
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Psychology as Physics

Clark Glymour1

Carnegie Mellon University
and

University of Pittsburgh

In one passage, responding to Wittgenstein, Noam Chomsky seems to say that cognitive

science can be behaviorist to its peril, or it can be fundamentally about neurophysiology,

but it cannot be anything else:

"It is thus perfectly possible that certain psychological phenomena cannot be
investigated physiologically, because physiologically nothing corresponds to them."
It would also follow that these phenomena cannot be investigated within the
framework of a theory of mind of the sort I have been discussing. Since
physiologically nothing corresponds to our talking, writing and thinking, on this
view, there can be no theory of mental structures and processes that attempts
to formulate the properties of the nonexistent physiological mechanisms and
their operation. We are left with a descriptive study of behavior, potential
behavior, dispositions to behave, and so on...

Most of contemporary philosophy of mind and much of contemporary cognitive science

supposes that Chomsky has missed an alternative possibility, and the most, important

possibility at that functional ism. Linguistics and psychology can and should, on this view,

aim at describing the functional structure of mind, and in doing so need not be (and in

general cannot be) describing the physical structure of the brain or the nervous system.

This sort of view is widely ascribed to Freud, and perhaps at times Freud even held it,

although the history is unclear. It is one reading of some defenses of the "autonomy" of

psychology , and seems to be held by many cognitive psychologists. There are really two

different proposals for a functionalist alternative to the view that the study of cognitiion

must be either behviorism or brain physics. The least interesting idea is that mental states

are functional states, characterized by their causal relations, and therefore cannot be

physical states The second and more interesting thesis is that the proper aim of cognitive

science is to describe an abstract feature of peoples' brains, the programs they execute.

On this view, brains execute programs, and those programs, or features of them, can be

described by a program in LISP or PASCAL or some other high level programming

r
This essay owes so much to conversations with Kevin Kelly that any good ideas in it should be regarded as

joint

2Rules and Representations, p. 50.

For example in j. Fodor. The Language of Thought



language. The LISP functions cannot on this view, be identified with any physical properties

of the brain, but they do describe features of a program in the language of thought a

program the brain executes. The same idea has now gained currency among those who

advocate "connectionist models" of cognition; the connectionist programs do not describe

physical properties of the brain, they describe the "connectionist level/ the connectionist

program the brain somehow executes.

All said I shall argue that Chomsky is right

1. Functional States and Computational Systems

Programs are generally given in some high level programming language, PASCAL or LISP or

OPS5, for example, but programs can also be given in languages that make more explicit

reference to a computational system For example, one can give a program by specifying a

Turing machine architecture and giving the machine table of a Turing machine, or by

assuming a universal Turing machine and giving the tape encoding of a particular Turing

machine it is to simulate. There are a great many other possible computational architectures:

Wang machines, cellular automata, nondeterministic Turing machines, Sheperdson-Sturgis

machines, Post machines and an infinity of structures that have never been and never will

be specified Each of these kinds of "machines" provides a characterization of computation.

and for each kind, and each recursive function, there is a machine of that kind that will

compute the recursive function. All of these machines are, in the first instance, formal

objects, not physical objects.

A program can be thought of as a particular machine of a particular kind Under

appropriate input/ouput conventions, and appropriate individuations of machines, there are

some machines that will in different initial states compute different functions, and there are

machines such as Universal Turing machines that will, in the same sense, compute every

recursive function. Another way of thinking of a program is as an initial state in an

universal machine of a particular kind

There is another sense of "program," namely a syntactical object, lines of code in LISP or

PASCAL or some other programming language. But lines of code do not do any

computations, they produce no output from any input When we speak of a LISP program,

there is usually nothing determinate we are denoting. The code could be compiled into

many different machine architectures, into a RAM machine or a Turing machine or whatever.

Different compilers in the same machine will give different programs for one and the same

LISP code, and different compilers for different kinds of machines will give still further

different programs for one and the same LISP code. We could imagine a specific universal

machine—say a RAM machine— and a specific compiler that translates any well formed



LISP code into a program in that machine, and adopt the convention that the program given

by a piece of LISP code is the corresponding program in the "virtual" RAM machine. In any

case, to the syntax and to the input/output conventions, there must be added some

stipulation as to what constitutes a computation.

Turing machines represent a kind of compromise between the formal and the physical. On

the one hand a Turing machine can be viewed entirely formally as a set of quintuples,

possible inputs can be viewed entirely formally, and the "total state" of a Turing machine at

any step in the processing of an input can be formally described On the other hand, one

tends to think of Turing machines in physical terms, and that was part of Turing's

motivation. The machine has a "read-write head/' a "tape," and some sort of physical

mechanism whose states are the machine states.

Viewed as a formal object a Turing machine has components which we call "machine

states." Further, for any formal Turing machine and any formal input there is a formal

sequence whose elements we can call the "total states" or "instantaneous state descriptions'

of the Turing machine. Suppose we call any syntactic features of any elements of any such

formal sequence of an abstract Turing machine functional states. Then any actual physical

Turing machine that instantiates that same formal Turing machine will have physical states,

or aspects of physical states, that instantiate the functional states of the formal Turing

machine. The physical states will have causal relations with one another, something the

functional states, because they are abstract objects, cannot have. Corresponding to the

formal total states there will be total physical states in the actual machine; corresponding to

the formal sequence of total states of the formal Turing machine when it processes an

input there will be a sequence of physical states in the actual, physical machine, and each

physical state will cause its successor. We say that under an interpretation the physical

machine executes or instantiates the program of the formal machine

The notion of instantiation bears some analogy to the familiar logical and philosophical

notion of "interpreting" a formal, syntactic system We can specify that certain syntactic

elements, call them data structures, in a definite programming system, designate specific

physical states or features of a particular physical system, or of any physically similar

systems. When such a specification is made, a program in the language specifies a

sequence of physical states for any physical input whose features are also denoted by data

structures in the language. If the sequence of data structures generated by the formal

program for every formal input corresponds to the sequence of physical states for every

corresponding physical input, we say the physical system executes or instantiates the



program. So understood, an interpreted program is just a computable physical theory;

running the program on a computer can then give a simulation of the physical process, and

that is one of the reasons why computers are useful. "Physical" is unnecessary; the

syntactic structures could be taken to designate social features or economic features.

Running programs can simulate economies as well as 4-bit counters.

One can imagine investigating empirically what kind of computational system a particular

object—a computer on Mars—really is. Given tentative identifications of physical quantities

that represent input and output one could investigate whether particular physical structures

serve particular functions—whether a piece serves as memory, for example, or as a logic

unit, or whatever—and based on tentative identifications of that sort infer features of the

computational structure. One could in this way hope to establish that the program of the

system contains a stack, or does not contain a cue, and so o a 5

To use a program as a description of a physical system it is unnecessary that every formal

data structure that occurs in a formal execution of the formal program be interpreted as a

property of a physical (or other) system. Like a formal theory, a program can be partially

interpreted The remainder, the uninterpreted part of the program, then states no

hypotheses about the system; the uninterpreted fragment of a program simply imposes

indirect constraints on the occurrence of physical properties and features designated by the

interpreted fragment of the program. Instrumentalism is a special case.

Perhaps the most common sort of use of programs or procedures to characterize humans

is Ramsified: No particular physical properties are identifed with data structures in the

program, but the theorist claims that for each data structure, or each data structure of a

certain kind, there exists a physical property instantiating that structure. Freud's conception

of his psychology was of this sort, at least sometimes, and so is Chomsky's conception of

theories of grammatical competence. One can imagine difficulties in carrying out this sort

of conception, and yet it seems to be done more or less successfully in cognitive

neuropsychology. In principle it is no more, and no less, difficult than doing physics with

Ramsified theories.

A detailed and useful illustration is given in the Appendix to Robert Cummins. The Nature Of
Psychological Explanation.

Peter Spirtes points out that given wn identification of "push" and "pop" one should be able to infer from
behavior whether the system contains a stack, and likewise if one knows about memory limitations, one should
be able to demonstrate from behavior that a system is not a cue.



2. Minimal Functional ism

The first functionalist account of psychological theory and mental states claims only that

1. a brain may instantiate a program

2. any physical state corresponding to an appropriate formal data structure in
any instantiatation of a program instantiated by the human brain is an instance
of a mental state

3. different physical properties may correspond to the same formal data
structure in different instantiations of one and the same program

4. the property of being a physical instantiation of a given program, or of a
specific data structure in a propram, is not a physical property.

This is the sort of functionalism that predominates in philosophical writing, and it does not

require that programs describe programs. Most of the discussion of functionalism has

focused on the second thesis, that mental states are functional states. Whether or not that

thesis is true, it can only be true under a special requirement, which has to do with time.

My instantiation of a functional state is whatever feature of me plays an appropriate causal

role in producing my behavior. An essential feature of my behavior is the time it takes.

Someone who does in a minute what I do in an hour does not do what I do; someone

who does in an hour what I do in a minute does not do what I do. Equally, 1 think, an

essential feature of the causal roles that events within me have is the time they require to

produce their effects. If that is so, then the functionalist thesis must require that systems

that instantiate the same program as I do have the same mental states as I do, provided the

time intervals between corresponding instantaneous state descriptions in me, and in the

other instantiation of my program, are the same.

The conception of psychological theory that accompanies minimal functionalism is roughly

this: A theory is a complex predicate, whose internal structure is the set of hypotheses of

the theory or the program; the theory or program applies to some systems, but not to

others. A program applies to a system if the system instantiates the program. One may

take exactly the same view about physical theories, and many writers have. The substance

to the functionalist claim is the fourth thesis above: the property of instantiating a program

is not a physical property.

So, then, what is a physical property, and why is the property of instantiating a program,

the property of satisfying a functional description, not a physical property? The

conventional answer is variety: an unbounded variety of kinds of physical things can

instantiate a functional description. The property of being something that likes the taste of

6
Notably. P. Suppes. F. Svppe. B. Van Fraassea and J. Sneed and his followers.



pineapple is supposed not to be a physical property but a functional property, because

systems of an unbounded physical variety could, allegedly, instantiate a program that

characterizes liking the taste of pineapple. What about the property of being a sphere?

Systems of any physical composition can instantiate the property; we can have spheres of

grass, spheres of mud, spheres of aluminum, spheres of mud and aluminum There are no

bounds. But we do ordinarily think of sphericity as a physical property. What about the

property of satisfying the law of thermal expansion, according to which bodies increase in

length in direct proportion to their increase in temperature? Nothing satisfies the law

exactly; things of an unlimited variety of physical compositions satisfy it approximately.

Does the law not describe a physical property, and do objects that have the same

coefficient of thermal expansion not share a physical property? What about the property

of being the source of the dampening force in a dampened harmonic oscillator? The

physical variety of oscillator dampers is endless; they are determined not by their

composition but by their causal role, but they do not seem the less physical for that But

now that we see the game, it is easy to continue. What of the property of producing

plutonium by radioactive decay? Uranium 235 has the property, and for all I know so do

some other nuclei. Is it not a physical property? Or consider the property of being an acid,

a property originally characterized functionally—acids are those substances that are in

solutions that produce a bitter taste, that tend to dissolve metals, and that react with bases

to form salts. Bases and salts were equally characterized functionally, by their causal

relations with acids.

I cannot imagine an adequate statement of our physical knowledge that does not make

frequent use of functional locutions. If physical properties are the properties that enter into

our body of physical knowledge, then properties given by causal relations are as physical

as can be. And were we ever to possess a program that we could show is instantiated in

someone and the instantiations of whose data structures cause behavior, we would soon

come to regard it as a physical theory.

The fourth functionalist thesis looks quite false; one is tempted by it only by thinking of

"physical properties" as properties of composition rather than of causal role. In fact,

however, insofar as we have any clear conception of "physical properties" it includes an

abundance of properties characterized by relationships, whether spatial or temporal or

causal. But there is a further reason for thinking that minimal functionalism is really

physicalism. The argument that functionally characterized features are not physical features

depends entirely on the variety of physical instantiations a functional description, or

program, may have. One and the same functional state, it is supposed, can be instantiated

by the brain, or by silicon chips or by all of the people of China properly organized But

where functional characterizations of mental states are concerned, there is no reason to



believe that a variety of physically different but equally physical instantiations are possible.

— There is some reason to think that human brains are the only realizations of the programs

that human brains instantiate, and that the physical features of human brains that instantiate

theoretical quantities (e.g., desiring to own a pineapple tree) are the only instantiations of

such quantities. More, there is reason to think that in each of these cases human brains, or

structures physically and chemically very much like them, are the only possible

~ instantiations. We know of no other physical system that produces input/output behavior

comparable to humans, let alone a system that produces it in the same way. Given the

_ constraints that physics imposes, it seems reasonable to doubt that that human behavior

could be reproduced by a system with causal components exactly analogous to the causal

components responsible for human behavior unless that system had a chemical and physical

composition essentially like that of humans. The reason most commonly given to the

contrary is the Argument from Imagination It goes as follows:

1. We can imagine a system that has a physical composition completely different
from humans; say a system made of silicon. And we can further imagine that

_ such a system has the same behavioral dispositions as a human and
instantiates the same functional description as does a human

2. Whatever is imaginable is possible.

I 3. Therefore it is possible for a functional description of humans to be
instantiated by systems with an entirely different physical composition

• Despite its ubiquity in philosophical argument the second premise is false. I can imagine

traveling faster than the velocity of light, but I cannot travel faster than the velocity of

| light, and it is not possible for me to travel faster than the velocity of light Imagining a

chicken with lips does not show that one is possible, only that it does not violate our

~] language to speak of them What language permits is one thing,. what is possible is

I something else.

1 Another argument for the variety of possible instantiations of functional descriptions of

humans not only imagines a bizarre instantiation, but gives rough directions for constructing

""] one. Ned Block imagines we have converted the government of China to functionalism, and

I get a billion people each with two way radios to simulate the neurons of someone's brain7

__ Imaginings like this forget that time is an essential part of the inputloutput behavior and

of the intermediate steps in a correct functional description of humans. The Chinese,

industrious as they are, just couldn't communicate with the speed that neurons do. Carnap

~" maintained that if the full complexity an objects relationships were represented in a formal

See N. Block. "Troubles with Factionalism." op. C/'t..



theory, objects could be individuated entirely by the syntactic structure of the complete

theory true of them8 Whether Carnap is right or not we do expect that the more

complex a set of relationships, the smaller the variety of physical realizations we can

expect it to have The relationships that produce human behavior are complex indeed

3. Cognitive Psychology and the Program of the Mind

A key functionalist idea is that there is a programming system appropriate to minds;

different minds can execute the same program in this system, but they will do so in

different physical ways: different physical properties will correspond to the same data

structures. Equally, one and the same mind will execute its program in different physical

ways on different occasions. Putnam suggests that the appropriate programming system is

probabalistic automata, and that instances of mental states are instances of machine states

of such automata Presumably, other functionalists need not be committed to this particular

hypothesis about the programming system of minds.9 Whatever the programming language

for minds, they may hold, there are formal objects analogous to the data structures of

formal Turing machines in any sequence of formal objects that we call the "execution" of a

formal program. These functional states are abstract objects, like numbers or sets or

propositions. They are features of programs. Mental states are functional states, and they

are instantiated in a brain when the brain executes the program of which they are a

feature.10

Functionalists who think that programs describe the mind reject any identification of

program data structures or computational states with physical states; they reject even the

existence of physical states that could satisfy Ramsified programs. In their view, programs

can only describe the mind by describing the minds' own program: one program must

describe another, and nothing is fixed between the two programs except for input/output

behavior. .

8See R. Camap. The Logical Structure of the World

9 ln "What Psychological States Are Not" Philosophical Review 81 (1972). Block and Fodor argue that
psychological states cannot for various reasons, be states of a Turing machine table. Their most forceful
arguments (that one can have several pscyhological states or features at once, that psychological states can have
other states as components, and that pscyhologicai states are creative or potentially infinite whereas the machine
table of a Turing machine is a finite automaton) are unavailing if psychological states are identified, not with the
states of the machine table, but with data structures that can be generated by the machine.

This 'computational functional ism." suggested by many writers, should be distinguished from other
doctrines that go by similar titles. Cummins' "functional analysis." which is simply the resolution of capacities
into subcapacities, does not have the same implications. Neither does the view, implicit in Hartry Field's "Mental
Representation" that functional descriptions are something like Ramsified descriptions that refer to unidentified
physical states.



8

In this case the relation is nQt between a formal object, a program, and a concrete object

but instead purportedly between two programs in two distinct programming systems; let us

call the latter relation, whatever it is, "describing" in contrast with the semantic relation of

"instantiating" that can hold between a program and a particular system The "describing"

relation is usually glossed either by analogy to the relation between a program in a high

level language and the machine language program into which it is compiled, or by appeal to

a notion of "levels" of description. Thus consider the following passage from an influential

textbook in cognitive psychology:

Computers offer an interesting analogy to help us understand the need for an
abstract analysis. Like the brain, a computer consists of millions of components.
For any interesting computer task—for example, solving a problem in
mathematics such as integration—trying to understand the overall behavior of the
machine by studying the behavior of each of its physical components is
hopeless. However, high-level programming languages exist for specifying the
behavior of the computer. The computer has an interpreter for converting each
statement in the higher level language into a large number of low-level
statements that specify what the physical components of the computer should
do...A person can ofiten obtain a good understanding of the behavior of the
computer by studying the high level computer program A cognitive theory
should be like a computer program. That is, it should be a precise specification
of the behavior but offerd in term sufficiently abstract to provide a conceptually
tractable framework for understanding the phenomenoa

There is an innocuous way to read this passage: people should be described by

macroscopic properties that reduce to microscopic physical properties, because a

description of their behavior in terms of the microscopic properties that produce it would

be incomprehensible. But there is a more literal reading of the analogy: The psychologists

program is to the program of the brain as a program in LISP is to the interpreted program

running on a VAX; one is a description of the same abstract system as the other but "at a

higher level of abstractioa" Gripping it may be, but taken literally, the analogy is also

fundamentally nonsensical.

Let the language of thought in which the program of the mind is expressed be BRAIN, and

suppose someone, the agent, in fact executes a program in BRAIN, call it AGENT. The

analogy with the digital computer proposes that the aim of the cognitive psychologist is to

write a program in say. LISP, that describes the AGENT program, or at least describes

features of AGENT in addition to the function AGENT computes. Let us grant a matching of

input and output; LISP structures are mapped to physical or behavioral features that are the

input and output to the agent's instantiation of the AGENT program Suppose further that

the psychologist's LISP program perfectly describes, under this convention, the input/output

J. Anderson. Cognitive Psychology, p. 10



function of the agent The question is what more there could be to describing AGENT in

LISP than this input/output equivalence.

Describing could not mean what it means for the psychologist's LISP program to describe

the machine language program into which it is interpreted or compiled on a physical

computer. For that relationship presupposes a specific compiler or interpreter that takes

LISP into machine language There is no compiler or translator that takes LISP programs into

BRAIN programs, or BRAIN programs into LISP programs. We don't know anything about

the programming system BRAIN, and we certainly don't know any features of a translation

between BRAIN and LISP that would suffice for a definite description of the translation

function We lack the knowledge even to refer to a particular translation between BRAIN

and LISP.

Describing could not mean that there exists some effective translation that takes BRAIN

into LISP (or vice versa) and under that translation AGENT is equivalent to the psychologist's

program It could not mean that because provided two programs are input/ouput equivalent

there is always some effective translation under which the programs are mapped into one

another A programming language is an acceptable numbering of the recursive functions; a

program in such a language is an index. Any effective map that preserves input/output and

maps the index of AGENT to the index of the psychologist's program is such a translation

A more detailed proposal to answer the question turns on the idea that one program

describes a feature of another if, for every input there is a one to one mapping in the

instantaneous descriptions that result from the formal executions of the first program into

those of the second (Many variations of the proposal are evidently possible.) Thee

proposal seems unsatisfactory on several counts. The first is that it fails to recognize the

kind of descriptions that psychologists think they can make of the program of the brain

For example, that a particular capacity is (or is not) effected by parallel processing.

Second, it requires that the processing be discrete and synchronic; the computations are

assumed to take place in discrete intervals of time. But many of the most popular

computational models are asynchronous parallel processes, and the processing does not

take place one discrete step per discrete unit of time. Third, even supposing that

processing does proceed discretely, and taking the simple deterministic case, the condition

is still unintuitively lenient In that case it says only that the target program, P', must have at

least as many intervening steps between input and output as does the program P which is

supposed to describe P\ For the same reason it would not help to require in the

deterministic case that their be a recursive function taking inputs and data structures arising

from states of computation with P to inputs and data structures arisings from similarly

ordered states of computation with P'. Such a condition would again only guarantee that for



10

any input P1 has at least as many computational steps as P. So let us that add subject to

some hesitation, that programs in different systems that are input/output equivalent can also

be compared for computational complexity. We are still a long way from what what

cognitive psychologists seem to think they can do in describing the program of the brain

It begins to look hard to say in general what it could mean for one program to describe

another. Anderson and others talk of levels of abstraction, and one might think that helps

somehow. What could it mean to say that the psychologist's LISP program describes the

agent at a "higher level of abstraction" than does the AGENT program? If it means that

primitive terms in LISP are translated into complex procedures in BRAIN, we are back to

the previous cases. There is no translation that can be specified to make the claim true or

false: it is true under some translations false under others, and there is no means of

independently specifying any particular translation If it means that the primitive terms of

LISP denote complex rather than simple physical properties, and so construed the brain

executes the LISP program, then the claim is a disguised claim about instantiation, not a

claim about description So understood, the cognitive psychologist does not construe the

theory as making claims about abstract functional states or relations; the theory is

understood as a kind of Ramsified claim about physical properties of the brain

In defense of the usual sort of cognitive psychology one might propose something like

this: If we knew the programming language BRAIN and we knew the program AGENT, we

would on inspection Just see that AGENT and the psychologists program compute the

input/output function in the same way. And one might add that if such judgements were

impossible there would be no point to proofs of the properties of algorithms in computer

science.

There are volumes and volumes of algorithms, and it is tempting to think that for any

algorithm there is a property of programs in all programming systems. One may think: for

any program and any algorithm, either the program embodies the algorithm or it doesn't,

and there is therefore for each algorithm a property, other than input/output behavior, by

which any two programs in whatever languages may be compared, and there is therefore a

respect with which a program in one language may describe a program in another language.

There are, one may also think, invariant features, such as space or time complexity, that

programs must share if they are implementations of one and the same algorithm

On examination, the story seems dubious. Algorithms are always given using some

representation of the function to be computed, and the representation goes beyond the

representation of the input and output When one begins to alter the representation,

intuitions about whether or not one has the same algorithm come apart



11

Consider the simple issue of a matrix representation. When does a Turing machine contain

a representation of a matrix? One can imagine the rows of a matrix entered sequentially on

the machine tape Does it matter if computationally relevant stuff intervenes between the

rows? Does it matter whether the entires are in unary or binary notation? Does it matter if

computationally relevant stuff intervenes within the rows? Does it matter if the first

element of the nth row precedes the last element of the n-1th row?1 2

If intuitions about sameness of algorithms and representations begin to unravel over these

few variations, one cannot plausibly claim that there are intuitions that spread over the

whole gamut of programming systems. And if there are no intuitions, and there is no

mathematical structure that determines program equivalence between different programming

systems, then there is nothing for the property of algorithmic sameness to be Nor can it

plausibly be said that the unraveling of intuitions only shows that the properties of

algorithmic equivalence are vague: vagueness requires that there be an unequivocal normal

use that covers most cases. Algorithmic sameness is not even vague.

Does the argument prove too much, namely that the practice of computer science is

pointless? When we use an algorithm in programming we take advantage of a program

sketch in some representation, for that is what we find in books of algorithms. The

program sketch has a psychological effect it causes us to think of how to develop a

program in the language we are using. We may say that we intend to implement the

algorithm in the language we are using, and there is a sort of fact to the matter merely in

virtue of our intent Given particular component functions, interpreted as "pop" and "push"

there may be a fact of the matter as to whether or not a composition of these functions

is a "stack." But that identification depends upon something more than the syntactic

properties of the functions interpreted as push and pop; it depends on the interpretation.

When we verify a property of an algorithm and implement that algorithm in code, the

programmer establishes an interpretation of algorithm structures in code structures. The

programmer acts as a kind of informal compiler, and judges that under that compilation

proofs about the complexity of the algorithm will go through for the coded program The

programmer/compiler is just what is missing in attempts to describe programs in BRAIN by

programs in LISP.

Clearly there are special cases in which programs describe programs, or clearly fail in that

description When there is a physical instantiation, for example, properties of that physical

system may establish or preclude description as certain kinds of computational systems. If

one programming system is an isomorphic variant of another, and the programs are

12
I owe this example to Kevin Kelly.



12

transforms under the alphabetic substitution, we have no problem saying that one describes

the other. If two programs are in the same programming language, and every primitive

syntactic element of another is a composition of syntactic elements of the other, and every

data structure generated by the first for any input is reducible to a data structure

generated by the other for the same input, we have no difficulty supposing that one

program describes features of the other. None of these cases pertain for functionalist

cognitive psychology. For them there is no fact to the matter in general about whether two

programs in different systems are or are not the same. Programs do not describe other

programs. The psychologists' programs cannot describe the programs of the brain, for

there is no relation of describing. Ultimately, cognitive psychology is either physics or

behaviorism; given the choice, it had better be physics.


