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Abstract
In this report we investigate the high gain asymptotic behavior of multivariable root

loci. The proposed method groups the unbounded root loci of a non-singular m-input/m-

output system into several Butterworth patterns as the gain tends toward infinity. A

geometric technique provides direct realization of these asymptotic Butterworth patterns.

Since integer as well as non-integer orders of these patterns can be determined, the method

can be used to identify undesirable design conditions. Finally, the proposed method is

extended to linear quadratic regulator problems where optimal root loci are identified.

Three examples are presented to illustrate the effectiveness of the approach.



Introduction

This piper presents a geometrically-based approach for evaluating the asymptotic
unbounded root loci behavior of multivariable control systems, including the optimal root
loci behavior of linear quadratic regulator problems. Available algorithms for asymptotic
conditions are complicated and are applicable only under certain assumptions. For
instance, the technique proposed by Kouvaritakis and Edmunds (1979) can be applied to
systems with generic structure (integer order) only. Studies by Johnson and Grimble
(1981), Sastry and Desoer (1983), and Owens (1984) consider the asymptotic unbounded
root loci for strictly proper systems. These studies impose assumptions on the simple null
structure (Sastry and Desoer, 1983) or equivalent conditions of generic structure (Owens,
1984) to ensure the integer order of the Butterworth pattern.

The proposed approach relaxes the assumption of the simple null structure and
enables a non-integer order of the pattern to be determined. Since this non-integer order
corresponds to poor design conditions (Owens, 1980 and 1984), the approach provides a
convenient means to detect design suitability. The algorithm starts from the evaluation of
two sets of high gain eigenvalues of the closed-loop system. By introducing special
eigenvalue magnitude and angle plots, the root loci can be grouped into several Butterworth
patterns and the parameters of the asymptotic structure can be determined.

It has been shown (Shaked, 1978; Thompson et aL, 1982) that the optimal root
locus is a special case of the classical root locus. It follows that the proposed approach can
be extended to determine the asymptotic behavior of optimal root loci. An iterative
algorithm to determine the asymptotic behavior of optimal root loci has been proposed by
Kouvaritakis (1981) and later modified by Keerthi and Fannin (1983). These algorithms
are complicated numerical procedures that can be difficult to implement. In comparison,
the proposed method provides a conceptually simple and computationally efficient solution
strategy.

System Configuration

Consider the system described by the state-space equations

* = Ax + Bu • (1)

y = Cx + Du (2)



where x is an n dimensional state vector, u is an m dimensional control vector, y is an m

dimensional output vector, and A, B, C, and D are constant matrices with appropriate

dimensions. The transfer function matrix of the system is

where I denotes the identity matrix and G(s) is an mxm matrix assumed to be invertible.

The system is embedded in a closed-loop negative feedback configuration with a forward

transfer function matrix kl where k is a scalar gain parameter. Figure 1 shows the block

diagram of the closed-loop system. The closed-loop poles are the eigenvalues of the

closed-loop system matrix

Ad(k) = A - kB(I + kDy^C (4)

Asymptotic Structure

For the closed-loop system described in Figure 1, some closed-loop poles approach

finite transmission zeros and the remaining closed-loop poles approach infinity as k

approaches infinity. The "infinite" closed-loop poles group into several Butterworth

patterns of different orders. If we consider a proper system with D=0 in equation (2), the

asymptotic structure of the Butterworth pattern, modified from (Owens, 1984), can be

expressed as

Sjp(k) = otj + %k1/vi + ejp(k) , j = 1 r ; p » l,...,qj ( 5 )

and

Km £jp(k) = 0
k->- • (6)

where Sjp(k) is the p-th closed-loop pole in the j-th Butterworth pattern with the number of

closed-loop poles in this pattern being qj and the number of Butterworth patterns being r,

T|jp (p=l,...,qj) are the distinct qj-th roots of a non-zero complex number, Vj is the order of

the pattern, and otj is the pivot of the asymptotes. The magnitude and the angle of T|jp are

called the radius and the direction of the closed-loop pole, respectively.

In almost all cases occurring in practice, the orders, v/s, are strictly positive

integers and the r and qj in equation (5) can be replaced by m and Vj, respectively (Owens,

1984). For these cases, there are m Butterworth patterns and the number of closed-loop

poles in a pattern is the order, Vj. For systetas with non-integer orders, the Butterworth



patterns can have orders equal only to the arithmetic means of subsets of the integer
structural invariants (Owens, 1978,1980,1984)

N «(ni , n2,...»nm) , ti\ £ n2^**#^nm /*j\

with

£ n i^n (8)

where the ni's are integers. The asymptotic structure of equation (5) will be used to find
the asymptotic behavior of the multivariable root locus.

Methodology

We are interested in grouping the unbounded root loci into several Butterworth
patterns and finding the parameters in these asymptotic structures.

Multivariable Root Loci

Eigenvalue Magnitude and Angle Hots

From equation (4), we first calculate the closed-loop poles for two large values of

k, denoted by ki and k2 where ki > k2 » 1

(9a-b)

where the subscript i denotes the branch. These closed-loop poles can be portrayed in the

eigenvalue magnitude and angle plots of Figure 2 that show the eigenvalue magnitude and

angle, respectively, as a function of k.

Branch Order

From equations (5) and (6), 0Cj and ejp(k) are negligible when k approaches

infinity. As a result, the unbounded high gain root locus in the same Butterworth pattern

can be described by

Sjp(k) = T]jpk1/Vj , j = l,.-.,r ; p = l,...,qj ( I Q )



Assuming ki and k2 arc large enough to satisfy the asymptotic structure of equation (10), it
can be shown that

X ( 1 ) ( k ) k l M , i = l n

(lla-b)

where Vi is the order of the i-th branch and T|, is the corresponding non-zero complex

number which is constant in each branch. Taking the magnitude of equations (lla-b)

yields

ft (12)
1 1 ki* kj*

which leads to

^ ( )

Vi logki - Iogk2

The order of each branch can be determined from equation (13) which represents the slope

in the magnitude plot: If the slope of the magnitude plot is zero, equation (13) requires that

^i and ^i are in near proximity to each other indicating that the closed-loop pole

approaches a finite transmission zero.

The exact order can be obtained directly when V; in equation (13) converges to an

integer. When Vi converges to a non-integer real number, the order should be available

from equations (7) and (8) since the Butterworth patterns have orders equal only to the

arithmetic means of subsets of the integer structural invariants. If vx does not converge to

the arithmetic mean, it implies that the selected ki and k2 are not large enough to satisfy the

asymptotic structure of equations (1 la-b) and larger ki and k2 are necessary.

Pattern

After the order of each branch is determined, the next step is to group the branches
into several patterns. Considering equation (10), since the %'s are the distinct cy-th roots
of a non-zero complex number, the magnitude of rjjp is a constant for those closed-loop
poles in the same pattern. It follows that for a given k the closed-loop poles belonging to



the same pattern have die same order and magnitude implying an overlap in the magnitude
plot This is the necessary condition for the family of a pattern.

Sometimes die necessary condition is not enough to group the patterns, as in the
case of two second order patterns with the same radius. In this case, we need information
about the angle of equation (10). Again using the fact that the Tljp's are the distinct qj-th
roots of a non-zero complex number and the angle of Sjp is the same as the angle of TVjp, the
eigenvalues in the same pattern have the relation:

^ f * (14)

where A6 is the adjacent angle of the asymptotes and the i-th and j-th branches belong to
the same pattern. Because the adjacent angle of the asymptotes is a constant in a pattern,
equation (14) can be used to determine the eigenvalues that belong to the same Butterworth
pattern. Then, all the eigenvalues in equations (9a-b) can be grouped into several patterns
as

sjp} = eig[Aci(ki)] > j = 1.....T ; P = l,...,qj

(15a-b)

s j ^ e i g C A c ^ ) ] , k ! > k 2 » l

When the orders are all integers, it can be verified that

r = m (16)

cfc = Vj (17)

Pattern Pivot

Once the root loci in a pattern are known, the pivot of the asymptotes can be
determined by calculating the location of the centroid of the high gain closed-loop poles in
that pattern. Here the pivot is denoted by

aj = Xj + /Yj (18)

where i is the square root o f -1 . The centroid location can be determined from



(19)

(20)

Pattern Directions

From equation (10), the direction of T|jp is the same as the angle of Sjp. It follows

that the direction can be read directly from the angle plot, i.e.,

A more precise solution is available using the asymptotic structure of equation (5). The

direction can be determined by

Pattern Radius

If we substitute the high gain ki, the corresponding closed-loop pole sjp\ the order

j, and the pivot otj into equation (5) and let £jp(ki)=O, the radius can be determined from

|"l?-«fcIM <23>
It is worth noting that the pivot, direction, and radius are not exact since exact solutions are

achieved only as ki approaches infinity. The accuracy depends on ki. In order to ensure

the accuracy, we define the error of convergence:

••*• s £ r V i (24>
where

Io2ls(1)l-logls<2)
i 8 jp 8 JPslope = .' J ; ' — : — T ^ ^

^ Iogki-logk2

In practice, if the error of convergence is within a specified tolerance, then the accuracy can

be guaranteed.



Optimal Root Loci

The optimal root loci represent the closed-loop poles of the linear quadratic
regulator as fe control weighting in the performance index is varied Since the optimal
root locus is a special case of the regular root locus, the proposed geometric technique can
be used to compute the optimal asymptotic behavior.

Linear Quadratic

For the state-space system

* = Ax + Bu (26)

y = c * (27)

where x is n dimensional, and u and y arc m dimensional, the objective is to determine an
optimal control trajectory

(28)

that minimizes the cost function

J = J (yTQy + purRu)dt (29)
Jo

where Q = Q r > 0 and R = Rr > 0 arc weighting matrices and p is a scalar. Assuming that

(A,B) is stabilizable and (C,A) is detectable, the solution for Kc can be determined by

solving the algebraic Riccati equation. Substituting equation (28) into (26) gives the

closed-loop system matrix of the linear quadratic regulator as

Aci(p)=A-BKc(p) ( 3 0 )

Its eigenvalues, the closed-loop poles, are functions of p. As p varies from infinity to

zero, the closed-loop poles trace out an optimal root locus.

When p approaches zero, some closed-loop poles approach finite transmission

zeros and the remaining closed-loop poles approach infinity. It has been proven

(Kwakernaak, 1976) that those "infinite** closed-loop poles group into several Butterworth

patterns of different orders. The asymptotic structure of the Butterworth pattern of order Vj

can be expressed as



p
(34)

J ^ O (32)

where Vj is an even integer and % is the distinct Vj-th root of a real number. Compared to

the asymptotic structure of multivariable root loci, equation (31) has the form of equation

(5) with the pivot located at the origin and with k replaced by 1/p. Therefore, by denoting

1/p-k (33)

the formula derived previously can be used to find the asymptotic optimal root loci.

Solution Procedure

The solution strategy follows the methodology of the multivariable case with minor

modifications. For the calculations of eigenvalues in equations (9a-b), A^ can be obtained

after solving the algebraic Riccati equation. An alternative method for finding these closed-

loop poles is from the Hamiltonian matrix:

CrQC

Its eigenvalues are symmetric about the imaginary axis and those in the left-half plane are

the closed-loop poles (Thompson et a/., 1982).

From the angle plot, we may obtain the approximate solution for the direction (the

exact solution can be obtained only when pi approaches zero.) However, it has been

proven (Kouvaritakis, 1978,1981) that the asymptotes of the optimal root loci are arranged

in the direction of the Vj-th roots of +1 that lie in the left half of the complex plane. Figure

3 shows the Butterworth configurations for Vj=2,4, 6, and 8 which indicate the directions

of the asymptotes. Thus, the directions can be determined exactly from the order Vj and the

angle plot provides a direct realization of these directions.

The solution procedure for finding the asymptotic structure of the optimal root loci

is summarized as follows:

1. For two small values of p, calculate the closed-loop poles.

2. Plot the closed-loop poles as a function of 1/p in eigenvalue magnitude
and angle plots.

3. Determine the order from the slope in the magnitude plot



4. Group the patterns by the overlaps of the closed-loop poles in the
iragnfandeptot

5. Dittrmincthedirectkms
6. Determine the radii from equation (23) where k=l/p.
7. Check die accuracy from equation (24).

Examples
Example 1 investigates the asymptotic behavior of the multivariablc root locus.

Aldiough the asymptotic structure of equation (5) is derived for proper systems, the results
of example 1 show that it can also be applied to non-proper systems. Example 2 considers
the asymptotic behavior of optimal root loci. Example 3 studies a non-integer order
system.

Example 1

This example, adapted from Kouvaritakis and Edmunds (1979), considers a
seventh-order system with the state-space form described in equations (1) and (2), where

-32 -80 16
16 -64 -16
0 0 ^ * 8
0
0

1653
76

0
0
0
0

0 0
0 0
0 0

0 -32 -80
0 16 -64

0
0
0
0
0

0 3424
0 928

B =

1
-1

1
0
0
0
0

0 0
2-2
1
1
0
0
0

2
0
1
0
0

D =
-8 -2 10
-4 -1 5
-8 -2 10

0'
0
0
0
0

0 -32 -80
0 16 -64

8 -16 0 0 0 0 0
-8 -8 16 -15 -37 8 0
0 8 16 -68 36 0 8

(35)

(36)

(37)

(38)



Closed-loop poles were calculated at ki=107 and k2=106. Table 1 lists the results and the
corresponding eigenvalue magnitude and angle plots are shown in Figure 4. In the
magnitude plot, the branches i=l to i=4 overlap and have the same slope of 1/2, indicating
second order patterns. Because there are two branches in a second order pattern, the
branches i=l to i=4 belong to two second order Butterworth patterns. Applying equation
(14), the angle plot shows branches i=l and i=2 are in the same pattern since the angle
difference is 180° and branches i=3 and i=4 are in the same pattern for the same reason.
The branches i=5 to i=7 have zero slopes in the magnitude plot which imply bounded
branches.

The pivots for these second order patterns were evaluated using equations (18)-(20)
as

cti = 19.24-1 11.87 = 22.61Z-31.670

a2 = 19.24 + i 11.87 = 22.61Z31.670 (39a~b)

where cti denotes the pivot of branches i=l and i=2 and ct2 denotes the pivot of branches
i=3 and i=4. Using equations (22) and (23) to calculate the directions and radii, the
complete asymptotic structures are

sn = 22.61Z-31.670 + 1O.OZ63.440 ()

S12 = 22.61Z-31.670 + 1O.OZ243.40 k1/2 (i=2)

s2i = 22.61Z31.670 + 1O.OZ296.60 k1/2 (i=3) (40a~d)

s22 = 22.61Z31.670 + 10.0Z116.6° k1/2 (i=4)

The error of convergence, calculated from equation (24),

\in = -2 .1xKH

\in = 2.7xl(H

M« - 2 . 1 X 1 0 -

H22 = 2.7xl(H

demonstrates high accuracy of the asymptotic structures. The pivots and the asymptote
directions are the same as those computed by Kouvaritakis and Edmunds (1979).

10



adapted from Kwakemaak and Sivan (1972, example 3.21, pp. 293-

longitudinal dynamics of an aircraft model described by equations (26)

-0.158 0.02633
-0.1571 -1.03

0 0
0.0005274 -0.01652

-9.81
0
0
0

B
0.0006056

0
0
0

0
-9.496

0
-5.565

0
120.5

1
-1.466

,f 1 0 0 01
lo o i oJ

(42)

(43),(44)

It is to be controlled such that the cost function of equation (29) is minimized where

o _ [ 0 . 0 2 0 1 » _ f 0.0004 0 1 _ „
Q " [ 0 50 J ' R " l 0 2500 J (45>'<46)

Closed-loop poles were evaluated at pi=10~7 and p2s10~6. The results are listed

in Table 2 and the corresponding eigenvalue magnitude and angle plots are shown in Figure

5. From the magnitude plot in Figure 5, the branches i=l and i=2 coincide and have the

same slope of 1/4. This means that these branches belong to a pattern with order four. The

branch i=3 has a slope of 1/2 indicating a second order pattern. This order can also be

found from equation (13). The branch i=4 has zero slope which implies that this branch

approaches a finite zero. From the angle plot, the second order pattern has a direction of

180° and the fourth order pattern has directions of ±135°. These results can be verified by

Figure 3 as Vj=2 and Vj=4. Using equation (23) to determine the radii, the asymptotic

structures for the second and fourth orders can be obtained as

sn - a004283Z180°p-1/2 (second order)

S2p»4|S871Z±135op-1/4 , p=l,2 (fourth order)

(47)

(48)

which are approximate since p is finite. Again, the error of convergence from equation

(24)

(49)

(50)

6.9x10"^ , (second order)

|i2p = 1.8xlO"5 , p=l,2 (fourth order)

11



shows that the radii are quite accurate. Equations (47) and (48) are in close agreement with
the published results (Kwakernaak, 1976).

Figure 6 shows the complete eigenvalue magnitude and angle plots for this
example. The dotted lines represent the closed-loop poles determined firom the Hamiltonian
matrix. The magnitudes of the asymptotic structures are shown in the magnitude plot by
the solid lines. The overlap of the dotted and solid lines for small p represents the
asymptotic structure. The magnitude plot indicates that when p is smaller than 10~5, the
asymptotic structure can be used rather than solving for the eigenvalues of the Hamiltonian
matrix to determine the closed-loop poles. The asymptotic structure is easily obtained from
the proposed method and offers advantages in constructing the optimal root locus.

Example 3

This example considers a third order proper system with two inputs and two
outputs. The state space model is described by equations (1) and (2) with

0
0

. 0

0
0
0

0 '
1
0 .

. B =
0
0

-1

r
0
0 .

Closed-loop poles evaluated at ki=107 and k2=106 are listed in Table 3. The
corresponding eigenvalue magnitude and angle plots are shown in Figure 7. From the
magnitude plot, all of the branches overlap with a slope of 0.6667 and the order is 1.5.
Since the order does not converge to an integer, we need to use the integer structural
invariants to find the exact order. From equations (7) and (8), we have

and

which leads to

(55)

(56)

(57)N - { l f 2 )

The arithmetic mean of N, 3/2, is the exact order which can be verified by the magnitude

plot. Determining the pivot, directions, and radii from equations (18)-(23) gives the

asymptotic structure:

. P = !> 2> 3 (58)

12



with an error of convergence less than 1(H4.

Conclusion

Solutkm procedures for determining asymptotic behavior of multivariablc root loci

have been presented in the literature. These procedures involve complex numerical

algorithms that are generally difficult to implement As an alternative, we propose a

coherent geometrically-based approach for obtaining the asymptotic root locus behavior.

The approach can handle general problems by relaxing the simple null assumption and can

be used to detect unsatisfactory design conditions. Utilizing the eigenvalue magnitude and

angle plots, the proposed method provides direct realization of the directions and radii of

the asymptotic eigenvalue patterns. In summary, the proposed method is a suggested

approach for generating asymptotic root loci, including optimal root loci.
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Table and Figure Captions

Table 1 Closed-Loop Poles for Example 1

Table 2. Closed-Loop Poles for Example 2

Table 3. Closed-Loop Poles for Example 3

Figure 1 Block Diagram of the Closed-Loop System

Figure 2 Eigenvalue Magnitude and Angle Plots

Figure 3 Butterworth Configuration for Optimal Root Loci

Figure 4 Eigenvalue Plots for Example 1

Figure 5 Eigenvalue Plots for Example 2

Figure 6. Complete Eigenvalue Plots for Example 2

Figure 7 Eigenvalue Plots for Example 3
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Table 1 Closed-Loop Poles for Example 1

i

1

2

3

4

5

6

7

x«"
14161+ i28272

-14123-128296

14161-/28272

-14123 +1 28296

-99.901

-2.8327 +1 1.2699

-2.8327 -1 1.2699

4491.4 + / 8932.6

-4453-18956.3

4491.4-i8932.6

-4453 + i 8956.3

-99.893

-2.8329 + i 1.2699

-2.8329-1 1.2699

Table 2. Closed-Loop Poles for Example 2

i

1

2

3

4

-19.83 + i 19.85

-19.83 -1 19.85

-4.286

-1.003

-35.27 + i 35.28

-35.27 - i 35.28

-13.54

-1.002

Table 3. Closed-Loop Poles for Example 3

i

1

2

3

46416

-23208 + i40197

-23208-/40197

^(2)

10000

-5000 + i 8660

-5000-/8660
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Figure 1 Block Diagram of the Closed-Loop System

Magnitude Plot

logk

Angle Plot

Ioglt2 logki
logk

Figure 2 Eigenvalue Magnitude and Angle Plots
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Figure 3 Butterworth Configuration for Optimal Root Loci

logk

i=2

i=3

i=7
i=5
i=6

i = l »•

i=4

-A 296.6°

"* 243.4°
•^204.1°
* 180.0°

155.9°

* 116.6°

"*63.44e
logk

Figure 4 Eigenvalue Plots for Example 1
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( * )

* 225°(-135°)

Figure 5 Eigenvalue Plots for Example 2

19



I

10-2 io-i 10° 101 102 103 104 10s 106 107

240

220

200

I)
3 180

<
160

140

120
10-2 10-' 10° 101 102 104 105 106

Figure 6. Complete Eigenvalue Plots for Example 2
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Figure 7 Eigenvalue Plots for Example 3
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