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In recent papers we have described a framework for inferring causal structure from

relations of statistical independence among a set of measured variables. Using Pearl's

notion of the perfect representation of a set of independence relations by a directed

acyclic graph we proved :

Theorem I (Verma and Pearl): If a directed acyclic graph G perfectly represents

a distribution P over a set of variables V, then vertices A and B are adjacent in G

if and only if for all subsets S of V containing neither A nor B, A, B are not

independent conditional on S for distribution P.

Theorem 2 (Spirtes and Glymour): If directed acyclic graph G perfectly

represents a distribution P over a set of variables V and in G there is an edge

between vertices A and B and an edge between vertices B and C, but no edge

between vertices A and C, then there is an edge from A to B and from C to B if and

only if for all subsets S of V containing B but containing neither A nor C, A,C are

not independent conditional on S for distribution P.

We conjectured that Theorems 1 and 2 characterize all and only the directed graphs that

perfectly represent a distribution P, and we proved a restricted case of the conjecture.

We used these theorems to implement in TETRAD II an algorithm that for normally

distributed variables builds the corresponding class of directed acyclic graphs.

One of the important questions about using such procedures on real data concerns which

conclusions about causal structure based on the measured sample remain valid if there



are unmeasured variables at work. When, applying Theorems 1 and 2 to a set of

measured variables, are concusions about the presence or absence of a directed path

from measured variable A to measured variable B valid even if the true causal structure

contains unmeasured variables that act as common causes of the measured variables?

When, in other words, can we be confident of causal conclusions even though we may not

know whether there are latent variables acting? Some answers to this question follow as

corollaries to theorem recently proved by Verma and Pearl.

Our results build on recent theorems by Verma and Pearl. Using Theorems 1 and 2

(their Lemmas 1 and 2) they prove our first conjecture:

Theorem 3 (Verma and Pearl): If distribution P is perfectly represented by

directed acyclic graph H, then graph G perfectly represents P if and only if

(i) there is an edge between A and B in G if and only if for all subsets S of V

containing neither A nor B, A, B are not independent conditional on S for

distribution P; and

(ii) if in G there is an edge between vertices A and B and an edge between vertices

B and C, but no edge between vertices A and C, then there is an edge from A to B

and from C to B if and only if for all subsets S of V containing B but containing

neither A nor C, A,C are not independent conditional on S for distribution P.

Verma and Pearl prove two other theorems that will be essential in what follows. These

results essentially characterize the causal structure induced on a subset of variables of a

directed acyclic graph representing a distribution P by the marginal of P on the subset.

They require some definitions:

From the equivalence class of a graph construct the partially directed graph with

directed edges representing the edges whose direction is common to all members of the

class. This partially directed graph is the pattern of the equivalence class and of each of

its members. A hybrid graph contain may contain bidirected edges edges. Such graphs

may be used to represented the marginal structure on a set of measured variables when

unmeasured common causes have edges that collide (in Verma and Pearl's terminology,

are "head to head") with edges between measured variables. A o-> B denotes that a

pattern contains an edge between A, B with at least a head pointed into B.



adjacent vertices in the sequence is a pair of adjacent vertices in P. The edge x-

y is in u iff x and y are adjacent in the sequence.

: Definition 3: In a pattern P, a semi-directed path p from x to y is an

undirected path from x to y such that there is no edge a -> b in p such that b

occurs before a in u.

Definition 4: In a DAG G, a trek between distinct vertices x and y, is

either a directed path from x to y, a directed path from y to x, or a pair of

directed paths from a common source c to x any y respectively, that intersect

only at c.

We will show the following;

Theorem 6: Let G be a graph over a set of vertices U, and O be a subset of U

containing x and y, and P the pattern of G over O. If there exists a directed path p

from x to y in G then P contains an undirected path u from x to y, and if P does not

contain a triangle containing any two adjacent vertices on u, then u is a semi-

directed path from x to y in P.

Theorem 6 tells us that if the probability distribution on the set of measured variables

is not compatible with a directed path p from x to y that contains no triangles involving

adjacent edges on p, then if that distribution is the marginal of a distribution perfectly

represented by a graph on a larger vertex set, the larger graph also contains no directed

path from x to y.

The following theorem states under what conditions it is possible to infer from a pattern

the existence of a directed path in a graph G.

Theorem 7: Let O be a subset of vertices of G containing x and z, and let the

pattern of G for O contain a directed edge x -> z, no triangle containing x and z,

and a variable c such that c o-> x. Then in G there is a directed path from x to z.

Furthermore:



Corollary 1 : Let O be a subset of vertices of G containing x and z, and let the

pattern of G for O contain a vertex c such that c o-> x, and a directed path p from

x to z such that no adjacent pair u, w on p is in a triangle in P. Then in G there is

a directed path from x to z.

Lemma 1 : Let G be a graph over a set of vertices U, O be a subset of U containing x and

y, and P be the pattern of G restricted to O. If there is a directed path in G from x to y

that induces an edge in P, then there is no edge y -> x in P.

Proof. Suppose that the antecedent is true, but the consequent is false. We will show

that if the orientation y o-> x is induced by a path in G, then the orientation x o-> y is

also induced by G.

Suppose y o-> x is true in the pattern P. Hence either (i) there is a c such that c is

adjacent to x and c is not adjacent to y in P and the edges x-y and x-c are induced by

paths pointing into x or (ii) there is a c such that c o->y and x is a descendent of y in G.

(ii) is impossible because it implies the existence of a cycle in G. So assume (i) is the

case.

(i) implies that the edges y-x and x-c are induced by undirected paths in G both pointing

into x, and c is adjacent to x in G. This in turn implies that c o-> x in P. Clause (ii) of

Theorem 5 now implies that x o-> y in P.

Theorem 6: Let G be a graph over a set of vertices U, and O be a subset of U containing x

and y, and P the pattern of G over O. If there exists a directed path p from x to y in G

then P contains an undirected path u from x to y, then u is a semi-directed path from x

to y in P.

Proof. Break the path p in G into a series of subpaths such that only the endpoints of

the subpath are in O. Let a be the source and b be the sink of some such arbitrary

subpath. The edge a-b exists in P by Theorem 4. a is prior to b on p. The concatenation

of the edges induced by the subpaths are an undirected path u from x to y in P. By Lemma

1, it is not the case that b -> a. By definition of semi-directed path, u is a semi-

directed path from x to y.



Theorem 7: Let O be a subset of vertices of G containing x and z, and let the pattern P of

G for O contain a directed edge x -> z, no triangle containing x and z, and a variable c

such that c o-> x. Then in G there is a directed path from x to z.

Proof. Since x-z in P there is a path p in G between x and z such that every observable

node on p is head to head and every head to head node on p is a shieldable ancestor of x or

z.

If x -> z in pattern P arises because of clause (2) of Theorem 5, we are done because z is

a descendant of x in G. So suppose x -> z is oriented by condition (1) of Theorem 5. Then

there is a path p in G that induces x -> z and p is into z in G. If p contains no head to head

node and is not into x, then p is a directed path from x to z, and we are done. Otherwise

there are two cases: p contains a head to head node, or p is into x.

First, we consider the case where p is into x. Then there is a path between x and z that

induces an edge in P, and is into x. By assumption there is a vertex d in P such that d o->

x. By Theorem 5, either there is a vertex c in P such that c is adjacent to x and not d,

and both edges c-x and d-x were induced by paths of G which ended pointing at x, or c o->

d in P and x is a descendant of d in G.

Suppose that the first disjunct is true. In that case, either c is adjacent to z or it isn't.

If it is adjacent to z, then there is a triangle in P containing x and z. If c is not adjacent

to z, then by clause (2) of Theorem 5, z o-> x, contrary to our assumption.

Suppose now that the second disjunct is true. Since x is a descendant of d in G, there is a

directed path from some variable e in 0 to x that does not contain any variables in O

other than x and e. This path induces an edge e-x in P. If e is adjacent to x in P, then P

contains a triangle containing x and z; if e is not adjacent to x in P, then by clause (2) of

Theorem 5, z o-> x, contrary to our assumption.

We now consider the case where p is not into x, but there is a head to head vertex on p.

Let k be the first head to head node on p after x. If p is not into k, then there is a path

from x to k, and hence no path from k to x. So by clause (2) of Theorem 4, k is a

shieldable ancestor of z. The concatenation of the paths from x to k and from k to z is a

directed path from x to z, and we are done.



Corollary 1: Let O be a subset of vertices of G containing x and z, and let the pattern of

G for O contain a vertex c such that c o-> x, and a directed path p from x to z such that

for no adjacent pair u, w on p is there a triangle in P containing both u and w. Then in G

there is a directed path from x to z.

Proof. Since there is a directed path from x to z in P, there is a sequence of edges x -> a

-> b ... -> z in P. By Theorem 8, there is a directed path from x to a in G. Since x -> a,

Theorem 8 can next be applied to a -> b, to show that there is a directed path from a to b

in G. Repeating this process in turn for each edge on p, implies that there is a directed

path from x to z in G.
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