NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Graph-Based Knowledge Representation to
Support Design Abstraction in CAD Systems
Simon Szykman, Jonathan Cagan
EDRC 24-81-92

A Graph-Based Knowledge Representation to
- Support Desgn Abstraction in CAD Systems

Simon Szykman
and
Jonathan Cagan

Department of Mechanical Engineering
Carnegie Médllon University
Pittsburgh, PA 15213

‘Electronic Mail: szykman@edrc.cmu.edu
jcagan@edrc.cmu.edu

Abstract. This paper introduces a computational framework to support the process of
design abstraction. A domain-independent graph-based representation is presented to
support decomposition of adesign problem while modeling coupling between subproblems,
multiple representations of a design at varying levels of abstraction, and analysis of a
design. The representation separates knowledge into knowledge about the design instance,
'~ the domain of design, and the various levels of abstraction. The use of the representation is
illustrated with two examples: the des gn of a two-tiered column for buckling and the design
of ametal rolling operation for a continuous casting manufacturing process..

1 INTRODUCTION

This paper introduces a domain-independent graph-based representation to support abstraction of
design knowledge for conceptual design By abstraction we mean theremoval of a portion of detail to
reduce the amount of information needed to reason about a complex problem. Representation of
- . knowledge' for ab&raction through the use of computer aided design (CAD) systems is thus an
important area of current research.

The overall goal of this research is to provide a framework upon which a CAD system for
conceptual design'can be built Abstraction is often used by designers when faced with this complex
design task because their short term memory (i.e., working memory) has a limited capacity (Miller,
1956). Absraction allows designers to increase the amount of information in their working memory
(Newell and Simon, 1972), thus enabling them to have a broader per spective of the current sate of a
design. Abstraction is also linked with the use of analogy, which takes place at high levels of
abgraction and plays an important role at the conceptual stage of the design process (Gordon, 1961).
For a general overview of abgraction in engineering design and a review of related literature, see
Hoover, era/., (1991).

Paz-Soldan and Rinderle (1989) observe that conceptual design involves alternating steps of
reasoning in which detail isinitially ignored to focus on one design aspect, followed byfhe'addition of
complexity to the design representation. This addition of complexity enables the engineer to evaluate
the design and/or determine die sensitivity of the design to parameter variations. They call thisiterative
approach a srategy of alternate abstraction andrefinement. It isthereforeimportant that a knowledge
representation used for a CAD tool be able to smultaneoudy maintain repr esentationsof adesign (or
portions of a design) at different levels of abstraction. An approach to creating these levelsis through
problem decomposition.

Decomposition of a design allows the engineer to reduce a problem into a series of subproblems
which can, to some extent, be solved independently. However, even when a design problem can be
decomposed, the resulting subproblems can not always be decoupled. In other words, although the
subproblems can be consider ed independent for convenience, die effects they have on one another may
be significant. This is particularly true for mechanical design, due to the complex behaviors and
interactions which are characteristic of mechanical devices (Rinderle, 1986). Therefore, a CAD tool

should support decomposition, but the knowledge representation must be able to model these
interactions.

By progressing from the abstract levels at which conceptualization takes place to more detailed
levels, adesign concept can be evaluated through analysisin one or more engineering disciplines. We
will refer to engineering disciplines, such as beam mechanics, vibrations, etc., as domains. To allow
analysis in more than one domain, a design should be represented in' a domain-independent manner.
Clearly, information about a design isrequired for analysisin a specific domain. However, the sihce
equations for performing an analysis are general domain equations, they should not explicitly be pan of
the representation of the design itself. By keeping the design representation separate from domain
knowledge, multiple analyses can be performed on an particular design coricept by accessing the
appropriate domain knowledge when needed.

1 Thewords knowledge and information are used interchangeably in this paper.

Human-computer interactions are a necessary part of CAD. Thisis even true for intelligent CAD
tools, which are systems capable of carrying out part of the design process using some form of
qualitative or quarit"itative reasoning (Tomiyama, 1990). Motivated by this, our approach towards
knowledge representation isto maintain consistency with the way designers organize their ideas. Some
key pointsrelatedtothis approach are

1. Human designers use abstraction. Thereis a need for management of the different levels of
abstraction, aswell as a method of keeping track of ther elationshipsbetween them.

2. Designers decomposeproblems. Supporting decomposition requires representing not only the
components of a design, but also the interactions between them. Allowing coupling between
componentsisan important aspect of design representation.

3. Designersgenerate and test designs. Once a design concept has beenrepresented, it may need
to beevaluated Thisrequiresthat therepresentation support analysis of adesign.

4. Using the representation should be as simple as possible. The procedure for creating,
modifying and analyzing designs should be smple, allowing the engineer to only be concer ned
with the design problem.

In the next section, we introduce a graph-based knowledger epr esentation which isdesigned based

on the above requirements. In section 3, the framework is used to design part of a continuous casting
manufacturing process. Section 4 then discusses an object-oriented implementation.

2 THE GRAPH-BASED REPRESENTATION

In this section, the graph-based representation and its associated structure are formally presented and
defined. We propose a framework which allows relevant design knowledge to be represented at
multiple levels of abstraction and to be modified as the design changes. First a knowledge
classification is introduced which permits the separation of domain and design instance information
from design topology. Then the formal graph representation isintroduced.

2.1 Knowledge Classification

Torepresent adesign, one needsto be able to accurately describe the various parts of the design, the
connections between these parts, and boundary conditions applied to the design. To do this
adequately, one must define the topology of a design (i.e., how different parts of the design are
connected), as well as parametric or qualitative information about the design, such as mass, material
properties, stiffness and damping information, and boundary condition types.

-Topolog: a often be thought of independently from paramétric information. Thisis convenient
for several 1. ns. At the early stages of design, the topology may be fixed before the parametric
information i .hown. For example, in designing a tow truck winch, an engineer may determine the
configuration of the design (a cable attached to a shaft, turned by a motor) before assigning any
parameters (such as type of motor, shaft diameter, cable thickness, or dimensions). In addition,
because abstraction is the result of ignoring a certain amount of detail to reduce problem complexity,
parametric information is often not needed for the abgtract representation of a design.

2

The most important representation issue related to anadysis is the independence between domain
knowledge and knowledge about the design instance. We require that the representation of the design
be separate from the domain knowledge. This achieves the desired generality, by enabling a single
design representation to be used for analysisin multiple domains. A second advantage isthat because
domain knowledge is typicaly applicable to a class of problems, it can be used to andyze severd
designsonceit hasbeen represented .

Finaly, data management issues arise from supporting decomposition and abstraction. The
knowledge representation requires away of keeping track of die multiple representations of adesign at
different levels of abstraction, and relating design representations resulting from problem
decomposdition to one another.

To sty these needs, we distinguish between three categories of knowledgein this representation
(see Figure 1). Firdt, there is information about a design instance. This is referred to as system-
specific knowledge. System-specific knowledge is used to create a representation of the system of
interest, and contains no general domain information. System-specific knowledge is further divided
into two categories. connectivity knowledge and non-connectivity knowledge. Connectivity
knowledge is used only to describe the topology of the system, that is, which regions are connected to
which others, in what directions, and where boundary conditions are applied. All other knowledge
about the system, such as the types of parametric information described above, falls under non-
connectivity knowledge. To illustrate the distinction, consider the design of atruss. Connectivity
knowledge describes where beams are connected, in which directions they lie, and so on. All
information about the truss which is not directly related to the topology, such as materia properties,
beam geometry, and moments of inertia, is considered to be non-connectivity knowledge.

CJfaph Management
ICnowlcdge

Figure 1. Types of Knowledge

The second type of knowledge is domain-specific knowledge. - This knowledge consists of only
general domain-information (such as equations based on firgt principles or design heuristics) and
contains no information about the instance of the design which is being represented. Domain-specific
knowledge is typically applicable to a class of problems, not just the one under consderation. The
equations which form domain-specific knowledge are expressed in terms of variables. Particular
values of those variables are properties of an instantiated design, and are therefore considered system-
specific rather than domain-specific knowledge. Returning to the truss design, the domain-specific

3

knowledge consists of the generd information used in the analysis of trusses, such as force-
displacement relations or stress equations.

Thethin! type of knowledge is graph management knowledge. Graph management knowledgeis
used to organize thevarious|evels of the des gn, such as the different components in a decomposition
for different levels of abstraction. This is done with the use of subgraphs. A subgraph is a graph
which isrelated to another graph (or part of another graph) in a user-specified way. These knowledge
typeswill be described in more detail in subsections 2.3 t0 2.6.

2.2 The Graph Structure

Given this classfication of knowledge and separation of domain information from topology, we now
Introduce a graph-based representation that supports design abstraction by maintaining the topologica
relations and associating them with pertinent domain and design instance knowl edge. Knowledge is
stored in a generic form using data structures called knowledge modul es, which associate knowledge
with a particular part of adesign. Cagan (1991) discusses the concepts of knowledge modules in
greater detail.

Wedefine an object-module tuple asan object with pointersto a system-specific knowledge module
(SSKM) and adomain knowledge module (DKM). An object is adata structure consisting of alist of
pointers to other objects and to knowledge modules. System-specific and domain knowledge modules
are data structures used to store system-specific and domain knowledge. The four types of objects are
node objects, boundary condition objects, link objects, and graph management objects. For
convenience, the node, boundary condition and link objects, will be referred to as nodes, boundary
conditions and links. Each object can point to a system-specific knowledge module and a domain
knowledge module. If an object has no system-specific or domain knowledge module, the object
points to nil, instead of to a knowledge module.

Using the convention that bold |etters represent sets, agraph G can be formaly defined as:

G = {SG,N,BC,L,GM),
where .

SG « {SGi,..., SGi} isaset of subgraphs (i.e. a graph can be composed of other graphs),

N ={Ni,..., Nj) isaset of node object-module tuples,

BC ={BCi, .-,BCKk) isaset of boundary condition object-moduletuples,

L ={Li,...,Lm)isase of link object-moduletuples,

GM ={GMi,...,GM,) isast of graph management object-moduletuples,

One or more of the sets SG, N, BC, L and GM may be empty meaning that a graph can, but does
not have to include every type of component '

The various components which form a graph will now be described in greater detail. A ample
example will be utilized to illustrate their use. A more complex example will follow in section 3
Figure 2 shows a pair of Sender columns (the top one pinned and the bottom one clamped) in
compression. |f the load on the columns exceeds acritica load, the columns will fail by buckling

Note that the two columns can be individually modeled (decomposed), however their behavior is
coupled in that a change in one column may affect achange in die other column.

P

PV AV P a4

Figure 2. Buckling Columns

Figure 3 shows the graph which represents the system. Note that the graph consists of seven
object-module tuples, and that the topology of the system (the connectivity knowledge) is defined by
how the object-module tuples are connected. The non-connectivity knowledge and the domain
knowledge are stored in the system-specific and domain knowledge modules, respectively. Objects
which have pointers to nil are objects which do not have SSKMs and/or DKMs. Every object and
knowledge module has a label, or name, used for identificaticm purposes. These labels are arbitrary
and are assigned by the designer. The various components which form the graph in Figure 3 will be
discussed in the following subsections.

System-specific Domain
knowledge modules _ knawledgemodules
BCL-KM «*—<T Cl)—*~ nil
nil e+ UNKIi—*-- nil

___'_ N
COL-I-KM = ¢commmm (" OOLA1

AN

o)) nil -+ UNK2—+- "fl T* BUCKLE*3-KM
- Pointer to adoauia N

knowledge module COL-2-KM -Ae——(~
—_—— IPointer to a system-specific nil - - * UNK3—* in
koowledge module ~
’ BC2-KM o+ -CBB’ N 74

Figure 3. Graph for the Buckling Example
2.3 System-Specific Knowledge

System-specific khowledge consists of information about a particular instance of a design. System-
specific knowledge is represented using the sets of object-module tuples N, BC and L. Nodes are
used to represent regions (i.e., physical parts of a design), boundary conditions represent a boundary

5

condition applied to the system, and links represent connections between regions and/or boundary
conditions. Asilhtttrated above, connectivity knowledge is defined by the manner in which object-
module tuples are connected Non-connectivity knowledge associated with each node, boundary
condition or link is gored in its sysem-specific knowledge module. These SSKMs take the form of a
list of variables with values. Since non-connectivity knowledge can be qualitative, these values are not
necessarily numerical.

The following subsections describe nodes, boundary conditions, links and their associated SSKMs
in greater detall, using the buckling columns as an example. 1n addition to representing system-specific
knowledge, the context in which the system is being examined must be defined by adding domain
knowledge. Thisis done by pointing to a DKM. Domain-specific knowledge will be described in
subsection 2.4. -

2.3.1 Node Objects and Associated System-Specific Knowledge Modules

A nodeis adata structure which represents aphysical part of the syssem. A node object-module tuple
Is a node which points to a SSKM and a DKM. A node can aso point to links (which are used to
connect the node to other nodes or boundary conditions), and a graph management object A SSKM
associated with anode contains al non-connectivity information of interest for the region represented
by that node.

Thefirst step in modeling our example system is to represent the two columns. For the purpose of
a buckling anaysis, each column is considered to be a single region and can therefore be represented
by one node. Two nodes, arbitrarily called coL-1 and coL-2 arecreated. Two SSKMs called COL-I-KM
and coL-2KM are created, and "connected"” to their respective nodes using apointer (see Figure 3). The
information contained in each SSKM is the value of E (the elastic modulus for the column materid), |
(the cross-sectional moment of inertia), and L (the length), associated with that column.

2.3.2 Boundary Condition Objects and Associated System-Specific Knowledge
Modules

A boundary condition is a data structure which represents a boundary condition in the sysem. A
boundary condition object-module tuple is a boundary condition which pointsto a SSKM and a DKM.
A boundary condition must point to alink, which connects the boundary condition to the node at which
that boundary condition is applied

For our buckling example, there are two boundary conditions, one for each column. -The boundary
conditions, called Bcl and BC2, each point to SSKMs, respectively called BcikM and BC22KM (sec
Figure 3). Theinformation contained in each SSKM s the type of boundary condition at the end of the
column. In thiscase, referring to Figure 2, the boundary conditions are apinned end at the top and a
clamped end at the bottom.

L fy

2,3.3 Link Objects and Associated System-Specific - Knowledge Modules

A link isadata strtK:_t,wewhich isused to define a connection between two objects - ether two nodes, a
node and a boundéf)'/' condition, or two boundary conditions. A link object-module tuple is a link
which pointstoa SSKM and aDKM. Note that information contained in the SSK M's associated with
linksislimited to characteristics of the connections between the objects which are linked together, and
not information about die nodesand/or boundary conditions themselves.

Threelinks are necessary for our example system (see Figure 3). linkSLKNKI, UNK2, and UNK3 are
created UNK?Z2isused to connect the two nodes to one another, and the other links are used to connect
each nodeto a boundary condition. For our buckling examplethereareno SSKMs associated with the
links because no information about the connections isrelevant to the analysis; the buckling analysis
implicitly assumes a rigid connection which transfers coupling information between the individual
columns. Note that thelinksin Figure 3 paint to nil instead of to SSKMs.

Links are not confined to only representing physical connections. Inreal systems, thereisoften a
cause-and-effect relation between parts of the system which are not physically connected. One example
of these connections (referred to as causal connections) is dynamic coupling where the motion of a
body can affect the motion of another body even though the bodies are not directly connected to ene
another. Another example of causal connections is distance forces, such as gravity or magnetism,
which occur without a physical connection. Linkscan be used torepresent these causal connections*

2.4 Domain-Specific Knowledge

Domain-specific knowledge, as stated previously, consists of general information relevant to a
particular domain. Domain-specific knowledge can be used to model a class of designs via generic
design equations, which are contained in domain knowledge modules. To be applicableto a variety of
designs within a given domain, the domain knowledge module must not contain any system-specific
knowledge. Because the equations may apply to a more than one object, several objects may point to
the same DKM. Thus, although there is a one-to-one cor respondence between objects and SSKMs,
the correspondence between objects and DKM s may be many-to-one.

DK Ms differ in sructure from the system-specific knowledge modules which consist of lists of
variables and their values. The domain equations are in terms of variables but the values of those
variables for aparticular system are system-specific knowledge, and are stored in SSKMs. The
domain equations are ther efore incor porated as part of a piece of code. The purpose of this code is to
search the graph to identify which objects contain what information in their knowledge modules,
retrieve thevalues necessary for a particular anaiysjs and subgtitute those values fet* t'.hevariables in the
domain equations. _ '

" For the analysis in our example, the domain knowledge module is called BUCKLING-KM. This
knowledge module contains a function which evaluates the theoretical value of the end-condition
congtant (based on the boundary conditions), and Euler's formula for thecritical"buckling load:

Per = nx2EI/L2 1)

where E isthe eastic modul us of the column materid, | isthe moment of inertiaof the column, L isdie
column length and n is the end-condition constant This DKM can be used for a class of buckling
- problems, where tfc‘thumber of columns, the column material, length or cross-sectional geometry may
al vary. The Ioad‘t"l,'f_i an individual column can be calculated by adding the weights of the columns
above to the external 1oad; these influences from the other columns can be derived through the link
connections. Note that in Figure 3, only the nodes point to the DKM, because they represent the
columns being analyzed :

2.5 The Buckling Example Graph

Returning to the set fonndization, we can represent the graph for the buckling example as

G ={SG,N,BC,L,GM},
where

SG={ } isthesetof subgraphs,

N = (C»""COL-I-KMBUCKLING.KM), COL-2KCX)L-2KMBUCKLING-KM)} isthe Set of node

object-module tuples,

BC = {BcI-kBCI-KM, nil), BC2BC2KM, nil)} isthe sat of boundary condition object-module

tuples, |

L = {UNKi-Kn, nQ, UNK2Kn?, nil), UNK3*(, nil)) istheset of link object-modul etuples,

GM ={ } isthe st of graph management ohject-module tuples.

Empty brackets indicate an empty set and an arrow indicates an object pointing to a pair of
knowledge modules (a SSKM and a DKM), forming an object-module tuple. Note that as shown by
the pointers to nil, the links in L have no SSKMs, and neither the links in L nor the boundary
conditions in BC point to a DKM. This example has no subgraphs or graph management object-
moduletuples. These concepts will be defined in the following section.

2.6 Graph Management Knowledge

A system can often be decomposed into numerous subsystems. These subsystems may be addressed
independently, but are usualy coupled to one another at some level. Even if the subsystems are

coupled, their decomposition may be convenient for the designer, particularly when dedling with

complex systems. These subsystems are represented using subgraphs. A subgraph is agraph which
is related to another graph, or part of another graph. Grgph management object-module tuples are used
to implement the concept of subgraphs.

A graph management object-module tuple is a graph management object which pointsto a graph .
management knowledge' module (so-called to distinguish it from SSKMs which contain system-
specific knowledge). Because graph management objects have no domain knowledge, they aways
point to nil for aDKM. A graph management object must point to two nodes: aparent node and a
subgraph node. The parent node is the node which has a subgraph and the subgraph nodeisanode in
the subgraph. Graph management knowledge modules aso have a structure which is different from

8

that of die system-specific knowledge modules. A graph management knowledge module is used to -
identify 14 'r ?‘.h e n anode and its subgraph. The use of graph management object-
moduletqplesto*“fegraphsto one ancother isillugrated in Figure4, where Graph B isa subgraph of
Node 1inGraph / #

Gréph A (%‘)‘/ Nodel Graph Management
I Knowledge Module

® _ Description cf
I . relationshipbetween
Node land GraphB

GraphB O Node
i # Graph Management Object

Figure4. Useof Graph Management Knowledge (Note: Link objectsnot shown)

Subgraphs are used to help a designer deal with complexity by supporting decomposition and
representation at different levels of abgtraction. Thisisdone using an abstraction hierarchy; wherea
nodein agraph can have a subgraph which isa more detailed representation of that node. Each ofthe
nodesin die subgraph can in turn have subgraphs, and soon. In an abstraction hierarchy, high level
(abstract) information is stored at the " top", and mor e detailed information is stored in subgraphs. The
amount of detail increases with depth in the hierarchy.

The buckling column example is too simple to illustrate this idea. Instead, we will use as an
example the design of a continuous casting process. 1n a continuous casting process, molten metal is
continuously poured into a mold, withdrawn from the mold, cooled, and undergoes some sort of
processing. Figure 5 shows a graph representing a continuous casting process. Thisis a very
abstract, high-level description of the process. Gearly, thereis not enough detail hereto be able todo
any kind of analysis. However, since designing a continuous casting process is a complex tak, the
initial approach an engineer might take is to decompose the process into subprocesses, in order to
reduce thecomplexity of the problem.

Figureéi‘ Graph of Continuous Casting Process (Note: Link objects not shown)

"For the design of the entire contianUs casting process, each of these nodes would point to a
subgrapH representing that brocess in greater detail. Figure 6 shows a possible abstraction hierarchy
for this problem (the names of the nodes have been left out). Subgraphs can continue " downward"
several levelsto capture increasing detail. Thisis useful if parts of a subgraph are sufficiently complex
towaiTant " sub-subgraphs™ In general, thisconcept can be extended downwahlsto any level of detall
or upwards to an arbitrary level of abstraction. Eastman, et aig (1991) proposed a similar type of

9

hierarchy using sets of functional entities. At onelevel, a functional entity is a single sructure, but it
may also be composed of other functional entities.

O—<X>—0—0-0

t t t t t t

Subgraph «f Subgraph of Subgraph of Subgraph of Subgraph of Subgraph of

Pouring Cooling Withdrawal Rolling W mping
Process Process fProcgss Process ‘ 1
0 e $9
H Graph Management Object Other subgraphs Other subgrapk Other subgraphs

Figure 6. Hypothetical Abstraction Hierarchy (Note: link objects not shown)

Working at an abgract level reduces the amount of information involved with a problem, which is
useful when faced with a complex design task. However, the detailed information is necessary at some
point (for analysis, for example). Using subgraphs, the engineer can simultaneoudy represent -a
system at multiple levels of abstraction. Thisis done by making the detailed graph a subgraph of a
single node, and using that node (an abstraction of the detailed subgraph), as part of the graph of a
more complex system. The motivation for including this capability isto allow a designer to capture
desired detail, but also when it is convenient, to be ableto consider a system or subsystem asawhole.”

Figure 5 showed how a continuous casting process could be decomposed. However, asis typical
of mechanical design problems, the various subprocesses are not decoupled. If we decide to change
the shape of the strip by modifying the mold, which is part of the pouring process, we may need to
change the cooling process to accommodate a different molten metal flow. In addition, that change
would need to be reflected at the withdrawal and rolling processes as well, since the change in grip
shape may prompt changes to those processes as well. By using graph management objects to keep
track of the different levels of a design, we provide a means for information flow associated with these
types of interactions. Although we are able to approach the design of each ‘subprocess separ ately, the
connectivity between them, and thus the knowledge about potential interactions, is preserved.

3 EXAMPLE: DESIGN OF A ROLLING PROCESS

In section 2, asimple buckling column was used to illugtrate the use of the graph representation and its
components. The buckling exampleisrather smple, but it makes several points. First, all knowledge
relevant to the problem is efficiently stored in & modular fashion using this representation. Second,
topol ogicail ,domain, and design instance knowledge are maintained independently. Third, a series of
different models of interest can rapidly be generated. For instance, changes in material, column
geometry or boundary conditions can quickly be made by modifying the values of E, |, L, and/or the
boundary condition type in the SSKMs. Columns could easily be added by adding new object-module

10

tuplesto the graph* The domain of analysis can be changed by changing pointers to adifferent DKM
These kiess cany @ ._* models of more complex systems and more complicated types of andysis.

In this secttoflgFE present a more detailed example which has been implemented using this
representation- if*’\ poblem is to design a two-high rolling process, to be used as part of the
continuous casting. process described in the previous section. The design begins at the conceptud
level, and thefina result isafeasible rolling processdesign. The emphasis of this section is on the use
of the representation and not on the analysis being done, which will be abbreviated The equations
used in this section and the assumptions made in their derivations are presented in greater detail in
Kdpakjian (1991). The set of specifications which we will be usng are described in Appendix A.
These specifications are presumably imposed due to specifications on the overall manufacturing
process, such asthe thickness of the parts being made and how many must be produced per day.

Figure 7 shows atypica two-highrolling process. Inthisprocess, acontinuous meta strip having
acertain height, enters apair of rolls which are rotating at a constant angular velocity, and exits at a
reduced height

Figure 7. Typica Two-High Rolling Process

Figure 8 shows the graph representing the initial attempt at a design for the rolling process. Four
of the nodes and two of the links in the graph point to system-specific knowledge modules which
contain information relevant to the design. In this case, the relevant infonnaticm for the strip being
rolled isitsheight (inches), width (inches), and materid propertiesK and n (explained in Appendix A).
Therdlevant infomiation for therollsistheradius, R (inches), and die angular velocity, co (rpm). Note
that the coefficient of friction is not a property of the strip or theroll, but rather the interface between
thetwo, so thisinformation is stored in the SSKMs associated with the links, as shown in the figure,

h-1.0
w=9.0
K =30500.0
n=0.13
Node
Link

* Knowledge Module
Figure 8. Subgraph of the Rolling Process Node

1n

Rolled Strip, the center node, is smply a dummy node used to " connect” the input and output grips
totheroalls. ThennodeRolled Strip points to a domain knowledge module called TWO-HIGH-KM, which is
not shown in thefigure. The DKM contains six equations which describe the physical behavior of a
two-high rolling process. These equations, numbered (2) through (7), are contained in Appendix B.

~ Ananalysisof theinitial design revealsthat with the given valuesof \i and R, Ahmax, the maximum

allowable change in height, is 0.32. The specified Ah is 0.4 which exceeds the maximum possible
value, sotheinitial attempt shown in Figure 8 isnot feasible. To increase Ahmax, we can increase |i or
R. However, increasing friction raises power requirements, as can be seen by equations (2) and (4),
so we decide to increase theroll radius. A quick calculation shows that increasing R to 10.0 inches
will make the specified Ah possible. The change is made directly by changing the valuesof R in the
SSKMs for Roll 1 and Roll 2.

‘Now the modified design is analyzed. Therequired power for the two-high rolling processis 1015
hp. Thisismore than the available engines are able to supply (500 hp) so thedesign is still infeasible.
Since CD isfixed and \i isalready aslow asit can be, wedecideto add a second rolling station and split
therolling processinto two stages, each reducing the grip height by 0.2inches. Therefore, we can use
a second enginefor the new stage and till have both rollsin each stage driven by a single engine to get
even rotation. Totake work hardening into account, the width, w, and the initial height, ho, used for
each stage are the unstrained values for the grip (which are the values before any rolling took place),
giving an upper bound on the power required. Therefore, the values of w and ho used for the analysis
of each stage are 9.0 inchesand 1.0 inch respectively, but the exiting heights, hf are different.

Another advantage of adding a second stage is that now the Ah through each rolling station is
reduced. Thisallows usto reducetheroll radius and still not exceed the maximum allowable value of
Ah, given by equation (7). ‘As can be seen from equations (2), (3) and (4), thereduction in radius will
reduce therequired power. Sincewe halved Ah, we halvetheroll radiusto 5.0 inches.

The graph representing the design ismodified by changing the values for R in the system-specific
node knowledge modules. Next, four new nodes and links are created, given SSKMs as before, and
connected to the existing graph. A pointer isthen set from the new node Rolled Strip 2 to the DKM,
TWO-HIGH-KM. Thenew design is shown in Figure 9 Ginks and knowledge modules are not shown).

Figure 9. Mlodified Subgraph of the Rolling Process Node

Results of the analysis of this new design are that the firs station requires 203 hp and the second
dation requires478 hp (the difference is dueto srain-hardening). Both values are below the maximum
power the engines can deliver, so this design is feasible. We also notice that the total power for the

12

processis 681 hp* a 33% decrease from the previous value of 1015 hp. Clearly, adding stations a_nd
reducing dierolffTQLk,ijsimprovesthe design considerably. However, adding stations, while reducing
operating costs, i||8;_;ises initial investment cost, so there is a tradeoff between initial cost and
oper ating cost WIPfVe not consider ed any economic factorsin designing this process.

Theuse of subgraphsto create an abstraction hierarchy was shown in Figure 6. For thisexample,
we only focused on thedesign of therolling process. Asdescribed earlier, in practice each part of the
continuous casting process would have a subgraph with a moredetailed representation. If wewereto
extend thisexample to complete the design of the entir e continuous casting process, the graph shown in
Figure 9 would be the subgraph of the Rolling Process node in Figure 6. To modéd the rolling
process, only one additional level of detail is needed However, parts of the subgraphs for the other
processes may themselves have more detailed subgraphs if necessary, creating additional levels of
depth in the abstraction hierarchy.

Note that from an abstract concept of a continuous casting process, details of a two-stage, two-high

.rolling process have been developed; the other processes can be similarly implemented Thisexample
illustrates the use of alternate abstraction and refinement, generate and test, problem decompostion and
coupling, and theinteractive process of conceptual design.

-

4 IMPLEMENTATION

Therepresentation presented in this paper has been implemented using an object-oriented paradigm
in Allegro Common Lisp with Flavors, on a Sun workstation. An object-oriented approach is
inherently amenableto the creation of " trees' which can represent decompositionsfor different levels of
abgtraction (thé obj ects themselves are abstractions of the parts of the design they represent). It also
allows components of a design and the connections between them to be generically represented The
object-oriented framework lends itself to creating arepresentation which can be used to mode! the
connectivity between components of a design.

We foresee a mouse-driven user interface to this software, where a designer would be able to
rapidly create adesign representation, add and delete objects, analyze the designs, and change domains
of analysis. Theresult would be an environment which is easy to use and which supports conceptual
design through the process of abstraction.

5 DISCUSSI %

This paper addresses issues involved with the use of abgtraction in design. We have introduced a
knowledge representation to be used as the basis for a CAD tool for conceptual. design which
incor por ates several ‘uniquefeatureﬁ ‘One feature is the classification of knowledge shown in Figure 1.
The separation of system-specific knowledge and domain-specific knowledge allows a designer to
perform different types of analysis on a given design, by changing pointers to different domain
knowledge modules, without changing the topological design representatiori; Conversely, because
DKM s contain no knowledge about the system, the equations contained in them arevalid for aclass of

13

designs. SinceaDK M can be used to analyze a variety of problems, a new one does not need to be -
created for an analysis if an appropriate one has previousy been created. Ultimately, a library of
domain knowledge moduleswill be created, and adesigner will select a particular domain for analysis
smply by setting pointers to one of them.

The knowledge classification also allows knowledge about the design instance and knowledge
about thedomain to be changed independently of one another and the given topology. Thisleadsto a
simple procedure for creating and modifying designs as well as investigating design sensitivity to
parameter changes. Such modifications areimportant because design ismost often an iterative process.
Aswas seen with therolling example, an initial attempt at adesign may beinfeasble, or if it isfeasble
it may require refining.

Another unique feature introduced is graph management knowledge which is used to create the
concept of subgraphs. Through the use of subgraphs, an engineer can decompose a problem, as well
as create and manage multiple representations of a design at different levels of abgtraction. This, in
turn, allows a design to be represented at both abstract and detailed levels smultaneoudly, thereby
supporting the process of alternate abstraction and refinement Graph management knowledge can also
be used to transfer information associated with interactions between coupled parts of a design which
has been decomposed.

Thisresear ch was partially motivated by the designrepresentationused for the 1PRINCE design
automation system (Cagan and Agogino, 1987). Cagan (1991) used a connectivity graph to model
rigid connections between regions to support design innovation. 1PRINCE has been applied in the
domains of mechanical sructures by Cagan and Agogino and chemical reactor networks by Aelion, et
al., (1991). Our representation is more general than that presented by Cagan. However, when the
t*PRINCE methodology is applicable, our representationcan be used in conjunction with IPRINCE
by requiringthat all connections berigid, and by limiting connectionsto three orthogonal directions.

6 FUTURE WORK

There are several ongoing research issues which must be addressed in the context of this
- resentation. One such issueisthat of eitor checks. An expectation for intelligent CAD toolsis that
- - process of detecting errors be partially automated. These errors may be ambiguities, semantic
trorsor integrity errors which lead toill-defined designs or to invalid configurations. At present, the
burden of detecting errors is left in the hands of the designer. A designer could clearly benefit from
having the system recognize impossible configurations or constraint violations. In addition to
inconsistencies widiin a graph, another potential source of problems is discrepancies between a graph
and its subgraph. ' - o
An issue related to error checking is constraint propagation (e.g., Serrano and Gossard, 19881
Condtraint propagation and management often becomes an important concern when a problem i>
decomposéd into subproblems (Brown and Chandrasekaran, 1984; Mahfa and Fenves, 1985.
Steinberg, et al., 1989). However, most mechanical subproblems are highly coupled and constraint

14

propagation may be complicated. An example of this need occurs when imposing boundary
conditions- Presently, where and when to apply boundary conditions isleft to the engineer. However,
there are times when boundary conditions must be applied. In Figure 10, a system isrepresented by a
graph consisting of two nodes, each of which isrepresented in greater detail by a subgraph. Firg, a
boundary condition on anode (BC-1) mus beinherited by its subgraph, as shown. Second, boundary
conditions which did not exist in the parent graph, in this case BC-2, must be imposed on the
subgraphs to somehow indicate that die“parent” nodesare connected Communication between graphs
can be useful for taking into account coupling between different parts of a system. The use of graph
management knowledge for flow of information between subgraphs needsto be investigated further.

Graph G ECD—~FeodeD—Fadd)
~
A
ECD—Roseid—~FodeiD—~ECD
Subgraph of Nodel Subgraph of Node2

Figure 10. Required Congraint Propagation (Note: links are not shown)

Because design is an iterative and dynamic process, keeping arecord of versions of adesign would
be an important option to make available to a designer, asadesign evolves, adesigner may choose to
keep a trace of design changes and reasons for making those changes. Thiswould make backtracking
easier, and could help adesigner avoid repeatingmistakes. A trace of decisions could be implemented
using subgraphsin this representation. The most recent version of adesign would point to a subgraph
consisting of an earlier version via a graph management object The change made and the reason for
modifying the previous design would then be contained in the graph management knowledge module.

7 CONCLUSIONS

This paper presents a knowledge representation which is structured to support design abstraction.
Several featuresfor the representation have been motivated, including support of the decomposition of
a design problem, analysis of a design, and domain-independent representation of a design. This
graph-based representation uses two key concepts to achieve these goals. Firgt, the srict distinction
between types of knowledge leads to a domain-independent designrepresentationthat allows a design
. to be analyzed from different per spectives. Modification of graph topology also permits fundamental .
modification of design concepts. Second, the concept of subgraphs allows.a designer to decompose a
problem into subproblems and to represent subproblems at various levels of abstraction while ill
maintaining the in.heren't coupling between them.

The aim of this research is to produce a knowledge representation whioh allows a designer to
computationally create and evaluate new concepts. In supporting problem decomposition and iterative
design, and by allowing a designer to visualize concepts at different levels of abstraction, we provide a

15

powerful tool for use by engineers at the early stages of the design process. Initid applications to
engineering design problems seem promising. Both the capabilities and limitations of this
representation need to be investigated more fully.

ACKNOWLEDGEMENTS

The authors would like to thank the National Science Foundation for supporting this research under
NSF Grant DDM-9108832, and Linda Schmidt for her comments on this manuscript

REFERENCES

Adion, V.. Cagan, J. and Powers, G. (1991), "Inducing Optimally Directed Innovative Designs
from Chemica Engineering First Principles,” Computer sand Chemical Engineering (inpress).

Brown, D. C. and Chandrasekaran, B. (1984), "Expert Systems for a Class of Mechanica Design
Activity," Proceedingsof thel FIP WG 5.2 Working Conference on Knowledge Engineeringin
‘Computer Aided Design, Budapest, Hungary, September.

Cagan, J. §1991)_, "A Graph-Based RePr%ntamion to Support Structural Design Innovation,”
ProceedingsoftheFirstI nternational Conterenceon Artificial | ntelligencein Design, Edinburgh,
Scotland, UK, June 25-27, pp 665-682.

Cagan, J. and Agogino, A. M. (1987), "Innovative Design of Mechanical Structures from First
PEir)m:ipIea" AIEDAM: Artificial I ntelligenceinEngineering,Design,AnalysisandManufacturing,
1(3):169-189.

Eastman, C. M., Bond, A. H. and Chase, S. C (1991), "A Data Model for Design Databases,"
Proceedingsof theFirst| nternational Conferenceon Artificial | ntelligencein Design, Edinburgh,
| Scotland, UK, June 25-27, pp 339-365.

Gordon, W. J. J. (1961), Synectics, the Development of Creative Capacity, Colier Macmillan,
New York, NY.

Hoover, S. P., Rinderle, J. R. and Finger, S. (1991), "Models and Abstractions in Design,"
Proceedingsofthel nternational ConferenceonEngineeringDesign,| CED 91, Zurich, Switzerland,
August 27-29.

Kalpakjian, S. (1991), Manufacturing Processesfor Engineering Materials, Addison-Wedey,
Reading, MA, pp 344-362.

Maher, M. L. and Fenvcs, S. J. (1985), "HI-RISE: An Expert System for the Preliminary
Sructural Designof High RiseBuildings," KnowledgeEngineeringin Computer-AidedDesign, J. S.
Gero, edy Elsevier Science Publishers, Amsterdam, pp 125-135.

Miller, G. A. (1956), “The Magica Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information,” Psychological Review, 63(2): 81-97.
. Newdl, A. and Smon, H. A. (1972), Human Problem Solving, Prentice Hall, Englewood Cliffs,
STy - . : , - . /. _
Paz-Soldan, J. P. and Rinderle, J. R. (1989), "The Alternate Use of Abstraction and Refinement in

Conceptua Mechanica Design,” Proceedingsofthe ASMIE Winter Annual Meeting, American Society
of Mechanica Engineers, San Francisco, CA, December 10-15.

Pandurang, P. P., Joskowicz, L. and Addanki, S. (1991), "Context-Dependent Behaviors: A
Prdiminary Report,” IntCAD 1991, Preprintsofthel FIPWG52WorkingConferenceon| ntelligent
CAD, Columbus, OH, September 30-October 3.

16

Rinderle, J, R- (1986), "Implications of Function-Form-Fabrication Relations on Design
Decomposition Strategies,” Computers in Engineering 1986,1, American Society of Mechanical

Engineers, July.
Serrano, D. and Gossard, D. (1988), "Constraint Management in MCAE," Artificial Intelligence in
Engineering: Design, J. S. Gero, e&, Elsevier Science Publishers, Amsterdam, pp 217-240.
Steinberg, L., Langrana, N. and Fisher, G. (1989), "MEET: Decomposition and Constraint
Propagation in M echanical Design/* Preprints, NSF Engineering Design Research Conference,
Amherst, MA, June 11-14.

Tomiyama, T. (1989), "Intelligent CAD Systems," Tutorial Notes, Eurographics '90, Montreaux,
Switzerland, September 2-7.

17

APPENDIX A Rolling Process Design Specifications

1. Thetype of raffing processisatwo-high rolling process'

Material: 5052-O Aluminum (K = 30500 psi,n=0.13/

Height of input strip (ho): 10inch

Height of output strip (hf): 0.6 inches

Width of input strip (w): 9.0 inches

Angular velocity of therolls (co): 50rpm

Coefficient of friction (\i): 0.2

Engines available in-house can deliver amaximum of 500 horsepower

Bath rollsin atwo-hi gh stage must be run by a single engine to insure even rotation
10 Ignore economic considerations

© 0N~ WN;

* For a strainhardening material the stress-strain relation is approximated by a = Ke", where K is
caled the strength coefficient and n is called the strain-hardening exponent

APPENDIX B Rolling Process Design Equations

The power (horsepower), P, required is given by:

P = 2it(L)(F)(c0)/396000, 2
where L is the length (inches) of the arc of roll contact and F is the roll force (pounds). L is
gpproximated by:
= [R(ho-hy)]l/2, 3

where hf and ho are the output and input strip heights (inches), respectively, and R is the roll radius
(inches). F, therequired rall force, is given by:

F = (LXwXY~gHI + nU(hot+hf)], 4
where w is the widA (inches) of the input strip and \i is the coefficient of friction. Y/ vg* *© average
flow stress (psi), isgiven by:

Y'ag=1.15(K)(en)/(n+1), : - - - (5)
whereeisthetrue‘strain, given by: - ' .
= In(hofhy), o - 6 *

Ahmx* the maX| mum possible change in strip height through arolling process, isgiven by

18

