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Abstract

TETRAD n, a fully automated successor to the TETRAD program, is intended to aid in the
respecification of underspecified linear causal models, or structural equation models. The
performance of TETRAD II is compared with the automatic respecification procedures in the
EQS and LISREL VI programs using 360 simulated data sets from nine different linear models
containing "latent" or unmeasured variables. For these cases, we find that the TETRAD II
program, which uses graph algorithms and heuristic search techniques, is significantly more
reliable than either EQS or LISREL VI, which use numerical algorithms and beam search
techniques. A detailed analysis of the reasons for these differences is offered. Contrary to those
who dismiss automated search techniques as unreliable "ransacking" or "data mining," TETRAD
II provides correct information about the true model for 93.8% of the large sample data sets. The
need for further simulation tests and the prospects for the development of automated techniques
to aid in the initial specification of causal models for nonexperimental data are discussed. An
appendix illustrates the application of the published TETRAD program to one of the data sets in
this study.
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1. Introduction

Linear causal models, or structural equation models, are used by market researchers, educational
researchers, policy evaluators, social scientists, psychologists, medical researchers, biologists
and others who must deal with nonexperimental or quasi experimental data. Models of this kind,
which include factor analytic and path analytic models as special cases, are popular for good
reasons. Structural equation models permit researchers to express causal hypotheses as linear
equations; there are commercial computer programs for estimating the parameters of the models
that result, and the estimates of linear coefficients are naturally interpreted as indicating the
relative strength of causal effects. The same computer programs permit the application of
statistical hypothesis tests to the models thus estimated. Altogether, linear causal models and the
associated statistical procedures packaged in programs such as EQS [2] and LISREL [17] seem
an appealing framework for the quantification and testing of causal theories in many domains.

Yet the use of linear causal models has come under attack from many quarters.2 One complaint
is that the use of such models involves substantive assumptions—linearity and multinormality, for
example—that are rarely tested, and often do not hold. This is not a compelling objection to
structural equation modeling procedures, since, first, nothing prevents researchers from
performing more careful data analysis, (and programs have been produced, such as PRELIS, to
aid in just that endeavor), and second, such analysis does sometimes show that the assumptions
of the linear modeling formalism are met to good approximation.

A second complaint is that the formulation of a structural equation model, and the demonstration
that it does not fail a statistical test, give almost no reason to believe that the causal assumptions
of the model are true or even approximately true. For, on the one hand, even supposing
approximate linearity and normality and other assumptions of the linear modeling technique,
given a model that passes a statistical test even on a fairly large sample, there may exist
thousands, or even millions, of alternative linear causal models that would meet the same
criterion, and that might differ in important respects from the model that a researcher advocates.
And, on the other hand, even a model that correctly specifies causal relations will fail a chi-
square test of goodness of fit on large samples if there are tiny failures of linearity or normality
in the process that generated the data.

The natural response to the second objection is that researchers in an area have substantive
theoretical knowledge that forms and justifies their causal claims. The structural equation
modeling formalism simply enables them to quantify their hypotheses. In practice, however, this
is seldom entirely correct. The background knowledge supplied by common sense, by
experimental work, or even by a theoretical tradition, usually affords only a fragmentary
specification of causal relations in a study, whether in sociology or econometrics or educational
research or in other disciplines. This sort of information typically demands that certain causal

2See [1,19,11], for example.



relations be postulated, and may also forbid other causal relations, but leaves a great many
possibilities indeterminate. Often those possibilities are exactly the point of the research study.
Many of the causal hypotheses of a model are therefore often founded on a prior guess that has
no special justification, exactly as the second complaint alleges. Those interested in linear
modeling have long been aware of the need for techniques that will respond to this difficulty and
will provide reliable guides to the respecification of an initial, possibly incomplete, structural
equation model.

In consequence, a number of techniques have been proposed for using sample data to modify an
initial model, generally by suggesting further causal connections or correlated errors not included
in the initial specification of the model. Insofar as these procedures, whether they consist of
analysis of residuals, modifications of fitting functions, or other methods, claim to be reliable
guides to truth, they constitute a central part of whatever logical response can be given to the
second objection to causal modeling, the objection that says the causal hypotheses in structural
equation modeling are unsubstantiated. These procedures in turn are often denounced for
"ransacking" or "data mining." That is simply name calling. The most important question
germane to procedures for inferring modifications to an initial model using sample data is how
reliable are the procedures as guides to the truth?

In this paper we will compare three fully automated procedures for modifying an initial model
using sample data. The procedures used in the EQS and LISREL VI programs are very similar,
and seem to be widely used. They employ standard numerical analysis algorithms to find
modifications to a fitting function. The third procedure, TETRAD n, is an experimental, fully
automatic version of the TETRAD program [12]. TETRAD and TETRAD II use graph analysis
algorithms rather than numerical techniques, and rely on heuristic search techniques
characteristic of many artificial intelligence programs.

In our study, forty data sets, twenty with a sample size of 200 and twenty with a sample size of
2,000, were generated by Monte Carlo methods from each of nine different structural equation
models. All of these were "latent variable" models, chosen because they involve causal
structures that are often thought to arise in social and psychological scientific work. In each case
part of the model used to generate the data was omitted and the remainder, together in turn with
each of the forty data sets for that model, was given to the LISREL VI and TETRAD II
programs; only data with the large sample size was given to EQS. A variety of specification
errors are represented in the nine cases. Linear coefficient values used in the true models were
generated at random to avoid biasing the tests in favor of one or another of the procedures. In
addition, a number of ancillary studies were suggested by the primary studies and bear on the
reliability of the three programs.

The LISREL and EQS programs involve an automatic search procedure that, given an initial
model and data, produce a unique recommendation for revision of the initial model. The
TETRAD II program, given an initial model and data, produces a set of alternative revisions.
Depending on the data and the initial model, the set of alternatives recommended by TETRAD II



may vary in size considerably.3 In our studies the number of alternatives was typically three or
four; sometimes a single revision was suggested, and sometimes more than ten alternatives were
offered. We find that, for these cases, the information provided by the TETRAD II program is
much more reliable than the information provided either by EQS or by LISREL. More
importantly, in response to those who condemn attempts at respecifying models by analysis of
the data, for the large sample size the information provided by the TETRAD II program was
correct for almost 94% of the 180 data sets.

The following section describes the general framework of the TETRAD program, and the
modifications made in the TETRAD II program. Section 3 describes the LISREL and EQS
model respecification procedures. Section 4 briefly describes some previous simulation studies,
the design of our study, the reasons for that design, and the results of our primary studies.
Section 5 describes ancillary studies of the reliability of the three procedures separately and
conjointly, and analyzes the results of the primary study. Section 6 states our conclusions as to
the present best use of these programs in model respecification, describes further studies of the
reliability of the programs that we think ought to be conducted, and addresses the prospects for
further developments in automatic model construction. An appendix illustrates how the
published version of the TETRAD program may be applied to these problems.

2. The TETRAD Programs

2.1. Structural Equation Models and Graphs

Structural equation models are given by a system of linear equations, for example

= a 2 T 1 + e 2

= a 3 T 1 + e 3

= a 4 T 1 + e 4

together with a specification of the joint distribution on the random variables. The latter
conditions may specify, for example, that the joint distribution is multinomial, that the variances
of the exogenous variables are not zero, and that certain of the e variables are correlated with one

3The number of alternatives tends to increase as the number of edges that are in the true model, but not the
starting model, increases. The number of alternatives also tends to be larger when the edges in the true model, but
not the starting model, link together to form paths.



another. The tacit specification is that unless the equations imply, algebraically, a functional
dependence of one variable on another, or unless a correlation of error terms is specified, the
variables are assumed in the model to be statistically independent For example, one might
specify that 6j is correlated with 62 and that e^ *s correlated with e3.

Such models are commonly accompanied by graphs that represent causal or other dependencies,
for example:

a1

Figure 1:

The undirected lines indicate correlated errors. Important parts of the statistical model can be
recovered from the graph alone. The graph encodes the form of the linear equations, and it
encodes all of the assumptions of statistical independence that are implicit in the statistical
model. The graph does not encode the particular numerical values of the linear coefficients, the
variances of the independent variables, or the joint distribution family (e.g., multinomial).

The graph is not only a vivid representation of the claims made by a structural equation model; it
also determines certain kinds of statistical constraints, or over identifying constraints that a
structural equation model may imply. One such class of constraints consists of vanishing tetrad
differences, A tetrad difference is just the determinant of a 2 X 2 submatrix of the covariance
matrix:

One form of constraint on the covariance (or correlation) matrix is obtained by specifying that a
tetrad difference vanishes. Such a constraint represents a kind of prediction a structural equation



model makes about the correlations or covariances in the population it purports to describe.
Whether expressed as covariances or correlations, the vanishing tetrad differences implied by a
structural equation model are determined entirely by the graph of the model. They do not
depend on the variances of the exogenous variables or on the distribution family. In fact, the
constraints of this kind that are implied by a model are determined simply by connections in the
graph we call treks. A trek between two variables Xj and xk is either an acyclic path in the graph
from one variable to the other, or else it is a a pair of acyclic paths from a third variable
respectively to each of the variables Xj and xk.4 A trek is the graph theoretic representation of
either a causal pathway from one variable to another or a common cause acting on two variables.
In Model II in Fig. 2, for example, the edges marked a and c form a pair of paths that constitute a
trek between the variables j and k, and similarly the edges marked d and b form another trek
connecting variables j and k.

A structural equation model may implicitly specify a tetrad constraint in either of two ways.
Consider the two models in Fig. 2, (where, for simplicity, we have not drawn the error terms, but
the reader should supply them mentally):

c
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Figure 2: Alternative Causal Structures

In the first case,

4We further require that if a trek is a pair of acyclic paths from a third source variable, that the paths not intersect
other than in that source variable.



ij = abo2(T)

ik = aco2(T)

PijPki-PikPji = a b c d ^OD-abcd o4(T) = 0.

In Model I, the tetrad difference vanishes identically, since it vanishes for all values of a, b, c, d,
and C2(T).

In the second case,

Pij = a O2(i)

p i k = ca2(i)

Pij Pkl - Pik Pjl = ab a 2 ® °2(0'cd a2(i) o 2 ©

In Model n, for particular values of the coefficients, such as a = 2, b = 2, c = 4, and d = 1, py p^
- pfc pjj = 0, and so the tetrad difference vanishes. But this constraint is not robust in Model II,
because the tetrad difference does not vanish if the non-zero coefficients are varied in that
model. For example, in Model II if a = 2, b = 2, c = 4, and d = 2, then py p^ - p^ p:j * 0.

When a structural equation model robustly specifies a vanishing tetrad difference, as with Model
1 above, we say the model implies the vanishing tetrad difference.

2.2. TETRAD

The TETRAD program uses both methodological and algorithmic ideas to help in the
respecification of structural equation models. One methodological idea is that if constraints,
such as vanishing tetrad differences, are found to hold based on the sample data, then insofar as
possible the correct model should imply those constraints. A second idea is that the correct
model should not imply constraints that are not satisfied empirically. A third methodological
idea is that, other things equal, simple models, those with more degrees of freedom, are to be



preferred to more complex models. These three ideas can be thought of as the Explanatory
Principle, the Falsification Principle, and the Simplicity Principle respectively. Unfortunately,
the principles often conflict. We have proved (see [12]) that if M and M' contain the same
variables, and the edges in model M are a proper subset of the edges in M\ then the vanishing
tetrad differences implied by M are a (not necessarily proper) superset of those implied by M\
Suppose that there are some vanishing tetrad differences implied by M but not by M\ and that
some of these hold in the population, while others don't. Then M is superior to M' with respect
to the Explanation and Simplicity Principles, but inferior to M' with respect to the Falsification
Principle. Is M a better model than M'? Any decision based upon these methodological
principles in effect must judge when a loss in simplicity and explanatory power is made up for
by a gain in reducing the false implications of a model. The TETRAD program provides
information relevant to these principles, but leaves their weighting largely in the hands of the
user.

One central algorithmic idea in the TETRAD program is that there are well known, fast
algorithms for analyzing directed graphs, algorithms that can be modified to determine the set of
all vanishing tetrad differences implied by a model.

The TETRAD program accepts as input correlation or covariance data, and the graph of a
structural equation model. The graph is given to the program simply by specifying a list of
paired causes and effects. The program then subjects each possible vanishing tetrad difference
among the measured variables to a statistical test, and forms the set, call it H, of all tetrad
equations that pass this test. TETRAD then computes the set, call it I, of all of the vanishing
tetrad differences implied by the structural equation model given to the program as input. The
intersection of H and I, I&H, is the set of vanishing tetrad differences that pass the statistical test
and that are also implied by the initial model; it is a collection of witnesses for the truth of the
initial model. I-H is the set of implications of the initial model that do not hold when tested on
the sample. The set I-H thus constitutes a collection of witnesses against the truth of the initial
model. Adding causal connections that create further treks may result in a revised model that has
a different set, call it I \ of implications. In general, of course, different additions to the initial
model will have different sets of implied tetrad constraints, but no matter how the initial model is
extended, the resulting set, I', of implied tetrad constraints is always a subset of I, the constraints
implied by the initial model. So by elaborating the initial model, smaller sets F-H may be
obtained.

Among all of the possible elaborations of the initial model, which typically number among the
thousands, a few will come as close as possible to having F = I&H (see Fig. 3). These few
elaborations will be respecified models that (1) imply all of the empirically correct vanishing
tetrad differences implied by the initial model, and (2) imply as few empirically incorrect
vanishing tetrad differences as is possible given (1).

A second algorithmic idea in the TETRAD program is an automatic, heuristic search procedure
that with great reliability finds all of the treks that may be simultaneously added to an initial
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Figure 3: TETRAD's Revision Strategy

latent variable model to form all elaborations satisfying (1) and (2).

The output of the TETRAD program is a list of recommended trek additions parameterized by
the significance level of the test applied to the tetrad equations. In addition, the program informs
the user about reductions in certain residuals, i.e., about improvements in fit that would be
obtained for each causal connection that might be added to the initial model.

The TETRAD program does not produce explicit models as output. Although a set of heuristics
are given in Discovering Causal Structure for producing explicit causal graphs from the
TETRAD output, the procedures require considerable thought and practice to use reliably.

2.3. TETRAD II

TETRAD II is an experimental program that includes a fully automatic respecification search.
As with TETRAD, the input is an initial model and a covariance or correlation matrix. The
output is a class of alternative best models, a class of alternative second best models, and so on.
In each case the model consists of an explicit causal graph rather than a set of treks.



TETRAD II uses the same three methodological principles, Explanation, Falsification, and
Simplicity, as does the TETRAD program; it tests each vanishing tetrad difference against the
sample data in the same way, and it uses the same fundamental algorithm for computing the
vanishing tetrad differences implied by a model. It differs in the procedure used to locate the
revisions it recommends. That procedure can be analyzed in two parts, a scoring function used
to evaluate possible revisions to the initial model, and a search strategy used to locate the models
with the highest score.

The Scoring Function

We will refer to the scoring function used by TETRAD II as the T-score. The principles
described in the previous section are implemented in the T-score, which depends upon two
parameters, the significance level and the weight (explained below). For each possible vanishing
tetrad difference, t, we calculate the probability of obtaining a tetrad difference as large or larger
than the one actually observed, under the assumption that the difference is zero in the population,
and that the tetrad differences are normally distributed:5 we call this the associated probability of
t, and denote it by p(t). For a given significance level, if p(t) is larger than the significance level,
we say that the vanishing tetrad difference holds in the population; otherwise, we say that the
vanishing tetrad difference does not hold in the population. Let ImpliedH be the set of vanishing
tetrads implied by a given model M that hold in the population, let Implied^H be the set of
vanishing tetrads implied by M that do not hold in the population, let T be the score of model M
for a given significance level, and let weight be a parameter (whose significance is explained
below). Then we define

(1)

T= X pit)- X [weight* (l-p(f)))
tz ImpliedJJ tt Implied^

The first term implements the Explanatory Principle; it gives credit for explaining vanishing
residuals that hold in the population. The second term implements the Falsification Principle; it
penalizes a model for predicting vanishing residuals that do not hold in the population. The
Simplicity Principle is implemented by preferring, among models with identical T-scores, those
that have more degrees of freedom.

The weight decides conflicts between the Explanatory and Falsification Principles. It determines
the relative importance of explanation versus residual reduction. The lower the weight, the more
important explanation is relative to residual reduction. Since a submodel explains at least as
many vanishing tetrad residuals as any model containing it, lowering the weight tends to favor

assumption that the tetrad differences of normal covariates are normally distributed is false, but with large
sample sizes holds to a good approximation.
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models with fewer edges.

Search

The current search strategy has two parameters. The first is the breadth, which determines how
many of the most promising edges are considered to be candidates for addition to the starting
model. The second is the depth, which determines the maximum number of edges that can be
added to a starting model in the course of the search. However, as explained below, if the results
of the search warrant it, the depth is increased and the search is repeated.

The search used in this study begins by computing the score of each one-edge elaboration of the
starting model. (We count the addition of a correlated error as a "one-edge" addition to a
model.) If the addition of an edge improves the score of the initial model then the edge is added
to a list of candidates. When all of the one-edge additions to the initial model have, been
calculated, the candidate list is ordered from highest to lowest score, and if there are more edges
than the specified breadth, the end of the list is discarded.

From this point on, the search proceeds "depth-first": the order in which edges are added is
determined by their rank in the candidate list Search along a branch is cut off either when the
addition of an edge fails to improve the score, or when the depth limit is reached. If at the end of
a search, the best model has fewer edges than the depth limit, the search is ended. If the best
model has the same number of edges as the depth limit, the depth limit is incremented by one,
and the search is repeated.

We are not confident that either the scoring function, the search strategy or the criterion for
stopping are optimal, and we are experimenting with alternatives. The search does not guarantee
finding the model with the highest T-score. For example, it is possible that a model with the
highest score contains an edge that is initially removed from the candidate list because there
were more than the breadth number of edges with better scores. There is an exponential growth
in the time the search takes as the breadth increases.6

3. LISREL and EQS

LISREL and EQS are computer programs that provide maximum likelihood estimates of the free
parameters in a structural equation model. More precisely, the estimates are chosen to minimize
the fitting function

F = log|L| + tr(SIrl) - log|5| - (r)

6In all cases in the studies reported here, breadth was set at 30 and depth at 3.
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where S is the sample covariance matrix, L is the predicted covariance matrix, t is the total
number of indicators, and if A is a square matrix then \A | is the determinant of A and Tr(A) is
the trace of A. The parameters that minimize the fitting function F also maximize the likelihood
of the covariance matrix for the given causal structure.

The EQS program permits the user to enter the structural equations more or less as they would
normally be written. The LISREL program, for historical reasons, requires coding the equations
of a model in an elaborate and artificial matrix formalism.7 Each program requires a set of initial
values for the parameters, values that are altered in the course of minimizing the fitting function.
Both programs give diagnostic information pertinent to the fit of a model, and both contain an
automatic procedure for elaborating an initial model. Those procedures are very similar in the
two programs.8 As with TETRAD n, the respecification procedures in EQS and in LISREL VI
can be analyzed as a scoring function and a search procedure.

3.1. Scoring

After estimating the parameters in a given model M, LISREL VI calculates the probability of
obtaining a discrepancy between the observed and predicted covariance matrices as large or
larger than the discrepancy actually observed, under the assumption that M is true. We will call
this quantity the L-score. This probability can be used to perform a statistical test of M, where
the null hypothesis is that M is true. If the probability is greater than the chosen significance
level, the null hypothesis is accepted, and the discrepancy is attributed to sample eiTor, if the
probability is less than the significance level, the null hypothesis is rejected, and the discrepancy
is attributed to the falsity of M.

It is also possible to do statistical tests on a series of nested models, that is, on a series of models
M1?...,Mk in which all models are the same save that for all models Mj in the sequence, the free
parameters of Mj are a subset of the free parameters of Mj+1 The difference between the chi-
square values of two nested models also has a chi-square distribution, with degrees of freedom
equal to the difference between the degrees of freedom of the two nested models.

For a variety of reasons Joreskog and Sorbom have recommended that L-scores not be
considered part of a classical hypothesis test. They recommend instead that it be considered a
measure of goodness of fit relative to the number of degrees of freedom. Just what this means is
unclear. For our purposes, however, it is enough to observe that the L-scores of models are used
to evaluate models in LISREL's automated respecification procedure. EQS can be regarded as

7An associated program, SIMPLIS, permits the straightforward entry of a model. The causal structures that the
program will process are, however, so restricted that we have not found the program of any use. Unfortunately, the
restrictions are poorly documented.

8EQS also contains a procedure using the Wald test for removing causal connections from an initial model. We
have not tested the reliability of this procedure.
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having the same scoring function.

3.2. Search

The input to LISREL VI's search procedure is a starting model specifying the values of the fixed
parameters, starting values for the free parameters, a sample covariance matrix, a list of those
parameters that are not to be freed under any circumstance, and a significance level. The search
is guided by the "modification indices"; the modification index of a given fixed parameter
provides a lower bound on the decrease in the chi-square obtained if that parameter is freed and
all previously estimated parameters are kept at their previously estimated values.9 (Note that if
the coefficient for variable A in the linear equation for B is fixed at zero, then freeing that
coefficient amounts to adding an edge from A to B to the graph of the model.) LISREL VI
calculates the modification indices for all of the fixed parameters10 in the starting model. The
fixed parameter with the largest modification index is freed, and the model is re-estimated. If the
difference in the chi-squares of the starting model and the elaborated model is significant, the
parameter is freed, the elaborated model is now the starting model, and the process is repeated.
When freeing the fixed parameter with the highest modification index does not result in a model
with a chi-square significantly different from the starting model, the parameter is not freed and
the search ends. The EQS program involves a different statistical procedure, but uses it in the
same way.11

4. The Primary Studies

The essential questions about any discovery procedure concern its reliability in the
circumstances in which it is meant to be applied. The documents describing the TETRAD, EQS
and LISREL programs provide any number of applications of their respective procedures to
empirical data sets. Unfortunately, such applications are of little use in judging the reliability of
the procedures. The reason is obvious: in empirical cases we don't know what the true model is,
so we can't judge whether the procedures have found it. We can judge whether the procedures
turn up something that isn't absurd, and we can judge whether the procedures find models that

outputs a number of other measures that could be used to suggest modifications to a starting model, but
these are not used in the automatic search. See [7].

10 As long as they are not in the list of parameters not to be freed.

11 EQS allows the user to specify several different types of searches. In the search that we used, EQS performs
univariate Lagrange Multiplier tests to determine the approximate separate effects on the chi-square value of freeing
each fixed parameter in a set specified by the user. The program then repeats the procedure on the model obtained
by freeing the parameter that most decreases the chi-square value. It stops when no freed parameter provides a
significant decrease in chi-square. It should be noted that both LISREL VI and EQS are by now quite complicated
programs, with less than optimal documentation. An understanding of their flexibility can only be obtained through
experimentation with the programs. Since the EQS automatic search program is quite new, we are less confident
than in the case of LISREL VI that we have fully exploited its resources.
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pass statistical tests, but neither of these features is of central importance. What is of central
importance is whether or not the automated model revision procedures find the truth. Empirical
tests can sometimes be obtained of models produced by the automatic searches, and they may
provide some evidence of the reliability of the procedures. In general, however, such tests have
rarely been obtained, and they cannot be relied upon since one does not know whether the initial
model given to the program is empirically correct It is possible to do mathematical analyses of
the power of a discovery procedure to distinguish or identify alternative structures in the limit, as
the sample size grows without bound. Some results of this kind pertinent to TETRAD methods
are implicit in Discovering Causal Structure, and we have subsequently proved a number of
other limiting properties of the TETRAD procedures. Limit results do not, however, address the
behavior of automated discovery procedures on samples of realistic sizes, and it is that which
ought most to concern empirical researchers.

The best solution available is to apply Monte Carlo methods to assess the reliability of model
respecification procedures. Using a random number generator, data for a specified sample size
can be generated from a specified structural equation model. Part of the model used to generate
the data is then given to the procedures, and we see with what reliability the procedures can
recover information about the missing parts of the models used to generate the data. In this way,
the reliability of the procedures can be tested in nearly ideal circumstances: the true structural
equation model is known, the sampling is random, and distribution assumptions are satisfied to a
good approximation. The manuals documenting the LISREL and EQS programs contain no tests
of their model respecification procedures on simulated data. Three such tests are reported in
Discovering Causal Structure.

4.1. Previous Simulation Studies

There have been a number of studies of the effectiveness of various features of LISREL.

Fornell and Larcker [9] performed a study that was intended to demonstrate problems LISREL
IV has in evaluating (not correcting) models with large parameter values. They claimed that
causal models with small linear coefficients have smaller chi-square values than do models with
large linear coefficients. They gave as input to LISREL "true" models and their associated
correlation matrices. However, they did not generate their correlation matrices by Monte Carlo
methods; in many cases their matrices were altered by hand from other correlation matrices.
Their results are misleading since in some cases the associated correlation matrix they use is
extremely improbable given the model they assume.

MacCallum [21] studied the reliability of LISREL's automatic search on "structural models,"12

and how it is affected by the sample size, the starting model, and by prior restrictions. Not

12The "structural" part of a causal model includes causal connections among latent variables only. The
"measurement" part of a model includes all other causal connections.
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surprisingly, he found that the reliability of the search decreased as the sample size decreased,
the number of specification errors in the starting model increased, and the number of prior
restrictions on the search decreased. MacCallum generated Monte Carlo data for mo different
"true" models. For each true model, he gave LISREL the covariance matrix generated by that
model together with a variety of starting models that varied both by the number of edges they
were missing and by the inclusion of edges that were not present in the true model. In
MacCallum's study the parameter values of the "true" models were atypical, however. Each
coefficient connecting latent variables was given one of only two different values, and each
coefficient connecting a latent with a measured variable was also given one of only two values.
These restrictions had the effect of imposing constraints not implied by the causal structure of
the models. Although his study was systematic and thorough, it was a test only of LISREL's
reliability in correcting errors in the structural pan of a causal model. Localizing the error in this
way drastically reduced the number of possible corrections LISREL had to consider. In one of
his cases, for example, there were 297 possible corrections to the full causal model, but only 3
possible corrections to the structural part.

Costner and Herting [7] did an extensive and useful study of the ability of LISREL V to correct
mis-specifications through manual examination of the modification indices and standardized
residuals. Although they did not run the automatic search procedure in LISREL VI, their
descriptions of the modification indices allow us to infer to a large extent what the automatic
search procedure would have done. They considered a wide variety of different kinds of mis-
specifications. While their parameter values were not randomly generated, in some cases they
did systematically vary the magnitudes of the parameters. The results of their study, which we
discuss below, were generally corroborated by our own. Their study did, however, have
important limitations. They were unable to detect the effects of sample size on the reliability of
LISREL, since they did not use Monte Carlo simulations to generate their covariance matrices.
Instead, LISREL was given the population covariance matrices. There were edges that Costner
and Herting wished to, but could not, add to their starting model, because of the elaborate
restrictions that LISREL places on additions to the starting model. (For example, an edge from
one indicator to another indicator cannot be added.) There are methods of re-describing models
in the LISREL formalism which would have allowed Costner and Herting to determine the
effects of adding these "forbidden" edges to their starting models, but they were not used.13

Finally, since Costner and Herting used the population covariance matrices (which produce a
chi-square of zero if the correct model is input), and did not run the automatic search available in
LISREL VI, they were unable to determine how often LISREL would mistakenly add too many
edges to the starting model.

13Which is certainly no fault of Costner and Herting, since the recodings required are not documented in any of
the LISREL manuals.
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4.2. Requirements for Comparative Simulation Studies

An ideal study of the reliability of the automatic respecification procedures in TETRAD n,
LISREL VI, and EQS, under conditions where the general structural equation modeling
assumptions arc met, would examine the effects of the following factors by varying them
independently.

• The causal structure of the true model.

• The magnitudes and signs of the parameters of the true model.

• How the starting model is mis-specified-that is, the structure of omitted
dependencies.

• The sample size.

In addition, an ideal study should:
• Compare fully algorithmic procedures, rather than procedures that require judgment

on the part of the user. Procedures that require judgment can only adequately be
tested by carefully blinding the user to the true model; further, results obtained by
one user may not transfer to other users. With fully algorithmic procedures, neither
of these problems arises.

• Examine causal structures that are of a kind postulated in empirical research, or that
there are substantive reasons to think occur in real domains.

• Generate coefficients in the models randomly. Costner and Herting showed that the
size of the parameters affects LISREL's performance. Further, the reliability of
TETRAD II depends on whether vanishing tetrad differences hold in a sample
because of the particular numerical values of the coefficients rather than because of
the causal structure, and it is important not to bias the study either for or against this
possibility.

• Ensure in so far as possible that all programs compared must search the same space
of alternative models. For example, LISREL VI cannot consider any models that
elaborate an initial model by postulating a direct effect from an endogenous variable
to an exogenous variable in the initial model. For a fair comparison, EQS and
TETRAD II must therefore be relieved of the responsibility of considering such
models.

4.3. Study Design

Selection of Causal Graphs:

The nine causal structures studied are illustrated in Figure 5, 6, and 7 below. (For simplicity of
depiction we have omitted uncorrelated error terms in the figures, but such terms were included
in the linear models.). The heavier directed or undirected lines in each figure represent
relationships that were included in the model used to generate simulated data, but were omitted
from the models given to the three programs; i.e., they represent the dependencies that the
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programs were to attempt to recover. The starting models are shown in Figure 4.

The models studied include a model with five measured variables and one latent factor, seven
models each with eight measured variables and two latent variables, and one model with three
latent variables and eight measured variables.

One factor models commonly arise in psychometric and personality studies (see [18]); two latent
factor models are common in longitudinal studies in which the same measures are taken at
different times (see [23]), and also arise in psychometric studies; the triangular arrangement of
latent variables is a typical geometry (see [28]).

Selection of Connections to be Recovered:

The connections to be recovered include

• Directed edges from latent variables to latent variables; relations of this kind are
often the principal point of empirical research. See [22], for example.

• Edges from latent variables to measured variables; connections of this kind may
arise when measures are impure, and in other contexts. See [6], for example.

• Correlated errors between measured variables; relationships of this kind are perhaps
the most frequent form of respecification.

• Directed edges from measured variables to measured variables. Such relations
cannot obtain, for example, between social indices, but they may very well obtain
between responses to survey or psychometric instruments (see [5]), and of course
between measured variables such as interest rates and housing sales.

One limitation of the primary study is that we consider only one case in which there is a mis-
specification in the structural part of a model. Such models are typically large, and the time
required by each of the programs to search through the space of alternatives to complex models
for hundreds of different data sets was beyond the scope of this preliminary study. For example,
LISREL VI on the Compaq 386 PC is slow enough to make certain procedures infeasible. We
had initially planned to include a tenth case in our primary studies. The model to be studied was
hierarchical, with ten measured variables serving as indicators of four latent variables that in turn
depend on two second order latent variables. The omitted edge to be recovered connected one of
the first order latent variables to another such variable. We found that LISREL VI required
roughly one and one half hours to process this model on the Compaq 386, and that because the
program often did not converge, batch processes were frequently stopped. The attempt to study
the case was abandoned after running five data sets through LISREL VI. We are reasonably
confident that the results for LISREL VI and for TETRAD II would, however, resemble those of
case 9. We plan to investigate the reliability of each of the programs in correcting this kind of
mis-specification more thoroughly in a future study.

We also have not included in the primary study cases that we know beforehand cannot be
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recovered by one or another of the programs. We have not, for example, used data generated by
a model containing an edge directed into an exogenous variable in the starting model, because
we know beforehand that LISREL VI cannot detect such edges. Neither have we included cases
in which the true model implies the same set of vanishing tetrad differences as a proper
submodel. We have not, for example, used starting model 3, and data generated from a model
that extends starting model 3 with the addition of a T2 -> Tl edge. Such models cannot be
distinguished by the TETRAD procedures.

Selection of Starting Models:

Only three starting models were used in the nine cases (see Figure 4). The starting models are,
in causal modeling terms, pure factor models or pure multiple indicator models. In graph
theoretic terms they are trees. In every empirical case we have read in which sample data are
used to elaborate an initial latent variable model, the initial model is of this kind.
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Selection of Parameters

In the figures showing the true models the numbers next to directed edges represent the values
given to the associated linear coefficients. The numbers next to undirected lines represent the
values of specified covariances. In all cases, save for models 1 and 5, the coefficients were
chosen by random selection from a uniform distribution between .5 and 2.5. The value obtained
was then randomly given a sign, positive or negative. The minimum value of .5 was chosen to
ensure the statistical significance of all parameters.

In model 1, all linear coefficients were chosen from the .5—2.5 interval, but all signs were made
positive. The values of the causal connections between indicators were specified non-randomly.
The case was constructed to simulate a psychometric or other study in which the loadings on the
latent factor are known to be positive, and in which the direct interactions between measured
variables are comparatively small.

Model 5 was chosen to provide a comparison with model 3 in which the coefficients of the
measured-measured edges were deliberately chosen to be large relative to those in model 3.

Generation of Data

For each of the nine cases, twenty data sets with n=200 and twenty data sets with n=2,000 were
obtained by first generating values for each of the exogenous variables (including error
variables) with a random number generator giving a standard normal distribution14, and then
calculating the value of each endogenous variable as a linear function of its immediate causes.
Correlated errors were obtained in the simulation by introducing a new exogenous common
cause, and fixing the coefficients so that their product equals the covariance of the error terms.

Implementation:

The LISREL VI runs in the primary study were performed with the personal computer version of
the program, run on a Compaq 386 computer. This machine is many times faster than IBM AT
machines. EQS runs were performed on an IBM XT clone with a math coprocessor.
Comparison LISREL VI and EQS runs (discussed in the section on ancillary studies) were
performed on a VAX mainframe. All TETRAD II runs were performed on Sun 3/50
workstations.

Specifying Starting Models in LISREL VI

LISREL VI, like previous editions of the program, requires the user to formulate models in such
a way that variables are represented in distinct matrices according to whether they are

14First a number was pseudo-randomly selected from a uniform distribution by calling the "random" system call
on the UNIX operating system. Then this number was input to a function which turned it into a pseudo-random
sample from a standard normal distribution.
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exogenous, endogenous but unmeasured, measured but dependent on exogenous latent, measured
but dependent on endogenous latent, and so forth. Variables in certain of these categories cannot
have effects on variables in other categories. When formulated as recommended in the LISREL
manual, LISREL VI would be in principle unable to detect many of the effects considered in this
study. However, these restrictions can in most cases be overcome by a system of substitutions of
dummy variables in which measured variables are actually represented as endogenous latent
variables.15

The following diagram depicts the LISREL VI model that corresponds to the starting model for
cases 2 - 8 in Fig. 4. We include an example of a LISREL VI input file in the appendix.

ee = 0

Figure 8: Starting Model for Cases 2-8: in LISREL Notation

15For LISREL IV, the details of this procedure are described in Discovering Causal Structure. The same
procedure works for LISREL VI with the exception that we were not able to get LISREL VI to accept changing £
variables to T\ variables, as we recommended in the book. This had the unfortunate effect that LISREL would not
consider adding any edges into Tl (represented by the £ variable).
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LISREL VI and EQS contain a parameter for the significance level of the chi-square significance
test used in their searches. In LISREL VI the default value (.01) of the parameter was used. For
comparability, in EQS we used .01 rather than the default value (.05). Lowering the significance
level tends to reduce the number of edges added in a LISREL or EQS search.

Specification of TETRAD II Parameters

TETRAD II requires that the user set a value of the weight parameter (see section 2.3), and a
value for the significance level used in the test for vanishing tetrad differences. A significance
level of .05 was used for all samples; each sample was run with the weight parameter set at .1
and also with the weight parameter set at 1. In all cases, the breadth of the search was 30 and the
initial depth was 3.

4.4. Results

For each data set and initial model, TETRAD II produces a set of best alternative elaborations.
In some cases that set consists of a single model; typically it consists of three or four alternatives.
EQS and LISREL VI, when run in their automatic search mode, produce as output a single
model elaborating the initial model. The information provided by each program is scored
"correct11 when the output contains the true model. Since, however, it is important to see how the
various programs err when their output is not correct, we have provided a detailed classification
of various kinds of error. We have classified the output of TETRAD II as follows (where a
model is in TETRAD'S top group iff it is tied for the highest T-score, and no model with the
same T-score has more degrees of freedom):

Correct-xht true model is in TETRAD'S top group.

Width-the number of best alternatives (recorded only for searches
that contained the true model in TETRAD'S top group.)

Errors:

Overfit—TETRAD's top group does not contain the true model but
contains a model that is an elaboration of the true model.

Underfit—TETRAD'S top group does not contain the true model but
does contain a model of which the true model is an elaboration.

Other—none of the previous categories apply to the output.

We have scored the output of the LISREL VI and EQS programs as follows:

Correct--tht true model is recommended by the program.
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Errors:

In TETRAD'S Top Group-the recommended model is not correct, but is
among the best alternatives suggested by the TETRAD II
program for the same data.

Overfit—the recommended model does not contain the true model but
contains a model that is an elaboration of the true model.

Underfit—the recommended model does not contain the true model but
does contain a model of which the true model is an elaboration.

Right Variable Pairs--the recommended model is not in any of the previous categories,
but it does connect the same pairs of variables as were
connected in the omitted parts of the true model.

Other-none of the previous categories apply to the output.

The results are summarized in Fig. 9. The solid black bars in the figures represent the
performance of TETRAD II when the weight = .01; the shaded bar represents the program's
performance when weight = 1.0.

For large sample sizes, TETRAD II is significantly more reliable for the kinds of cases we
considered than either LISREL VI or EQS. TETRAD II was able to correct the mis-specification
in almost 94% of the cases with weight = .1, whereas LISREL VI was able to do so less than
23% of the time and EQS a little more than 16%. For small sample sizes, the performance of all
three programs was considerably worse,16 although TETRAD II still significantly outperformed
LISREL VI. TETRAD II corrected the mis-specification 37.2% of the time at weight = .1 and
41% of time at weight = 1.0, while LISREL VI corrected the mis-specification 12.8% of the
time. A detailed case-by-case breakdown of the results is presented in the appendix. It should
be noted that in these cases the performance of the LISREL VI and EQS programs is not
impressive even if one includes among the correct responses those in which the appropriate pairs
of variables were connected (but, of course, incorrectly connected).

LISREL VI (and EQS) output a single recommended model, whereas TETRAD II outputs a set
of models. Output of a single model would be more informative if the single model selected
could be relied upon to be correct, but our results strongly suggest that this is not the case. The
automatic output of LISREL VI and EQS contains no information about whether there are
alternatives to the model they suggest that have equal, or nearly equal, L-scores. One of the
major advantages of TETRAD II is that it outputs the set of all of the alternatives that have the
same or nearly the same T-score.

16We did not run EQS on all 180 data sets at sample size 200, but in the several cases we did its performance was
still slightly inferior to LISREL VI.
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Figure 9: Summary of Results
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This point is illustrated by a data set from case 1, for which TETRAD II gives the following four
alternative additions to the initial model (a "*" marks the true model).

1. q2->q3 q5->q3 *

2. q2->q3 q5C q3

3. q2 C q3 q3 C q5

4. q2 C q3 q5 -> q3

All of these models receive identical L-scores from EQS and LISREL VI (that is, they have the
same p values on a chi-square test), but the output of a LISREL VI or EQS search is at best only
one of these models, and generally not the correct one. The user is not (save in the case that the
modification involves a single edge), told of the alternatives. The fact that there are other
models receiving exactly the same L-score should be highly relevant to a researcher's confidence
in the recommended model.

5. Analysis and Ancillary Studies

5.1. Parameter Estimation Problems

The main difference in basic approach between TETRAD II and either LISREL VI or EQS is
that TETRAD II does not involve any parameter estimation.

LISREL VI and EQS, unlike TETRAD II, require initial estimates of the signs and magnitudes
of the free parameters. LISREL VI takes the initial estimates and then performs a two stage least
squares estimate of parameters, before calling its maximum likelihood estimation procedure.
Perhaps that step accounts for LISREL's slightly better performance.

In the starting models for our searches, we always fixed the parameter of one indicator of each
latent variable at 1; all of the other edges were free parameters with .5 as a starting value. The
variances of the latent variables were also free parameters with .5 as the starting values in the
LISREL VI studies, and 1.5 in the EQS studies.

If the original estimates are too far from the actual values, the parameter estimates will either fail
to converge or converge to the wrong values. In 3, 5, and 9, both LISREL VI and EQS
repeatedly had serious convergence problems. In those cases, we changed the initial estimates so
that they had the same signs as the corresponding parameters in the true model; the results of the
searches when the initial estimates had the coiTect signs are reported in both the tables and the
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bar graphs. As can be seen from the very low success rates for LISREL VI and EQS on these
models, this charity caused little or no improvement on the proportion of correct outputs for data
sets from such models (except in case 9 at sample size 2000 for EQS).

How serious the parameter estimation problem is depends upon several factors.

In many cases convergence was obtained when the initial starting values had the correct signs,17

but this requires more knowledge than a researcher may have. In many studies the sign of a
crucial causal link is the operative question.18

Some causal structures are considerably more sensitive to incorrect starting values than other
models. For example, when EQS was given all positive initial parameter estimates, we found
that on each case either the program converged to approximately correct parameter estimates on
all 20 data samples, or failed to do so on all 20 data samples.

If the original starting values are inadequate, it is always possible to search for starting values
that will allow the parameter estimates to converge. However, in a large model, there are so
many alternative sign configurations that such a search may not be feasible. For example, in
case 9, for the first data sample, we randomly chose 20 different sign assignments to the free
parameters in the starting model. In EQS, for only one of those 20 sign assignments did the
parameter estimates of the starting model converge. For some models, in the absence of strong
background knowledge about the free parameters in the starting model, finding a set of starting
values that converge can be quite difficult and time consuming. Relevant prior knowledge may
often be available. In psychometric studies, for example, it is often assumed that all
dependencies of measured variables on latent variables involve linear coefficients of positive
sign. In longitudinal studies in which the same battery of questions or indices are repeatedly
applied, it is often reasonable to assume that the signs of the coefficients are unchanged in two or
more administrations of a survey instrument.

5.2. Failure of Calculation in the Search

TETRAD IPs search procedure never halted because of calculation problems. However, even
when LISREL VFs parameter estimation for the starting model converged, the LISREL VI
search quite often failed either because it was unable to estimate the parameters of some
elaboration of the starting model or because it could not calculate the modification indices. For

17It should be noted that in linear modeling with latent variables, the practice of fixing for each latent variable the
coefficient of one indicator variable at unity has the consequence that, even if the causal stnicture is correct, it
cannot be concluded that the true signs of the coefficients are as in the estimated model. Conventionally fixing the
coefficients at -1 rather than 1 would typically reverse many signs.

18For example, see our discussion of Timberlake and William's model of the effect of foreign capital investment
on the level of repression in third world countries, [12], chapter 8.
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example, in case 9 at sample size 2000, even when the starting model contained true initial
parameter estimates for the edges in the starting model, LISREL VT s automatic search ended 6
times out of 20 with a failure to calculate parameter estimates or modification indices. In case 3
at sample size 2000, 6 of the 18 searches in which LISREL VI succeeded in estimating the
parameters of the starting model ended with a similar failure. (If LISREL attempted to add an
edge to a model, but was unable to re-estimate the parameters or to calculate the modification
indices, we still counted the edge that it attempted to add as part of the recommended model.)

Costner and Herting found much the same problem in their study. In particular, when a direct
connection between a latent variable and an indicator shared by two latent variables was left out
of the starting model, LISREL VI tended to add an incorrect edge to the model, and then
calculate that some variable had a negative variance. This happened especially when the missing
latent - indicator edge had a large coefficient. Similar problems occurred when the missing edge
was a latent - latent edge. They found that going back to the starting model and adding the edge
with the second highest modification index usually solved the calculation problem and also gave
the correct answer.

53. Breaking Ties

In a large number of cases, there were several edges tied for the highest modification index. It is
not clear from the documentation how LISREL VI chooses which of these edges to add to the
model, but whatever it is, it is not reliable. For example, in case 1 at sample sizes 200 and 2000,
the edges x3 -> x5, x3 C x5, and x5 -> x3 all had identical, or very nearly identical modification
indices. At sample size 2000, LISREL VI added was x5 -> x3 (the correct edge) eight times, x3
-> x5 ten times, and x3 C x5 one time. EQS was similarly unreliable in breaking ties among
edges that would cause identical or nearly identical estimated decreases in the chi-square.

5.4. Choosing the Wrong Edge

There are several reasons why the edge with the highest modification index might not be the
correct edge to add to a model. Since the modification index places only a lower bound on the
decrease in the chi-square, it is possible that freeing a fixed parameter that does not have the
highest modification index could result in the greatest decrease in the chi-square. And since at
each stage of the search LISREL VI chooses to free only the fixed parameter with the highest
modification index, it could easily miss freeing other fixed parameters that would produce larger
decreases in the chi-square. Also, the reliability of the modification indices is highly dependent
upon the particular values of the parameters freed. This is documented in [7], and illustrated in
several of the Monte Carlo studies we ran.

We found that it was common that all of the edges with the highest modification indices were
erroneous. A number of factors affected how often this happened.
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The first factor was the causal structure. When the true model contained a pair of edges that
linked together to form a path, and the starting model did not contain those edges, LISREL VI
performed worst. For example, in case 5, which has linked edges, LISREL VI always chose the
wrong edge at both sample sizes 200 and 2000 (when it converged). In contrast, when the true
model had correlated errors, LISREL VI performed the best. For example, in case 4 (which did
not have linked edges), at sample size 2000 the edge with the highest modification index was
correct 19 out of 20 times. (Costner and Herring also found that LISREL VI was most reliable in
detecting correlated errors. In a wide variety of different cases with correlated errors, LISREL
VI was always able to detect the missing correlated errors.)

The second factor was the parameter size. When the linked edges have linear coefficients that
are large compared to the other coefficients in the model, LISREL VI often chose the wrong
edge. The only difference between case 3 and case 5 was that in case 5 the linear coefficients of
the linked edges were large compared to the other coefficients in the model, and in case 3 they
were not In case 5 at sample size 2000, when LISREL converged, at the first stage of the
search, the edge with the top modification index didn't even connect the correct pair of variables
in any of the 20 samples. In case 3 at sample size 2000, the overall performance of LISREL VI
was still poor. However, at least the edge with the largest modification index connected the
correct pair of variables (although often in the wrong way) in all of the 19 cases in which the
parameter estimates converged. It should be noted that while LISREL VI and EQS have special
difficulties when the coefficients of omitted edges are large, there is no such effect with the
TETRAD II program. In practice, the more important such an effect is in the true process
generating the data, the less likely LISREL and EQS are to find it.

5.5. Search Strategy

Some of the comparatively poor performance of the LISREL VI and EQS programs on the kinds
of cases that we considered in our study can be traced to their search strategy. With LISREL VI,
for example, when several alternative models have the same or virtually the same (e.g., differing
by round off error) modification indices, LISREL VI picks one of them by no principle we can
find documented.19 All of the other alternatives are discarded, and the program proceeds to look
for further modifications to the one selected best alternative. This beam search strategy
produces many errors. The TETRAD II performance would be better approximated by LISREL
VI and by EQS if, when several models with virtually identical maximal scores are found, their
searches were to branch (as does that of TETRAD II), and the program were to report all of the
alternatives found. A branching search is computationally costly however, and would, of course,
require at least an order of magnitude more time. Moreover in the worst case the extra time
required for a branching search would grow exponentially with the number of alternatives.

19The PC and mainframe versions of LISREL VI will in some cases make different choices given the same data
and initial model.
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5.6. Computational Demands

Since the three programs were run on different machines, no direct comparison of their
computational demands is possible. For the breadths and depths used in these studies the
average running time for TETRAD II was about 10 minutes on Sun 3/50 work stations.
Although TETRAD II is not implemented on MS-DOS, TETRAD is, and runs in about the same
time on the Compaq 386 machine (used for the USREL VI runs in the primary study) as on the
Sun 3/50. Thus the run times of USREL VI and TETRAD II may be indirectly compared: The
run time for USREL VI is roughly twice that of TETRAD II. EQS runs were done on still a
different machine, and we have in this case no Rosetta stone to compare speeds with the other
two programs.20

In many cases the difference in time for TETRAD II and for LISREL VI processing would be
relatively inconsequential were the latter program otherwise reliable. It becomes important in
considering a branch strategy using modification indices. Typical runs with USREL VI on the
Compaq 386 required 15 to 25 minutes, depending on the model.21 A branching procedure that
retained three alternatives at each stage stopped on all branches after freeing two parameters in
the initial model would increase the time required by about a factor of 7. In many cases any
reasonable branching would be much broader. For example, in case 1 of our primary study, after
LISREL VI added the first edge, on some data sets there were 11 alternative further additions
indistinguishable to within four of the five significant figures LISREL reported. In general, the
time required for a LISREL branch search would increase exponentially as the number of
alternatives considered at each stage increases.

5.7. Stopping Criteria

LISREL VI stops searching when adding the edge with the highest modification index does not
cause a significant drop in the chi-square of the model. In practice, this stopping criterion often
does not work. For example, at sample size 2000, TETRAD II overfit or underfit a total of 5
times; LISREL VI underfit or overfit 12 times. In many other samples that did not fall into the
overfit or underfit categories, LISREL VI found a model that was in TETRAD ITs top group,
but then continued to add further edges to the model.

20If the reader wonders why the processing was done on so many different machines, the answer is simple:
because of repeated convergence difficulties which stop batch processes, LISREL VI is inefficient to run even in
batch. (Although EQS also suffers from convergence difficulties it is not as inefficient to run in batch, since it does
not require manual intervention when convergence difficulties occur.) Processing 360 data sets for LISREL and 180
for EQS required hundreds of hours. Run in parallel the study took us about two months. Run sequentially on the
Compaq 386, for example, it would have taken us at least half again as long. TETRAD II was run on Sun 3/50
workstations because the Andrew system facilities of Carnegie Mellon University enabled us to run the program
simultaneously on several workstations.

21 The version of LISREL VI that runs on large VAXes under the VMS operating system is considerable faster.
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5.8. Using LISREL VI and EQS as Adjuncts to a TETRAD II Search

Models that receive the same T-score do not necessarily receive the same L-score. In some
cases, the L-scores do make useful distinctions among models that receive the same T-score,
particularly in those cases where two models contain the same treks, but different pairs of
variables are directly connected.

A sensible strategy might be to use TETRAD II to generate a list of alternative revisions of an
initial model, and then test the revisions with LISREL or EQS, discarding those alternatives that
have very low, or comparatively low L-scores. Unfortunately, there are often convergence
problems which limit the usefulness of this strategy. For example, at sample size 200, in cases 3,
5, 6, 7, 8, and 9 there was at least one model in the top group output by TETRAD II which
caused convergence problems in LISREL VI. Even when the free parameters in each of the
models were given the correct starting values, there were convergence problems at sample size
200 in cases 3, 7, and 8. A model that causes convergence problems cannot be dropped from
consideration, even if other models do not have convergence problems. For example, in case 7,
the true model had convergence problems, and a false model did not.

To systematically test the merits of this strategy we performed the following study. For each
case, we chose a sample data set (n = 200) upon which TETRAD ITs search was successful. We
then constructed two LISREL and EQS input files for each of the models in TETRAD'S top
group22, one in which all the parameters had starting values of .5, and the other in which all
parameters had correct starting values. In case 4, where TETRAD'S top group contained only
the correct model, this strategy is obviously not necessary. In these cases we ran LISREL and
EQS on two data sets upon which TETRAD IPs search was successful. The tables shown below
list the results.

cases 6,7 and 8, we only constructed input files for a subset of the models in TETRAD II's top group.
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* = correct model
s.p. = serious problems (e.g. failure to converge)

Parameter Starting Values

Model 1: data set 3, width = 4

1) q2 -> q3, q3 C q5
2)q2Cq3, q3Cq5
3)q2->q3,q5->q3*
4)q2Cq3,q5->q3

Model 2: data set 9, width = 2

1) xl -> x5, x5 C x6 *
2) xl -> x5, x6 -> x5

Model 3: data set 20, width = 3

1) xl -> x5, xl -> x6
2) xl -> x5, x5 -> x6 *
3) xl -> x6, x6 -> x5

Model 4: width = 1
data set 2
x2 C x5, x3 C x7 *
data set 3
x2 C x5, x3 C x7 *

Model 5: data set 1, width = 3
1) xl -> x5, xl -> x6
2) xl -> x5, x5 -> x6 *
3) xl -> x6, x6 -> x5

Model 6: data set 2, width = 2
data set 2
1) Tl -> x6 *
data set 4
2) Tl -> x6 *

D.o.f.

3
3
3
3

17
17

17
17
17

17

17

17
17
17

18

18

All = .5

X2

1.19
1.19
1.19
1.19

32.11
s.p.

s.p.
s.p.
s.p.

s.p.

s.p.

s.p.
s.p.
s.p.

22.28

10.58

P(X2)

.75

.75

.75

.75

.015

.22

.911

True

X2

1.19
1.19
1.19
1.19

32.11
32.11

22.5
9.8
s.p.

9.15

18.06

103.7
12.87
14.48

22.28

10.58

P(X2)

.75

.75

.75

.75

.015

.015

.166

.911

.935

.385

<.001
.744
.633

.22

.911
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EQS

Model 7: data set 17, width = 12

1 ) X 7 - > X 6 , T 1 - > X 7
2) x6 -> T2, Tl -> x7
3)Tl ->x6 ,x7->T2
4) Tl -> x6, x6 -> x7
5) Tl -> x6, Tl -> x7 *
6) x6 C x7, x7 -> T2

Model 8: data set 8, width = 13

1) x3 -> x6, x3 -> T2
2) T2 -> x3, Tl -> x6 *
3) x6 -> x3, x3 -> T2

Model 9: data set 5, width = 3
1) T2 -> T3 *
2) T2 C T3
3) T3 -> T2

D.o.f.

17
17
17
17
17
17

17
17
17

17
17
17

All = .5

X2

28.81
s.p.
s.p.
11.9
s.p.
s.p.

26.6
s.p.
28.25

s.p.
s.p.
s.p.

Parameter

P(X2)

.036

.803

.064

.042

Starting Values
True

X2

28.81
68..02
s.p.
11.95
11.99
s.p.

26.6
14.64
s.p.

12.6
12.6
12.6

P(X2)

.036
<.001

.803

.800

.064

.621

.762

.762

.762
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* = correct model
s.p. = serious problems (e.g. failure to converge)

Parameter Starting Values

Model 1: data set 3, width = 4

Dq2->q3,q3Cq5
2)q2Cq3, q3Cq5
3)q2->q3,q5->q3*
4)q2Cq3,q5->q3

Model 2: data set 9, width = 2

1) xl -> x5, x5 C x6 *
2) xl -> x5, x6 -> x5

Model 3: data set 20, width = 3

1) xl -> x5, xl -> x6
2) xl -> x5, x5 -> x6 *
3) xl -> x6, x6 -> x5

Model 4: width = 1
data set 2
x2 C x5, x3 C x7 *

data set 3
x2 C x5, x3 C x7 *

Model 5: data set 1, width = 3
1) xl -> x5, xl -> x6
2) xl -> x5, x5 -> x6 *
3) xl -> x6, x6 -> x5

Model 6: data set 2, width = 2
data set 2
l ) T l - > x 6 *
data set 4
2) Tl -> x6 *

D.o.f.

3
3
3
3

17
17

17
17
17

17

17

17
17
17

18

18

All = .5

X2

1.19
1.19
1.19
1.19

32.13
32.13

s.p.
s.p.
s.p.

9.15

18.09

81.52
12.84
s.p.

s.p.

s.p.

P(X2)

.75

.75

.75

.75

.014

.014

.935

.383

.000

.747

True

X2

1.19
1.19
1.19
1.19

32.13
32.13

1 22.47
1 9.8
1 s.p.

1 9.15

1 18.09

1 81.52
1 12.84
1 14.57

1 22.24

1 10.59

P(X2)

.75

.75

.75

.75

.014

.014

.167

.912

.935

.383

.000

.747
.627

.222

.911
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LISREL

Model 7: data set 17, width = 12

1 ) X 7 - > X 6 , T 1 - > X 7
2)x6->T2,Tl->x7
3) Tl -> x6, x7 -> T2
4) Tl -> x6, x6 -> x7
5) Tl -> x6, Tl -> x7 *
6) x6 C x7, x7 -> T2

Model 8: data set 8, width = 13

1) x3 -> x6, x3 -> T2
2) T2 -> x3, Tl -> x6 *
3) x6 -> x3, x3 -> T2

Model 9: data set 5, width = 3
1) T2 -> T3 *
2) T2 C T3
3) T3 -> T2

D.o.f.

17
17
17
17
17
17

17
17
17

17
17
17

All = .5

s.p.
s.p.
12.0
s.p.
s.p.
s.p.

26.65
14.66
s.p.

s.p.
s.p.
s.p.

Parameter

P(X2) 1

.80

.063

.620

Starting Values
True

X2

28.85
s.p.
s.p.
11.95
12.0
28.85

26.65
14.66
s.p.

12.62
12.62

1 12.62

P(X2)

.036

.803

.800

.036

.063

.620

.761

.761

.761

In cases 5, and 8 TETRAD II's top group contains some models that receive unacceptably low
L-scores. Eliminating these models from consideration reduces the top group without
introducing any errors. It is clear, however, that with arbitrary starting values, EQS and LISREL
VI are rarely of use in reducing the alternatives produced by TETRAD DL One model in case 8
and one in case 5, and no others, are eliminated.23

5.9. Limitations of TETRAD II

There are connections in some models that, if omitted, TETRAD II cannot possibly recover. If a
starting model and a true model imply the same set of tetrad equations, even though the true
model contains additional dependencies not included in the starting model, then TETRAD II

convergence of either the LISREL VI or EQS programs in almost all cases when given the correct
coefficients as starting values indicates that the difficulties the programs have with arbitrary starting values are not
due to identification problems.
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cannot discover those dependencies. The causal connections that TETRAD II cannot discover
often occur in unidentifiable models, and in these cases LISREL VI will not discover the
connections either. For example, if to the third starting model of our primary study we add a
correlated error between variables Tl and T2, the result is a model that implies the same set of
vanishing tetrad differences as does the starting model. Given the starting model and data
generated by the elaborated model, TETRAD II cannot discover the correlated error between Tl
and T2. Neither can LISREL VI. To verify that claim we generated 20 data sets from such an
elaborated model (with positive coefficients chosen randomly between .5 and 1.5, and the Tl T2
correlation equal to .89) and gave the starting model and the data sets (n=2000) to LISREL VI.
LISREL VI recommended no revisions to the starting model for 8 of the 20 data sets; it
recommended connections between irrelevant pairs of variables for 6 of the data sets, and it
failed to converge for the remaining 6 data sets.

There certainly are cases in which, with sufficient prior knowledge, LISREL VI, and presumably
EQS as well, will with some reliability locate connections that TETRAD II cannot detect.
MacCallum's study provides an example. MacCallum generated twenty data sets (n=300) from
the LISREL VI model shown in Fig. 10.

Figure 10: MacCallum's True Model
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The darkened connection was omitted in the model given to LISREL VI. The automatic search
procedure correctly located the missing connection for 17 of the 20 data sets, TETRAD II
cannot discover the omission. The difference is less impressive, however, when one remembers
all of the restrictions that were placed upon the LISREL search. There are 297 different one-
parameter modifications that could be made to the initial model. MacCallum's LISREL search
considered only direct causal connections among latent variables. Since no £ variable can have
an edge directed into it, this leaves only three alternative one-parameter modifications: an edge

from £2
 t o ^2' M e(*2e ^om 3̂ t o ^2* o r m ec^2e ^rom ^2 t 0 ^1- Th e s e three modifications,

together with the hypothesis of no modification, were the initial hypothesis space the program
had to consider. We do not know how LISREL VI would perform if the search space were not
artificially restricted in this way, but our experience with model 9 of the primary study suggests
that its reliability would be greatly decreased. MacCallum himself had the same suspicion,
which is why he restricted the search so drastically. For correcting errors in the measurement
model, he suggested using a method devised by Costner and Schoenberg (in Costner73), which
is similar in spirit to the method used by TETRAD n.

5.10. Using TETRAD

A legitimate practical concern is whether the TETRAD II results could be reproduced with the
published TETRAD program. To answer this question unequivocally would require another
large study which we do not propose to undertake. Our opinion, however, is that if the TETRAD
program were used on these data following the heuristics described in Discovering Causal
Structure, the results would be satisfactory in cases with large samples, but not so good as those
obtained with the TETRAD II program.

An illustration of the application of TETRAD to one of these problems is given in the appendix.

6. Conclusions and Prospects

Based on our study, we put little confidence in the automatic model elaboration procedures in
EQS and LISREL VI when applied to latent variable models of the kind we considered. In
producing a unique respecification, the programs attempt more precision than can be reliably
obtained. Further, their numerically based architecture makes the programs unstable and makes
a more adequate search strategy unpromising for computational reasons.

In contrast, over a range of latent variable structures, the TETRAD II procedures are quite
reliable in large samples. There are, however, special cases in which TETRAD II cannot
possibly locate missing connections. Those are cases in which the missing connections, when
added to the initial model, have no effect on the implied tetrad constraints. TETRAD will also
fail when a large number of tetrad constraints appear to hold in the sample because of the
numerical values of the linear coefficients rather than because of the causal structure. In large
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samples, for any natural probability distribution over the coefficients, cases of the second sort
will be rather rare (a point confirmed by our primary study).

If the automatic procedures of EQS and LISREL VI are too bold in attempting to produce a
unique extension of the initial model, TETRAD II may be too timid in the set of alternatives it
generates. Reducing that set of alternatives by using LISREL VI or EQS to test the alternatives
is a harmless strategy, so far as we can judge, but it may not be very effective. Fortunately we
believe there is an alternative strategy that may be more effective. Besides vanishing tetrad
differences, the graph of a structural equation model, along with the signs of certain coefficients,
may imply tetrad inequalities. That is, it may imply that a tetrad difference is greater than or
equal to zero. It is computationally inefficient to compute all possible sign assignments to
coefficients and the corresponding implied tetrad inequalities in the course of the TETRAD II
search. It may be useful and feasible, however, to perform such computations on the models in
the TETRAD II output. Some, but not others, may admit sign assignments to coefficients that
are consistent with prior knowledge and imply the tetrad inequalities reflected in the data.

What holds for latent variable models may not hold for path models without latent variables, or
for mixed models in which latent variables occur as effects rather than causes of measured
variables. TETRAD II can be adapted to elaborate path models using vanishing partial
correlations and partial correlation inequalities rather than tetrad equations and inequalities. We
have not yet implemented such a procedure, but we plan to do so and to carry out a similar
battery of simulation tests.

An important question that this study has not addressed concerns the robustness of the search
procedures under failures of the general modeling assumptions. Two obvious sources of concern
are the assumptions of multinormality and linearity. We plan to test the reliability of all three
programs under failures of both assumptions. Our expectation is that, for large samples,
TETRAD II will be quite robust under failures of the normality assumption.

The omission of causal relationships or correlated errors is not the only kind of specification
error in causal modeling, and perhaps not even the most frequent or most important kind. The
initial model provided to any of the programs considered here may have errors of commission, or
it may simply have the wrong clusterings of measured variables with latent variables. The EQS
program admirably attempts to address part of this problem through a statistical test for errors of
inclusion. We have not attempted to assess the reliability of the EQS procedure, but we are
pursuing a much more radical line of work.

Researchers who use linear modeling techniques often have quite fragmentary knowledge about
the processes that gave rise to their data. If they are forced to produce a specific model they will
inevitably fill out that fragmentary knowledge with assumptions that may or may not be true;
typically, they may have a difficult time conceiving of many alternatives, although logically and
mathematically, a great many alternatives may exist consistent with their fragmentary
knowledge. We believe that when the general structural equation modeling assumptions are met
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there are procedures that will,

• consistent with the background knowledge, determine whether or not the data are
generated by latent common causes (see [27,24]).

• consistently with the background knowledge construct all models having graphs that
are trees and implying the tetrad constraints found in the data;

• elaborate each tree into a set of models that best explain the data;

• reliably produce as output a set of alternative models that includes the true model.

We possess algorithms for the first three items; we plan to implement and test them in the
coming year. If our belief is correct, the procedures should considerably extend the scope and
reliability of automated aids to the construction of causal models.
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Appendix I

Results for the Primary Study

Model

Correct

-Width

Incorrect

-Overfit

-Underfit

-Other

1

17

4

3

0

0

3

TETRAD:

2

20
2

0

0

0

0

3
18

3

2

1

0
1

Weight

4

19

1

1

0
1

0

= .1, n

5
19

3

1

0

0
1

= 2000

6
20

2

0

0

0

0

7
20

10.4

0

0

0

0

8
18

13

2

1

0
1

9
18

3

2

0

0

2

Model

Correct

-Width

Incorrect

-Overfit

-Underfit

-Other

1

17

4

3

1

0

2

TETRAD: ̂

2

15

2

5

2

0

3

3
16

3

4

3

0

1

Weight =1.0, r

4 5

17 16

1 3

3 4

3 3

0 0

0 1

i = 200C

6
14

2

6

3

0

3

>

7

16
12

4

1

0

3

8
13

13

7

1

0

6

9
15

3

5
1

0

4

Table 1-1: TETRAD at sample size = 2,000
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Model

Correct

Incorrect

-Overfit

-Underfit

-In Tetrad's
Top Group

-Right Var.
Pairs

-Other

1

7

13

0

0

1

3

9

2

5

15

3

0

6

0

6

LISREL, n =

3

3

17

0

0

0

0

17

4

15

5

3

0

0

2

0

= 2000

5

0

20

0

0

0

0

20

6

5

15

3

0

4

0

8

7

0

20

0

0

5

0

15

8

5

15

1

0

10

0

4

9

1

19

0

0

1

0

18

Model

Correct

Incorrect

-Overfit

-Underfit

-In Tetrad's
Top Group

-Right Var.
Pairs

-Other

1

2

18

0

0

7

8

3

2

3

17

0

0

2

4

11

EQS, n =

3 4

0 15

20 5

0 1

0 0

0 0

0 4

20 0

2000

5

0

20

3

0

0

0

17

6

3

17

1

0

4

0

12

7

0

20

3

0

2

0

15

8

0

20

7

0

0

0

13

9

6

14

5

0

0

0

9

Table 1-2: LISREL & EQS at sample size = 2,000
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Model

Correct

-Width

Incorrect

-Overfit

-Underfit

-Other

1

0

-

20

0

18

2

TETRAD:

2

0

-

20

0

0

20

3
5

3

15

0

0

15

Weight = 0.1,

4

2

1

18

0

17

1

5

17

2.9

3

1

0

2

n = 200

6

6

2

14

0

14

0

7

0

-

20

0

20

0

8

18

13

2

0

0

2

9

19

3.1

1

0

0

1

Model

Correct

-Width

Incorrect

-Overfit

-Underfit

-Other

1

2

4

18

0

9

9

TETRAD:

2

2

2.5

18

0

1

17

3

5

2.4

15

6

0

9

Weight =1.0,

4 5

17 8

1 3

3 12

2 7

0 0

1 5

n = 200

6

13

2

7

2

5

2

7

1

12

19

0

10

9

8

9

13

11

3

0

8

9

16

3.1

4

0

0

4

Model

Correct

Incorrect

-Overfit

-Underfit

-In Tetrad's
Top Group

-Right Var.
Pairs

-Other

1

3

17

0

4

1

2

10

2

9

11

1

3

4

0

3

LISREL, n

3

0

20

3

0

0

0

17

4

4

16

5

0

0

8

3

= 200

5

0

20

0

2

0

0

18

6

3

17

1

4

4

0

8

7

0

20

2

2

0

0

16

8

4

16

1

0

9

0

6

9

0

20

0

1

3

0

16

Table 1-3: TETRAD & LISREL at sample size = 200
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Example of LISREL VI Input File for Starting Models 2 - 8

Starting Model for 2 - 8
DA NI=8 NO=2000 M A = C M
LABELS

•xl* 'x2' 'x3' 'x4' 'x5' 'x6' 'x7' 'x8'
CM

1.64
0.68 1.73
-1.41 -1.47 4.13
-0.58 -0.61 1.23 1.46
0.68 -0.57 1.19 0.43 6.63
-0.02 1.81 -3.78 -1.44-13.08 28.43
0.94 0.98 -2.11 -0.77 -3.51 8.50 4.38
-1.26 -1.40 2.80 1.12 4.72-11.46 -4.55 7.09
MO NK=1 NX=0 NE=9 NY=8 LX=ZE TE=ZE TD=ZE PS=SY,FI BE=FU,H GA=FU,FI
PA BE

000000000
000000000
000000000
000000000
000000000
000000001
000000001
000000001
000000000
MA BE

000000000
000000000
000000000
000000000
000000001
00000000.5
00000000.5
00000000.5
000000000
MALY
*
100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
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FR PS(1,1) PS(2,2) PS(3,3) PS(4,4) PS(5,5) PS(6,6) PS(7,7) PS(8,8) PS(9,9)
STl.OPH(U)
MAPS
*
.5
0.5
00.5
000.5
0000.5
00000.5
000000.5
0000000.5
00000000.5
PAGA

01 1 100001
MAGA

1.5.5 .5 0 0 0 0.5
NFLY(1,1)-LY(8,9)
NFGA(1,1)BE(5,9)
OU AM TO MI
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A Sample TETRAD Analysis

Consider the following model and data (the same as is in the above LISREL VI input file), taken
from the first data set for Model 3 of our case study:
Tl=e9
T2 = -0.87 Tl + elO
xl=-0.78Tl+el
x2 = -0.82Tl+e2
x3 = 1.75Tl+e3
x4 = 0.69Tl+e4
x5 = 1.20x1+-1.91 T2 + e5
x6 = -1.41x5 +1.48 T2 + e6
x7 = 1.43 T2 + e7
x8 = -1.89T2 + e8

n = 2000
xl x2 x3 x4 x5 x6 x7 x8

1.64
0.68 1.73
-1.41 -1.47 4.13
-0.58 -0.61 1.23 1.46
0.68 -0.57 1.19 0.43 6.63
-0.02 1.81 -3.78 -1.44-13.08 28.43
0.94 0.98 -2.11 -0.77 -3.51 8.50 4.38
-1.26-1.40 2.80 1.12 4.72-11.46-4.55 7.09

The exogenous variables are distributed normally and the error terms have zero mean.

Suppose, erroneously, we start with the initial model

Tl=e9
T2 = bTl+elO
x l = a l T l + e l
x2 = a2 Tl + e2
x3 = a3 Tl + e3
X4 = a4 Tl + e4
x5 = a5 T2 + e5
x6 = a6 T2 + e6
x7 = a7 T2 + e7
x8 = a8 T2 + e8

where the a and b terms represent unknown coefficients. The initial model omits two causal
connections that occur in the model that generated the data. How well can these connections be
recovered from the data using TETRAD?

The procedure recommended in Discovering Causal Structure, which is meant for the published
version of the TETRAD program, leads to two alternative models, including the correct model,
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in about ten minutes including the time to prepare input files. The LISREL VI program run on a
Compaq 386, with the input file shown above, takes about 12 minutes and returns the wrong
model.

After preparing TETRAD'S input file, which simply lists the covariance of each pair of measured
variables, and gives the sample size, we create a file describing the graph of the initial model. It
consists of a simple list of directed edges,

T l x l
Tlx2
Tlx3
Tlx4
T1T2
T2x5
T2x6
T2x7
T2x8

Next we enter TETRAD and begin the search. The program is interactive, and from this point on
we need not leave TETRAD until the search is completed. With the one command "suggested"
(which prompts the user for the covariance file name, the initial graph file name, and the name of
the file to which the output is to be written) we obtain TETRAD'S suggested trek additions:

The graph analyzed in this example is:
Tl->x2 Tl->x3 Tl->x4 T1->T2 T2->x5 T2->x6 T2->x7 T2->x8

The significance level is: 0.0500

The sample size is: 2000

Sets of suggested treks at significance level = 0.0000

{xl-x5 xl-x6 x5-x6 Tl->x6 x7-x8 }
{xl-x5 xl-x6 x5-x6 Tl->x5 x7-x8 }
{xl-x5 xl-x6 x5-x6 Tl->x5 Tl->x6
{xl-x5 xl-x6 Tl->x5 Tl->x6 x7-x8

The output involves 6 different treks, two of them specified as directed edges from a latent to a
measured variable. No other suggested trek additions are suggested until p > .8, so we consider
only these. A further command gives the Rttr chart for the initial model. The parts of the chart
that involve these six treks are shown below

Edge Rttr D(I-H) I(H-I) Pi
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xl->x5
x5-> xl
xlCx5

xl-> x6
x6-> xl
xlCx6

x5-> x6
x6-> x5
x5Cx6

Tl-> x5

Tl-> x6

x7-> x8
x8-> x7
x7Cx8

6.749
5.065
4.256

5.093
4.218
3.082

4.870
4.870
4.870

4.641

3.590

3.184
3.184
3.184

39
27
21

39
27
21

18
18
18

24

24

18
18
18

0
12
0

0
12
0

0
0
0

0

0

0
0
0

0.8002
0.7520
0.7288

0.7528
0.7277
0.6952

0.7464
0.7464
0.7464

0.7398

0.7097

0.6981
0.6981
0.6981

Although the charts are lengthy, they are easily scanned. What matters are the second and fourth
columns. Each number in column 2 measures how much adding the edge in column 1 to the
initial model reduces the false implications of the model. Thus it is a measure of an increase in
fit, and a large number indicates a better fit. Each number in column 4 is the number of
equations that hold in the data that are no longer implied when the edge in column 1 is added to
the initial model. Thus it is a measure of a decrease in explanatory power, and a small number is
desirable.

Almost all of these connections preserve the explanatory power of the initial model (indicated by
a 0 in column 4), but xl — > x5 and xl —> x6, in that order, do most to improve the fit (indicated
by the largest numbers in column 2). Alternatively add each of these connections to the initial
model (one command, "changegraph," for each case) and with a further command ("rttr") obtain
the two Rttr charts for the two modifications of the initial model. In the first case, with xl — > x5
added to the initial model, the Rttr chart says that x5 — > x6 is the preferred further addition. In
the second case, with xl —> x6 added to the initial model, the Rttr chart says that x6 —> x5 is the
preferred further addition. The relevant parts of the two Rttr charts are:

The graph analyzed in this example is:
xl->x5 Tl->xl Tl->x2 Tl->x3 Tl->x4 T1->T2 T2->x5 T2->x6 T2->x7
T2->x8

The significance level is: 0.0500
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The sample size is: 2000

Base Model: Edges: 10 Fixed edges: 2 TTR: 5.3137

Edge Rttr D(I-H) I(H-I) Pi

x5->x6
x6->x5
x5Cx6

4.834
2.390
2.390

30
10
10

0
0
0

0.8917
0.8252
0.8252

The graph analyzed in this example is:
xl->x6 Tl->xl Tl->x2 Tl->x3 Tl->x4 T1->T2 T2->x5 T2->x6 T2->x7

T2->x8

The significance level is: 0.0500

The sample size is: 2000

Base Model: Edges: 10 Fixed edges: 2 TTR: 6.9696

Edge Rttr D(I-H) I(H-I) Pi

x5-> x6
x6-> x5
x5Cx6

2.985
6.490
2.985

10
30
10

0
0
0

0.7963
0.8917
0.7963

We thus obtain two elaborations of the initial model, and a further check shows that they are
indistinguishably good explanations of the data according to TETRAD'S measures.

The search now stops, because the Rttr chart for either of these models no longer suggest an x7~
x8 trek, or any other connection. The fourth column in either of the resulting Rttr chart shows
that any addition to the modified model will prevent the explanation of a number of tetrad
equations, and do rather little to improve fit.
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