
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Expected Complexity of Problem Solving

Clark Glymour, Kevin Kelly and Peter Spirtes
Department of Philosophy

Carnegie Mellon University

Abstract

Worst case complexity analyses of algorithms are sometimes held to be less informative about the real
difficulty of computation than are expected complexity analyses. We show that the two most common
representations of problem solving in cognitive science each admit algorithms that have constant expected
complexity, and for one of these representations we obtain constant expected complexity bounds under a
variety of probability measures.

1. Introduction

Newell and Simon's (1972) Human Problem Solving provided the framework for much of contemporary

cognitive psychology and artificial intelligence. In one representation of problem-solving, they consider

"set-predicate" problems. A set-predicate problem instance consists of a set of entities, a subset having a

particular property, a method of enumerating or naming the entities, and some method (an oracle) that

determines for each particular entity whether or not it has the property in question. The problem solving

task is to find an entity in the set that has the property. The interpretation of the representation is that the

entities in the set represent sequences of "operators" or actions of some finite number of kinds, and the

goal subset is understood to consist of those sequences of operators that produce a desired result.

Another representatfon of probjem solving is not explicit in Human Problem Solving but is certainly

implicit, and is widely used in the artificial intelligence literature. This second, or finite automaton

representation, takes an instance of a problem to be given by a finite automaton whose arc labels signify

actions available to the agent, whose nodes signify states of the world resulting from actions, whose final

states represent goal states, and whose initial state represents the initial world state in which the problem

solver is situated. Some mechanism provides the problem solver with a description of the node, or world

state, that results from any sequence of actions the problem solver undertakes. The task is to find a path

through the automaton from the initial state to a final state.

A key idea of Newell and Simon's approach is that problem solving is computationally difficult and

typically requires recourse to heuristic search procedures, and, of course, that real human problem

solvers do indeed use heuristic problem solving techniques. It is clear that the obvious algorithms for

problem solving in either the set-predicate or the finite automaton representations are indeed worst-case

exponential in natural measures of the size of a problem instance. Although the enumeration algorithm

Newell and Simon describe, and other enumeration algorithms, are worst-case exponential, the

interesting question of the expected complexity of enumeration procedures for problem solving remains

open and relevant. Indeed, cognitive scientists sometimes argue that the worst cases are rare, and

expected complexity measures are more relevant to questions of feasibility.1 In discussing the learning of

procedures, John Anderson (1976) considers algorithms that identify finite state machines, observes that

enumeration algorithms will be worst-case exponential and asks us to consider the possibility

...that target machines may not be equally likely and that the learner's hypotheses progress from the more
likely machines to the less likely. For instance, suppose the machines were ordered, such that the nth
machine had probability aO-a)*"1 of being the correct machine. That is, there was a geometric probability
density across the possible machines. Then the mean number of machines that need to be considered
before the correct machine would be 1/a. Even if the probability of a particular machine being correct is very
small, the mean time to success would avoid astronomical values, (p. 502)

In the usual analysis of expected complexity, a problem is taken to be a collection of instances. Instances

are viewed as having sizes, and there are at most finitely many instances of any given size. For each

possible instance size, a probability measure, usually the uniform distribution, is assumed over all

instances of that size. For any algorithm that solves the problem the expected number of steps the

algorithm requires to solve a randomly selected instance of size n is then a well defined function of n.

This function, the expected complexity function, can have a very different structure from the worst case

complexity function for the same algorithm. Recently, for example, Wilf (1986) has shown that for a

well-known NP complete problem, the graph 3-coioring problem, there is an algorithm that has an

expected complexity function that is bounded, for all n, by 192. Thus every known algorithm that decides

whether or not the vertices of a graph can be assigned three colors, in such a way that no two adjacent

nodes receive the same color, requires a number of computational steps that in the worst case increases

at least exponentially with the number of vertices of the graph, but some algorithm requires an average of

192 steps, for each instance size. What happens is that as the size measure-the number of vertices in a

graph-increases, the proportion of graphs that are "easy" to decide also increases in such a way as to

keep the average number of computational steps constant.

^e have heard this defense, for example, to objections to artificial intelligence programs that implement procedures that are
worst-case exponential.

Essentially the same mathematical phenomenon can occur in problem solving. We will show, using any

of several natural measures, that an algorithm for the general case of problem solving in Newell and

Simon's set-predicate formulation has a constant expected complexity. Further, we will show that there is

a constant upper bound on the expected number of operators that must be applied in obtaining a solution

to a problem instance of any finite size. Similarly, we will show that if a uniform probability measure is

used, there is an algorithm that solves the finite automaton representation that also has a constant

expected complexity, although the bound is different.

2. The Expected Complexity of Problems in the Set-Predicate
Formulation

Newell and Simon present the "set-predicate" formulation of problem solving this way (pp. 95-96):

...to be given a problem in this formulation means to be given, somehow, a set, U, and the goal of finding,
producing or determining a member of a subset G of that set-this latter identified most generally by a test
that can be performed on the elements of U.

In Newell and Simon's problem solving framework, the elements of U can be regarded as finite

sequences of operators. If each operator is identified by a letter in a set I , then U and G can be regarded

as sets of words over the alphabet I , or as subsets of I * , the set of all finite strings of elements of the

alphabet.

Newell and Simon describe an algorithm that solves all problem instances of this kind. They illustrate it for

the case of theorem proving, where it is called the "British Museum Algorithm."

• Measure the length of a word in 2T by the number of letters it contains, and enumerate all
words, shorter words before longer words.

• Test each word in turn for membership in G.

• Stop when a word in G is found.

The procedure is guaranteed to find a member of G if there is one. Moreover, it is guaranteed to satisfy a

side constraint that is often imposed on problem solving tasks, namely a preference for the shortest

sequence of operations that solves the problem instance.

If G is empty the Newell-Simon algorithm will continue forever. In the cases Newell and Simon consider,

however, there is generally2 a feature of any problem instance that can be used to bound the search and

2But no: always, for example not in the case of theorem proving.

to modify the algorithm so that the procedure stops if no word in G is found within that bound.

Newell and Simon themselves suggest that problem instances come with size bounds:

...the initial space in which the solver encodes the problem already provides some measure of how big a
world he has to consider.

The size bound on a set-predicate problem instance could be taken to be n, where n is an upper bound

on the length of words in G. The size n is an upper bound on the number of operations necessary to solve

the problem instance. Size bounds of this kind are important because they guarantee that a problem

instance is finite and can be solved by an exhaustive search of the words of length less than or equal to

the bound. If a bound of this kind is assumed to be implicit in the problems addressed, we can without

toss of generality take both U and G always to be finite sets, ignoring any sequences of operators longer

than the length given by the value of the size measure.

Let I be an alphabet. Let I n denote the set of all strings of length no greater than n drawn from symbols

in A. Now, we take a set-predicate problem instance to be an alphabet 1 , a size limit n, a finite subset G

of Sn, and an oracle for G that given a word in I n returns "yes" or "no" accordingly as the word is or is not

in G. A problem is the set of all problem instances for a fixed alphabet.

A deterministic problem solver is an effective procedure that given 2 and a size bound effectively

determines at each step what word to query the oracle about, and conjectures a word after making

queries to the oracle. A deterministic problem solver solves a problem instance iff it conjectures a word in

G and then immediately halts. A problem solver solves a problem iff it solves every instance of the

problem.

In this paper we examine two different measures of problem solving complexity. The oracle call

complexity of a deterministic problem solver on a particular problem instance is the number of calls to the

oracle the problem solver makes before halting. The operator application complexity of a problem solver

on a problem instance is the sum of the lengths of the words queried before the problem solver halts on

that instance. Clearly, the operator application complexity of a problem solver is never smaller than its

oracle call complexity.

For a given problem and complexity measure, the number of problem instances of any given size is finite

and there is a worst value for the complexity of a deterministic problem solver for instances of that size

(assuming that the problem solver never queries the oracle about the same hypothesis twice). For a

deterministic problem solver and problem, the worst-case complexity is a function of the size of problem

instances. It is straightforward to show that there are problems no algorithm can solve with only

polynomial^ many oracle calis. (See Propositions 1 and 2 of the Appendix). But does the worst-case

analysis imply that problem-solving is infeasible in an intuitive sense? We will show that for a variety of

probability distributions over problem instances, the answer is no.

First, we assume for any problem, in the sense of "problem" defined above, and for any value of the size

measure for problem instances, a uniform probability distribution on the problem instances of that size.

An enumeration algorithm then has, for every instance size, an expected complexity for instances of that

size.

Theorem 1. For any set-predicate problem, the expected number of oracle calis of any enumeration

algorithm is bounded above by 2.

Each member of U is a finite sequence of operators, and also a word in the language Z\ Theorem 1 says

that on the average, for problem instances of any given size, we have to query no more than 2 words

before we find a word in G. The result is intuitive on a little reflection. Denote the universe set U for

instances of size n by U(n). Let S(n) be the cardinality of U(n); it is equal to

where |£| is the cardinality of I.

The problem instances of size n correspond to all ways of choosing solution sets G from U(n). The

number of such subsets is 2SW, and under the uniform measure each is as probable as any other. The

number of such instances that contain the first word in the enumeration is 2s<n^\ and so 2s<n>-1/2s(n) =

1/2 is the probability that the very first conjecture is correct. The number of instances that do not contain

the first word conjectured but do contain the second is 2S(n>*2, and so the probability that the second word

in the enumeration is the first word in G to be conjectured is 1/4. In general, the probability that the kth

word is the first in G to be conjectured is 1/2K. The expected number of conjectures is therefore

S(n) .

Yi

Since the sum of this series from 1 to infinity is 2, the result follows, and in tact it follows that 2 is the

smallest bound that holds for all n.

Now let us consider the expected operator application complexity of problem solving. That is, how many

"actions" must be taken, on the average, by the problem solver before it succeeds.

Theorem 2. For any set-predicate problem with an alphabet of 2 or more letters, the expected number of

occurrences of letters in words that the oracle is queried about by any enumeration algorithm that

enumerates shorter words before longer words is bounded above by 10.

A proof of this result is given in the Appendix. We do not claim that the bound given here is the best

possible.

To illustrate these results, imagine problem instances of the following kind: A door with a combination

lock must be opened. In actual safes, one sequence of numbers (the combination) opens the safe.

Suppose that in this case sets of sequences of numbers open the safe, i.e. it is possible that more than

one combination opens the safe. With a problem instance of this kind, we consider a letter to be a dial

setting, and a word to be a sequence of dial settings. For a problem instance of size n, we know that a

sequence of no more than n dial settings is required to open the door, so we need not consider words on

the alphabet of lock settings of length greater than n. In this case U is the set of all such sequences, and

G is any subset of U. The first theorem tells us that for every positive n, if we consider all problem

instances of size n, the average number of sequences tried before the safe is successfully opened is

never greater than 2; the second theorem tells us that in the same circumstance the average number of

separate dial twists performed before the door opens is no greater than 10.

Problems that consist of compositions of set-predicate problems may be straightforwardly analyzed using

these results. For example, consider a safe with n dials that is opened by n-tuples of sequences, where

each sequence in an n-tuple corresponds to a sequence entered on a different dial. If for each dial all

subsets of combinations are equally likely to be chosen to be the combinations for that dial that contribute

to an open-door state, and the probability of contributing to an open-door state is, for each dial,

independent of any other dial, then the expected complexity of the enumeration algorithm is bounded by a

linear function of n.

Our results show that an arbitrary enumeration can solve the safe dial problem quickly on the average

because a preponderance of the problem instances of a given size are solved on the first few guesses.

The difficulty of particular problem instances is, however, sometimes implicitly judged by the number of

steps a random hypothesis generator would require to solve the particular instance. Our results do not

imply that each instance of the safe dial problem is easy in this sense. If a random generator produces

only hypotheses that are members of U, then the expected number of steps, and the number of steps

required to have any given confidence in finding a word in G, can be calculated from a binomial

distribution in which the probability of success on any trial is given by (G/U). Thus if there is a single

setting of a safe dial that opens the vault, for a random hypothesis generator it is intuitively a very hard

problem. In contrast, expected complexity measures locate the probability in the problem instances, not

in the hypothesis generators. Our results mean this: If there are a vast collection of vault doors each with

a single dial, and if for any two sets of combinations there are as many doors that open with any

combination in the one set as with any combination in the other set, then if you select vault doors at

random from the collection, on the average no more than 2 guesses will be needed to find a combination

that unlocks the vault door.

A more realistic application is to recent work by Ackley (1987). Ackley studied the behavior of a number of

algorithms designed to determine any maximum value of real valued functions defined on the space, Bn,

of n-place bit vectors. Bn is the space of all strings of length n on the vocabulary {0,1}. Since Bn is finite,

every real valued function on this space has a maximum. Ackley's algorithms included familiar hill

climbing procedures and a procedure Ackley called Stochastic Iterated Genetic Hillclimbing that

integrates connectionist and genetic algorithms (Ackley (1985), Holland (1975)). The procedures were

allowed to ask for the value of the target function for any element of Bn. Comparison of the performance

of the various algorithms was based on the number of queries of this kind the procedure made before

finding the maximum value. The procedures were not required to recognize that a value was the

maximum (that is, in the terminology of learning theory (Osherson and Weinstein (1986)) they were not

self-monitoring), nor were they required to continue to output the maximum value once it was found. His

study applied seven algorithms to each of six functions for various values of n. The functions were chosen

to differentiate properties of alternative hill climbing procedures.

With three qualifications, Ackley's arrangements form a set-predicate problem of the kind we have

described. G is the set elements of Bn for which the target function assumes its maximal value; U(n) is

Bn. The measure of complexity is exactly as in Theorem 1. The qualifications are that that there is no test

for membership in G, that in this application U(n) is all strings exactly of length n, not all strings of length n

or less, and, finally, Ackley's algorithms are not exclusively deterministic.

If we put a uniform probability distribution on the (nonempty) subsets of G, we can ask for the expected

number of queries that any enumeration algorithm will make before finding a member of G. The answer is

given by Theorem 1. The difference in U(n) affects only the value of S{n) in the proof of that theorem,

which is irrelevant to the result.

3. Alternative Probability Distributions

These results quite naturally raise questions about the expected complexity of problem solving when it is

not assumed that all instances of a given size are equally probable. We will show that even when

non-uniform probability distributions are assumed there are still algorithms with constant expected

complexity that solve set-predicate problems.

Suppose that not all instances of size n are equiprobable, but that all instances of the size n having the

same cardinality of G are equiprobable, and each subset of instances of size n containing all and only

instances with the same cardinality of G is as probable as any other such subset. Then the probability that

a randomly selected instance of size n will have any specified value for the cardinality of G is 1/S(n),

where S(n) is the cardinality of U.

Given these probability distributions over instances, there is a problem solver whose expected number of

oracle calls is bounded above by 2, for all instance sizes. Since the problem solver with this property is

stochastic we must first introduce some definitions.

A stochastic problem solver is a stochastic procedure that given X and a size bound stochastically

determines at each step which word to query the oracle about, and either runs forever or conjectures a

word after making queries to the oracle. A stochastic problem solver solves a problem instance iff with

probability 1 it conjectures a word in G and then halts. A stochastic problem solver solves a problem iff it

solves every instance of a problem.

We measure the complexity of a stochastic problem solver on a problem instance of a given size by the

expected number of calls made to the oracle by the problem solver.

We consider a Bernoulli trial algorithm that determines its queries to the oracle by sampling randomly with

replacement from a population in which there is a uniform distribution on IP.

8

We note the following well-known result:

If independent Bernoulli trials are performed, each with probability p of success, and X is the random
variable representing the number of trials until the first success, then

prob(X-k)-p(1-p)M

and
Exp(X)-1/p

and

Exp(X2)«(1-p)/p2

The Bernoulli trial algorithm will, for each instance of size n, have an expected number of oracle calls

determined entirely by the cardinality of G, namely S(n) divided by the cardinality of G. The cardinality of

G can range from 1 to n. Let g denote the cardinality of G. The probability of success on any given trial is

the probability that some randomly chosen word x in 1° is in G.

Sin) S(n) .

FQctG) = X J-CredlGI-dW-,) - £ ± ^

SfrQ + 1
S(n)2 " S(n)2

ExpQC) = - LVK } P(xtG)

Hence the expected number of calls to the oracle is bounded above by 2 for all n.

Suppose again that we do not assume that all problem instances of the same size are equally probable.

Suppose instead it is known that the cardinality of G is always a fixed (non-zero) proportion of the

cardinality of U, but otherwise make no assumption about the probability distribution on instances of a

given size. Then there is a p > 0 such that for any value of the size measure, all problem instances (with

non-zero probability of occurring) have 10Op % of their members in G. Consider again a problem solving

procedure that randomly selects (with replacement) a word from U and conjectures it, until a word in G is

found. Whatever the instance considered, application of the procedure produces a sequence of

independent Bernoulli trials each with probability p of success, and so it follows from the results just cited

that the expected number of steps in the procedure is bounded by 1/p for all n, and that the variance of

the number of steps required is (1-p)/p2. Clearly this is not the "best" problem solving algorithm, and it

could be improved by sampling from U without replacement. Equally clearly, the result can provide an

upper bound on the expected complexity in cases in which it is cnly known that for every instance the

ratio of the cardinality of G to the cardinality of U is at least p.

On the other hand, suppose the cardinality of G has a fixed upper bound. In that case the algorithm that

samples with replacement can for any instance of any size still be viewed as a sequence of independent

Bernoulli trials, but p, the probability of success on any trial, approaches zero as the size measure, n,

increases without bound. Thus the expected complexity function is in these cases unbounded for this

algorithm, and indeed one expects for any enumeration algorithm.

One can challenge the convention that defines a distinct probability measure for each instance size but

no single probability measure over the set of all instances. There are many ways to define a measure on

the set of all instances of a problem solving task. For example, many artificial intelligence system

designers seem to believe that in the environments in which their systems operate, small problem

instances are much more probable than large problem instances. One can put measures on all of the

problem instances over an alphabet Z that satisfy this restriction; for example, one can give the set of all

instances of size n the probability (i/2)n, and divide the probability for the class of instances of size n

equally among the instances of that size. With this measure the expected number of oracle calls for a

deterministic enumeration algorithm diverges. On the other hand, if one imposes a geometric distribution,

as Anderson suggests, the expected number of oracle calls required of a deterministic enumeration

algorithm is finite.

4. The Complexity of the Finite Automaton Formulation of Problem
Solving

Following Newell and Simon, most problem solving research assumes problem instances to have more

structure than the set-predicate formulation presents. It assumes that the world can assume a set of

discrete states describable by a finite collection of unary predicates. The application of an operator may

(or may not) change the state of the world, but an operator always gives the same resulting state from the

same prior state. Some state is designated as the initial or starting state. Other states, possibly including

the initial state, are designated as goal or accepting states. So construed, a problem instance is

10

determined by a finite state automaton whose number of states is known to the problem solver, but whose

graph and set of accepting states are not known. The task is to halt after producing an accepting path in

the automaton, i.e., a path from the initial state to an accepting state. The problem solver is not told which

states are accepting states, so to recognize when to halt, it must query the oracle. Some of the standard

illustrations of problem solving such as safe cracking have this form. The state of the combination lock as

the cracker finds it is the initial state, and any state that opens the door is an accepting state. The

opening of the door or its failure to open counts as the response from the oracle. Theorem proving,

natural language parsing, and many other interesting tasks do not fit into the finite automaton framework

since the number of possible world states is infinite, and hence cannot be described with a finite set of

unary predicates.

Whenever problems can be represented by finite state automata whose nodes are state descriptions, the

number of predicates, n, required for a state description determines the number of automaton states, 2n,

and we are guaranteed that if there is an accepting path, i.e., a word in G, there is one containing no

more than 2n-1 operators. Hence when the automaton assumption is made, it is natural to measure the

size of a problem instance by the number of states of the problem instance. This size bound does not

correspond to the size bound we considered above, for the following reason. Not every set of words

containing words of at most length n-1 letters over an alphabet S is exactly the set accepted by some

finite state automaton with n states. The smallest automaton accepting all and only the words in a set G

of words, all of length n or shorter, has a set of states that may be exponential in n. Thus the bank vault

door problem, for example, has in the previous measure a size given by the maximum number of dial

twists required to open the door, and all problem instances-all sets of door opening values-with the

same maximum number of dial twists have the same size. But if the size of a problem instance is

measured by the number of states of the smallest automaton that accepts all and only the words in G for

that instance, then different specifications of the combinations of dial settings that open the bank vault will

give problem instances of different sizes, and some of these sizes will be much larger than the maximum

number of dial twists required to open the safe.

If it is assumed that the problem instances are all generated by finite automata, then in many cases it is

quite natural to take the number of states of the automaton to measure the size of the problem. In that

case we can put a uniform measure on all labeled finite automata with a common initial state, arc labels

from an alphabet I, and having n states.

11

What is the expected complexity of problem solving with the Newell-Simon enumeration algorithm for

problem instances generated by finite state automata?

Theorem 3: The expected complexity function of the Newell-Simon enumeration algorithm for the finite

state automaton problem over any nonempty alphabet, £, has a finite bound determined by the cardinality

of I .

The proof is given in the Appendix. The bound in this case may be much larger than 2, but in typical

cases is not -astronomical." In Theorem 3 all automata count, including those with inaccesible states; in

many cases this is realistic, since the states of the automaton are descriptions of logically possible

situations, and some logically possible situations are nonetheless impossible in the sense that no actions

will bring about their realization. We conjecture, however, that an analogue of Theorem 3 holds even if

one counts only automata all of whose states are accessible.

5. Conclusion
In this paper, we have examined a class of problems which could not be effectively or stochastically

solved without queries to an oracle. We have measured the complexity of an algorithm by the number of

queries it made to an oracle. However, results similar to those we have described can be produced for

other problems and other measures of complexity.

For example, consider the class of problems which require finding an accepting path through a finite state

automaton, but in which the accepting states are known. Some of the standard illustrations in the

problem solving literature, such as Christians and Cannibals or Towers of Hanoi are problems of this kind.

If such a problem has a solution, then it is trivial that there are algorithms that solve the problem with 0

queries to an oracle. Some other measure of complexity is needed. One way to solve these problems is

through a -testing" enumeration algorithm that rather than using oracle calls to determine the accepting

states, uses an effective test of some kind. One natural measure of the complexity of a "testing"

enumeration algorithm is the number of tests it makes. For example, the Towers of Hanoi problem

consists of three pegs A, B, and C, and n rings of varying size, initially stacked on peg A in order of

decreasing size. The problem is to move all of the rings one at a time from A onto B (using C as

temporary storage) in such a way that no ring is ever placed on a smaller ring. An accepting state can be

effectively tested for, since it is simply one in which all of the rings are stacked on peg B. (Of course, what

counts as a "testing" enumeration algorithm, and what counts as a test in such an algorithm cannot

12

always be determined, but is perfectly clear in some particular cases.) Under this measure of complexity,

a proof parallel to the one given for Theorem 3 shows that there are lesting" enumeration algorithms that

have a finite upper bound determined by the cardinality of Z. regardless of the order of enumeration and

the instance size.

Similarly, it is natural to consider "testing" enumeration algorithms that solve set-predicate problems in

which an effective test for membership in G can be constructed. A proof analogous to Theorem 1 shows

that there are "testing" enumeration algorithms for which the expected number of tests performed is

bounded above by 2, regardless of the order of enumeration and the instance size.

Our results also parallel, for a setting of psychological interest, results about expected complexity that

have been obtained independently for NP complete problems. A celebrated NP complete problem

concerns the determination of the simultaneous satisfiability of a set of clauses. Goldberg (1879) has

shown that an algorithm for this problem, the Davis-Putnam Procedure, requires a number of steps which

with probability approaching one is approximately quadratic in the number of clauses, provided a

reasonably natural probability distribution is assumed for the instances of any size. More recently, Franco

and Pauli (1983) showed that a procedure that simply enumerates truth assignments and checks whether

they satisfy a set of clauses has, with probability approaching 1, a constant time bound if the same

probability distribution for instances is used. They also show that under a different distribution, the Davis-

Putnam procedure will with probability 1 require a number of computational steps that is exponential in

the instance size. Hofri (1987) concludes from these results that

The moral is that we need robust procedures. Or that we need to know how to tailor an algorithm to a
given situation, (p. 4)

Two other conclusions may be broached. One is that "stupid" enumeration procedures, which are often

compared unfavorably to "intelligent" heuristic procedures, are not always so stupid. If the computational

tradability of a procedure is any indication of intelligence, then enumeration sometimes does quite well.

These expected complexity results complement other work that shows, for example, that in a worst case

the "version space" learning heuristic requires more computational resources than does simple

enumeration (see Mitchell, (1982) and Kelly, (1988)). Algorithms that seem "clever," as do the Davis-

Putnam procedure for satisfiability, or version space learning algorithms, or various problem solving

heuristic procedures, may in various circumstances be less efficient and less powerful than enumeration

algorithms that seem "inane."

13

A second conclusion is that whether a problem solving or learning situation requires recourse to heuristic

procedures depends on what is known, or believed, about the situation, and in a variety of cases

knowledge about the situation can straightforwardly be turned into complexity analyses that are directly

relevant to the design of intelligent systems, or that show the computational admissabil'rty of various

hypotheses about how natural intelligent systems are able to do what they do. The demonstration that a

problem solving procedure is reliable and efficient on a few selected instances of a problem is no

evidence at all that it is more reliable or more efficient than other procedures on other instances of that

same problem. Judgements of the optimally or even "satisficity" of a procedure require some knowledge

of the distribution of instances that procedure will meet.

The analyses given here are rather simple, and assume that the probability of occurrence of instances of

any kind is unaffected by the evidence obtained in attempting to solve a particular problem instance. A

more thoroughly Bayesian analysis would relax this assumption and interpret the probability distribution

over instances of a given size as degrees of belief to be changed by forming a sequence of conditional

probability distributions as evidence accrues. Indeed, the sorts of problems considered here are rather

close to the problem originally treated by Reverend Bayes.3

3We thank Jay Kadane, Tebdy Seidenfeld and Bas Van Fraassen for very helpful suggestions.

14

References

D. Ackley, "A Connectionist Genetic Algorithm," in J. Grefenstette, ed., Proceedings of an International

Conference on Genetic Algorithms and Their Applications, 121-135. Carnegie-Mellon University,

Pittsburgh, Pa., 1985.

D. Ackley, Stochastic Iterated Genetic Hillclimbing, Ph.D Thesis, Carnegie Mellon University, Department

of Computer Science, 1987.

J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975.

D. Angluin, "A Note on the Number of Queries Required to Identify Regular Languages,* Information and

Control, 51:76-87, 1981.

A. Newell and H. Simon, Human Problem Solving, Prentice-Hall, 1972.

J. Anderson, Language, Memory, and Thought, Eribaum, 1976.

H. Wilf, Algorithms and Complexity, Prentice-Hall, 1986.

K. Kelly, "Version Spaces, Structural Descriptions and NP-CompIeteness," Technical Report, Laboratory

for Computational Linguistics, Carnegie Mellon University, 1988.

T. Mitchell, "Generalization as Search," Artificial Intelligence, 18,1982, 203-226.

A. Goldberg, -Average Case Complexity of the Satisfiability Problem" Proceedings of the Fourth

Workshop on Automatic Deduction, Austin, Texas, 1979.

J. Franco and M. Paull, "Probabalistic Analysis of the Davis-Putnam Proceddure for Solving the

Satisfiability Problem), Discr. Appl. Math., 5, 77-87 (1983).

M. Hofri, Probabilistic Analysis of Algorithms, Springer-Verlag, 1987.

D. Osherson, M. Stob and S. Weinstein, Systems That Learn, M.I.T. Press, 1986.

Appendix

Consider the following problem. Let £ be a finite alphabet with cardinality

s > 1. Let n > 0, and let S be an arbitrary subset of W - UnLn , the set of all

strings from the alphabet of length y, 0 < y < n. You are given n, and an

oracle for S. The oracle will respond "yes" to the question "Is n in S?" if n

is in S, "no" if n is not in S, and will make no other responses. After asking

as many questions as you please of the oracle, you are to output a string in

S if there is one, and the words "no solution" if there is not one. Call the

triple <X, n, S> a set predicate problem instance. A set predicate problem

is the set of all set predicate problem instances with a common alphabet.

A problem solver is a procedure that, given £ and n, makes a finite number

of queries to the oracle and outputs a string. The sequence of queries, and

the output of the procedure, must be a function of X, n, and the sequence of

oracle responses. A problem solver succeeds on a problem instance <Z,n,S>

if it ouputs a string in S if there is one when the input to the procedure is

<S,n> and the oracle is for S, and outputs "no solution" if S is empty. A

problem solver succeeds on a problem if it succeeds on every instance of

the problem.

There are some easy observations to be made about the computational

difficulty of this problem. We will measure complexity by the number of

calls made to the oracle.

Proposition 1: There is a procedure that solves the set predicate

problem with at most Ik _ 1
k = n sk queries.

Proof:. The cardinality of W is Ik „ 1
kssf1 sk. Consider the following

simple enumeration procedure where JI is an enumeration of £n such that

no longer string occurs before any shorter string, and strings of the same

length are in lexical order:

SIMP(n):

begin

until either the oracle answers "yes" concerning string K

or each string in u. has been queried

do

query concerning the first unexamined string in u. and

if the oracle answers "yes" for string n then output this

string;

if the oracle answers "no" for the last string in u, then output

"no solution"

end.

Clearly this algorithm expends k queries iff the first string in the target

language is in position k of u,. So in the worst case the entire sequence is

traversed and Ik m 1
k = n sk queries are made. QED.

It is easy to see that the worst case upper bound on the set predicate

problem given by SIMP cannot be improved.

Proposition 2: For each n, in the worst case any solution to the

set predicate problem makes at least Xk = - j k = n sk queries.

Proof: Suppose that for some n > m, learner f can solve each instance of

size n with fewer than Xk m -|k=sn sk queries. Then if the target language is

the empty language f will stop after some k < 1^ _ -j n sk queries. Let n

be some string not queried by f. Then when the target language is {n}, the

sequence of queries made by f will be the same as for the empty language,

and the series of responses by the oracle will be the same as for the

empty language, and f will halt after k queries with the same output as for

the empty language. Hence f will not succeed on {A}, which is a

contradiction. QED.

Clearly a result completely analogous to Proposition 2 holds if the set of

strings is required to be regular.lf an n state automaton accepts a string,

it accepts a string of length no longer than n-1. So suppose we are to

guess a string in a regular set given the number of states in an acceptor of

that set. We know we needn't check any strings longer than n to find one if

it exists. Viewed this way, our upper bound on the set predicate problem is

an upper bound for finding a string in a regular set using an oracle.

In applications, the number of states, n, in the finite state acceptor of a

regular target language is usually some quantity exponential in another

large parameter. For example, if automaton states are constructed as

state descriptions in a language with p monadic predicates, then n = 2P, so

the overall number of queries by SIMP is in the worst case Xk m -jk"2(p) sk^

where 2(p) denotes 2P.

Theorem 1: For all I, the expected complexity of the set

predicate problem is bounded by 2.

Proof: Let P be a uniform probability measure on the power set of W. That

is, for each subset S of W, P assigns {S} probability (1/2)r, where r =

Zkss1
k !sn sk. Recall that SIMP asks k questions of the oracle when the first

string in u, that is in the target language occurs in position k in JI.

Therefore the probability that SIMP uses k queries is the probability that

the kth string to occur in u, is the first string in p. that is a member of the

target language. In other words, the probability P(k) that SIMP uses k

queries is the sum of all P(S) such that S is a subset of W and string n is

in S, and no string prior to n in u, occurs in S. Each subset S of W that

contains n but no K1 prior to n in u. can be

expressed as the union {n} U S', where S' is in the power set of K =

W-faV = % or %' is prior to % in u,}. Since % is in position k, the

cardinality of K is Zk m 1
 k ~ n sk - k = r - k. Hence there are 2(r"k) subsets

of W that contain n but do not contain any it' prior to n in JI. Hence P(k) =

The expected number E(n) of queries of SIMP for all instances of size n and

alphabet I is the sum from one to Ik _ 1
 ks=n sk = r of k times P(k). So E(n)

- £k=1 k = r (^)• T n e in f in ' te series I k = 1 ~ (k/2k) is greater than E(n),

for every n, and converges to 2, since I kss1°° k/2k - 1/2 +

1) = 1/2 + Ik=1°°k/2(k+1) + Z k . ! 0 0 ^ ^ * 1) = 1/2 +

1/2Ik=1°° k/2k + 1/2, and hence 1/2Ik=1°° k/2k = 1. QED.

Theorem 2: The expected number of letters in queries in any set

predicate problem is bounded by 10.

Proof: Let Pki be the probability that the first word in the enumeration

SIMP that is in the target language is the ith word of length k. s is the

cardinality of £. There are ik letters in the first i words of length k and

there are I u = i u = ^ " 1 ^ suu letters in all strings of length less than k.

Therefore [ik + Iu_i Us=(k*1 ̂ suu] gives the number of letters in the

enumeration u, of SlMP(n) up to and including letters in the ith word of

length k. There are sk (denoted by s(k) in upper limits of summation)

words of length k. Hence the expected number of letters in queries by

SIMP(n) is

(1) E(n) = I k s = 1
 n I i = 1

 i=s<k> Pki [ik + I u = 1
 L'=(k-1)suu].

Reasoning as in the proof of Theorem 1, there are 2r equiprobable subsets

of W. The number of such sets containing the ith word of length k > 0 and

no preceeding word in JI is 2tr"('+l-'^) (where U - X u _ i u = k " 1 s u , and we

understand that if k=1, U is zero), because the ith word of length k is the

(i+U)th word in JI. Hence Pki =1/2fi+u3 and substituting in (1) we have:

(2) E(n) = I k = 1
k s s n I i = 1

i

The right hand side of (2) is the sum of two terms:

T2 = I k = 1
k = n I i = 1

i = s ^ [I u = 1
u = k * 1 s u u] / 2 0 + U]

We first derive a bound on T1 for all n.

T1 = I k = 1
k = n I i = 1

i = s (k) ik/2ti+Ul = Ik=1
kssn(I i as1

i !=S(k) l'2i) ^ 2 U <

I k = 1
k = n 2k/2 U ,

where the inequality follows from the argument of Theorem 1. Rearranging

the right hand side of the inequality we have Tt < 2 I k = 1
k = n k/2u- Now for

all s > 1 and all k, U = I U = 1
 Uas(k"1)su is greater than or equal to k, and hence

2U is greater than or equal to 2 k . Therefore:

T1 < 2 l k = 1
k = s n k/2U S 2 l k s s 1

k = n k/2k < 2X k = 1 ~ k/2k = 4.

Finally, we derive a bound on T2. We define Uu - Iu=1
Uss^k '1^suu. With that

abbreviation:

T2 = Ik s a 1
k = s n i : i = 1

i s s S (k) Uu/2t'+U) = Ik=1
k=n(X i ss1

i8=s(k> 1/2') Uu/2U <

I k = 1
k = n U u / 2 U

Now U2 > Z u - 1
 Uss(k"1> s 2 u > Z u - 1

 u = (k ' 1) suu = Uu because su > u for all

values of u. Hence T2 < £k s s 1
 k = n Uu/2 u < Ik s s - |k = n U2/2U- The quantity U =

X U S B 1
 u=(k*1) s u is a distinct number for every value of k. Therefore T2 <

Expanding the righthand side of the second equality we obtain

Zj . i ° ° J2/2j = (1 / 2) 1 ^ ^ j2/20*+1) + 2 £ j V | ~ J/20+1) + ZjaBi

+ 1/2. Now Z j . ! 0 0 J2/2C)+1) (1/2) I j= 1°°j2 /2i; 2 Zj_1
oej/20"+1) -

2j.i°°i/2i = 2; and IJ-=1
OC1/20'+1) = 1/2. Hence I j = 1 ° ° j2/2J = 1/2 + (1/2)

£ , v T J 2 / 2 j +2 +1/2 and therefore T2< Ij=1°°j2 /2J =6 .QED.

Take an automaton problem instance to be quadruple <Z, L, A, n> where L is

the set of strings from alphabet I accepted by A, and A has n states.

Assume as before an oracle for L, and understand automaton problem and

automaton problem solver by analogy with the set predicate case. The

number of states, n, of A will measure the size of any problem instance,

and a problem solver is given I, n and of course the responses of the

oracle to any queries the problem solver makes. As in the set predicate

case, we can investigate bounds on the average, over all problem instances

of size n for a fixed alphabet, of the number of queries a problem solver,

and SIMP(n) in particular, makes before ouputting a word in L if there is

one, or "no solution" if L is empty. Since in applications the automaton

states are usually given as state descriptions in a monadic predicate

language, we take the states of the automaton to be labeled, and

distinguish otherwise isomorphic automata with distinct labelings.

Counting finite automata meeting conditions on the existence of an

accepting path of a specified length but having no shorter path is difficult.

The following theorem avoids the difficulty by finding easily counted

properties that bound the expected number of queries for automaton

problem instances of a given size.

Theorem 3: For every finite I there exists a number N such that

for all n, the expected number of queries for the SIMP algorithm

over all instances of automata problems based on I and of size n

is less than N.

Proof: We assume that the initial state is fixed. Any subset of the n

labeled states may be chosen to be the set of accepting states, so there

are 2n specifications of accepting states. Each of the n states has s (the

cardinality of J.) arcs out of it, and for each arc there are n choices of

sink. So there are

nxn...xn x n x n...x n x x nxnx...n

[s factors] [s factors] [s factors}

{ n factors }

or (ns)n graphs. Hence there are 2nnn s automata for I having n states. (If

the initial state is not fixed, the number is 2nn(ns+1), which would make

no significant difference in the argument that follows.)

It is easy to show that the number of finite automata with n states

accepting word i of length l(i) on a path without circuits is

2(n"1 Wns"'('). For let p be the sequence of arcs whose labels in sequence

form the string i. The terminus of p must be an accepting state. Any subset

of the remaining n-1 states may be accepting, hence there are 2^n*^

choices of sets of accepting states. All of the arcs out of any state not

touched by p may be freely chosen, and so may the arcs out of the terminal

node of p. There are l(i) + 1 states touched by p. Hence there are (ns)(n"'W)

choices for the collections of arcs. All but one of the arcs out of each of

the states touched by p (save the terminal state of p) may be chosen

freely. There are n(s"1)'(') such choices. Hence there are

n(s-1)l(i)2(n-1)ns(n-l(i)) m 2(n-1)n(ns-l(i)) a u t o m a t a . t n a t a c c e p t word i

without circuits. If a word is accepted by a path with a circuit then the

word cannot be the shortest accepted by the automaton. Thus the number

of automata accepting a given word by a path without a circuit is at least

as large as the number of automata for which that word is the first word

in the enumeration u, that is accepted. Hence the probability, Pi, that i is

the first word of j i accepted by a randomly chosen n state automaton is

less than 2(rv1)n(ns- |('))/2nnns = 1/(2n'(')).

Now the expected number of queries for instances of size n, E(n), satisfies

(1) E(n) < I i _ 1
 issr i/2n'(') where r = I ; > (n - 1) s i .

Note that

(2) I i =m
iss(m+k) < (k+m +mk + k2'2).

The expression on the right hand side of (1) can be expressed as a sum of

"chunks":

where L(i) abbreviates the number of words in the enumeration of length

less than l(i), and M(i) abbreviates s'^. Applying (2) to this expression we

obtain

(3) E(n) < S| (i) l .1
l (i)" (n"

On simplifying (3) by multiplying through, the largest terms obtained are

LflJs'W/^n'W) and s^'V^n'W). We show by induction that for all s > 1

and all l(i) > 0, LOJs'W/^n'W) < s2|W/(2n'W) because s'W > L(i). The

base case is immediate since 1 > 0. Assume for l(i) = k that L(i) =

X j ^ H k - i y < sk we must show that I j m 1 W
ksJ < s(k + 1) . Now I j= 1J

= I : .jHk-1) sJ + sk < sk + s k by the assumption. Hence I:=1J=ksJ < 2sk <

s(k+1)> which proves the claim.

Returning to (3), we know that the largest term on the right hand side is

2| (j) . .1 l (J W n" 1) (s2/n)'(0. For every n > s2 , X,(i)ss1
 l (O = (n ' 1) (s2 / n) l (l) <

^k=1°° (s^n)k - Since s2/n < 1 for n > s2 , this series converges with some

limit R. For every n < s2 , I | (i) = i '^ = ^ n * 1)(s2/n)^0 is finite, and since s is

fixed, there is a finite set of such quantities. Let Q be the largest of them.

Then for every n, l\(\y\ ' (' M n - i ^ / n) 1 ^ ^ max{R,Q}. So there is a bound

on the largest term in the right hand side of (3), for all n. Hence there is a

K such that for all n, E(n) < Kmax{R,Q}. QED.

