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Abstract

In thisreport we investigate the high gain asymptotic behavior of multivariable root
loci. The proposed method groups the unbounded root loci of a non-singular m-input/m-
output system into several Butterworth patterns as the gain tends toward infinity. A
geometric technique provides direct realization of these asymptotic Butterworth patterns.
Since integer as well as non-integer orders of these patterns can be determined, the method
can be used to identify undesirable design conditions. Finally, the proposed method is
extended to linear quadratic regulator problems where optimal root loci are identified.
Three examplesarepresentedto illustrate the effectiveness of the approach.




I ntroduction'

This piper presents a geometrically-based approach for evaluating the asymptotic
unbounded root loci behavior of multivariable control systems, including the optima root
loci behavior-of linear quadratic regulator problems. Available algorithms for asymptotic
conditions are complicated and are applicable only under certain assumptions. For
instance, the technique proposed by Kouvaritakis and Edmunds (1979) can be gpplied to
systems with generic structure (integer order) only. Studies by Johnson and Grimble
(1981), Sastry and Desoer (1983), and Owens (1984) consider the asymptotic unbounded
root loci for strictly proper systems. These studies impose assumptions on the smple null
" structure (Sastry and Desoer, 1983) or equivalent conditions of generic structure (Owens,
1984) to ensure the integer order of the Butterworth pattern.

The proposed gpproach relaxes the assumption of the smple null structure and
enables a non-integer order of the pattern to be determined. Since this non-integer order
corresponds to poor design conditions (Owens, 1980 and 1984), the agpproach provides a
convenient means to detect design suitability. The agorithm starts from the evauation of
two sets of high gain eigenvalues of the closed-loop system. By introducing specid
eigenva ue magnitude and angle plots, theroot loci can be grouped into severd Butterworth
patterns and the parameters of the asymptotic structure can be determined.

It has been shown (Shaked, 1978; Thompson et al., 1982) that the optimal root
locusis a specid case of the classical root locus. 1t follows that the proposed gpproach can
be extended to determine the asymptotic behavior of optima root loci. An iterative
agorithm to determine the asymptotic behavior of optimal root loci has been proposed by
Kouvaritakis (1981) and later modified by Keerthi and Fannin (1983). These dgorithms
are complicated numerical procedures that can be difficult to implement. In comparison,
the proposed method provides a conceptualy simple and computationaly efficient solution
drategy.

Sysem Configuration
Congder the system described by the state-space equations
| | Xz AX+Bu e @

y=Cx+Du 2




wherex isan n dimensional state vector, u isan m dimensional control vector, y isan m
dimensional output vector, and A, B, C, and D are constant matrices with appropriate
dimensions. Thetrander function matrix of the system is

G(S) = C(SI - A)-IB +D (3)

where | denotes the identity matrix and G(s) is an mxm matrix assumed to be invertible.
The system is embedded in a closed-loop negative feedback configuration with a forward
trandfer function matrix kl wherek is a scalar gain parameter. Figure 1 shows the block
diagram of the closed-loop system. The closed-loop poles are the eigenvalues of the
closed-loop system matrix

Ad(k) = A - KB(I + kDy~C (4

Asymptotic Structure

For the closed-loop system described in Figure 1, some closed-loop poles approach
finite transmission zeros and the remaining closed-loop poles approach infinity as k
approaches infinity. The "infinite" closed-loop poles group into several Butterworth
patterns of different orders. If we consider a proper system with D=0 in equation (2), the
asymptotic structure of the Butterworth pattern, modified from (Owens, 1984), can be
expressed as

Ipk) = dj +%k™i +ep(k) , j=21..r;p»l,..0q (5)

and

Km £jp(k) =0

K->- (6)
where §p(k) isthe p-th closed-loop pole in thej-th Butterworth pattern with the number of
closed-loop polesin thispattern being gj and the number of Butterworth patterns beingr,
Tjp (p=l,...,qj) are thedistinct gj-th roots of a non-zero complex number, Vj isthe order of
the pattern, and dj is the pivot of the asymptotes. The magnitude and the angle of T|j, are
called theradius and the direction of the closed-loop pole, respectively.

In almost all cases occurring in practice, the orders, v/s, are srictly positive
- integersand ther and qj in‘equation (5) can be replaced by m and Vj, respectively (Owens,
1984). For these cases, there are m Butterworth patterns and the number of closed-loop
polesin a pattern is the order, Vj. For systetas with non-integer orders, the Butterworth




patterns can have orders equal only to the arithmetic means of subsets of the integer
dructurd invariants (Owens, 1978,1980,1984)

N «(.ni, n2,...»nm)‘ , ti\ £ n2a**fan R
with
n: a
él 1N (8)

where the ni's are integers. The asymptotic structure of equation (5) will be used to find
the asymptotic behavior of the multivariable root locus.

M ethodology

We are interested in grouping the unbounded root loci into several Butterworth
patterns and finding the parametersin these asymptotic structures.

Multivariable Root Loci

Eigenvalue Magnitude and Angle Hots

~ From equation (4), we first calculate the closed-loop poles for two large values of |
k, denoted by ki and k2 where ki > k2 » 1

AY = ciglAaky)] . i=1...n
(9a-b)

AP = ciglAakz)] . i=1,...0

where the subscript i denotes the branch. These closed-loop poles can be portrayed in the
elgenva ue magnitude and angle plots of Figure 2 that show the eigenvalue magnitude and
angle, respectively, as afunction of k. '

Branch Order |
From equations (5) and (6), 03 and g(k) are negligible when k approaches

infinity. As aresult, the unbounded high gain root locus in the same Butterworth pattern
can be described by

Spk) = Tlipk™ , j = Le-or 5 p = 1,.,0) ) (1Q)




Assuming ki and k; arc large enough to satify the asymptotic structure of equation (10), it
can be shown that

X ek Y L i=l

(Ila-b)
l(iz)(kZ) = ﬂik%,vi . i = l,....ll

where Vi is the order of the i-th branch and T}, is the corresponding non-zero complex
number which is constant in each branch. Taking the magnitude of equations (Ila-b)
yields

&)

ft'= (12)
ki Kj*
which leadsto
1 ~ logh{™ - 10ghp) 13,

Vi logki - logk2

The order of each branch can be determined from equation (13) which represents the sope
inthe magnitude plot: 1f the dope of the magnitude plot is zero, equation (13) requires that
’\|m and ’\im are in near proximity to each other indicating that the closed-loop pole
gpproaches afinite transmission zero. .

The exact order can be obtained directly whenV; in equation (13) convergesto an
integer. When Vi converges to a non-integer real number, the order should be available
~ from equations (7) and (8) since the Butterworth patterns have orders equa only to the
arithmetic means of subsets of the integer structura invariants. 1f v does not converge to
the arithmetic mean, it implies that the sdlected ki and k2 are not large enough to satisfy the
asymptotic structure of equations (1 la-b) and larger ki and k2 are necessary.

Pattern Family

After the order of each branch is determined, the next step isto group the branches
into severd patterns. 'Consi dering equation (10), since the %'s are the distinct cy-th roots
" of anon-zéro complex number, the magnitude of 1jjp is a constant for those closed-loop -
poles in the same pattern. It follows that for a given k the closed-loop poles belonging to




the same pattern have die same order and magnitude implying an overlap in the magnitude
plot Thisisthe necessary condition for the family of a pattern.

Sometimes die necessary condition is not enough to group the patterns, asin the
case of two second order patterns with the sameradius. In thiscase, we need information
about the angle of equation (10). Again using the fact that the Tljp's are the distinct gj-th
roots of a non-zero complex number and the angle of 9p isthe same asthe angle of Tp the
eigenvaluesin the same pattern have thereation:

A= 1A (14)

where A6 is the adjacent angle of the asymptotes and the i-th and j-th branches belong to
the same pattern. Because the adjacent angle of the asymptotes is a constant in a pattern,
equation (14) can be used to determine the eigenvalues that belong to the same Butterworth
pattern. Then, all the eigenvaluesin equations (9a-b) can be grouped into several patterns
as

(15a-b)
sj*eigCAcM)] , k!>k,»l
When theordersare a]_l integers, it can beverified that
r=m (16)
dc =V (17)

Pattern Pivot
Once the root loci in a pattern are known, the pivot of the asymptotes can be

determined by calculating the location of the centroid of the high gain closed-loop polesin
that pattern. Herethe pivot is denoted by

ai = Xj +/Y] (18)

" wherei isthe sguare root of-1. The centroid location can be determined from




3 ndgy

X; =Bl —— (19)

lm[s(n

=2l (20)

Pattern Directions

From equation (10), the direction of Tjp is the same as the angle of §p. It follows
that the direction can beread directly from the angleplat, i.e.,

Lnp=£si)
A more precise solution is available using the asymptotic sructure of equation (5). The

direction can be determined by
L= 45V - o) | (22)

Pattern Radius

“1f we subgtitute the high gain ki, the corresponding closed-loop pole sj‘b\ the order
vj, and the pivot aj into equation (5) and let £jp(ki)=0, theradius can be deter mined from

= |2-«fc™ &

It isworth noting that the pivot, direction, and radius are not exact since exact solutions are
achieved only as ki approaches infinity. The accuracy depends on Ki. In order toensure
the accuracy, we define the error of conver gence:

oo e S£I’ Vi | (24>
where :
- Dl-logls o~
slope = ——% gJ | ‘ )
A Iogkllogkz

In practice, if the error of convergence is within a specified tolerance, then the accuracy can
be guaranteed.




Optimal Root Logi |

The o‘ioti mal root loci represent the closed-loop poles of the linear quadratic
regulator as fe control weighting in the performance index isvaried Since the optimal
root locusisaspecid case of theregular root locus, the proposed geometric technique can
beused to computé the optimal. asymptatic behavior.

Linear Quadratic Regulatar
For the state-gpace system

* = AX + Bu (26)

y=°* @

where x isndimensiond, and u andy arc m dimensional, the objectiveis to determine an
optima control trgectory

u=—Kcx (29)

that minimizes the cost function

J=1J (yTQy + pu'Ru)dt (29)
Jo

whereQ =Q'20and R = R"> 0 arc weighting matricesand pisascdar. Assuming that
(A,B) is stabilizable and (C,A) is detectable, the solution for Kc can be determined by
solving the algebraic Riccati equation. Substituting equation (28) into (26) gives the
closed-loop system matrix of the linear quadratic regulator as

Aci (p)=A-BKc(p) e

Its eigenvalues, the closed-loop poles, are functions of p. As p varies from infinity to
zero, the closed-loop poles trace out an optimal root locus.

Asymptotic Structure

When p approaches zero, some closed-loop poles gpproach finite transmission
* zeros and the remaining closed-loop poles approach infinity. It has been proven.
(Kwakernaak, 1976) that those "infinite** closed-loop poles group into severd Butterworth

patterns of different orders. The asymptotic structure of the Butterworth pattern of order Vj
can be expressed as '




sip(1/p) = n{p)™ + €jp(1/p) , j=l..mip=1,..v; GD

ephl/p) =
whereVj isan even integer and % isthe digtinct Vj-th root of areal number. Compared to
the asymptotic sructure of multivariable root loci, equation’ (31) has the form of equation
(5) with the pivot located at the origin and with k replaced by 1/p. Therefore, by denoting

1/p-k (33)
the formula derived previousy can be used to find the asymptotic optimal root loci.

" Solution Procedure

The solution grategy follows the methodology of the multivariable case with minor
modifications. For the calculations of eigenvaluesin equations (9a-b), A" can be obtained
after solving the algebraic Riccati equation. An alternative method for finding these closed-
loop polesisfrom the Hamiltonian matrix: |

A ~1BR-1BT
H= p

34
~C'QC -AT (34
Itseigenvalues are symmetric about the imaginary axis and those in the left-half plane are
the closed-loop poles (Thompson et a/., 1982).

From the angle plot, we may obtain the approximate solution for the direction (the
exact solution can be obtained only when pi approaches zero.) However, it has been
proven (Kduvaritakis 1978,1981) that the asymptotes of the optimal root loci are arranged
in the direction of the Vj-th roots of +1 that liein the left half of the complex plane. Figure
3 shows the Butterworth configurations for Vj=2,4, 6, and 8 which indicate the directions
of the asymptotes. Thus, thedirectionscan be determined exactly from the order Vj and the
angle plot provides adirect realization of these directions.

The solution procedure for finding the asymptotic sructure of the optimal root loci
is summarized as follows:
1. For two small values of p, calculate the closed-loop poles.

2. Plot the closed-loop poles as a function of 1/p in eigenvalue magnitude
and angle plots.

3. Determine the order from the dope in the magnitude plot




No g A

_Group the patterns by the overlaps of the closed-loop poles in the

iragnfandeptot

Dittrmincthedir ectkms from the angle plot or using Figure 3.
Determine theradii from equation (23) where k=I/p.

Check die accuracy from equetion (24).

Examples

Example 1 investigates the asymptotic behavior of the multivariablc root locus.
Aldiough the asymptotic structure of equation (5) is derived for proper systems, the results
of example 1 show that it can aso be gpplied to non-proper systems. Example 2 consders
the asyrhptotic behavior of optimal root loci. Example 3 studies a non-integer order

system.

Example 1

This example, adapted from Kouvaritakis and Edmunds (1979), considers a
seventh-order system with the state-space form described in equations (1) and (2), where

32-80 16 0 0 0 O
16 64 -16 0 0 0 O
0 08 0 0 0 O
A= 0 0 0-32-80 0 0
0 0 0 16-64 0 O
1653 0 03424 0 -32 -80
. 76 0 098 0 16 -64
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(36)

(37)

(33)




Closed-loop poleswer é calculated at ki=10" and k,=10°. Table 1 liststheresultsand the
corresponding eigenvalue magnitude and angle plots are shown in Figure 4. In the
magnitude plot, the branchesi=| toi=4 overlap and have the same slope of 1/2, indicating
second order patterns. Because there are two branches in a second order pattern, the
branchesi=I| toi=4 belong to two second order Butterworth patterns. Applying equation
. (14), the angle plot shows branchesi=| and i=2 are in the same pattern since the angle
differenceis 180° and branchesi=3 and i=4 are in the same pattern for the same reason.
The branches i=5 to i=7 have zero slopes in the magnitude plot which imply bounded
branches.

Thepivotsfor these second order patternswer e evaluated using equations (18)-(20)
as _

cti = 19.24-1 11.87 = 22.61Z-31.67°

‘a,=19.24+ 11.87 = 22.61231.67° (39a_b)

where cti denotes the pivot of branchesi=I and i=2 and d2 denotes the pivot of branches
iI=3 and i=4. Using equations (22) and (23) to calculate the directions and radii, the
completeasymptotic Sructuresare

.= 22.61Z-31.67° + 10.0Z6344° k12 i=1)
SI2 = 22.617-31.67° + 10.022434° k*/2 (i=2)
S = 22.61231.67° + 10.02296.6° k'/? (i=3) (40a_d)
52 = 22.61231.67° + 10.02116.6° k2 (i=4)

Theerror of conver gence, calculated from eguation (24),

\ip, =-2.1xKH
\ip, = 2.7xI(H
M«-2.1X10-
H2 =2.7xI(H

(41a-d)

demondtrates high accuracy of the asymptotic sructures. The pivots and the asymptote
directions are the same as those computed by Kouvaritakis and Edmunds (1979).
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adapted from Kwakemaak and Sivan (1972, example 3.21, pp. 293-

297), | longitudinal dynamics of an aircraft model described by equations (26)
-0.158 0.02633- -9.81 0
Al 01571 -1.03 0 1205
0 0 0 1 (42)
0.0005274 -0.01652- 0 -1.466
0.0006056 0
B = 0 -9.496 C-’f 10001
0 0 ’ loo i aj (43),(44)
0 -5.565

It isto becontrolled such that the cost function of equation (29) isminimized where

0. [0.02 0 1 » 00004 0 1 o,
QT o 50J " RUl0 0 2500 J (*>'<%)
Closed-loop poles were evaluated at pi=10~" and p2°10~°. Theresults arelisted
in Table 2 and the corresponding eigenvalue magnitude and angle plots are shown in Figure
5. From the magnitude plot in Figure 5, the branchesi=| and i=2 coincide and have the
same slope of /4. Thismeans that these branches belong to a pattern with order four. The -
branch i=3 has a dope of 1/2 indicating a second order pattern. This order can also be
found from equation (13). The branch i=4 has zer o slope which implies that this branch
approaches a finite zero. From the angle plot, the second order pattern has a direction of
180° and the fourth order pattern hasdirections of £135°. Theseresultscan be verified by
Figure 3 asVj=2 and Vj=4. Using equation (23) to determine the radii, the asymptotic
gructuresfor the second and fourth orders can be obtained as

sn - a0042837180°p-*?  (second order) (47)

S2p»A4|S8712+135%-14 | p=1,2 (fourth order) (49)

which are approximate since p is finite. Again, the error _of conver gence from equation
(24)

K11 = 6.9x10"" | (second order) (49)

i2p = 1.8xI0"° , p=I,2 (fourth order) - (50)




shows that theradii are quite accurate. Equations (47) and (48) arein close agreement with
the publishedresults (Kwakernaak, 1976).

Figure 6 shows the complete eigenvalue magnitude and angle plots for this
example. Thedotted lines represent the closed-loop poles determinedfiromthe Hamiltonian
matrix. The magnitudes of the asymptotic structures are shown in the magnitude plot by
the solid lines. The overlap of the dotted and solid lines for small p represents the
asymptotic structure. The magnitude plot indicates that when p is smaller than 10~, the
asymptotic structure can be used rather than solving for the elgenvalues of the Hamiltonian
matrix to determine the closed-loop poles. The asymptotic structure is easily obtained from
the propbsed method and offers advantages in congtructing the optimal root locus.

Example 3

This exémple considers a third order proper system with two inputs and two
outputs. The state space modd is described by equations (1) and (2) with

000 ol
A={po0 1] .B={00
.0 0 0. 1 0.

Coo{399] . -22] ene

Closed-loop poles evaluated at ki=10" and k2=10° are listed in Table 3. The
corresponding eigenvalue magnitude and angle plots are shown in Figure 7. From the
magnitude plot, al of the branches overlap with a dope of 0.6667 and the order is 1.5.
Since the order does not converge to an integer, we need to use the integer structura
invariantsto find the exact order. From equations (7) and (8), we have

N = {n, g} (55)
and
np+nS3 (56)
which leadsto
N-{1:2) (57)

The arithmetic mean of N, 3/2, is the exact order which can be verified by the magnitude
" plot. Determining the pivot, directions, and radii from equations (18)-(23) gives the
asymptotic structure:

sip = LOA(p-1)120°2?  p= 1523 G:)
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with an error of convergence less than 1(H*.

Conclusion

Solutkm proceduresfor determining asymptotic behavior of multivariablc root loci
have been presented in the literature. These procedures involve complex numerical
algorithms that are generally difficult to implement As an alternative, we propose a
coherent geometrically-based approach for obtaining the asymptotic root locus behavior.
The approach can handle general problems by relaxing the smple null assumption and can
be used to detect unsatisfactory design conditions. Utilizing the eigenvalue magnitude and
angle plots, the proposed method provides direct realization of the directions and radii of
the asymptotic eigenvalue patterns. In summary, the proposed method is a suggested
approach for generating asymptotic root loci, including optimal root loci.
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Table 1 Closed-Loop Polesfor Example 1

Table 2. Closed-Loop Poles for Example 2

Table 3. Closed-Loop Poles for Example 3
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Table 1 Closed-Loop Poles for Example 1

i X¢' A

1 14161+ 128272 4491.4 +/ 8932.6

2 -14123-128296 -4453-18956.3

3 14161-/28272 4491.4-18932.6

4 -14123 +1 28296 -4453 + i 8956.3

5 -99.901 -99.893

6 -2.8327 +1 1.2699 -2.8329 +i 1.2699

7 -2.8327 -1 1.2699 -2.8329-T 1.2699
Table 2. Closed-Loop Poles for Example 2

i A" A

1 -19.83 +1i 19.85 -35.27 +1i 35.28

2 -19.83 -1 19.85 -35.27 - i 35.28

3 -4.286 -13.54

4 -1.003 -1.002
Table 3. Closed-Loop Poles for Example 3

: A (2)

1 46416 10000

2 -23208 + 140197 -5000 + i 8660

3 -23208-/40197 -5000-/8660




kI f—— = G(9

Figure 1 Block Diagram of the Closed-Loop System

Magnitude Plot

AnglePlot
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Figure 2 Eigenvalue Magnitude and -Angle Plots

vy=2 vi=4 vi=6

AQ=90° A9=60°
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Figure 3 Butterworth Configuration for Optimal Root Loci
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Figure 4 Eigenvalue Plots for Example 1
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Figure 5 Eigenvalue Plots for Example 2
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Figure 6. Complete Eigenvalue Plots for Example 2
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Figure 7 Eigenvalue Plots for Example 3




