
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

An Algorithm for Fast Recovery of Sparse Causal
Graphs

Peter Spirtes and Clark Glymour1

Abstract
Previous asymptotically correct algorithms for recovering causal structure
from sample probabilities have been limited even in sparse causal graphs to a
few variables. We describe an asymptotically correct algorithm whose
complexity for fixed graph connectivity increases polynomiaily in the number of
vertices, and may in practice recover sparse graphs with several hundred
variables. From sample data with n = 2,000, an implementation of the algorithm
on a Decstation 3100 recovers the edges in a linear version of the ALARM
network with 37 vertices and 46 edges. Fewer than 8% of the undirected edges
are incorrectly identified in the output. Without prior ordering information the
program also determines the direction of edges for the ALARM graph with an
error rate of 17%. Processing time is less than 15 seconds.

Recovering Causal Relations

Consider pairs <g, P> for which g is a directed acyclic graph and P is

a probability distribution on the vertices of g such that (i) for every

vertex v and every set Sv of vertices that are neither parents nor

descendents of v, v and Sv are independent conditional on the parents

of v; and (ii) every independence relation in P is a consequence of the

independence relations in (i). Pairs satisfying these conditions can

be viewed as causal structures in which the causal dependencies

generate statistical dependencies. When the set of measured

variables for which probabilities are provided in the data is such

that every common cause of a measured variable is measured, we

say the structure is causally sufficient.

1 We thank Gregory Cooper for a conversation that stimulated this work.

Recovery problems have to do with determining g, or features of g,

from the distribution P or from samples obtained from P. In Spirtes,

Glymour, and Scheines(forthcoming) we proposed the following

algorithm for the recovery problem with causally sufficient

structures, using as input independence and conditional independence

facts about P2:

SGS Algorithm

(A) Start with the empty graph.

(B) For each vertex pair a, b, place an undirected edge between

a and b if and only if ~l(a,S,b) for each subset S not containing

a or b. Call this undirected graph G.

(C) For each triple a, b, c of vertices such that a and b are

adjacent in G, b and c are adjacent in G, and a and c are not

adjacent in G, direct the edges a - b and b - c into b if and only

if for every set S of vertices containing b but not a or c, ~l(a,

S,b).

(D) Output all orientations of the graph consistent with (C).

Verma and Pearl (1990) subsequently proved the correctness of the

algorithm and offered a variant that outputs a pattern rather than a

collection of graphs. The pattern has an undirected edge between

two vertices if the SGS output contains two graphs that orient the

edge in different directions; the pattern contains a directed edge if

2We denote by "l(a, S, b)" the claim that variables a and b are independent conditonal on
the set of variables in S, and by "-l(a,S,b) the denial of that claim.

every graph output by the SGS algorithm has the edge so oriented;

and the pattern may have a bidirected edge, e.g., a <-> b provided step

C of the algorithm determines that the a - b edge collides with

another edge at a and also collides with another edge at b. When all

common causes are measured and the data consist of the actual

independence and conditional independence relations, the pattern is

simply a representation of the class output by the SGS algorithm,

but when there are unmeasured common causes or independence

facts due to sampling variation rather than to P, the pattern is more

general.

Two graphs, g, g' are statistically indistinguishable provided that

for every probability distribution P, <g,P> satisfies the conditions

(i) and (ii) of the first paragraph if and only if <g',P> does. From the

independence facts of a distribution P such that <g,P> satisfies (i),

and (ii), the SGS algorithm returns all and only the graphs

statistically indistinguishable from g.

In the worst case, the SGS algorithm requires a number of

conditional independence facts that increases exponentially with the

number of vertices, as must any algorithm based on conditional

independence relations. But because for any undirected edge that is

in the graph g, the number of conditional independence facts that

must be generated and checked in stage (B) of the algorithm is

unaffected by the connectivity of the true graph, even for sparse

graphs the algorithm rapidly becomes computationally infeasible as

the number of vertices increases. Besides problems of computational

feasibility, the algorithm has problems of reliability when applied

to sample data. The determination of higher order conditional

independence relations from sample distributions is generally less

reliable than is the determination of lower order independence

relations. With, say, 37 binary variables, to determine the

conditional independence of two variables on the set of all

remaining variables requires considering the relations among the

frequencies of 235 distinct states, only a tiny fraction of which

will be instantiated even in very large samples.

To illustrate the difficulty of recovering the graph g (or a set of

equivalent graphs) from the probability distribution P, consider an

example due to Herskovits and Cooper (1990). Their Kutato1

Algorithm is a heuristic entropy minimization procedure for

recovering a directed graph given sample data and a total ordering of

the vertices such that vi > V2 implies that there is no directed edge

from V2 to v i . The asymptotic reliability of the procedure is

unknown. Nonetheless from large sample data the algorithm recovers

most of the connections on a sparse graph-the ALARM network

(Beinlich, Suermondt, Chavez, and Cooper1989)--with 37 variables

and 46 edges. In their example, the direction of the edges is not

recovered from the data but is determined by the prior ordering

given to the computer.3 See Figure 1.

3Herskovits and Cooper say that a variant of the Kutato' algorithm can determine the
orientation of edges without a prior ordering of the variables, but they do not describe
the properties of the application or give an example. They are also investigating
Bayesian alternatives that are much faster than the Kutato' procedure.

Fig. 1: Alarm Network

Using 10,000 cases an implementation on a Macintosh II required

about 22 and one half hours, about a quarter of which was required

to read the data-base. The output omitted two correct edges and

included two false edges. By comparison, the SGS algorithm has been

implemented in the TETRAD II program using partial correlation

tests for conditional independence. Run on a DEC workstation with

20 megabyte RAM the procedure stops at about 17 variables because

of space requirements to store the conditional independence facts.

Space could be traded for time, but the ALARM case is out of sight.

Verma and Pearl have suggested an improvement on the SGS

algorithm. For each pair of variables a, b introduce an undirected

edge between them if they are dependent conditional on the set of

all other variables. Call the resulting network N. (In the true graph,

G, the parents of any variable form a maximal complete subgraph-a

clique-in the network N.) Again for each pair of variables a, b

adjacent in N, determine if a, b are dependent conditional on all

subsets of variables in the cliques in N containing a or b. If so a is

adjacent to b in G. The complexity is thus bounded by the size of the

largest clique in N.

The practical value of the improvement is limited by the fact that

conditional independence relations of the order of the number of

vertices of the graph (minus two) must still be estimated, with

consequent costs in computational efficiency and reliability. With

discrete data the great majority of the corresponding states will

not be instantiated in the data, and with data from linear structures

the formula for higher order correlations is recursive: to compute

the partial correlations of nth order, three partial correlations of

order n-1 must be determined, and so on.

We should like an algorithm that has the same input/output relations

as the SGS procedure but for sparse graphs does not require the

determination of higher order independence relations, and in any

case requires as few conditional independence relations as possible.

The following procedure starts by forming the complete undirected

graph, then "thins" that graph by removing edges with zero order

conditional independence relations, thins again with first order

conditional independence relations, and so on. The set of variables

conditioned on need only be a subset of the set of variables adjacent

to one or the other of the variables conditioned, and can even be

confined to adjacent variables on certain undirected paths.

PC Algorithm:

Let Acab denote the set of vertices adjacent to a or to b in

graph C, except for a and b themselves. Let Ucab denote the set

of vertices in graph C on (acyclic) undirected paths between a

and b, except for a and b themselves. (Since the algorithm is

continually updating C, Acab and Ucab are constantly changing

as the alogorithm progresses.)

A.) Form the complete undirected graph C on the vertex set V.

B.)

n = 0.

repeat

For each pair of variables a, b adjacent in C, if Acab

n Ucab has cardinality greater than or equal to n and

a, b are independent conditional on any subsets of

Acab n Ucab of cardinality n, delete a-b from C.

n = n + 1.

until for each pair of adjacent vertices a, b, Acab n

Ucab is of cardinality less than n.

C.) Let F be the graph resulting from step B. For each triple of

vertices a, b, c such that the pair a, b and the pair b,c are each

adjacent in F but the pair a, c are not adjacent in F, orient a - b

- c as a -> b <- c if and only if a and c are dependent on every

subset of Apac n Upac containing b. Output all graphs consistent

with these orientations.

Note that Acab n UQab is not in general the set of parents of a or b

(in the oriented graph) on undirected paths between a, b, since

descendents of a, b may also occur.

An obvious modification of the algorithm will generate patterns

rather than collections of graphs.

The complexity of the algorithm for a graph G is bounded by

max(|AGab|) over all pairs of vertices a,b, which is never more than

the sum of the two largest degrees in G. Generally stage B of the

algorithm continues testing for some steps after the correct

undirected graph has been identified. The number of steps required

before the true graph is found (but not necessarily until the

algorithm halts) depends on the maximal number of treks4 between a

pair of variables, say a, b, that share no vertices adjacent to a or b.

If these maximal numbers are held constant as the number of

vertices increases, so that k, the maximal order of the conditional

independence relations that need be tested, does not change, then the

worst case computational demands of the algorithm increase as

n! 2k

2!(n-2)!

4A trek is a pair of directed paths from some vertex z to a, b respectively, intersecting
only at z, or a directed path from a to b or a directed path from b to a.

8

which is bounded by n2. It should be possible to recover sparse

graphs with as many as several hundred variables. Of course the

computational requirements increase exponentially with k.

In many cases it may be more efficient to perform conditional

independence tests on all subsets of Acab rather than to compute

I)Gab. We have not yet theoretically determined the trade-off.

The structure of the algorithm and the fact that it continues to test

even after having found the correct graph suggest a natural heuristic

for very large variable sets whose causal connections are expected

to be sparse, namely to set a fixed bound on the order of conditional

independence relations that will be considered.

Proposition: The PC and SGS algorithms give the same output.

Proof:

Let PGab denote the set of vertices in directed graph G that are

parents of a or of b, except for a and b themselves. We note a

lemma:

Lemma: In any pair <G, P> meeting conditions i and ii,. if

vertices a, b are not adjacent then they are independent

conditional on PGab n

The proof is a trivial modification of the argument Verma and

Pearl give for their Lemma 1.5

Now we show that steps A and B of the PC algorithm produce

the correct undirected graph. Let G be a directed graph

produced by the SGS algorithm. (Every graph produced by the

SGS algorithm shares the same underlying undirected graph.)

First we will show that every edge in the undirected graph of G

is also in the undirected graph F. The algorithm starts with a

complete graph C, and only removes an edge between a and b if

at some stage of construction of C, a and b are independent on

some subset of Acab n Ucab. However, if the edge between a

and b is in the undirected graph of G, then a and b are not

independent on any subset of variables not containing a or b.

Every edge in the undirected graph of G is also in C at every

stage of construction (and hence in F, which is C at its final

stage of construction.)

We will now show that if a and b are not adjacent in the

undirected graph of G, then a and b are not adjacent in F. If a

and b are not adjacent in G, then a and b are independent on

some subset of variables not containing a or b. By the lemma,

then, a and b are independent conditional on the set PQab n

UGba. Since every edge in the undirected graph of G is in C at

every stage of construction, Pcab n Ueab is a subset of Acab n

5Verma (1990), pp. 221-222.

1 0

Ucab, and hence a and b are independent conditional on some

subset of Acab n Ucab.

It remains only to show that step C of the algorithm orients

the graph correctly. Assume that in G, a, c are not adjacent

but a is adjacent to b and b is adjacent to c. In G, the a - b and

b - c edges collide at b if and only if there is no set S

containing b and not a or c such that a, c are independent

conditional on S. Since a, c are not adjacent in G, they are

independent conditional on the set PQac n Uoac. If the edges in

G do not collide at b, then b is a parent of a or of c, so b is in

Poac n Ucac, which is a subset of AFac n UFac containing b. If

the edges do collide at b in G, then a, c are dependent on every

set containing b and not a or c, and hence dependent on every

subset of AFac n UFac that contains b.

An Application of the PC Algorithm

We have applied the PC algorithm to a linear version of the ALARM

network. Using the same directed graph, linear coefficients with

values between .5 and 1.0 were randomly assigned to each directed

edge in the graph. Using a joint normal distribution on the variables

of zero indegree, three sets of simulated data were generated, each

with a sample size of 2,000. The covariance matrix and sample size

were given to a version of the TETRAD II program with an

implementation of the PC algorithm. This implementation takes as

input a covariance matrix, and it outputs a pattern. It does not

check to determine whether variables adjacent to vertices v i , V2 lie

11

on an undirected path between vi and V2- No information about the

orientation of the variables was given to the program. Run on a

Decstation 3100, for each data set the program required less than

fifteen seconds to return a pattern. In each trial the ouput patterm

omitted three edges in the ALARM network; in one of the cases it

also added two edges that were not present in the ALARM network.

Of the 43 edges in the ALARM network that the program did find, the

orientation of three of them is not determinable in principle from

the probabilities. In the first trial the program correctly found all

three edges that could not be directed in principle, in the second

trial it incorrectly directed one edge that could not be directed and

incorrectly failed to direct one edge that could be directed, and in

the third trial it oriented one of the three. Of the remaining forty

edges, the trials misoriented 5, 6, and 7 edges respectively, always

by judging that an edge was directed into both of its vertices (as the

pattern output allows) when in the ALARM graph it is directed into

only one. The results are summarized below:

of omitted #false #orientation

undirected edges undirected edges errors

Trial

Trial

Trial

1

2

3

3

3

3

0

2

2

5

6

7

1 2

The implementation used did not determine the adjacency sets lying

on undirected paths between two variables because in this case with

correlation data it was computationally cheaper to determine the

partial correlations for all subsets of Acab than to keep track of

Acab n Ucab. With discrete count data for which the determination of

conditional independence relations is more computationally

demanding, the alternative procedure described in our statement of

the algorithm might be faster. For example, for one pair of vertices

in the network, Aab consists of 8 vertices while Aab n Uab consists

of only two vertices.

The comparison of 15 seconds for the PC algorithm with 22 and one

half hours for the Kutato' algorithm should not be taken as a direct

comparison of the efficiencies of the algorithms, since the

DecStation 3100 is much faster than a Macintosh, and without the

assumption of linearity considerably more time would be required in

numerical operations to determine conditional independence.6

Nonetheless, the PC algorithm appears to be very fast and reliable

for sparse graphs. For similar data from a similarly connected graph

with 100 variables, the present implementation should require less

than two minutes.

6lt may in fact be the case that for large samples and variable sets the errors introduced
by assessing conditional independence through partial correlations or other aggregate
measures are adequately repaid in time savings.

13

References

Beinlich, I., Suermondt, H., Chavez, R., & Cooper, G. (1989). The
ALARM Monitoring System. (Technical Report KSL 88-84). Stanford
University: Knowledge Systems Laboratory, Medical Computer
Science.

Herskovits, E., & Cooper, G.. (1990). Kutato1: An Entropy-Driven
System for Construction of Probabilistic Expert Systems from
Databases. In Proceedings of the Sixth Conference on Uncertainty in
Ai(pp. 54-62). Cambridge, MA.

Spirtes, P., Glymour, C, & Scheines, R. (forthcoming). Causality from
Probability. In G. McKee (Ed.), Evolving Knowledge in Natural and
Artificial Intelligence. Pitman.

Verma, T., & Pearl, J. (1990). Equivalence and Synthesis of Causal
Models. In Proceedings of the Sixth Conference on Uncertainty in Al.
(pp. 220-227). Cambridge, MA.

14

