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1. Introduction

Formal learning theory is the abstract study of conditions under which a system,

computable or otherwise, can converge reliably to a true or empirically correct

conclusion about its world on the basis of an ever increasing stream of evidence about

that world.1 Reliability amounts to the demand that the scientist converge to a correct

conclusion over each in a given class of possible evidence presentations describing a

variety of possible worlds of study.

Among the more ambitious objectives of formal learning theory has been to characterize

the collections of data presentations over which a scientist can reliably converge to

correct views about a given subject matter. Angluin has isolated necessary and

sufficient conditions for identifying formal languages over all complete, positive

presentations of their elements [1]. Osherson and Weinstein have arrived at

characterizations of reliable hypothesis investigation in model theoretic languages

[17,18, 19]. Kelly and Glymour have isolated a set of characterizations concerning the

investigation of hypotheses whose truth values change as a function of the state of the

scientist [14].

Unfortunately, each of these characterizations is unbalanced in a way that makes it

almost impossible to apply in practice. The problem is that these results apply only if

we require the scientist to succeed over each possible ordering of the data true of a given

world. They fail to apply if the inductive problem involves background knowledge that

places any constraint whatsoever on evidence ordering.

1 For a broad introduction to the field and for a good introductory bibliography, see [20].



A moment's reflection reveals that almost every real inductive inference problem

involves background knowledge that restricts evidence ordering. The most obvious

application is in physical science, where the background knowledge is a dynamical

theory that does nothing but impose constraints on the order in which events may be

observed. Even in the intended application of natural language learnability, the

arbitrary data ordering requirement is inapplicable. The pragmatics of discourse

impose non-trivial restrictions on the stream of sentences uttered in the vicinity of the

infant.

The severity of requiring success over all possible presentations of a set is highlighted

by the fact that convergence in the limit is a very weak notion of convergence. Negative

results about a uniformly weak standard of success would be interesting. Positive

results about a strong sense of success would be interesting. But the characterization

theorems of learning theory are about an inductive paradigm that is both too strong and

too weak, and therein lies the problem with its applicability. The reason why current

characterizations require the scientist to succeed over all possible presentations of a

given data set is that the proofs of these theorems invoke what Osherson, Stob and

Weinstein have called the locking sequence lemma [1, 3, 17, 18, 19, 20], which

applies only when this requirement is assumed.

The technique of this paper, following Gold [6] and Putnam [22], is to by-pass the

locking sequence lemma by using the very definition of learning to obtain upper

complexity bounds on what can be learned. By relativizing the notion of complexity to

background knowledge, the technique yields characterizations valid over arbitrary sets

of data presentations.

Another limitation of standard formal learning theory is that the results are paradigm

specific. There are results about ascertaining the truth values of logical hypotheses

over first-order structures, about identifying recursive functions, and about learning

grammars for formal languages. It would be nice to have a more paradigm-independent

approach behind our fundamental understanding of what is leamable and why. The

approach taken here is to move the framework of learning theory to the more general

setting of arithmetic and Borel classes of data presentations. This abstract setting

allows us to separate the essence of learning theory from the accidents of particular

paradigms. The general characterizations proved in this setting imply special case

characterization theorems for language learnability, function identification, and logical



truth detection. They also imply characterizations of paradigms not yet considered, such

as detecting function properties over uncountable sets of functions and detecting language

properties over uncountable collections of languages.

The approach taken in this paper generalizes other dimensions of learning theory as

well. For example, we eliminate from Angluin's characterization [1] of effective

language learnability the restrictive assumption that the collection of languages to be

learned be RE indexable. The amount of computable control one needs over hypotheses is

captured exactly by the characterization theorem, and does not have to be stipulated as a

hypothesis.

2. Borel Characterizations of Ineffective Inductive Inference

Let co® be the set of all infinite sequences of natural numbers. Let t e co®. Then define tn

= the item occurring at position n in t, and let t[n] denote the initial segment of t of

length n.

Let co* be the set of all finite sequences of natural numbers. Let x e co*. BT = {t 6 co®: x

c t}. Let fi = the set of all unions of sets BT. Then JB = <coco, fi> is the Baire topology on

co03, and {BT: x e co*} is a countable basis for JB. Now we may close fi under the

operations of complementation and countable union to arrive at the least a-field 9a

generated by JB.

Baire topology is a suggestive setting for the study of inductive inference. Intuitively,

an infinite sequence t may be thought of as an infinite evidence presentation, where tn

may be thought of as a code number for an observation made on this presentation at time

n. t[n] may be thought of as the code numbers of observations made by time n. A

hypothesis is said to be empirically adequate just in case it is consistent with all the data

one will ever see in the future. Ideally, a hypothesis is empirically adequate just in case

it is consistent with the actual, infinite data presentation. We may therefore think of a

hypothesis as determining the set of all infinite data presentations for which it is

empirically adequate. Indeed, for the purposes of our general setting for inductive

inference, we may simply identify a hypothesis with the set of all data presentations for

which it is empirically adequate.



Think of a scientist living on an infinite data presentation t e co® investigating

hypothesis P c co*0. This scientist examines the evidence t[n] seen at stage n of inquiry,

and makes his best guess as to whether P is empirically adequate for the evidence that

will ever occur in t. We can think of such a scientist as a function <J>: ©* -> {1, 0},

where x e co* is some initial segment t[n] of some data presentation t e co®, and 1 is the

guess that t e P, and 0 is the guess that t e P. We say that

scientist <(> semi-detects P in the limit on t <=>
(3n Vm>n <t>(t[m]) = 1) <=> te P.

scientist $ detects P in the limit on t <=>
(3n Vm>n [<|>(t[m]) = 1 if t e P and <|>(t[m]) = 0 otherwise].

scientist (f> [semi-] detects P in the limit <=>
Vt e co0*, <t> [semi-] detects P on t.

P is [semi-] detectable <=>
3 scientist $ s.t. $ [semi-] detects P in the limit.

A semi-detectable set P is analogous to an RE set. If t G P then semi-detector $

eventually converges to 1 on t, but if t e P, then $ may fail to converge to any answer. A

detectable set is analogous to a recursive set, in that a detector <$> converges to 1 if t e P

and <(> converges to 0 otherwise. A set is recursive if and only if it is both RE and co-RE.

By analogy, it is easy to see that

Fact 2.1 (Osherson and Weinstein [18]):

P is detectable <=> P, P are both semi-detectable.

Proof: Let <|>+ semi-detect P and Let <(>" semi-detect P. Define

. 1 if $" said 0 more recently than <j>+ on a

0 otherwise

If t e P then <i>+ converges to 1 and <|r either converges to 0 or says 0 infinitely often.

So there is a time after which <j>+ always says 1 and at some time after this, <(>" says zero.

At this point $ converges to 1. The other case is similar. H

Hypotheses (viewed as sets of infinite data presentations) may have greater or lesser
topological complexity. We measure the topological complexity of sets in JBG by noting



when they are added in the construction of the Borel hierarchy. Using a familiar

g
notation, we let B = £ i , where the B indicates that we are talking about the Borel

B
hierarchy over Baire space. n1 d

Now, for each ordinal y > 1, define

B B
hierarchy over Baire space. n1 denotes the set of all complements of ^1 sets over co®.

B n B

h = the set of all countable unions of elements of x% for £ < y.

B y B

nY = the set of all countable intersections of elements of C for £ < y.

And for each y> 1, define

Ay - £y n Ily

Inductive inference usually occurs with respect to some prior background knowledge T.

The effect of T is to exclude from possibility some set of infinite evidence presentations.

To put it another way, T picks out for consideration a special subset K of data

presentations, namely, those with respect to which T is empirically adequate. So given

knowledge K, the scientist has an edge in trying to detect P.

scientist $ [semi-] detects P over K <=>
Vt e K, <{> [semi-] detects P on t.

P is [semi-] detectable over K <=>
3 scientist <J> s.t. $ [semi-] detects P over K.

When the scientist has background knowledge K, we are interested not in the intrinsic

Borel complexity of a given hypothesis, but rather, its conditional Borel complexity

relative to K. To investigate the complexity of inductive inference with respect to

background knowledge, we must relativize the Borel hierarchy to K.

Let K c co<°. Define B? = 3? n K, and let fiK = the set of all unions of sets B?. Then 3B* .

<K, flK> is the induced Baire topology on K, with countable basis {B?: % e co*}. As before,

we may close fiK under complementation and union, to form #5, the least sigma field

containing fiK. Finally, we define the K-relativized version of the Borel hierarchy.

^B, K „



B, K TB, K
i = the set of all complements of elements of *i

Now, for each ordinal y > 1, define

B K TT
*V = the set of all countable unions of elements of £ for£<y.

rrB, K vB» K

1Ly = the set of all countable intersections of elements of S for £ < y.

And for each y> 1, define

AB f K ^B, K n B, K

Now a natural question arises. Can we characterize the detectable and semi-detectable

hypotheses in terms of their relative Borel complexities? Indeed we can. We adapt a

proof of Gold and Putnam from the context of computable functions to the context of

arbitrary functionals over co®.

Theorem 2.2, Characterization of Semi-Detectability over K:

P is semi-detectable over K ^ P n K e V •

Proof: => Suppose that P is semi-detectable over K. Then we have that

3<t>: co* -> {0f 1} Vt e K [(3n Vm > n <|>(t[m]) = 1) <=> t e P].

Choose <t>'as promised. So

P n K = {t € K: 3n Vm > n *a(t[m]) = 1}.

Now define

Rn =
lh(a) = n
•(a) = 1



B, K
where lh(a) is the length of a. Rn e ni since K e fiK and

a
lh(a) = n

Observe that

P n K = u n
ne co m>n

TTB' K

Since ni is closed under countable intersections, we have that

B K
( n Rm) e n1 '
vm > n / •

n B , K vB, K
Hence Pn K is a countable union of ui sets, and is therefore a ^2 set.

VB,K
<= Suppose that P n K e ^ • Then there is an enumerated collection {C1, C2, ..., Cn ,

B, K
...} such that for each i e w, Cj e ni and

P n K = u Cn
ne OJ

Let a G (o*. Let a- be the result of deleting the last item in a. Define

POINTER(o) = 0

POINTER(a) = / P 0 I N T E R ( ° - > if
 B ? * C P O * T E R W

jPOINTER(a-) + 1 otherwise

Let a- denote the result of deleting the last entry in a. Now define scientist

A/ v h if POINTER(a) = POINTER(a-)
(|)(a)=/

|0 otherwise

Supposele P n K .



2EJ
< 3 • • •

_B, K — _B, K
Then 3n t G Cn. Since t e Cn, and since Cn e n i , we have that Cn G L i , so there is a

W c ©• such that

Cn = u B5
oeW

If there i s a a c t such that Ba Q Githen t e Gi, which is a contradiction. Hence, for each

a c t, it is not the case that B£ C Cn. So Vk POINTER(t[k]) < n. Since POINTER never

moves backward, 3n* 3k Vk1 > k POINTER(t[k1]) = n1. Hence $ converges to 1 as

required.

Now suppose that t e K - P.

C3 . . .

Then for each m e ©, t e C m so for each m, t e Cm. Let n G co. since

Cn= u
oeW

there is some a G W such that for some k, t[k] = a. So for all k' > k, POINTER(t[k']) > n.

So

(*) Vn 3k Vk1 > k POINTER(t[k*]) > n.

So there are infinitely many k such that 4»(t[k]) = 0, as required. B

/

8



Corollary 2.2.a: Characterization of Detectability over K:

B, K
P is detectable over K « P n K e A2 •

Proof: Theorem 2,2 and Fact 2.2. B

Corollary 2.2.b: If P n K is countable then P is semi-detectable in K.

R VC

Proof: Each singleton is n i ' , so P n K can be built up as a countable union of
VB,K _

singletons. Hence P n K e ^ - •

Corollary 2.2.c: If K is countable then P is detectable over K.

B, K - B, K
Proof: If K is countable, then P n K e ^ P n K e ^ by the previous corollary.

Apply Theorem 2.2 and Fact 2.1. B

VB, K
Theorem 2.2 may be thought of as a normal form theorem. It says that each Z2 set has

B, K
a special kind of ^2 definition, namely, a semi-detector <|>. Hence, the interest of the

theorem lies in showing that a certain strategy for constructing semi-detectors is

complete, in the sense that the construction will work for any solvable semi-detection

problem. On the other hand, the result is not very useful for obtaining particular

negative results, for it is no harder to show that P cannot be defined with a semi-
R K

detector than it is to show that P cannot be defined by any Z2 definition. We must look

elsewhere for a useful, complete technique for obtaining unsolvability results.

It is typical in learning theory to use diagonalization to establish unsolability for

particular inductive problems. A diagonal argument consists of two stages, a fooling

stage and a closure stage. In the fooling stage, we keep feeding a scientist a data sequence

t e P until $ starts to converge to 1 at some stage n. Then we show $ some f e P that

tf[n] = t[n] until <)> says 0 to prevent convergence to 1. Then we switch back to some

presentation t" e P, and so forth.



In the closure stage, we must show that the limit point (with respect to the induced

Baire topology) of K so constructed is in fact a member of P, else 4> was not responsible

for converging to 1 on K, and the intended negative argument fails. In the following

sequence of definitions, we generalize the Gold/Putnam diagonal strategy [5, 22] to our

general perspective on semi-detectability over arbitrary sets of data presentations.

Say a is in P <=» 3t e P s.t. a c t .

£ is an extension function for P <=>

Vt e co®, if Vn e © 3m > n 3k > m s.t. t[m] is in P and t[k] = C(t[m]) then t e P.

K is a P-tree <=> P, P are dense in K.

P semi-demon in K <=> 3K1 Q K s.t.
(1) K1 is a P-tree and
(2) 3£ s.t. £ is an extension function for P.

P has a demon in K <=» 3K1 c K s.t.
(1) K1 is a P-tree and
(2) 3C s.t. C is an extension function for Kf.

Proposition 2.3:

If P has a semi demon in K then P is not semi-detectable over K

Proof: Suppose that P has a demon in K. 3K1 Q K s.t. Kf is a P-tree and 3£ s.t. C is an

extension function for P n K\ Suppose for reductio that $ semi-detects P over K. We

construct a t e P on which $ fails to converge to 1. Let us construct t in nested finite

stages a[i].

a[0] = <>

a[n + 1]:

If <t>(a[n]) = 1 then since K1 is a P-tree, 3f e P s.t. a[n] c t\ Find the least k >

lh(a[n]) s.t. 4>(f[k]) - 0. There is one, else 4> converges to 1 on some V e P. Then let

10



If <t>(a[n]) = 0 3f e P s.t. a[n] c t1. Find the least k > lh(a([n]) s.t. 4>(f[k]) = 1.

There is one, else $ fails to converge to 1 on t1 e P. Then let a[n+1] = C(f[k]).

Define t = UJ e © a[i]

Observe that by construction,

Vn e co 3m > n 3k > m s.t. t[m] is in P and t[k] = C(t[m])

Since £ is an extension function for P in K\ we have that t e P. But by construction $

does not converge to 1 on P. Contradiction. So no <|> can semi-detect P over K. The

corollary follows from Theorem 2.1. H

VB, K
Corollary 2.3.a: If P has a demon in K then P n K ^ ^ •

Proof: Proposition 2.3 and Theorem 2.2. B

Corollary 2.3.b:

(a) if P has a demon in K then P is not detectable over K.

(b) If P has a semi-demon in K or P has a semi-demon in K then
P is not detectable over K.

B,K
(c) if P has a semi-demon in K or P has a demon in K, then P n K « A 2

B, K
(d) if P has a demon in K then P n K e A2

Proof: (a) Same as the proof of Theorem 2.3, except that now it doesn't matter whether

the data presentation is in P n K1 or in P n Kf. (b-d) trivial. B

It would be very desirable to have an exact characterization of the relationship between
VB, K

diagonalization and Z2 sets. But at present, we can give at least a partial converse to

Proposition 2.3.

Proposition 2.4: If no subset of K is a P-tree then P is detectable over K.

1 1



Suppose that for each S c K, either P or P is not dense in S w.r.t. topology 3BK. Say that

B£ is a homogeneous fan for P <=> Vt G Ba, P(t). Then we have that K contains some

homogeneous fan for P or for P. Now we define an inductive procedure for stripping off

homogeneous fans from K until K disappears. Then we use the fans as clues for a reliable

inductive method.

P-fan[0] = 0

P-fan[0] = 0

K[0] = K

P-fan[n+1] = {B?nI : a G co* andB?nl * 0 and Ba11 is a homogeneous fan for P}

P-fan[n+1 ] = {Ba : a G co* and B? * 0 and B<r is a homogeneous fan for P}

1] = K[n] - (P-fan[k+1] u P - f a n [ k + 1 ] )

Since for each each S ^ K , either P or P is not dense in S w.r.t. topology JBK, we have that

at each stage n in the construction, either P-fan[n] * 0 or P-fan[n] * 0. K[o)], the

limit of this process, is the empty set, since each homogeneous Ba
n becomes

homogeneous at some finite stage in the construction and is then removed.

Now we define an inductive method that semi-detects P over K.

CLUE(a) = the least x s.t. a c x and 3n s.t. B?nl
 e (P-fan[n+1] u P-fan[n + 1] ) .

(i if 3n s.t. CLUE(a) i G P-fan[n]
{
(0 otherwise.

Let t G K. Then 3n, a s.t. t G B?nl. So 3k CLUE(t[k]) = a = t[kj. Suppose t G P. Then

BT e P-fan[n+1]. So <t> converges to 1 as required. Suppose te K - P. Then 3n Bi^1

G P-fan[n+1], So <|> converges to 0 as required. B

By proposition 2.4, the non-existence of a semi-demon is necessary and sufficient for

semi-detectability if the answer to the following question is positive.

^B ' K

Question 2.5: If P n K e ^ then P has an extension function.

t

12



So a positive answer to this question would amount to a general completeness theorem for

the Gold/Putnam diagonal argument as a way of proving a semi-detection problem
VB, K

unsolvable. It is noteworthy that the asymmetry between the solvable L2 case and the

T T B ' K

unsolvable 2 case depends entirely on the existence of an extension function, and not

on the presence of a P-tree, which is symmetric regarding the two cases.

3. Arithmetic Characterizations of Effective Inductive Inference

It is well known that the Borel hierarchy bears a close resemblance to the recursion-

theoretic arithmetical hierarchy [8]. Many results that hold in the Borel hierarchy

may be massaged gently to hold in the more restrictive, computational setting. This

analogy suggests an analogously general characterization of semi-detectability and

detectability by computable scientists.

P is effectively [semi-] detectable <=>
3 total recursive <|>: co* -> {0, 1} s.t. 4> [semi-] detects P.

Gold and Putnam originally characterized limiting recursion in terms of the arithmetic

hierarchy of sets of natural numbers [6, 21]. The only difference between their

characterization and the one taken here is that we will be working in the arithmetic

hierarchy of sets of functions on the natural numbers [8, 23]. This hierarchy is based

upon the notion of a partial recursive functional. The recursive functional <|>j[t, n] may

be viewed as a functional computed by the following sort of Turing machine Mj. Mj reads

the natural number n as an ordinary input. Mj cannot read t as an ordinary input,

because t can't be read in a finite amount of time, so by that fact alone, Mfs computation

would never halt. But Mj can be viewed as having t as an input if Mj scans only a finite

chunk of t before making an output. So we may view a partial recursive functional as a

functional computed by a Turing machine that scans at most a finite initial segment of t

before making an output.

We may think of the behavior of a computable scientist as a total recursive functional

4>j[t, n]. The input t is the infinite data sequence, and the input n tells the scientist what

stage of inquiry he is at. At stage n, <f>j scans as much of t as is necessary to produce his

next output. Such a scientist may be turned into a computable map y:©* -> {1, 0} just

by having y repeat <t>j's last conjecture and feed new data to <}>j until <t>j comes up with a

13



new conjecture. The behaviors of <t>j and y are not identical, but they are the same up to

convergence in the limit. Thus, thinking of scientists as partial recursive functionals

allows us to plug computable inductive inference problems directly into the arithmetic

functional hierarchy. This is an extremely useful move, for the arithmetic function

hierarchy automatically mixes together the topological and computational aspects of

inductive inference in just the right way to permit simple characterizations of

computerized inductive inference.

Say that a relation has type <j, k> just in case it has j function places and k natural

number places. Henceforth, when we speak of a relation, we imply that the relation has

type <j, k> for some finite j and k. Then

vo
^1 = the set of all relations with partial recursive positive tests.

TT° T 0

U1 = = the set of all complements of relations in * 1 .

Z = {3xi, -i 3xn R : R e n n and x i , . . . , xn are number variables}.

n n+ i = {Vx1, ..., Vxn R: R e £n and x-|,..., xn are number variables}.

The arithmetic hierarchy is here defined in a way that emphasizes its similarity to the

Borel hierarchy. The differences may be summarized by the difference in definition for

£ 1 , and in the replacement of countable union and intersection with existential and

universal quantification.

As in our Borel characterization, we would like to relativize the arithmetic hierarchy to

background knowledge. In recursion theory, it is usual to speak of relative computation

as computation with queries to an oracle for some non-recursive set of numbers [8],

[23]. But this sort of relativization is inappropriate for our application. Background

knowledge over data presentations is not an oracle that permits the scientist to decide a

non-recursive set of numbers; it is, rather, a restriction on the set of infinite

sequences the scientist may possibly encounter. Hence, we need to relativize the

arithmetic hierarchy to a subset of the set of all possible data presentations. This is

exactly what we did in the Borel case. Accordingly, define

14



Mj is a partial recursive positive test for type <j, k> relation R mod K G © * 0

<=>
V t i , .... tj e K V x i , ..., Xk e co[R(t1 tj, x1 xk) <*

Mj[ti tj, x i , ..., xk] halts]

Z1 = the set of all relations with partial recursive positive tests mod K.

zfj1 , 11^ , and AJ}1 are all defined in terms of *V in the same manner as before.
Now we can state the second characterization theorem.

Theorem 3, Characterization of Effective Semi-Detectability over K:

o, K
P is effectively semi-detectable over K w P n K e ^ •

Proof: =» Suppose P is effectively semi-detectable over K. Then by definition, there is

a total recursive <|>: ©* -» {0, 1} s.t.

Vt e K [(3n Vm > n <|>(t[m]) = 1) » t e P].

Sb

P n K = {t e K: 3n Vm > n <|>(t[m]) = 1}.

The relation R(t, m) *=> <|)(t[m]) = 1 is RE since $ is total recursive. Hence, the
J>, K

relation 3n Vm > n R(t, m) is in Z2 •

o, K
«= Suppose that P n K is a type <1, 0> relation in Z2 • Then there is a relation R e
vo, K
Z1 such that

P(t) & K(t) « 3y -nR(t, y) ,

where y is an n-vector of first-order variables. Let Mj[t, x] be a machine that halts if
o, K

and only if R(t, x), since R e ^ .We construct a total recursive analogue of the

topological POINTER method. Let <n> be a recursive bijection from co to con. Let a e CD*.

Define

15



Tj[a, <x>, u] <=> Mj[a, <x>i <x>n]
J- in u steps.

Observe that Mj[o, <x>, u] may fail to halt either because too few computational steps

are allocated by u or because Mj's queries run off the end of a. Define <|>:a>* -* {0, 1} as

follows:

POINTER(o) = 0

(POINTER(a-) if -.Ti(<r, <POINTER(a-)>, lh(a))

|POINTER(a-) + 1 otherwise

, % . . . . POINTER(a) = POINTER(o-)
<t>(a)={

otherwise|0 c

Suppose t G PnK . Then 3y -iR(t, y). Let x e co be least such that <x> = y. Since -iR(t,

<x>), we have that for each u, -iTj(t[u], <x>, u). Since for each u, -iTj(t[u], <x>, u)f it

follows that Vu1 > u, POINTER(t[u']) < x. So since POINTER never goes backwards, <|>

converges to 1 as required.

So suppose that t e K - P. Then Vy R(t, y). So for each x, R(t, <x>). So For each x,

there is a u such that Tj(t[u], <x>, u). Hence, for each x there is a u such that

POINTER(t[u]) > x. So <)> produces infinitely many 0's on t, as required.

Finally, <J> is easily seen to be total recursive. •

Corollary 3.a: Characterization of Effective Detectability over K:

A 0 '
 K

P is effectively detectable over K « P n K e A 2 .

Proof: Theorem 3 and the obvious, effective analogue of Fact 1. B

4. Applications of the Theorems

In light of the previous results, learning theoretic questions reduce to standard

B K O K
topological and recursion theoretic questions about membership in ^2 and ^2 .

16



respectively. Conversely, learning-theoretic techniques may be viewed as techniques

for establishing membership and non-membership in these interesting classes.

Example (Philosophy of Mind): Let P = {t: t is a total recursive function}, K = co<°.

This can be thought of as a formalization of the inductive problem facing one who would

determine whether or not an unknown system (e.g. a human) is a computer. P e £3 - n3

[23, p. 356]. Hence, P is not effectively semi-detectable over co®, by Theorem 3.

But it is easy to verify that P has a demon in K. First, each finite initial segment of a

function is extendable both by a recursive function and by a non-computable function, so

K is a P-tree. Second, the identity function is trivially an extension function for K,

since every possible sequence is in K. Hence, by Corollary 2.3.b, P is not even semi-

detectable in the limit by a god with no computational limitations but with spatio-

temporally localized sensory apparatus.

Example (Kant): Let P = {t: t has infinitely many occurrences of 1} and let K = {t: t is

Boolean}. This problem corresponds to Kant's second conflict of pure reason, concerning

the question whether matter be infinitely divisible. A data sequence is generated by

picking a cutting instrument and applying it to the remaining half of a banana. If the

cutting instrument fails, one must chooses a more costly and refined instrument (i.e.

when we reach the level of atoms, particle accelerators must be used. After that, who

knows? Each time a cut is achieved, we write down a 1, and each time a cutting

instrument fails, we write down a 0. For all we know at the outset of the experiment,

any sequence may arise. So let K be the set of all Boolean co-sequences. Kant thought

that the infinite divisibility of bananas cannot be determined even on the basis of all

possible experience [9]. One reading of this claim is that P cannot be detected in the

limit over K. But this is correct, for K is a P-tree, and the function £(a) = a*(01) is

an extension function for P. So by Corollary 2.3.b, P is not even semi-detectable over

K. But by definition, it is clear that P n K e n
2 . Hence, P n K e n

2 - z
2 •

Suppose, now, that we have background knowledge K\ ensuring that our experiment

either converges to 0 or converges to 1. That is, either we reach a stage after which all

of our attempted cuts work, or we reach a stage at which no attempted cut works. (This

is entirely implausible, but we consider the example for logical reasons). Then K1 = the

set of all convergent Boolean co-sequences. So by Corollary 2.2.c, P is detectable over
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B, K'
K1, so P n Kf G 2 . S o background knowledge K1 collapses the relative Borel

complexity of P sufficiently to make P not only semi-detectable but detectable in the

l imit.

Observe that an effective scientist can detect P over K\ Just define <(>(a) = the last item
o, K'

occurring in a. Hence, we also have that P n K e A2

Example (Bounded Rationality): It is interesting to consider the kinds of inductive

problems that are detectable or semi-detectable, but not by any machine. In light of the

results of the last two sections, these are just the problems <K, P> such that P n K e
B, K 0, K _B, K 0, K
2 2 or P e L2 2 » respectively. Such problems are topologically easy

in light of "clues" that are hard for a computer to decipher. For example, consider K =

co® and P = {t: Wt1 is infinite}. Clearly, P e A1a But Inf = {x: Wx is infinite} is

complete in n 2 [23, p. 326] and hence is not ^2- So suppose that P e ^2. Then we

have some total recursive semi-detector $ of P over co®, by Theorem 3. Let t be a total

recursive function. Define Inf(x) « 3n Vm>n <|>(x*t[m]) = 1, where x*t is the result

of tacking x onto the front of t. Hence, Inf e ^2. contradiction. So P e A1 - z 2 and

hence is detectable (with no mind-changes) by an ineffective scientist, but cannot even

be semi-detected by a computable scientist.

Example (Logical Hypotheses): Several papers have been published on the detectability

of hypotheses in a logical language over a complete enumeration of the diagram of a

relational structure [10, 11, 12, 14, 17, 18, 19, 24].

Let L be a first-order logical language, he L, T Q L. Let STR(L) = the set of all

countable relational structures for L Let EC(T) be the set of all in STR(L) in which T is

true. Let & e STR(L). Let v be a variable assignment for S. A(&, v) = {±e: e is a

closed L-atom and fl |= ±.e}. K(S, v) = {t: t enumerates A(S, v)}. K(S) = {t: 3v s.t. t

enumerates A(S, v) and v is onto |8|}. K(T) = u{K(&): S e E.C.(T)}. So a logical

inductive inference problem <T, h> automatically generates a topological inference

problem <K(T), K(h)>. Say that a formula <|> e Zn if and only if <J> is logically equivalent

to a formula of L with at most n blocks of adjacent quantifiers of the same type. <fr € n n

if and only if $ is logically equivalent to the negation of a Zn formula. Say that <|> e z j

just in case 3y e Zn [nn ] such that T |= 4> <-> y. Finally, 4> e *n just in case <$> e z j
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and <|> G n n . Then we have the following relationship between logical hypotheses and the

Borel sets of data presentations they generate. Since our logical formulas are finitary,

the correspondence works only up to co.

Proposition 4.1: Let T c L. Let h be a sentence in L Then Vn G co

(1) h G zj => K(h) n K(T) G Z[J' K ( T )and

(2) h G n j => K(h) n K(T) G n * ' K<T )

Proof: Choose a countable, recursive set Const of constants and form the expanded

language Lconst that results from adding Const to L. Then let STR(L, Const) be the set of

all countable structures for L in which each domain element is named by some c e Const.

Since the structures in STR(L) are all countable, each a G STR(L) is the reduct that

results from eliminating the specification of denotations for the constants in Const from

some 38 G STR(L, Const). Say then that a is the Const-reduct of 38.

Suppose 38 G STR(L, Const). Define K(38) = K(a), where a is the Const-reduct of 38.

So no elements of Const occur in the elements of K(38). If some c G Const occurs in h,

then define K(h) = u{K(38): 38 G STR(L, Const) and 38 |= h}. Now we establish the

proposition by showing something slightly different:

Let T c L Let h be a sentence in Lconst- Then

(1) h G $=> K(h) n K(T) G £?' K ( T )and

(2) h G nj => K(h) n K(T) G riff' K(T)

Base case: (1) Let h e ^ . Then T |= h <-> 3x<|>, where 4> is quantifier-free. Let a be a

finite data sequence. Say that a verifies 3x<fr <=> 3 bijective assignment % of constants in

Const to variables in a s.t. the result of applying % uniformly to a and conjoining the

resulting literals entails 3x<f>.

Suppose 338 G STR(L, Const) s.t. 38 |= T u {h} & t G K(3B). Then 3n s.t. t[n] verifies

3x<|>. In the other direction, suppose t G K(T) and for some n, t[n] verifies 3x<|). Since
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t[n] verifies 3x<|>, there is an assignment % of variables to constants in Const so that

tfnJx |= 3x<)>. Since t e K(T) and no c € Const occurs in T, 331 € STR(L) s.t. S |= T and a

satisfies all the literals occurring in t according to some variable assignment v onto the

domain of a . Now expand a to IB € STR(L, Const) by interpreting each constant c € Const

that occurs in h by the domain element v(x"1(c)). Now 38 |= T u {h} and t € K(|B), so t

e K(h). Hence,

(*) If t e K(T) then

3n s.t. t[n] verifies 3x<|> <=>

33B e STR(L, Const) s.t. IB |= T u {h} & t e K(|B) o

t e K(3x<|>) «=>

t e K(h)

u
Now define S = {a: 3t € K(T) s.t. a c t and t verifies h}. Then K(h) n K(T) = <*<= s

VB, K(T)
by (*). So K(h) n K(T) e z i . The dual argument works for (2).

Induction:

(1) Let h e £
n + i - Then there isa<(>6 n j s.t. T |= h <-» 3x<()(x) where x is an n-vector

of variables. Let c e Const". Then by the induction hypothesis, K(<|»(c)) € riff1

Note that for each t e K(T),

t e K(h) « .

t € u{K(S): a e STR(L, Const) and fl |= h} »

t e u{K(a): a e STR(L, Const) and 3c e Const" s.t. a |= <|>(c)} <=>

t e u{K(<|>(c): c e Const"}

^B, K(T)
So K(h) n K(T) e ^

The induction for (2) is dual. Finally, since the proposition holds for each sentence of

Lconst. it holds for each sentence of L. B

On the other side, we can show:
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1

1

1

Proposition 4.2: If h e ^2 then K(h) is not semi-detectable over K(T).

Proof: Suppose that h e ^2- By application of Chang and Keisler Theorem 3.1.6 at

various stages in the proof of Chang and Keisler's theorem 3.2.3 [4] we obtain that if h e

S2 then there is a countable elementary chain of countable models of T {&J: i e co} s.t. Vi

e co 8j |* h and the countable model & = uj€G> Sj |= h.

Suppose <(> can semi-detect K(h) over K(T). Then we may diagonalize as follows.

Present evidence from S until $ says 1, which must eventually happen. Then there is an

n such that Sn l= the evidence so far presented, since S is the union of the &j and the

evidence presented so far is finite and the evidence is quantifier free. Start presenting

evidence from Sn until <J> says 0. Then since fl is the union of an elementary chain, we

have by Chang and Keisler's Theorem 3.1.13 [4] that & satisfies the evidence

presented so far out of fln- If we are careful to present new evidence from a fixed t e

K(&) each time we return to S in this construction, we shall have presented complete

evidence for some model S ofT u {h} on which <(> fails to converge. Contradiction. M

i
* Corollary 4.2.a: Let L be a first-order language and let h be a sentence of L Then

(1) K(h) is semi-detectable over K(T) « h e £2.

(2) K(h) is detectable over K(T) » h e

Proof: (1) Propositions 4.1, 4.2, (2) Fact 2.1.

I Furthermore, we can show the following surprising fact about effective hypothesis

investigation. Together with Proposition 4.2, it implies that computers are just as good

"1 as Greek gods at truth detection of first-order sentences. This is less surprising when

* one considers that determining whether a hypothesis is syntactically verified or refuted

— by data is decidable and existential quantification is a relatively "clean" way of taking

countable unions over Borel sets. Recall that in the proof of Theorem 3, it was these two
vo, K

— features of Z2 sets that enabled us to construct a computable learner for each such set.
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Proposition 4.3:

(1) K(h) is effectively semi-detectable over K(T) <=> h e ^2.

(2) K(h) is effectively detectable over K(T) » h e A2 .

Proof: (1) => Proposition 4.2.

<= 3 \ | / e n i s.t. T |= h <-> 3xy(x). $ uses a pointer-and-enumeration method just as in

Theorem 3, except that the pointer advances over an effective enumeration of formulas

v( x i )» v(x2)» ••• where x i , X2, ... are vectors variables of L The pointer advances

whenever the universal formula Vy£(xj, y) it points to is directly refuted by the data,

in the sense that some set S of literals occur in the data such that S is propositionally

inconsistent with Vy£(xj, y) under the substitution of some vector y1 for y. This

refutation test is recursive. Hence, the resulting scientist $ is total recursive over

initial data segments. (2) follows from an effective version of Fact 2.1. B

Using techniques described in [10, 14], we can generalize Proposition 4.3 to cases in

which the evidence formulas are An instead of A1.

Proposition 4.4:

(1) K(h) is effectively semi-detectable over K(T) from An-data <=>
YT

he ^

AT
(2) K(h) is effectively detectable over K(T) from An-data <=> h e An+1.

Proof: Similar to Proposition 3.3, except we use Chang and Keisler Theorem 5.2.8. (the

Keisler n-sandwich theorem) instead of 3.2.3. C.f. [10, 13]. B

Osherson and Weinstein [17] have constructed a universal inductive inference machine,

that for any T and h, detects K(h) over K(T) just in case it is possible for any machine

to do so. In our framework, their machine may be viewed roughly like this. Using an

oracle for T, the machine isolates \p. Then it proceeds to use y just the way our $ does.

Many of the positive results of [12] follow directly from these propositions. For

example, suppose that h is expressed in a monadic language. Each monadic sentence h is
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B, K(pv^p)
A2, so <p v - ip, h> induces the problem <K(p v -ip), K(h)>, where K(h) e *2

Similarly, we demonstrated in [11] that no hypothesis with ineliminable quantifier

alternations is detectable over arbitrary logical data presentations. This is because such
ABf K(pv-.p)

a hypothesis generates a set of presentations that is not A2

This perspective on the first-order paradigm is useful because it essentially segregates

the topological, the computational, and the model-theoretic aspects of logical inductive

inference problems. The intricate model theoretic arguments required in studies of

first-order logical inductive inference can now be seen as just one special way to induce

a Borel set of a given complexity over data sequences. Once we have plugged the logical

framework into the Borel hierarchy, we arrive at epistemic insights that are at once

simpler and more general.

5. Characterizations of Identifiability

Formal learning theory began with the study of language identification. Instead of trying

to decide the truth value of a given hypothesis in the limit, an identifier is required to

produce a correct theory for the data presentation he is on. So while detection problems

are intended to assess strategies for hypothesis evaluation, identification problems are

intended to assess strategies for discovering new theories.

The setting for identifiability assumed here is more general than usual. We assume that

each data presentation has a hypothesis that is empirically adequate for it. No further

structure is assumed on the notion of empirical adequacy. In particular, we do not make

the common learning-theoretic assumption that two hypotheses are either empirically

adequate for exactly the same data presentations, or are empirically adequate for disjoint

sets of data presentations..

Let R(t, i) be a relation of type <1, 1>. Define

dom(R) = {t: 3i e © s.t. R(t, i)}

mg(R) = {i: at R(t, i)}.

R|K = {<t, i>: t E K & R(t, i)}.

KiR= {t: R(t, i)}.
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R(t, i) Is an adequacy relation for K <=> K c dom(R).

Let R be an adequacy relation over K.

R' is a simplification of R in K <=>

Vke rng(R') K ^ K

Vt e K 3i G co s.t. t G K?

$ identifies R over K » Vt G K 3i R(t, i) and 3n Vm > n <t>(t[m]) = j.

R is identifiable over K <=> 3<j>: co* -> co: <|> identifies R over K.

R is effectively identifiable over K <=>
3 partial recursive <}>: co* -» co: such that 4> identifies R over K.

Proposition 5.1: A Characterization of Ineffective Identifiability over K:

Let R be an adequacy relation over K.

R
 B* K

R is identifiable over K <=> Vi, Kj n K G Z2 •

Proof: => an R-identifier is a semi-detector for each K,p, j e co. Apply Theorem 2.2.

<= By Theorem 2.2, we may assume a semi-detector <j>' for each KjR, j e co. Define <(>(a) to

output the first i such that <t>j has not said 0 any more recently than any other <|>i on a.

Theorem 5.2: A Characterization of Effective Identifiability over K.

Let R be an adequacy relation over K.

R is effectively identifiable over K »

r°> K

3R' s.t. Rf is a simplification of R in K and R'|K e Z2

Proof: <= Suppose that R is effectively identifiable over K by total recursive $. Then

Vt e K 3i 3n s.t. R(t, i) and Vm > n <t>(t[m]) = i.

Define

R'(t, i) » 3n Vm > n <|)(t[m]) = i.
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The relation R(t, m, i) <=> <|>(t[m]) = i is RE since $ is partial recursive. Hence the
o, K „

relation R'(t, i)|K G Z2 . W e know that Vt e K 3k s.t. t e Kk, else 4 fails to converge
PC R

on some t G K, which is absurd. Finally, we know that Vk G rng(R') Kk = Kk, for

otherwise, 3t e Kk on which <|> does not converge to k, which contradicts the definition of

R\

J>, K
=> Suppose that there is a simplification R1 of R such that R'|K € ^2 . Then we have

Vt G K, R'(t, i) « 3x -iS(t, i, x), where x is an n-vector of first order variables, and
0, K

where S(t, i, x) G zi . Let Mj[t, i, x] be a machine that halts if and only if S(t, i, x),
o, K

since S e ^ t Let <x> be a recursive bijection from co to con+1. (Think of <x>i as

encoding i, and of <x>2,..., <x>n+i as encoding xi xn. The inconvenience is required

to dovetail a search on all of these arguments in parallel). Let a G co*. Define

Tj[a, <x>, u] <=> Mj[a, <x>i, <x>2 <x>n]^ in u steps.

Let <> denote the empty sequence. Define

POINTER(o) = 0

POINTER(a) = P 0 I N T E R ( < H i f -T i (a , <POINTER(a-)>, lh(a))

POINTER(a-) + 1 otherwise

4>(a) = <POINTER(a)>i.

Let t G K. Suppose z is such that -iR'(t, <z'>i). Then since Rf(t, i) <=> 3x —iS(t, i, x),

we know that S(t, <z>). So 3k Mi(t, <z>) halts in k steps after asking questions only

about initial segment t[k] of t. So 3k such that Tj[t[k], <z>, k]. Therefore,

(*) if-.R f(t, <z>i) then Vk1 > k, POINTER(t[kf]) > z.

Since R1 is a simplification of naming relation R for K, there is an i such that Rf(t, i)

and R(t, i). So choose w to be the least w1 G CO such that -iS(t, <wf>). Hence Mj(t, <w>)

never halts. Hence, for each k, we have —iTi(t[k], <z>, k). So Vm G CO POINTER(tfm]) <

w. So either POINTER converges to w, or by (*), POINTER converges to some w1 < w

such that R'(t, <w'>i). But then 4 converges to some i such that R(t, i), as required.
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Finally, it is easy to see that $ is total recursive. •

Fact 5.3: [Total recursive] $ detects P over K »

<{> identifies naming relation {<t, 1>: t e P} u {<t, 0>: t e P} over K.

Corollary: Corollary 3.a Corollary 2.2.a are special cases of Fact 5.3. ^

Example (Language Learning): A new characterization theorem for effective language

learnability paradigm drops out of theorem 5.3 if we think of our collection K of

languages as inducing an empirical adequacy relation over data presentations. Let L e

RE. Define, for each i s.t. Wj e L,

) = { < l » i > : Wj e L and t is an enumeration of Wj.

KL = {t: 3i s.t. RL(t, i)}.

Then <K^, R^> is identification problem generated by language identification problem L.

Angluin [1] has established the following characterization theorem for effective language

learnability from positive data:

L is RE-indexable <=>there is a type <0, 2> relation Q(i, x) e ^1 such that for each L e

there is an i e co such that L = {x: Q(i, x)}.

Define Lj = {x: Q(i, x)}

If L is RE-indexable then

L is identifiable <=> 3 type <0, 2> relation P(i, k) e ^1 such that for each i e co,

(1) {k: P(i, k)} is finite and

(2) {k: P(i, k)} Q L| and

(3) Vk G co, {k: P(i, k)} G Lj => L4, ct Lj.

Angluin's theorem assumes that L is RE-indexable. This assumption is used to

enumerate all and only the relevant hypotheses in order to produce a successful $

whenever the right-hand-side of the theorem is true. Theorem 5.2 does not require this

assumption. It shows that one can succeed by means of a mechanical enumeration of
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parts of hypotheses even when one cannot mechanically enumerate the hypotheses

themselves.

The negative side of Angluinfs theorem is proved by a variant of the locking sequence

technique, and this sort of argument depends essentially upon the requirement that <|> be

forced to converge to the truth on every enumeration of an RE set. Theorem 5.2 does not

impose this requirement. This generalization is achieved by replacing the locking

sequence argument with an argument that uses the complexity of definition of learning to

bound the complexity of solvable inductive problems.

Finally, the language learning paradigm assumes that the relation of empirical adequacy

induces a partition over data presentations, so that each two hypotheses either have

exactly the same data presentations or share no data presentations. Theorem 5 shows

that this assumption is also unnecessary for the characterization of language

learnability.

Example (Recursive Function Identification):

Theorems 5.1 and 5.2 may be viewed as theorems about function identification. Let K be

a set of functions to be identified. The function identification problem K induces the

following adequacy relation:

RK = {<t. «>-"« e co and t e K and t = <t>j}.

Since the set Rec of total recursive functions is countable, we have by Theorem 5.1 and

Corollary 2.2.c that each K Q Rec is ineffectively identifiable.

Gold has shown [5, 6] that Rec is not effectively identifiable. So according to Theorem
o,Rec

5.2, there is no simplification Rf of RR6C such that R'|Rec € Z2

6. Detectability and Bayesian Convergence to Certainty

A pressing question for formal learning theorists is to specity the relation of learning

theoretic results to the standard probabilistic convergence theorems. For example,

consider the following special case of a convergence theorem reported in [7].
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Theorem (Halmos [7]): Let ji be an arbitrary probability measure on JBa.

V ^-measurable P a^-measurable S s.t.

H(S) = 0

V t e S , n(P|t[n]) -> 1 i f t 6 P

n 0 otherwise

The convergence of the conditional measure n(Jt[n]) to 1 or 0 induces a scientist that

detects P over S as follows:

0 otherwise

So whenever *i(P|t[n]) converges correctly to 0 or 1 for each data presentation in K,

some scientist <(>(t[n]) detects P over K. Hence, by Corollary 2.a, we have immediately

A B ' K

that P n K e A2 .

What does this say about the statistical convergence theorem? Just this. The Bayesian

inductive method of conditionalization certainly works, but this is because each

A B » K

hypothesis restricted to K is a A2 hypothesis, where K is the complement of a set of

data presentations of measure 0. The Bayesian can reliably infer "everything" using his

probabilities, but that is just because the Bayesian is probabilistically certain that

"everything" is just what a learning-theoretic detector can reliably infer without
B, K

probabilities, namely, the A2 hypotheses.

The relationship between Bayesianism and learning theory is not so clear in the

computable case. We may think of the Bayesian account of induction as being based on

two parts, a method (conditionalization) and a standard (a unit probability of

convergence to an empirically adequate hypothesis).

The relationship between Bayesianism and learning theory is not so clear in the

computable case. We may think of the Bayesian account of induction as being based on

two parts, a method (conditionalization) and a standard of success (a unit probability of

convergence to an empirically adequate hypothesis).
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Concerning the Bayesian standard of success, an interesting question is whether the

Halmos result can be strengthened so that each ^-measurable set can be detected with

probability one by a computable scientist. It is easy to see that this is not the case for a

wide class of measures, however.

Proposition 6: 3 countably additive probability measure n over Vo , 3 ^-measurable

0 , CD** - S

P c co00 s.t. V ^-measurable S c co°\ if \i(S) = 0 then P e A 2

Proof: Once again, consider P = {t: W^ is infinite}. For each i e co, let iO denote the

infinite sequence beginning with i and having 0 in each successive position. Let P' = {iO:

i e co}. Let n be the unique, countably additive measure s.t. Vi e co, n({iO}) = 2"j. Then

co" - P' is the largest event of measure 0 under \i. Now suppose that <{> is a total

recursive scientist who detects P over P. <}> can be turned into a total recursive \p that

detects P over all of co0 as follows: define \\f(o) = <|>(x) where x is the finite sequence

that begins with the first item i occurring in a and that adds length(a)-1 0fs onto i.
o

Hence, P e A2 . But this is absurd, by the argument given in the bounded rationality

example in Section 4 above. •

This negative result raises a new and more interesting question. Can we characterize the

properties and measures that give rise to effectively solvable detection problems?

Concerning Bayesian method, we have the further question whether the performance of

each computable scientist can be matched in power by a computable Bayesian

conditionalizer armed with some countably additive prior measure. This question is

somewhat finicky to set up, as one must define in a suitable way what it is for a

conditionalizer to be effective.

7. Conclusion

In this paper, characterizations were established for semi-detectability, for

detectability, and for identifiability, both for effective and for ineffective agents. These

characterizations yield special case results for language learning, function identification

and logical hypothesis detection. This permits us to factor the essential features of

inductive inference from the accidental details of different inductive paradigms. The

2 9



results also apply over arbitrary collections of data presentations. The

characterizations do not assume enumerability or effective enumerability of possible

worlds. Finally, they illustrate an exact relationship between the statistical and the

learning-theoretic convergence theorems on the one hand, and between learning theory

and standard topology and recursion theory on the other.
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