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Abstract

This paper develops a precise framework in which to compare the discovery problems
determined by a wide range of distinct hypothesis languages. Twelve theorems are
presented which provide a comprehensive picture of the solvability of these problems
according to four intuitively motivated criteria of scientific success.

1. Introduction
It is widely recognized in the artificial intelligence literature that the choice of syntax in

data structures can be relevant to the performance of a system that employs them. This
is especially true when selecting an hypothesis language for a machine learning
system. Consider a learning device that is responsible for discovering only what it can
express. Insofar as the hypothesis language of the system is richer, its discovery task
is more difficult, for the enriched language permits it to formulate more possibilities and
finer distinctions. These additional, refined possibilities are more difficult to distinguish
on the basis of the same data.

This paper examines systematically the impact of various hypothesis language
restrictions on the difficulty of the problem of discovering a complete, true theory in this
language. First, a formal setting for the investigation is formulated. Then a series of
theorems are presented that determine various senses in which the problem of
discovering a complete, true theory in the language is solvable or not solvable. Finally, I
state two questions about the framework that remain open. Due to limitations of space
and the number of results to be presented, I can only hint at the details, so the
presentation will be kept as informal as possible.1

1 Details can be found in Kelly and Glymour (in press).
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2. Two Senses of Success
Imagine two pictures of scientific inquiry. In the first, the scientific community labors

over its best theory of the world until on one fortunate day science is complete. Happily,
the scientists are not sent home, because nobody can be sure that the theory is
complete (it might be refuted by the next observation). But as a matter of fact, it is true,
and the scientists never again find any reasons to reject it. In this sort of situation, the
complete truth hits us all at once and then never leaves. We call this kind of
convergence to the truth EA convergence to indicate that there is a time after which all
expressible questions are settled. EA convergence has been proposed as a criterion of
successful inquiry by a number of philosophers, computer scientists, and
methodologists (Gold 1967, Putnam 1963, Osherson and Weinstein 1986, Angluin and
Smith 1982, and Shapiro, 1981).

Now consider a somewhat less joyous but nonetheless optimistic scenario. In this
situation, the scientists add more and more truths to their body of beliefs, and weed out
ever more falsehoods, but there need not be any single time at which the entire theory
is true and complete. This is very much like the picture of inquiry proposed by the
philosophers C.S. Peirce (Peirce 1965) and Karl R. Popper (Popper 1963). Since every
expressible question is correctly answered by inquiry at some time, we call this kind of
convergence AE convergence for short. Observe that from a practical point of view, not
much is lost in weakening EA convergence to AE convergence. If we use our theory to
answer general questions we have about the universe, it is still the case in an AE
convergent inquiry that for each such question it is eventually settled correctly. For a
particular question, this is all we get out of EA convergence. We are only denied the
spiritual pleasure of knowing that there is a time after which all conceivable questions
are correctly answered by the theory at once.

3. A Mathematical Framework
The following definitions merely clarify the picture just presented. Let L be the

system's hypothesis language. We assume that L is some fragment of a first-order
logical language. Let M be a countable relational structure for L. The complete L-theory
of M is just the set of all L-sentences true in M. Let an evidence presentation for M be
an infinite tape of literals of L with the following property: there is an interpretation of
variables so that all and only the literals true under this interpretation in M occur on the
tape. If e is an evidence presentation, then en denotes the initial segment of length n of
e.

2The following definition is due to Osherson and Weinstein (Osherson and Weinstein 1986).
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An investigator is a function from finite sequences of literals to recursive
axiomatizations of L-theories. Concretely, we can take the output of an investigator to
be an index for a procedure that decides a (possibly infinite) set of axioms for his
conjectured theory. In the special case of finite axiomatizations, the axioms can be
output themselves. We distinguish effective and ineffective investigators. The former
have programs that compute them, and the latter do not. Ideally, we want impossibility
results for ineffective theorists and possibility results for effective theorists.

Our two notions of convergence can now be expressed clearly:

• Investigator 0 EA-converges to the complete theory of M with respect to L
on evidence presentation e if and only if for all but finitely many n, for each
sentence seL, <j>(en|=s if and only if M|=s.

• Investigator <(> AE-converges to the complete theory of M with respect to L
on evidence presentation e if and only if for each seL, for all but finitely
many n, <}>(en|=s if and only if M|=s.

In the machine learning literature, it is usual to describe the discovery problem as
finding and "unknown11 true theory. The requirement that the theory be "unknown" is,
presumably, intended to remove from contention as serious investigators machines that
ignore the data, and always output the same canned, albeit true, conjecture. We can
arrive at a clear theory if we take "unknown" in the sense of "arbitrarily selected from
some class". That is, we can define an inductive problem to be a set of relational
structures or "possible worlds" and we can require any solution to the problem to
converge to the complete theory of an arbitrarily selected structure on the basis of its
evidence presentation. Since the lookup-table device can only converge to one theory,
it fails to solve the problem. Accordingly, let K be a class of structures. Then we define

• Investigator <}> AE (EA identifies collection K with respect to L) if and only if
<J> AE (EA) converges to the complete theory of each structure M in K with
respect to L on each data presentation for M.

• K is AE (EA solvable with respect to L) if and only if there is an investigator
<t> such that <|> AE (EA) identifies collection K with respect to L

• K is effectively AE (EA solvable with respect to L) if and only if there is a
computable investigator <|> such that ty AE (EA) identifies collection K with
respect to L

To identify a class of structures in the appropriate sense is to solve the inductive
problem the class of structures poses. As the range of possible worlds in the problem is
enriched, the problem facing the theorist is made correspondingly more difficult, and a
solution to a harder problem will tend to be slower.

It is of the utmost importance that speed not be confused with efficiency. Efficiency is
optimal performance for the problem solved, so a highly efficient solution to a hard
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problem may be very slow, while a simple-minded, inefficient solution to an easy
problem may be very fast. Unless we characterize the computational problem under
consideration with mathematical precision, it is too easy to begin a paper with a slow
solution to a hard problem, to end it with a fast, inefficient solution to a trivial problem,
and to announce the result as progress on the original problem.

Our four senses of success are therefore interesting in that they provide a coarse
scale of comparison for the intrinsic difficulties of "large" discovery problems. In (Kelly
and Glymour) it is shown that the criteria have the following relative difficulties:

EA effective

EA AE effective

AE

Figure 1: The Relative Difficulties of Four Criteria of Theory Identification

That is, any problem that is EA effectively identifiable is EA identifiable and AE
effectively identifiable, and any problem that is either EA identifiable or effectively AE
identifiable is AE identifiable. But no other implication holds. So for example, a problem
that is AE effectively identifiable but not effectively EA identifiable is harder than a
problem that is EA identifiable.

The hardest problem an investigator using hypothesis language L could possibly
solve is to find the complete theory of an arbitrary structure whose particular facts can
all be surveyed in the limit. Accordingly, we take the unrestricted theorizing problem for
L to be the set of all countable relational structures for L

The task remains to formulate a syntactic categorization of first-order hypothesis
languages that is related naturally to expressive power and that is also simple, useful,
and familiar. Expressive power and intractability are two sides of the same coin. The
more a language can express, the more difficult it is to decide logical relations (e.g.
entailment, consistency, and validity) over its sentences. Hence, it makes sense to look
to the decidability theorems of mathematical logic for properties of hypothesis
languages that are related to expressive power (i.e. that make entailment harder to
decide). As it turns out, there are four simple syntactic features of an hypothesis
language that have a major impact on the decidability of entailment, validity, and
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consistency (and hence upon expressive power).

First, there is the maximum number of arguments for any predicate in the vocabulary.
A language with only unary predicates is said to be monadic, and validity, entailment,
and consistency are all decidable for such languages. Add a binary predicate, and
these problems all turn out not to be decidable. So predicate arity can be expected to
make an important difference in discovery problems as well. For simplicity in stating our
results, we say that L is Pn if and only if the maximum arity of any predicate in the
vocabulary of L is n. L is Po, then L has no predicate symbols.

Second, we should also consider the maximum permissible arity of function symbols
in the language. We say that L is Fn if the maximum arity of any predicate in the
vocabulary of L is n. Again, if L is Fo, then L has no function symbols.

Third, a language L can either have or fail to have the identity predicate H=H. If it does,
we say that L is I1. Otherwise L is l0. Identity is important to consider separately
because it adds to the expressive power of monadic languages, but not to the extent
that an arbitrary, binary predicate does.

Finally, an important determinant of the power of an hypothesis language is the
complexity of quantifier prefixes. An hypothesis is in prenex normal form just in case all
its quantifiers are out front. It is a familiar fact that any first-order hypothesis has a
logically equivalent formulation in prenex normal form. A prenex hypothesis is said to
be 2n just in case its prefix begins with an existential quantifier and there are at most
n+1 alternations between blocks of existential and universal quantifiers. So for
example, the hypothesis

ExEyAz(f(x,y)=y)

is L2- An hypothesis in prenex normal form is nn just in case its prefix begins with a
universal quantifier and there are at most n+1 alternations between blocks of universal
and existential quantifiers. An hypothesis language L is nn (or £n) if and only if each of
its sentences is nn (or Zn, respectively).

We characterize a language by clamping together its properties. So for example, L is
P-jF-jIgrL, if and only if it has at most unary predicates, it has no function symbols or
identity, and its sentences are all purely universal (i.e. involves only quantifier prefixes
consisting of all universal quantifiers). Notice that a language with no limitation on the
number of quantifier alternations can fail to be either nn or I n , for all n. In this case, we
just drop the quantifier alternation bound from its description (e.g. P3F4IO).

To acquire a feel for this notation, consider some examples familiar in machine
learning applications. Consider Boolean concepts (Mitchell 1982), such as



Theory Discovery 5

Brat(x) <—> Disorderly(x) & Child(x)

A Boolean concept language is an hypothesis language in P.,Folon.,. That is, a
Boolean concept may involve, no function symbols, no identity, no existential
quantifiers, and only unary predicates. Structural descriptions (Winston 1975), on the
other hand, are hypotheses like the following:

(Ax)(Ew)(Ey)(Ez)
[Arch(x)<—>

[Part_of(w,x) &
Part_of(y,x) &
Part_of(z,x) &
-Touch(w.y) &
Onjop(z.w) &
Onjop(z.y)]]

Hence, the structural descriptions are an hypothesis language in PnF0l0n2, for some n
typically greater than one. In the "learning to plan" literature, the learning agent is often
provided with "precondition-postcondition rules" (Carbonell 1987) of the form

(Ax)[Glass(x) & Polished(x) ™> Reflective(polish(x))]

"Precondition-postcondition rules" are evidently in an hypothesis language in P-J
Ehud Shapiro's (1981) model inference system can generate sophisticated axioms such
as

(Ax)(Append(nil,x,x)

(Aw)(Ax)(Ay)(Az)(Append(x,y,z) -~> Append(cons(w,x),y,cons(w,z))

Hypotheses of this sort are in P3F2I0IX, languages. These typical cases are just a tiny
fraction of the syntactic possibilities caught in our classification scheme.

Let D be an arbitrary language description of the sort just described (e.g. Pnf
It is useful to think of D as denoting the class of all languages having the properties
listed. We now define the following, compact notation for stating our results.

• De[[AE]] if and only if for each LeD the unrestricted theorizing problem for L
is AE solvable with respect to L.

• De[[EA]] if and only if for each LeD the unrestricted theorizing problem for L
is EA solvable with respect to L.

• De[[AEe]] if and only if for each LeD the unrestricted theorizing problem for
L is effectively AE solvable with respect to L.

• De[[EAe]] if and only if for each LeD the unrestricted theorizing problem for
L is effectively EA solvable with respect to L
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4. Theorems
Now it is possible to express the results.

Positive Results

Prop2:P1F0l1e[[AEe]]

Prop 4: PpFo^n^IAEe]], for all n.

Prop 5: PpFJ-^eKAEe]], for all n,m.

Prop 6: PnF^r^eKAE]], for all n,m.
Negative Results

Prop 7: neither P2Folon1 nor P2FOIOI.,is in

Prop 8: neither PQFQI.,11, nor POFOI1Z1 is in [[EA]]

Prop 9: neither P1F1IOII1 nor P1F1IOZ1 is in [[EA]].

Prop 10: neither PiF2 l0n2 nor P ^ I Q Z ? is in [[AE]].

Prop 11: neither P2FOIOZ2 nor P2F0l0n2 is in [[AE]]

Prop 12: neither POF1I1II2 nor P(f^-\^2 's 'n

Notice that if the unrestricted problems for languages in P iF^ I^ or in PjFjIt,^ fail to
be solvable in a given sense then no class whose parameter values are at least as
great as i,j,b and k is solvable in this sense. And if the unrestricted problems for
languages in a class are solvable in a given sense, then the unrestricted problems for
all smaller parameter values are also solvable in this sense. Hence, the above results
settle nearly all solvability questions in the framework defined in this paper. In fact,
what is undetermiend can be summarized by the following two questions:

Open Question 1: PpFJ^epEe ] ] , for all n.m?

Open Question 2: P

The results reveal a rich and complicated relationship between hypothesis language
syntax and the solvability of the unrestricted theorizing problem for that language.
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Proposition 1 says that if we have just unary predicates but no function symbols or
identity, then even with no restriction whatever on quantifier complexity, the unrestricted
theorizing problem must be solvable by an effective agent in the EA or "all at onceM

sense. I believe that the discovery technique employed in the proof is novel. It works
like this. Any sentence in such a language may be put into an equivalent version in
primary normal form (i.e. a Boolean combination of literals, purely universal disjunctions
and purely existential disjunctions (Hilbert 1968)). So for example, consider the
following transformation:

AxEy[(Px & Qy) v (Py & Qx)]
Ax[Ey(Px & Qy) v Ey(Py & Qx))]
Ax[(Px & Ey(Qy)) v (Ey(Py) & Qx)]
Ax[(Px v Ey(Py)) & (Px v Qx) & (Ey(Qy) v Ey(Py)) & (Ey(Qy) v Qx)]
Ax(Px) v Ey(Py)) & Ax(Px v Qx) & (Ey(Qy) v Ey(Py)) & (Ey(Qy) v Ax(Qx)]

Let s be a sentence in primary normal form. On evidence segment a, we mark each
universal component of s with a 1 if it is not yet refuted by a, and we mark it 0
otherwise. We mark an atom or an existential component of s with a 1 if it is already
verified by a and we mark it 0 otherwise. Now, we mark s with a 1 if and only if its
boolean valuation with respect to the markings just defined evaluates to 1. Call the
result the evidential evaluation of s with respect to a. It turns out that a complete theory
in a P-,FOIO language can always be axiomatized by one sentence, and the set of such
sentences is recursive. Let x be a tape of chosen primary normal forms of these
complete axiomatizations. Now on evidence a, conjecture the first sentence on x whose
evidential valuation with respect to a is 1. This effective procedure solves the
unrestricted theorizing problem for an arbitrary P-JFQIQ language in the EA sense. As an
immediate corollary, it discovers, all at once, all boolean concepts expressible in the
language . Of course, the procedure is not very elegant, and the search for tractable
subcases could generate some interesting research in machine learning.

Extensions of the procedure of Proposition 1 are hemmed in tightly by the negative
Propositions 7 through 9. Proposition 7 says that the method of Proposition 1 won't
work for binary predicates even when we restrict quantifier prefixes to purely universal
or purely existential ones. Proposition 8 shows that the same thing happens even when
the added binary predicate is identity. The reason is roughly this. Identity and universal
quantification can express upper cardinality bounds. For example, the hypothesis
AxAy(x=y) is satisfied only in domains of cardinality no greater than one. The
unrestricted problem for such a language includes domains of each finite cardinality,
together with an infinite domain. By an argument similar to Gold's (Gold 1967), we can
find, for any investigator <|> that is assumed to solve the problem, a data presentation for
the infinite domain on which <|> is fooled into committing itself to each finite upper bound,
so that it never converges to the truth in the infinite domain.
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Proposition 9 tells us that the method of Proposition 1 fails when we add unary
function symbols to the language; even when quantifier prefixes are restricted to purely
universal or purely existential. The argument is similar to the preceding one, except that
we force the would-be theorist to run a different gamut. Instead of an infinite sequence
of upper cardinality bounds, the theorist must contend with an infinite sequence of
possibilities of the form Ax(S(f(x)))f Ax(S(ff(x)), Ax(S(fff(x)), and so on. For each
sentence in this sequence, there is a countable structure in which it is true but its
predecessors are all false. Let the problem consist of the set of all these structures,
along with a structure M in which each such sentence is false. Now on the assumption
that theorist 0 can solve the problem in the EA sense, we construct a vicious data
presentation for M on which <j> commits itself, in sequence, to each sentence in the
sequence, so $ does not converge on a data presentation for M.

Proposition 10 tells us that the intrinsic difficulty of the problem of Proposition 1
skyrockets when we add binary function symbols to the language, even when just one
alternation between universal and existential quantifiers is permitted. This shows that
even so small a change as adding a binary function symbol to the hypothesis language
can overturn methodological intuitions that are sound in a less difficult inductive
problem. The machine learning community must therefore be ever vigilant against
unwarranted extrapolations of popular techniques.

Propositions 7 through 9 relied upon an infinite "con game" argument that does not
work against AE solutions to the same problems. Propositions 4 and 5 assure us that
the arguments of Propositions 7 and 8 do not extend to exclude AE solutions, for
predicates of arbitrarily high arity. Proposition 3 assures us that the "con game"
argument of Proposition 9 does not extend to exclude AE solutions.

The algorithm required in the proof of Proposition 4 converges piece-meal to the
complete theory in an hypothesis language with predicates of any given arity, no
function symbols, identity, and purely universal quantifier prefixes. The program is quite
simple. Let x be an infinite tape upon which the hypothesis language L is listed. At
stage n in reading the evidence, the program examines the first n sentences written on
the tape, deletes all of those that have counterinstances in the data, and conjectures the
remainder. It is easy to see that any true hypothesis is eventually entailed by each
conjecture. What is not so obvious is that for each false hypothesis, there is a time after
which it is no longer entailed by any set of axioms conjectured by the program. But by a
simple model-theoretic argument, one can show that any evidence that provides a
counterinstance to a sentence s in this language also provides a counterinstance to
some element of any set that entails this sentence. Hence, such a set will never be
conjectured once a counterinstance to s has been seen in the evidence presentation.
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The proof of Proposition 5 is similar, but easier. Enumerate the purely existential
hypothesis language, and at stage n of reading the evidence, conjecture each of the
first n hypotheses on the tape that that has an instance in the evidence. A false
sentence can never have an instance, and hence is never added to the tape. Hence,
only true sentences are conjectured, and true sentences can never collectively entail a
falsehood. Hence, each truth is eventually entailed by all subsequent conjectures, and
no falsehood is ever added, so the procedure solves the unrestricted theorizing problem
for PnFml1S1 in the AE sense.

It is interesting that the enumeration method of Proposition 5 works for function
symbols in the case of existential quantifiers while the similar enumeration method of
Proposition 4 does not work for function symbols in the case of universal quantifiers.
The reason is that the presence of function symbols blocks the argument that any finite
set of hypotheses entailing an hypothesis with a counterinstance in the data also
contains an hypothesis with a counterinstance in the data.3 This situation is partly
remedied by the method of Proposition 6, which makes use of an undecidable
consistency test. Hence it establishes only that PnFml1n1 is in [[AE]], and not that it is
in [[AEe]]. Again, we enumerate the hypothesis langauge on an infinite tape. At stage n
in reading the data, we cut off the initial segment of length n of this tape, and delete any
hypothesis that has a counterinstance in the data, just as before. But now, instead of
conjecturing the entire tape segment that results from this process, we we conjecture
only the greatest initial segment of the segment that is consistent with the current data.
It is this test that is (very) uncomputable, and the question whether there exists a
computable way to solve the same problem is exactly Open Question number 1.

This method seems simple enough, but it steers a subtle course between the twin
errors of dropping a true hypothesis infinitely often and adding a false hypothesis
infinitely often. For suppose s is a false sentence in the hypothesis language. By some
stage n, a counterinstance to it appears in the data. Thereafter, the data is inconsistent
with any set of sentences that entails s, so no conjecture entailing s will ever be made
again. But what about throwing out too much? Suppose s is a true sentence in the
hypothesis language. Let s appear in position k on the hypothesis tape. Then by some
stage n, counterinstances to all hypotheses prior to s will have appeared in the data. At
this stage, the greatest initial segment of the hypothesis tape that is consistent with the
data must include s, since all non-deleted hypotheses prior to it are true, and hence
cannot be inconsistent with the data.

This argument of hinges on being able to find, for any sentence false in a structure, a finite
substructure of that structure in which the sentence is still false. But a structure for a language with
function symbols may have no substructures at all, since functions are assumed to be total.
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The method of Proposition 2 recognizes that a finite number of unary predicates
induce a finite partition on a structure's domain. At stage n in reading the evidence, it
calculates, for each of these partitions, the least number of objects it can contain,
according to the data It then conjectures that each partition has exactly the cardinality
that is currently observed. If the structure is finite, it EA converges to the complete true
theory of the structure. If the structure is infinite, it AE converges to the complete true
theory, since its conjectures eventually entail each lower bound on the cardinality of an
infinite partition cell, and each false upper bound on such a cell is eventually rejected
forever.

Last, but not least, the discovery procedure of Proposition 3 may be of greatest
practical interest to machine learning. Recall that the popular "precondition-
postcondition rules" for operators fall into this category. Since we have universal
quantifiers and function symbols, we again have to worry about later false conjectures
entailing falsehoods that already have countednstances in the data. But we also have
mixed quantifiers, and only unary predicates and functions, which means that features
of the method of Proposition 1 will also be involved. The procedure works like this:
Form a tape of all primary normal form representatives of hypotheses in the hypothesis
language. At stage n in the evidence presentation, consider the initial segment of this
tape containing the first n hypotheses. For each hypothesis on this tape segment, put it
in PASS if its evidential valuation on the current evidence is zero, and put it in FAIL
otherwise. Now conjecture the greatest initial segment of the tape segment such that
the elements of PASS that occur in this segment do not collectively entail any element
of FAIL that occurs in this segment. This method works because the evidential
valuation of a primary normal form sentence converges to its truth value as the
evidence increases. Hence, for any sentence s in the enumeration, this sentence and
all prior sentences eventually have their truth values settled correctly, and thereafter,
this sentence is added to the conjecture if it is true, and is withheld if it is false. The
entailment test between PASS and the elements of FAIL may be uncomputable. The
question whether there is a clearly computable discovery function with the same
performance is exactly Open Question number 2.

Finally, there are the strong negative results of Propositions 10, 11, and 12. Each of
these propositions involves mixed quantifier prefixes in the hypothesis language. The
proof technique of Proposition 11 is to construct a data presentation for a structure in
which AxEy<D(x,y) is true on which any theorist that can allegedly AE identify all
countable structures for the language concludes that AxEyO(x,y) is false infinitely often.
This can be done by showing the theorist an object b and by providing counterexamples
to O(b,y) until he rejects AxEyO(x,y). Then we are free to exhibit a c such that <D(b,c),
along with lots of other pairs d,d' such that <D(d,d') until the theorist is once again
convinced of the hypothesis AxEy<D(x,y). The proofs of Propositions 10 and 12 are by
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simple reductions of Proposition 11.

5. Conclusion
The framework of this paper puts teeth into the truism that the hypothesis language

helps determine the difficulty of the learning problem. The above framework, together
with the results concerning it, provide a coarse but comprehensive picture of the relative
difficulties of the discovery problems posed by hypothesis languages of various types.
We have seen that mixed quantification, binary function symbols and binary predicates
can combine to yield a very difficult learning problem, while hypothesis languages with
unary predicates only give rise to fairly simple ones.

A practical consequence of this investigation is that learning techniques that work for
easy problems should be viewed with great caution until they are shown to work in a
broader context. But more importantly, the results in this paper show that a formal
characterization of the relationship between hypothesis language is not only possible,
but feasible. This particular survey may involve assumptions that are unnatural in
various applications (e.g. the completeness and truth of the theory to be discovered, the
completeness and truth of the data presentation, or the absence of complexity
restrictions on the theorizing functions). These assumptions are not reasons to reject
analysis. They are reasons for new and more detailed analyses of a broad range of
different formal settings for machine learning. Only through such investigations can a
clear grasp of the intrinsic difficulties of learning problems be determined, and such
knowledge is essential if we are to distuinguish truly efficient methods from faster
methods that solve easier problems in uninteresting ways.
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