a) be the result of conjoining the formulas occurring in a and of binding

all the free variables with existential quantifiers. Choose a fixed enumeration {s1f s2, • • •, sn,

• • •} of nn+1(L). The restriction of S to m is defined to be {Sj e S: i < m} Now we define two

functions, POS and NEG from SEQfl^) to finite subsets of n ^ .

• POS(a) = {S| e nn + 1: i < lh(a & Sj is consistent with data(a)}

• NEG(a) = {Sj e nn + 1: i < lh(a & S, is not consistent with data(a)}

Next, we define our theorist, 6, in terms of POS and NEG.

• 6(a) = the restriction of POS(a) to n, where n is least such that POS(a) restricted to n

entails no element of NEG(a).

(Note that n always exists, since any set restricted to 0 is the empty set.) Let Sj € nn+1(L).

Hence, there is a least j such that Sj is in prenex normal form, and |= Sj <-» s}. So Sj is of form

where only zv • . . , zm occur free, and <D(xv • • •, xn,z1f • - •, zm) e Zn(L).

Let SR be a relational structure for L, and let e be a n n environment for SR in virtue of complete

assignment g. Now there are two cases. Either SR |- Sj or SR |* Sj.

Case 1: SR | ?t Sj. Then there is an assignment h:{xv • • •, xn ,zv • • •, zm} -^ Dom(9i) such that SR

| * *(x1 t • •, xn ,zv • • •, zm)[h]. Now we define a function REVERSE that negates a formula

and then drives the negation in to quantifier-free formulas.
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REVERSE(O) *

-i * if * is quantifier-free

(3 x)(REVERSE Y) if <t>

(V x)(REVERSE ¥ ) if O

So SR |= REVERSE(O(x1,.--, xn ,z v • • • ,zm)[h]. Choose f: {x 1 , - - - l x n , z 1 f - - . , zm} ->

Variables(L) such that g © f a h. This is possible, since g is onto (since e is for SR in virtue of g).

Set s = REVERSE(<&(f(Xi), • • •, f(xn),f(z1), • • • , f (z j ) ) . So SR |. s[g]. Since s e nn(L), there is a

j such that REVERSE(O(f(x1), • • •, f(xn),f(z1), • • • ,f(zm))) = ej (i.e. s is the jth item in environment

e). Let j' > max(j,i). Then (•) Sj € NEGf^.)- Hence, 8(^.) | * sv by the definition of 6.

Case 2: SR | = sr Suppose j < i and SR |* s{. Then for all n e N Sj is consistent with data(^).

Hence, for each n, Sj € NEGfS^). Now suppose j1 < i and SR | ^ sjt. By (*) in case 1, there is a k

such that for all kf > k, sf e NEGCe .̂) - POS(\.)- Call the least such k for ŝ . the modulus of Sj..

Set m = MAX{w: (3 jf < i)[w is the modulus of Sj.}. Let n > m. Then the greatest initial segment

of POSfS^) that entails no element of NEG(T^) includes sjf since each element of POS("€^)|i is

true and can therefore entail no falsehood. So S| is included in 6(1^). Hence, for all but finitely

many n, 9 (^ ) |- s r

D

A natural question is whether Theorem 1 can be strengthened to say anything about computable

theorizing. We know that:

Proposition KG1:

If L has no function symbols, then A



17

Proof: Proposition 3, [8]. o

So Theorem 1 can be strengthened to AEcomp when n = 0. Since the theorist constructed in the proof

of Theorem 2 must somehow find the greatest initial segment of non-refuted hypotheses consistent with

the total data, and since this consistency test is not effective in general, we leave open the question

whether Theorem 2 can be strengthened from AE to A

An analysis of the computational properties of the above method would have other consequences.

Osherson and Weinstein [11], Theorem 80, shows the following: Suppose we have a method y that

converges to the correct truth value for an arbitrary input sentence s € H, on the basis of the data for an

arbitrarily chosen world 91 € K. Then by means of essentially the same technique as that employed by our

theorist, they show that there is a <t> such that AE(<t>,E,H,K). To strengthen the conclusion to

AEcomp((|),E,H,K) given that y is computable, we would again need to know whether the full,

uncomputable consistency test against the data could be avoided. The question whether the

uncomputable consistency test can be avoided would therefore seem to be of pivotal importance to the

study of AE identification as a computational problem.

We cannot expect a lower bound that matches the upper bound of Theorem 1 for arbitrary languages,

since some languages are such that for some n, nn + ^L) - nn(L) is empty. Then clearly, E^ data suffices

to AE identify the complete, true L-theory. For example, in the special case in which n = 0, we can show

the following proposition.

Proposition KG2:

Say that L is simple just in case

1. L has no predicates at all (including identity) or

2. L has no non-logical predicates of arity 2 or greater, no function symbols of arity 2 or

greater, and no identity or

3. L has no non-logical predicates of arity 2 or greater and no function symbols (of any

arity).

Then AEQl^L), L) if L is simple and
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), n2(L)) if L is not simple.

Proof: The results of [8] amount to an exhaustive case argument for this proposition. •

On the other hand, we can ask whether there exist languages for which tower bounds approaching the

upper bounds of Theorem 1 can be established. Call a language L rich just in case for each n, n ^ L ) -

nn(L) is non-empty and n^L) - IJL) is non-empty. For example, the language of number theory is rich in

this sense.

Now we can establish an infinite hierarchy of tower bounds on data complexity for rich languages.

Theorem 2: Let L be rich. Then for all n > 0, for all s e L, if s e nn+2(L), then not AE(In, {s}).

The idea of the proof is is based upon a model theoretic construction called In-chains. Let % 9T be

structures for L. SR is said to be a ̂ -substructure of SR' if and only if SR is a substructure of SR* and for each

s e X^L) and for each assignment g into the domain of % if SR |= s[g] then SR* |= s[g]. We also say in this

case that SRf is a Zn-extension of 91. The indexed set {SRa: a < P} is a 2^-chain if and only if for each y, y <

p, if Y < y, then 5Ry is a Zn-substructure of SRy.

Keisler's n-sandwich theorem tells us that a nn + 1 -sentence has its truth preserved under unions of

rn-chains. We strengthen this to the preservation of truth under countable 2^-chains of countable

structures. Under the supposition that L is rich, we can choose our hypothesis so that it is not nn + 2 . So

there exists a countable Sn+1-chain such that each structure in the chain makes the hypothesis true, but

the union of the structures in the chain is a countable structure in which the hypothesis is false. Since the

data is I n , both data formulas and their negations are £h^>1. We then use the properties of In chains to

show that no learner can distinguish the structures in the chain on the basis of In data from the structure

that results from the union of the chain.

Proof of Theorem 2: We require three lemmas.

Lemma 1: Let L be countable, and s e L If s is preserved under unions of countable

In^-chains of countable structures, then s € U^.
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Proof sketch for lemma: The proof is the result of several, straightforward applications of the

generalized Lowenheim-Skolem theorem ([3], theorem 3.1.6) to the proof of Keislefs n-

sandwich theorem, theorem 5.2.8 in [3]. Keisler's theorem has as a consequence that if s is

preserved under unions of Z^-chains then s € nn . To obtain the restriction to countable

chains, as required in the lemma, we observe that the relevant parts of Keisler's proof require

only countable chains. Several applications of the generalized Lowenheim Skolem theorem

within Keisler's proof suffice to obtain the restriction to countable stmctures. •

Lemma 2: Let {SRa: a < P} be a S^-chain and let SR = ua<pSRa. Then for all a<p , SRa is a

1^-substructure of 9t.

Proof of lemma: This is a substitution instance of [3], Theorem 3.1.15. D

Lemma 3: Let 91 be a In-substructure of 9T. Let s e 2^^ and g:var(s) -» Dom(SR). Then

Proof of lemma: Assume the lemma's hypothesis. Since s e ^ . s e ^ . Suppose 9t |= s[g],

where grvar(s) -> Dom(SR). Since 9? is a ^-substructure of SR\ SR'|=s[g]. Now suppose 91' |=

s[g]. Since s € Z ^ , there is a 8 € nn_1 such that |= a «-»-. 8. So SRf | * 8. But since 8 € n ^ , 8

€ 1^. So if SRf | * 8[g] then 911 * 8[g], by the contrapositive of the definition of Zn-substructure.

Hence, SR | * 8[g], so 911= s[g]. D

Proof of theorem resumed:

Let s € Zn+2(L). This is possible since L is rich. Let sf = -s. So s1 € ^^(L). Then by Lemma

1, there is a countable I^-chain {9ta: a<pj s.t.
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For all a < p, 9*a is countable and

For all a < p, 9ta |« sf and

Now define

L e t 9 U u a < ( 0 * a , soSR|* s.

Let K = {9ta: a < co} u {SR}.

Hence,

For all a < to, SRa | * s.

Each structure in K is countable

(recall SR is a countable union of countable structures).

Now we show that not AE(Zn, {s}, K) by showing that the Osherson-Weinstein condition fails to

hold of K, h, and I^L), and by applying theorem OW2.

INSERT FIGURE 1 HERE

First, choose an arbitrary a e SEQ(In), and g: freevar(a) -> Dom(SR). Recall that 9* |= s.

Suppose SR \m a[g]. Now choose a so that rng(g) c Dom(9?a). There is one, since rng(g) is a

finite subset of 91 = ua < p9ta. Recall that SRa | * s. By Lemma 2, SRa is a Ln+1-substructure of

9?. By Lemma 3, 9*a |= d[g]. Pick surjection f:var -> Dom(9Ja) so that g c f. There is one since
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rng(g) c Dom(9ta). Hence, 9ta |= offi. Now suppose t e SEQ(In). Suppose 9 i a |= *HJ. Since

3to is a In+1-substructure of 9t and x e S E Q I J , and since rng(f) c Dom(fta), we have that 911=

x{f]. But since f 2 g. there is an g 12 g such that 511« tig"]. So by Theorem OW2, we have that

Theorem 1, together with propositions L1-L3 yields the following system of positive results:

Positive results

Let L be any first order language. Then

• Cor. 2.1: For all n £ 0, AE(Xn(L), nn(L))

• Cor. 2.2: For all n > 0, AE(Zn(L), Zn_.,(L.))

• Cor. 2.3: For all n S 0, AE(nn(L), nn+1(L))

• Cor. 2.4: For all n S 0, AE(nn(L),

These results provide upper bounds on the difficulty of AE induction from different kinds of data.

Theorem 2 gives rise to the following system of negative results, which provide lower bounds on the

difficulty of AE induction for rich languages.

Negative results

Let L be rich. Then

• Cor. 3.1: For all n 2> 0, not AEfZJL), nn+2(L))

• Cor. 3.2: For all n £ 0, not AE(Zn(L), ^ ( L ) )

• Cor. 3.3: For all n £ 0, not AE(nn(L), nn+3(L))

• Cor. 3.4: For all n £ 0, not AE(nn(L),
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Proof: Corollary 3.2 follows from Theorem 3 and the fact that in a rich language, some nn+2(L)

formula is not £n+2(
L)- Corollary 3.1 follows from Corollary 3.1 and fact L1. Corollary 3.3

follows from Corollary 3.1 and fact L2. Corollary 3.4 follows from Corollary 3.2 and fact L2. D

Figure 2 summarizes these corollaries.

INSERT FIGURE 2 HERE.

As is evident from the figure, Theorems 1 and 2 leave a gap of one quantifier alternation with respect to

the postive results. The gap is annoying, and we expect that Theorem 2 can be improved to close the

gap. For example, Proposition KG2 closes the gap when n = 0.

6.1. Discussion

The theorist constructed to prove Theorem 1 is driven by counterexamples to universal hypotheses. A

n n formula in the data can serve as a counterexample to a ITn+1 hypothesis because free variables in

hypotheses are viewed as universally quantified (as is standard in mathematical logic) but free variables

in the data are interpreted by a fixed interpretation, and so may be viewed as existentially quantified. This

means that n n formulas in the data can be viewed as Zn+1 sentences. Clearly, each nn + 1 formula has a

Zn+1 sentences equivalent to its negation. For example, (Vx)@y)Qfz)(P(xyzw)) has (VyXBzX-iPjtyzw) as a

counterexample, where x and w are interpreted as though existentially quantified. The first formula is n 3

while the second is n2 .

The strategy of the theorist is to wait for counterexamples to false hypotheses and to do a little juggling

to ensure that refuted hypotheses are never again entailed by later conjectures. If Theorem 2 could be

strengthened to close the "gap", in analogy to the base case, then its corollaries would tell us that such

counterexamples must be a available for reliable success (in the AE, or piece-meal convergence sense)

without background knowledge.

So far, all our results concern AE or "piece-meal" convergence. At this point, one might ask whether

our positive results could be strengthened to EA or "all-at-once" convergence. We refute this conjecture in

the case where n=0. That is,
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Prop KG 3:

Let L be non-simple. Then not EA(no(L), n^L)).

Proof: [8], Propositions 7,8, and 9. D

We do not yet have the proof for n > 1.

Our results shed some light on the logical importance of the "dosed world hypothesis" in artificial

intelligence. Winston's program is intended to infer definitions with embedded existential quantifiers.

Consider the following, mistaken definition of "arch".

(Vx)[ArcA(x)<-»

[Part-oflyji)&.
Part-of(zj:)&
Part-oflwjc) &
Post(y) & Post(z) & Beam(w) &
On-top(wy) & On-top(w,z) & no-touch(yj) &
Purple(w)]

The definition errs in requiring that the lintel of each arch be purple. To simplify our discussion, let's

abbreviate the definition as

O/x)[Arch(x) <-» II(x J,Z,HO]

The prenex normal form of the definition is

(VxXVyixvzixvwixByXa^xaw)
[Arch(x) ->n(xjlvzl9wl) &

(

So the left-to-right side of the definition is a n 2 sentence and the right-to-left side is a n 1 sentence.

Hence, if the right-hand-side is not suffident for arch-hood, I IQ data will suffice to reveal this fact and

refute the definition. But if the definition is false because it is too strong (i.e. the right-hand-side is not a

necessary condition for arch-hood) then n 1 data is necessary to provide a counterexample But this is just

the sort of data the "closed world hypothesis" guarantees the theorist For consider the case of an arch x'

with a red rather than a purple lintel. Then the theorist eventually sees the data
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No-touch(y'1z')1notPurple(w'),

Since no other objects are part of x\ no other object can satisfy n(x\y,z,w), so this data refutes the

necessity of the definiens for arch-hood.

Now it might have seemed an ad hoc maneuver on Winston's part to add just the right universal

statements to the data to help his particular learning procedure to work. But in light of Theorem 2, and

Proposition KG2, we see that in nch languages, nothing less suffices regardless of the method employed.

Hence, Winston's technique is not to be faulted for relying on such data, and is therefore more interesting

than it might at first have seemed.2 This discussion illustrates a more general point. Many artificial

intelligence programmers view negative theory as a sort of "kill-joy" or pessimistic pursuit. But the fact is,

negative results can greatly enhance the interest and significance of positive programming work. It is one

thing to write a program that does something under certain assumptions. It quite another to know that no

program could succeed under weaker assumptions. Negative results may not build a better mousetrap,

but without them, it is hard to tell what to expert out of a mousetrap.

7. Restricted Learning Problems
The above investigation was comprehensive only for unrestricted learning problems determined by

very special kinds of evidence and hypothesis languages: i.e. nn(L) and X^L), for some L Once we

admit background knowledge or restrictions on hypothesis syntax other than quantifier complexity

bounds, our negative results no longer apply. Once we restrict the evidence language in a way other

than by quantifier complexity, our positive results no longer apply. Hence, many interesting questions

remain.

For example, what if we require that no universal law in the data has any free variables? That is, what

if E = T^(L) u IIo(L)? If we could close the gap between Theorems 1 and 2, then we would know that

some problems are not solvable given such data. Is there an hypothesis language (possibly restricted)

and an inductive problem for this language (also possibly restricted) that is not solvable without closed

^e do not want to suggest that Winston's program actually identifies a correct structural description. Algorithmic shortcuts in the
program can cause it to fail even with the closed world assumption, and Winston made this clear in his paper.
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universal data but that is solvable with it? This question is important, because the theorist constructed to

prove Theorem 1, our basic positive result, uses r^ formulas with free variables to serve as

counterexamples to nn + 1 formulas. This theorist is therefore a sort of generalized and polished

Popperian. The desired strengthening of Theorem 2 would say that the counterexamples must be

available in order for unrestricted learning problems to be solvable over the kinds of hypothesis languages

considered. But if the universal laws in the data have no free variables, then they cannot serve as

counterexamples to properly nn + 1 hypotheses. So the question arises whether universal laws in the data

can be of use in reliably inferring more complex laws than themselves.

The answer to the question is a qualified "yes".

Theorem 3: There is a language L and a problem K and an hypothesis h e IT2(L) such that

h}, K) but

That is, there exists a problem and a single hypothesis for which closed universal laws make a

difference. The example we produce in the proof of theorem 4 is contrived, but the proof provides a

useful illustration of how learning theory and model theory can be combined to address questfons about

restricted learning problems with closed universal data.

To prove the theorem, we need to concoct a (possibly restricted) inductive problem that is "given away"

by universal data but that cannot be solved without it. What we do is to construct an infinite sequence of

closed universal sentences { s 1 f - - f sn,•••} such that each properly entails its successor. The

hypothesis is the dense-order postulate s. We construct a collection of worlds such that each world either

makes some sentence in the sequence of entailments true and s false, or each sentence in the sequence

false.and s true. The method relying on universal data need only wait until it sees a universal sentence in

the data before conjecturing s. But a method without these universal clues must try to discover from

quantifier-free data whether some universal sentence in the sequence is true. And this we have already

shown to be an unsolvable problem [8], Proposition 9. The new twist to the argument is to ensure that

the evidence concerning hypothesis s, which is phrased in a different vocabulary, does not make the
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problem any easier.

Proof: Let L be the first order language with non-togical vocabulary {P, Q}, where P and Q are

both binary predicates. L has no identity predicate. First, define

Now, for each n > 0, define

sn

Kn = the countable models of Tn

Tn is consistent because sn shares no non-togical vocabulary with s. Define

T a>={ s }u{ - i s
n

: n e ^J

K^ = the countable models of T^

T^ is consistent, for s shares no non-logical vocabulary with any sn, and each sn is true in

structure <N, {<i, j> e N2: j ^ i +1 }>.

Next, define 4>: SEQ(E) -> {s, -. s} as follows:
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-i s otherwise

Let 91 e K and let e be for 9? in virtue of complete assignment g. Suppose 9i1= s. Then for

each n € to, SR | * sn. So for each i, n, sn e rng(^). So each conjecture of $ entails s. Now

suppose SR | * s. Then there is an n such that SR |= sn. So there is an i such that for all i' > i, sn

e rng(^.)- So after stage i, 4> never makes a conjecture that entails s. Hence, AE(<t>, n1 t {s}, K).

Now we show that not AE(<f>, BAS, {s}, K). Define

Si = (co, P, Q)

Q = {(<x,y>, <z,w>): x/y < z/w}

where <x,y> is the code number of y under the usual recursive bijection. Let a e SEOfry and

finite g: var(cr) -»co be given, such that 911« c[g]. Now define

+1 € rng(g)}

€ Q & i , j 6 mg(g)}u

&U « rng(g)}u

rng(g)&j € rng(g)}

INSERT FIGURE 3 HERE
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9T |= Tn, for some n, and SR |« T^. Hence, both structures are in K, as required. Observe that

• O SRf restricted to rng(g) • 9* restricted to rng(g)

• (**) f restricted to dom(g) = g.

Now define

o otherwise

f(xn+1)
L ( J ) [ ( V k < n)(f(xk) * j)] otherwise

SR11= off] by O and ("). Now let x € SEQ(BAS) be such that 9f |- x[f]. We must construct g' 2

g such that SR |= ife*]. Let R « dom(g) u var(i). Partition R into equivalence classes such that

each variable in a given class has the same image under f. Enumerate the equivalence

classes according to the order Q' over the range of f. Let Cv • • • ,Cm be this enumeration. We

define g' to have the same value for each element of a given class, so we may as well define

the value to be assigned to each class.

1. g(x), where x e Cn n dom(g), if there is such an x.

2. some <i,j> such that r/j" > i/j > i7j\ and <i,j> * <i\j'>+1 and <r,jw> * <i,j>+1; where

g"(Cn.1)=<r,jt> and the next Cn. such that Cn. n dom(g) ^ 0 has an element x

such that g(x) = <r,j">, if there is an nf > n such that Cn. n dom(g) * 0 and the

previous condition is not satisfied.

3. some <i,j> such that i/j > \Y( and <i,j> * <if,jf>+1 where gH(Cn.1) « <if,jf> otherwise.
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The value of g" does not depend on the representative of Cn n dom(g) chosen in cases 1 and 2

because if x,y e C, n dom(g), then g(x) = g(y). Otherwise, x,y would not have the same f-value

since f is 1-1 everywhere except possibly over dom(g). Note also, that for any two endpoints

<r\r>. <•' Jf>. there is some <i,j> such that i7f > <i,j> > <il,jf>. Moreover, there is such an <i,j>

that is not equal to <i*,jf>+1. For there are at most two code numbers <ij> such that either <i,j>

= <i\jf>+1, or if <r,j"> « <ij>+1. But if iYjf * i"/T then there are infinitely many other code

numbers of distinct rationals to choose.

Now define gf: (dom(g) u var(x)) -> co in terms of g" as follows:

g'(x)«g"(M)

where [x] is the class Cj that contains x. By clause 1 of the definition of g" we have

(~)g eg1

as required. Now, literals in x can be of two forms: ± Q(x,y), and ± P(x,y). Case 1: Suppose

9T|« ±Q(x,y)[f]. Then 951« iGGyOfai. because g' takes the variables in z to code numbers of

pairs in such a way that these pairs are ordered by Q* just the way the values of the variables

according to f are ordered by Q. Case 2: So now consider a literal of form ±P(rj), and

suppose 9T \m ±P(xy). Case A: Suppose g'(y) = gf(x)+1 By the definition of g\ this can only

happen if x,y € dom(g), since otherwise, we make sure to define g1 so that g'(y) * g'(x)+1.

Since x,y e dom(g), (*) and (") yield 95 |- ±P(xj)[g] « SR( |. ±P(xj)[f]. So by (—) and the

assumption that 9if |- ±^(x^)[f], we have 9i |- ±P(xj)[gi So this leaves Case B: g'(y) ^

gf(x)+1. Case a: Suppose x,y € dom(g). Then by O, (••). and f " ) we have SR |= ±p(xj)[g1.

Case p: x «E dom(g): If y ̂  dom(g), then we are done by Case A. If y e dom(g), then by clause

2 in the definition of g", and by the definiton of 91 we see that SR |» /'(x^XOi arxJ SX | ̂  -^(x,y)[gl,

for only if gf(y) = 1+gf(x) will the atom be false (by the definition of 91). But notice also that no

pairs are missing from Qf except those pairs <i,i+1> such that i,i+1 s rng(g). If x € dom(g) then

f(x) is not involved in any such missing pair, so we have that 9T |. />(rj)[g1 and SRf | *
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- Case r y e dom(g): Similar to Case p. So from these cases we may conclude

that 9*1« Tig1]. By Theorem OW2, we obtain not AEfo, BAS, {s}, K). •

8. Open Questions

This paper is systematic with respect to the range of questions it addresses, but it addresses only a tiny

portion of the turf that should be examined. In fact, so much remains to be done that we cannot hope to

provide a comprehensive list of open questions here.

The first open question is whether the AE hierarchy can be refined to close the "gap" between

Theorems 1 and 2 for the case in which the hypothesis has two more quantifier altemat'ions than appear

in the data. We suspect that, in analogy to the base case, it is never possible for the n n + 2 theory of a

structure to be reliably inferred from nn data over arbitrary countable structures.

We have not fully addressed the the power of computable theorists in this paper. In Proposition KG1,

we showed that there is a computable theorist $ such that AE(<|>, I^ , UJ. But this result depended on the

special model theoretic properties of n1 hypotheses. In Theorem 1 the theorist we constructed faces a

non-computable consistency test. It is an interesting question whether computable theorists can duplicate

the performance of the theorist constructed in the proof of Theorem 1. And if there are no such

computable theorists, we would like to know how reliable a computable theorists can be compared to our

maximally reliable non-computable ones. The determination of this question would also strengthen other

results, such as Osherson and Weinstein's Theorem 80 [11], and shed important general light on the

structure of AE inductive inference.

We would like to generalize our current setting to include uncountable relational structures as

theoretical possibilities, and we are seeking a characterization of AE Jdentlfiabilrty over uncountable

collections of structures. The standard characterization theorems in formal learning theory lean heavily

on the ability of a method to enumerate possible worlds, and to this extent they do not reflect in full

generality of the nature of AE inductive inference.

From well-formed questions, we move to some more speculative projects. Theorem 2, our major lower

bound result, was based upon a model theoretic "preservation theorem". There are other such theorems

(e.g. a theory has a negation-free axiomatization if and only if its truth is preserved under structure
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homomorphisms). For each such result there is a chance that it will provide a negative result for

theorizing from the preserved type of data.

It would be interesting to study the impact of universal data for theorists who perform experiments.

One way to do this is to have the theorist ask questions to the actual world and to receive contingent

answers. Another is to have theorists that actually select the actual world by building it up as a sequence

of experimental outcomes. Such theorists can be viewed as discovering experimentally necessary laws

(i.e. laws true in any constructive world). The powers of such theorists could then be compared

systematically with those of passive observers (of the sort studied in this paper).

Osherson and Weinstein have examined how standard methodological principles interact with reliability

for computable theorists. These studies could be recapitulated for universal data. It would be interesting

to discover whether the conflicts between these principles with reliability are relieved or exacerbated,

when the data is quantified.

Finally, to obtain a representative perspective on the power of quantified data, it would be useful to

extend the present inquiry to criteria of convergence other than AE and EA convergence. Possible

candidates include convergence with high probability of a stochastic theorist, 5-e convergence to theories

with respect to an error measure, and "Probably approximately correct" convergence [7].

9. Conclusion
The results of this paper provide a basic perspective on AE identification from quantified data.

Theorems 1 and 2 relate the quant'ificational complexity of a reliably inferred theory to the quantif'icational

complexity of open evidence when no background knowledge is available. Theorem 3 provides an

example of a restricted inductive problem that can be solved with closed universal data and open literals

but not without the closed universal data.

The approach taken in this study is of interest for several reasons. First, its results provide a

systematic picture of how reliability interacts with the expressive power of the hypothesis lanaguage and

the evidence language. We think of these results as a small but nonetheless significant step toward the

mapping out of the abstract topography of the intrinsic difficulty of the problem of induction. Unlike much

epistemological work of the past, they focus on what any possible method could do, rather than on what

our favorite, particular examples of methods can do.
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Second, the approach of this paper provides a setting in which to begin to apply the rich insights and

techniques of mathematical logic to the relatively underdevetoped but nonetheless exciting study of formal

methods of empirical inquiry. Deductive logicians and recursion theorists have come to take systematic

categorizations of the intrinsic difficulty of computational problems for granted in their discipline. There is

no reason why empirical methodology should not aspire to an equally systematic and powerful

understanding of its own subject matter.

Finally, the approach taken in this paper has application to actual developments in artificial intelligence.

Artificial intelligence programmers are already committed to an engineering perspective on methodology,

and their programs are often eminently suited to formal analysis. As we have seen, the results in this

paper motivate the standard maneuver of invoking universal data in machine learning problems that

cannot be solved reliably without it.

Acknowledgements

We would like to thank Stig Andur Pedersen for useful discussions and for comments on early drafts of

this paper. We would also like to thank Dan Osherson and Scott Weinstein for patiently and carefully

locating and correcting errors in a previous draft.



33

References

[I] Lenore and Manuel Blum.
Towards a Mathematical Theory of Inductive Inference.
Information and Control 28:125-55, June, 1975.

[2] J. Case and C. Smith.
Anomaly Hierarchies of Mechanized Inductive Inference.
In Proceedings of the Tenth ACM Symp. on Theory of Computing, pages 314-319. 1978.

[3] C. C. Chang and H. J. Keisler.
Model Theory.
North-Holland, Amsterdam, 1973.

[4] Haim Gaifman and Marc Snir.
Probabilities over Rich Languages, Testing and Randomness.
Journal of Symbolic Logic 47:495-548,1982.

[5] Clark Glymour.
Inductive Inference in the Limit.
Erkenntnis 21:00-00,1984.

[6] David Haussler.
Bias, Version Spaces and Valiant's Learning Framework.
In Proceedings of the Fourth International Workshop on Learning, pages 324-334. Morgan

Kaufmann, Los Altos, Ca., 1987.

[7] M. Keams, M. Li, L. Pitt, and L Valiant.
Recent Results on Boolean Concept Learning.
In Proceedings of the Fourth International Workshop on Learning, pages 337-352. Morgan

Kaufmann, Los Altos, Ca., 1987.

[8] Kevin T. Kelly and Clark Glymour.
Convergence to the Truth and Nothing But the Truth.
PhilosophyofScience56:, 1989.

[9] Osherson, D. and Weinstein, S.
Identification in the Limit of First Order Structures.
Journal of Philosophical Logic 15:55-81,1986.

[10] Osherson, D., Stob, M., and Weinstein, S.
Systems that Learn.
M.I.T. Press, Cambridge, Mass., 1986.

[II] Osherson, D. and Weinstein, S.
Paradigms of Truth Detection.
1988.

[12] L Pitt and LG. Valiant.
Computational Limitations on Learning from Examples.
Technical Report TR-05-86, Center for Research in Computing Technology, 1986.

[13] Ehud Y. Shapiro.
Inductive Inference of Theories from Facts.
Research Report 192, Yale University: Department of Computer Science, February, 1981.



34



= -S

for each

\

= s

there is

l=x[f ]

for each for each

Figure 1



or

From data
of this
complexity

En+2 or nn+3 The AE Hierarchy

or

:n o r nn+1
Infer this
complex of
a theory

Figure 2



in rng(g)

1\
Q

Figure 3

dense order

discrete order


