
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Adjacency Structures as Mappings Between Function
and Structure in Discrete Static Systems

Steven Meyer, Steven J. Fenves
EDRC 12-49-92

Adjacency Structures
as Mappings Between Function and Structure

in Discrete Static Systems
A Working Paper

Steven Meyer & Steven J. Fenves

Department of Civil Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

One view of the design process is that design is a mapping from functional requirements to artifact description.
This article presents initial work on a method for mapping between functional requirements and a description
of the physical structure of discrete static systems. The representation consists of a set of atomic elements,
a hierarchy of compound components from the domain, and the composition of a graph of adjacent atomic
elements. Through forward or backward chaining, this method may be used in a parsing mode to discover
the behavior and function of a given system, or in a generative mode to suggest instances of systems which
can be used to satisfy the desired functionality. Parsing discovers the behavior of the system in terms
of the compound components by matching on subgraphs within the overall adjacency graph. Generation
hierarchically instantiates subgraphs which satisfy the initial functional requirements and the requirements
propagated by previously instantiated components. The graph is composed from a geometric model, but
the method is independent of the specific representation used by the geometric modeler. We focus on the
domain of structural systems in buildings to describe this method.

This work has been sponsored by EDRC, the Engineering Design Research Center at Carnegie Mellon
University, an NSF-sponsorcd Engineering Research Center.

1 Introduction

In many domains a finished design consists of a description of the physical artifact's structure.1 The
artifact*s structure is a description of its topology, geometry, material and manufacturing details. However,
this description does not normally contain a full specification of the artifact's desired functionality. In
contrast, at the start of the design process the design mandate consists almost entirely of specifications of
the artifact's desired functions. Between the initiation of the design process—when no physical structure
has been given to the projected artifact—and the beginning of the manufacturing process—when a complete
physical description must be specified—the design process consists of an iteration of mappings between
function and structure. That is, a structure for a system or subsystem of the design is suggested which is
thought to meet the given functional requirements through its expected behavior. Then, this structure is
evaluated to determine whether it meets the behavioral and functional requirements and what its side effects
might be. This loop continues until the current structure can be mapped to the required functions, and vice
versa. Thus, in an evaluation-synthesis-analysis design loop, the mapping from function to structure is a
high level view of the synthesis stage, the mapping from structure to behavior is a view of the analysis stage,
and the mapping from behavior to function is a high level view of the evaluation stage. We describe a method
for performing the two-way mappings between structure and function within discrete static systems based
on the adjacency structure representation, a representation that extends the concept of adjacency graphs by
adding geometric, material and behavioral information to each node.

This paper is organized into 6 sections. Section 2 presents a review of some of the related research
and defines discrete static systems—the design domain which motivates this research. Section 3 presents
adjacency structures in terms of their elements and composition. The introduction to adjacency structures
begins with an example to give the reader a feel for the information we would like to express using this
representation then describes the atomic and compound elements of adjacency structures. Section 3 also
presents three aspects of the construction of adjacency structures: composition operations, the inclusion of
constraints in the composition of adjacency structures and a method of generating adjacency structures from
a geometric model. The next two sections present the potential uses of an adjacency structure representation
in design processes, presenting the two directions of the function-structure mapping. Section 4 presents the
parsing of a given adjacency structure, describing how the function and behavior of a given structure are
discovered, whereas Section 5 presents the use of adjacency structures in the generation process, describing
how a set of functional requirements and a minimal geometric description can be used to synthesize adjacency
structures in a behavior-oriented derivation of structure. The paper ends with a summary and brief discussion
of the use of adjacency structures within a larger synthesis system.

1 In this paper we adopt the terminology of [Gero 91] using the term function to describe the intentions and purposes of the artifact
being designed; the term behavior to describe how the functions are achieved in the design; and the term structure to describe the
physical components specified by the design. An example of these distinctions in structural engineering is that the function of a
building is to resist lateral and gravity loads within a prescribed limit of deflection, vibration etc.; the structure of the building may
be a set of beams, columns and slabs of a particular material arranged in a specific configuration; the behavior of the building may
be that it resists the applied loads through the flexural strength of the components.

1

2 Background and Motivation

In the domains of interest, the form variables—the topological and geometric aspects of the design which are

to be determined during the design process—are given values in order to satisfy functional requirements—the

function variables. The form variables may also generate additional function variables or help to complete

the specification of existing function variables. These function variables are generally at a higher level of

abstraction than the form variables. A useful design method and representation must be able to mediate

between the multiple levels of abstraction used during the design process, tracking the detailed representation

of geometry as well as the abstract representation of function and behavior. The adjacency structure method

we propose may be viewed as a geometric modeling representation that focuses on design components at a

higher level of granularity than typical geometric modelers. A boundary representation geometric modeler,

for example, represents a design component such as a rectangular beam as a graph containing vertex nodes,

edge-half nodes, face nodes, etc. As the number of design components increases the representation becomes

extremely cumbersome to manipulate. Adjacency structures represent an individual design component such

as a beam as a single node, and form a graph of adjacent nodes to represent the system of connected

components in a design. Additionally, the geometric model is a purely syntactic representation having few

facilities for expressing the non-geometric aspects or the domain dependent semantics of the objects being

represented. The inclusion of material and behavioral information in the nodes of the graph allows the

expression and propagation of functional and behavioral aspects of the system of components.

The representation of design elements within a particular domain using graph structures has been

the subject of considerable investigation, notably for the specification of languages in computer science

[Knuth 68, Nagl 79], in architectural research [Mitchell 76, Krishnamurti 78, Hemming 86a], and in dynamic

systems design [Karaopp 68, Ulrich 87, Finger 89]. Each of these areas has provided domain or theoretical

background for the ideas presented in this paper. The relevant contributions will be briefly sketched in the

remainder of this section.

2.1 Graph Grammars in Computer Science

One method of specifying the logical structure of programming languages and algorithms is through the

use of graphs. The best known method may be the traditional flow chart but more formal methods exist,

particularly for the specification of compilers [Culik73, Schneider 75]. An operational definition of a

program can be given concisely by a program graph with the nodes of the graph representing data structures

and operations on the data and the arcs of the graph representing data flow. Program graphs are an abstract

notation that facilitates data-flow analyses in a manner which textual algorithm specification methods are

unable to provide. An interpreter for such a program specification can be described as a graph rewriting

system. Substantial research on the formal characteristics of graphs has been performed to ensure desirable

properties in a system expressed as a graph rewriting system [Ehrig 86, Nagl 86]. Also, a number of different

graph rewriting systems, or grammars, have been characterized to operationalize the development of specific

languages expressible using graph representations [Rozenberg 86, Deransart 88, Bunke 79]. These rewriting

systems differ in the definition of the vocabulary elements and in the details of the transformation mechanisms.

The formality of rewriting systems operating over graphs, and their utility in design through their expression

of complex structural interrelationships at multiple levels of abstraction, is attractive from the viewpoint of
both the development of system logic and its implementation. The ability of graphs to represent complex
structural relationships between any type of object being modeled by the nodes of the graph allows a
hierarchical and multidimensional system to be formally evaluated Additionally, the similarity between the
representation of the program's specification language and the internal representation of the program's data
structures simplifies the implementation of the logic invested in the language.

The application of graph grammar variants has begun to receive attention in the engineering design field
[Finger 89, Pinilla 89, Rinderle 91]. The necessity for representing both the geometric and non-geometric
aspects of partial designs, and the need for basing the transformations in the design process on both aspects
of the representation, focuses our attention on the attribute grammar formalism begun by Knuth [Knuth 68].
As described more fully by Deransart, et al. [Deransart 88], an attribute grammar begins from a context-free
grammar specified by the four-tuple:

G = {N,T,P,Z).
Where

N: The finite set of non-terminal symbols,
T: The finite set of terminal symbols,
P: The finite set of productions of the form XQ —• Xi.XiyX^, ...X^

y/ithXoeN.
Z: The starting symbol of the form afli

with /3 € /V,
a, 7 € {N U 7}*, the set of all finite length strings composed of symbols from {N U T}.

An attribute grammar associates an attribute system to the underlying grammar. Each non-terminal
symbol except the starting symbol has two finite sets associated with it: a set of inherited attributes and a
set of synthesized attributes. The inherited attributes of a symbol can be evaluated from the attributes of its
parent symbol in the graph, whereas the synthesized attributes can be evaluated from the children symbols'
attributes. Therefore, the start symbol has only synthesized attributes and the lowest level symbols have
only inherited attributes.2 Each production/? £ Pis given a set ofsemantic rules defining how the attributes
Syn(Xo) and lnh(Xj), 1 < j < np art computed for the elements of AttriXi), 0 < * < np. Each semantic
rule is a function over the production, the symbols in N and the attributes. Within a production ah attribute
associated with the ith position of symbol X is called an attribute occurrence a(i). More specifically:

for each Xi e N, AttrtX) = Inh(X) U Syn(X),
forallX,r e N9 Inh(X)nSyn(Y) = 0

a(i) € Syn(Xo) for / = OJ = I and k=np

a{i) € Inh{Xi) for 1 < i < np and; = k = 0

2TypicaUy, the terminal symbols have no attributes, but this is not a necessary property of the formalism. Assumedly terminal
symbols do not have, or need, a semantic interpretation. More accurately, the whole tree is used to derive the semantics of the
terminal string.

The semantic rules associated with a production p induce an order of computation, the local dependency

relation D(p)9 on the set of all attribute occurrences in p. Properties of the local dependency relation reveal

the attendant properties of the grammar. An attribute grammar is well-formed iff for every derivation tree t

of the grammar G» the collective dependency relation Rd(f) is cycle free. For a well-formed grammar an

evaluation order exists and every attribute's value may be determined.

Attribute grammars have been used in computer science for compiler and program specification, for data-

flow analysis and for database specification. Two interrelated points are worth noting about the standard

definition of attribute grammars and their applicability to engineering design:

1. There are essentially two coupled grammars; a symbol grammar and an attribute grammar, with a strict

partitioning of the total vocabulary. For a compiler it is relatively easy to partition the vocabulary into

programming language symbols and machine code "attributes". For an engineering design grammar

it is not as simple to partition the relevant vocabulary into a syntactic set and a semantic set.

2. The influence between symbols and attributes is unidirectional. The attributes are used to present

a second view of the derivation tree, but take no part in guiding the productions towards their final

state. In the original definition, the attributes form a semantic interpretation of the syntactic state.

This approach parallels the unending debate within linguistics of the relative primacy of syntax versus

semantics. In engineering design the interaction of syntax and semantics necessitates bidirectional

influence between the two descriptive systems.

The partitioning of the vocabulary into two grammars is itself a difficult issue when syntax and semantics

are fuzzy definitions for a domain. It may seem natural to associate the form variables to the grammar symbols

and the function variables to the attributes. However, if the semantic rules are a mapping to the attributes

of a symbol only, the function variables can have no impact on the form variables. If the opposite choice is

made, associating the function variables to the symbols and the function variables to the attributes, the form

variables have no feedback to the function variables. Either partitioning tactic reduces the interplay between

form and function variables. This is a severe restriction on the expressiveness of the transformations and

therefore on the expressiveness of the grammar for engineering design.

2.2 Orthogonal Structures in Configuration Studies

In configuration studies, Flemming's orthogonal structures represent the topological relations of a set of

rectangular shapes placed within a bounding rectangle. This representation has formed the basis of a

two-stage method for exploring the possible non-overlapping placements of component rectangles within

a bounding rectangle [Flemming 86b]. Two classes of constraints are successively employed: topological

constraints which specify the spatial relationship between rectangles and geometric constraints which restrict

dimensional properties (e.g., maximum or minimum area of a rectangle). The topological description

specifies a class of solutions containing all the geometric instantiations. This approach is exemplary in

abstracting the topological and geometric aspects of a rectangular dissection in order to develop a formal

representation of the topological aspect as a graph whose nodes represent the rectangles and whose directed

arcs represent one of two spatial relationships, above or to the right. A well-formed solution is assured by

proving that the representation is closed and complete under the application of a small set of generative

rules. Thus, the representation is used to prove theorems about the solutions, placing the approach on a firm

theoretical basis.

Two aspects of orthogonal structures discount their use in representing the structural systems of buildings.

First, the rules for generating orthogonal structures are embedded in a design method in which the precise

number of elements to be used must be known beforehand and the elements are added one at a time while

meeting a set of a priori adjacency constraints. In a structural system the number of elements employed

may change from one potential solution to the next; the exact number of elements is rather unimportant.

Likewise, the adjacency requirements on the elements of the design are a function of the partial solution

rather than a part of the problem statement. Secondly, we would like to be able to employ elements whose

edges are not necessarily parallel to an orthogonal grid. That is, we would like to be able to use diagonal

elements such as those in trusses or braced frames. Therefore, we are inspired by orthogonal structures and

their formation of the basis of a design method, but we are searching for a representation more appropriate

to our domain.

23 Bondgraphs for Dynamic Systems

Bondgraphs are a formal representation for describing the transformation of energy in lumped-parameter

systems [Paynter 61]. The applicable domains are classified according to the type of their energy transfer

electrical, fluid, mechanical translation and mechanical rotation. A bondgraph is composed of ports and

bonds; the nodes and vertices of the graph. There is one type of bond and four types of ports: sources,

1-ports, 2-ports and N-ports. Each bond represents a path for the flow of power which may be described by

the combination of a flow variable and an effort variable [Ulrich 87]. Thus, power flow in the mechanical

translation domain, for example, is the product of force and velocity which are the effort and flow variables,

respectively.

Source nodes describe elements of a system which specify an effort or flow. Lumped-parameter elements

are represented with 1-port nodes which constrain the effort-flow relationship on its associated bond. For

example, a 1-port representing a mass constrains the derivative of the velocity of the mass and the force on

that mass to be related by the mass parameter embodying Newton's Second Law. Elements of the domain

which transform efforts or flows are represented as 2-ports. The transformation may be between an effort

and a flow within the same domain, or into the same variable type in another domain. N-ports represent

junctions of bonds where all the bonds share a common flow and whose effort sums to zero, or where all the

bonds share a common effort and their flows sum to zero.

There are many attractive features of the bondgraph concept. First, bondgraphs represent the important

components of a system along with their behavioral attributes in a computable form. By explicitly repre-

senting the the effort-flow relationships among all the elements of the graph the qualitative representation of

bondgraphs can be used to derive a quantitative description of the system's behavior. Second, bondgraphs

may represent subsystems or complete systems, and therefore two complete bondgraphs may be used to

compose a larger bondgraph using an n-port and its bonds to connect the subgraphs. Therefore, the concept of

prototypes[Gero 90, Gero 88] is readily extended to bondgraphs through the use of standardized subgraphs in

the composition of system level bondgraphs. Finally bondgraphs are a formal language with a well-defined

grammar allowing methods for ensuring well-formed graphs.

Although structural systems are often represented using mass-spring systems during analysis, this is

an overly cumbersome representation for the design of systems with a large number of components. Also,

bondgraphs arc not applicable for systems with components whose behavior is context-dependent. For

example, the reduction ratio of a gear is independent of the rotation direction or applied torque, but the

deflected shape of a column is dependent on its support conditions. Furthermore, it may be argued that by

the time a building can be modeled as a lumped-parameter system, the configuration problem, and therefore

a major part of the structural design problem as a whole, has been completed. While the analogy between the

specification of the power variables of effort and flow and the work variables of force and displacement for

the description of a "static" system may lead to a quantitative description within our qualitative adjacency

structures, we contend that the geometry of a building is a crucial element of this domain and must have

a major role in the representation and design process, an aspect which bondgraphs ignore. Nevertheless,

another inspiration in the development of adjacency structures is the schematic description of systems using

bondgraphs.

2.4 Discrete Static Systems

In discrete static systems there is no action at a distance. There are no magnetic or electrical fields. There

is no transmission of electric energy between components of the system. In a discrete static system, such as

the structural system of a building, all communication of forces occur through the physical, virtual "pushing

and pulling" of adjacent members of the system. Systems are composed of adjacent members arranged in a

particular orientation. This orientation may be with respect to other members of the system or with respect

to the environmental conditions (loads and displacements) the system is meant to counteract. A common

informal language for describing the behavior of a building's structural system is in terms of load paths.

These paths consist of networks of adjacent members and subsystems which communicate the loads from

their sources to their supports (sinks). The introduction of any physical discontinuity in the network may

obviate a load path. The introduction of a new continuous path from load source to sink within the network

can introduce a new load path dependent on the geometry of that new path. The new path may quantitatively

change the distribution of forces within the system or qualitatively change its behavior. The confirmation of

expected load paths, and the discovery of new load paths and their quantitative assessment is one view of

behavioral evaluation. The circulation and communication of building occupants between the architectural

volumes of a building is another example of a functional requirement of a system predicated on the adjacency

of elements (rooms, corridors, floors etc.) of the building.

Of course, building structures are not completely static—they bend, compress and shear in response to

lateral, gravity and temperature loads. Yet, the members remain in a relatively fixed position and orientation

in relation to other members in the system. Also, it is a complex process to quantitatively describe the motion

and forces within a given building as it responds to these loadings. Many mathematical methods such as

matrix and finite element methods have been used to quantitatively describe the transmission of forces within

structural systems. However, during the design process we would also like to have a more qualitative and

less computationally expensive method of describing-the interrelation of physical members. Furthermore,

we would like to be able to describe the potential interrelationships of physical members before the complete

geometry (e.g. member sizes) of the system has been determined. Nevertheless, we take another major

inspiration for adjacency structures from the assembly step within the matrix and finite element analysis

methods.

3 Adjacency Structures

This section begins by introducing adjacency structures and their expressiveness using an intuitive example
of a truss. Then, we begin a detailed presentation of the adjacency structure concept by describing the
atomic and primitive elements that are used to compose adjacency structures. Next, the types of composition
operations for developing higher-level adjacency structures are presented, after which a few of the possible
compound components from the domain are described. Finally, the types of constraints incorporated into
the non-atomic components are described and a method for discretizing the geometric model to produce a
canonical translation to and from adjacency structures is presented. The translation of the complete geometric
model into an uninterpreted adjacency structure will be referred to as the overall adjacency structure. As
typically used, an adjacency graph is a purely topological description of a system. Each element of the
system is represented as a node in the graph and each directed or undirected arc represents an adjacency
relation between the two elements it connects. Our extension of adjacency graphs to adjacency structures
adds basic geometric and material information to each node in a graph with undirected arcs.

We begin the presentation of adjacency structures by considering a truss. Figure 1 shows a simple
nine-bar truss and three graphs. Graph a represents the truss joints as the graph's nodes and the truss bars as
its arcs. This representation is adequate for describing the spatial relationships of the bars. It can be seen
that each node is a member of a minimal cycle with a length of three. Furthermore, if each node contains its
coordinates in three-space it could be determined whether or not the truss lies in a single plane. However,
since this representation contains no information about the elements connecting the nodes it is inadequate
for answering questions about the functional adequacy of the truss such as its resistance to applied loads
or its resistance to buckling. Graph b represents the bars of the truss as nodes, with the arcs representing
adjacencies among the bars. It can be seen that the proper cycle information has been lost. For example
bar BC is a part of a cycle of length three containing bars AB and BD, three bars adjacent at node B but
which do not form a triangle. This representation fails on its inability to represent the topological nature
that characterizes a truss. Graph c contains two types of nodes. Triangular nodes represent the truss bars
and circular nodes represent the truss joints. The arcs of graph c simply represent the adjacency relations
between the bars and joints of the truss. In this representation each node is a member of a minimal cycle
of length six composed of three pairs of alternating bar and joint nodes. Furthermore, the representation of
joint nodes allows for a simple detennination of the planarity of the truss and the attributes associated with
the bar nodes allows the determination of the functional adequacy of the truss. The remainder of this section
presents a more specific description of the composition of adjacency structures.

3.1 Elements of Adjacency Structures

The physical objects to be represented by the adjacency structures described in this section are those objects
representable in any geometric modeling system. Section 3.4 briefly describes the translation requirements

a. Nodal Adjacencies b. Member Adjacencies

Z«ro-Dim«nsional •tomcint

Or»-0im«ns

C. Adjacency Structure

Figure 1: Nine-bar truss and associated adjacency graphs.

of various geometric modeling schemes. In this section the two lowest levels of a representation hierarchy

are presented. The classification begins with the types of nodes in adjacency structures and the objects

they may represent, i.e. the leaf nodes of the hierarchy. Next, two primitive elements of the structural

engineering domain are described. Operationally, the hierarchy may be composed through a graph grammar,

and Section 3.2.1 begins by presenting the three types of graph composition operations before presenting a

number of system components from the representation hierarchy.

3.1.1 Atomic Elements of Adjacency Structures

The leaf nodes, or atomic elements, of the representation hierarchy are the indivisible nodes of the graph

structure. These atomic elements of adjacency structures are translations of the objects in the geometric

model, and are classified according to their gross dimensional proportions. We allow four classes of nodes

or atomic elements based on the gross dimensionality of the element; we admit zero-, one-, two- and

three-dimensional nodes.

A zero-dimensional node has position but no size or form. This node may represent an interface between

two adjacent elements of a geometric model such as a joint in a truss or frame.

A one-dimensional node has a length greater than both its cross-sectional dimensions and may be used to

represent a bar of a truss, a column or a beam. Its geometric information may be represented by its

two end points.

A two-dimensional node has a breadth and depth much greater than its height, and may represent a wall or

floor plate. The geometric information of a two-dimensional polygonal node may be represented by

an ordered list of its vertices.

A three-dimensional node has each dimension of roughly the same scale, may represent an architectural

volume or a foundation footing, and may have its geometric information represented as a nested list

of the vertices of its bounding faces.

Each node is represented using a common data structure regardless of its dimensionality. The require-

ments of the data structure include the ability to represent non-physical attributes which express aspects of

the node's behavior and the ability to model the environmental conditions such as loads and displacements

for which we are constructing load paths. A single data structure is used to represent both physical or member

objects as well as virtual objects. Member objects encompass those physical objects being modeled in the

geometric modeler, e.g., truss bars and floor slabs, whereas virtual objects include the loads and displace-

ments imposed on a system as well as the interface between adjacent member objects. The data structure

contains five attribute fields: dimensionality, geometry, magnitude, composition and stiffness. There are two

additional fields, one for a node identifier and another for a list of pointers to other data structures. Additional

fields may be used for other domains, but these fields provide a compact yet expressive representation of the

geometric and non-geometric aspects of a single design component in the domain of tall building design.

This representation is shown in Table 1.

Fields

Identifier

Dimensionality

Geometry

Magnitude

Composition

Stiffness

Arcs

Objects

Member

String

6{1A3}
Vertex Coordinates

X-Sect. Dimensions

€{R.G, Steel}

{E,I}
List of Pointers

Interface

String

€{0,1,2}

Vertex Coordinates

X-Sect. Dimensions

0
0

List of Pointers

Load

String

€{0,1,2,3}

Vertex Coordinates

Load Vector

"Load"

0
List of Pointers

Displacement

String

€{0,1,2,3}

Vertex Coordinates

Displ. Vector

"Displacement"

0
List of Pointers

Table 1: Data structure for adjacency structure nodes.

3.1.2 Primitive Elements of Adjacency Structures

Aggregations of atomic elements are organized into a hierarchy based on topological and behavioral dis-

tinctions. The hierarchy begins with lower level primitive elements which are, in turn, used to construct

higher level system components. A primitive element consists of a specific number of nodes arranged in

a specific topology. The exact geometry associated with each node in a primitive element is not specified

by the component's definition; the geometry of each node is merely constrained to a specified relationship

with other nodes in the primitive. A system component is composed of an indefinite, but finite, repetition

of primitive elements also constrained to specified geometric relationships. A system component class is

defined in terms of its constituent primitives. The system class retains the constraints of its primitives and

subsystems, and uses additional constraints to define their composition into a system. A system class may

be composed of a repetition of a single primitive element, or it may be composed of more than one type of

primitive. We will call these two types of systems uniform systems and composite systems, respectively.

The atomic elements of adjacency structures represent the syntactic elements of all discrete static systems.

Any classification of aggregations of nodes gives a domain-dependent relevance to certain subgraph structures

composed of these nodes. Therefore, the definition of non-atomic elements and system components identifies

relevant syntactic structures and attaches a particular semantic importance to them. For this reason, we will

call the union of all the non-atomic components specified as being semantically relevant to the domain the

semantic templates of that domain. The formal specification of these templates may form the basis of an

algorithm for discovering the semantics of the purely syntactic overall adjacency structure. In this section

we present an informal specification of two primitive elements from the domain of building structures.

Truss Panel. A truss panel is represented as a graph whose nodes form a cycle of length six composed of

three pairs of alternating zero- and one-dimensional nodes. The elements define a single plane parallel

to the orientation of the loads it resists (if these loads exist). Also, any applied loads present must be

applied only at the zero-dimen$ional nodes.

Bent, A bent is represented as a graph whose nodes form a non-cyclic series of five nodes. The series is

composed of three one-dimensional nodes each of which is separated by a zero-dimensional node.

As in the truss panel, the elements are arranged in a single plane parallel td the orientation of the

10

loads the bent resists. However, loads may be applied to either the zero- or one-dimensional nodes.

Additional constraints on the relative angles and absolute orientations of the one-dimensional nodes

must be included in the graph template.

3*2 System Components

The expressive richness of the adjacency structure representation hierarchy may be defined by the union of

all potential semantic templates over the domain of interest. A representation hierarchy should express the

elements and systems relevant to the domain because these elements and systems are the building blocks

of the parsing and generation processes. The composition operations described in this section facilitate the

composition of systems from elements and the decomposition of systems into elements. A representation

hierarchy for design must also be flexible enough to accommodate additions to the design vocabulary;

it should allow the easy composition of new templates from lower-level components. A collection of

composition operations over the set of atoms and primitives may be able to generate all relevant systems,

but if the generation process is unguided it will also generate many irrelevant systems. The generation and

even the "discovery" of new elements of the vocabulary is not the topic of this paper, but is an interesting

part of future research with adjacency structures. The purpose of this paper is to provide a discussion of the

adjacency structure representation and its use within a design process.

3.2.1 Template Composition Operations

There are three types operations useful for combining subgraphs into higher level graphs. One operation

combines two separate graphs by unifying nodes which have the same dimensionality and the same location

in both graphs. This is particularly useful for systems, such as plane trusses, which are defined in terms

of components—triangular panels—which share atomic elements—a one-dimensional node and its two

adjacent zero-dimensional nodes. A second operation connects two geometrically adjacent subgraphs

without unifying nodes in the two subgraphs. This second operation connects geometrically distinct nodes

in the two separate subgraphs, but because arcs denote physical adjacency in the graph structure and because

an interface is a virtual object represented by a node, this operation adds a 'bridge' composed of two arcs

separated by a node between the two subgraphs being connected. The dimensionality and geometry of

the inserted node is the dimensionality and geometry of the intersection of the nodes being connected.

This operation is useful for combining two systems which do not share components, e.g., two orthogonal

shearwalls. The third type of operation embeds one graph within another by replacing arcs (and possibly

nodes) of the host graph with new arcs into the immigrant graph. Embedding is useful for rearranging

the components of a system being combined, e.g., when combining a frame and a shearwall by removing

columns at the intersection and rcattaching the beams to the shearwall.

The three types of composition operations, joining two graphs G\ and Gi to produce graph G3 are

constructed by partitioning each graph G,,z = 1 , 2 into two sets of nodes, Ut which are involved in the

composition operation, and t/| which are copied directly into G3. The arcs between nodes wholly in'£/)

are also copied directly into G3. The difference between the operations lies in how the two sets of nodes

£/,*, i = 1,2, and the arcs attendant to these nodes are transformed before being inserted into G3.

11

• Merge: unify one or more nodes in G\ and G* The sets U»i = 1,2 are all nodes which are
geometrically and dimcnsionally equivalent in graphs G\ and G2. For each pair of nodes to be unified,
Mi € U\ and 112 € I/2 from G\ and G2 respectively, copy node u\ into G3 and attach to this node all
the arcs it possessed in G\ plus all the arcs possessed by u% in G2.

• Abut: G\ and G2 arc adjacent, but there are no geometrically equivalent nodes in G\ and G2. The

sets Ui, i ss 1,2 are all those nodes in graph G\ which are adjacent to nodes in graph G2. Copy graphs

G\ and G2 into G3 and add one or more 'bridges9 between U\ and £/2. For each node u\ e U\ and

U2 € U2 insert a node, u*, into G3 with the dimensionality and geometry of the intersection of u\ and

U2f and insert into G3 an arc connecting Ub to u\ and an arc connecting u& to u2.

• Embed: insert G\ into the middle of G2. There are no dimensionally and geometrically equivalent

nodes in G\ and G2. The sets U» i = 1,2 are specified to achieve a particular behavior. U\ may be

transformed, possibly by removing some of its nodes, before being inserted into G3. The embedding

begins by copying G2 into G3, removing all the arcs between nodes Ui now in G3, copying G\ into

G3, and adding arcs to {U\ U f/2} as specified to achieve the desired behavior in the combined G3.

These three types of composition operations are used to describe the transformation of graphs composing

the representation hierarchy. The parsing and generation processes require these complex transformations

because the graphs are not simply split when parsing or connected with a few arcs when generating. When

parsing orthogonal frames into two sets of plane frames, for example, the single column at each frame

intersections must be copied twice when forming the graphs representing the two frames. Therefore, the

specification of the representation hierarchy requires an operational definition of the transformation of one

level of templates into the templates of another level. These operations are used in describing the system

components presented below.

3.2.2 Planar System Components of Adjacency Structures

Each of the components described in Section 3.1.2 is represented by a planar graph. The components are

planar in graph-theoretic terms as well as representing physical objects which are relatively two-dimensional.

This section describes groupings of these compound components into larger graphs which continue to be

planar. The next section will extend these compound systems into non-planar graphs and into physical

objects which are highly three-dimensional.

Unifonn compound systems are composed by repeating a single compound component within a set of

prescribed geometric constraints. For example, a truss, in order to be a plane truss, must have each of its

panels constrained to a single plane. In contrast, a space truss may be composed of the same type and

number of compound components, but by using different geometric constraints the semantic template of a

different system is specified.

Compound systems may be specified through the juxtaposition of multiple compound components or

multiple unifonn systems within a set of prescribed geometric constraint. For example, a braced frame may

be specified as a horizontally adjacent set of plane frames and vertical plane trusses, all in the same plane.

In this way a hierarchy of higher-level relevant graph templates may be defined using a small number of

12

simple graphs which may be repeated an indefinite number of times during their instantiation in an adjacency

structure. A few uniform and compound systems are informally specified below.

Plane Truss. A plane truss is represented as a graph repeating the truss panel component, i.e., each of

whose nodes is a member of a minimal cycle of length six composed of three pairs of alternating zero-

and one-dimensional nodes. Each panel is merged with at least one other panel, i.e. each cycle has at

least one one-dimensional node and its two adjacent zero-dimensional nodes as members of one other

cycle. The zero-dimensional elements (and therefore the one-dimensional elements also) are arranged

in a single plane parallel to the orientation of the forces the truss resists, and the forces are applied

only to the zero-dimensional elements.

Plane Frame. A plane frame is represented as a graph repeating the bent component, i.e., each of whose

nodes is a member of a minimal cycle of length eight composed of four pairs of alternating zero- and

nonzero-dimensional nodes. The composition of the plane frame is achieved by horizontally merging

bent primitives and vertically abutting bent primitives. Additionally, the zero-dimensional elements

are arranged in a single plane parallel to the orientation of the forces the frame resists.

Braced Frame. A braced frame is a compound system composed of one or more plane frames and one or

more vertical plane trusses adjacent to each other and in the same plane. Each adjacency of the two

system types is a merging along a vertical line of shared alternating zero- and one-dimensional nodes.

Shearwall. A shcarwall is represented as a vertical non-cyclic series of two-dimensional nodes. Each pair

of two-dimensional nodes is mediated by a horizontal one-dimensional interface node.

Shearwall-Plane Frame. A shearwall-plane frame combination is represented as an embedding of a shear-

wall within a plane frame. All one-dimensional nodes within the intersection of the shearwall and the

plane frame are removed from the plane frame adjacency structure before arcs are inserted to combine

the two systems.

3.2.3 Three-Dimensional System Components

The systems described above are planar compositions of smaller subgraphs. Higher level compositions

of these planar systems can be defined to specify three-dimensional compound systems.3 A few of the

large number of three-dimensional systems are described in this section to explain their expression in the

adjacency structure representation. First, gravity load resisting systems are discussed, separately from the

lateral load resisting systems which they must eventually be unified with.

A bay of a flooring system is represented as a graph containing a two-dimensional node whose geometry

is a single horizontal plane. Loads applied to the two-dimensional element are oriented normal to its plane.

Various flooring types have different adjacency characteristics, and three examples are described below.

3 A frequent remark from experienced structural engineers, when discussing historical developments in structural engineering,
has focused on developing the ability to think (compute) & visualize about structures in three dimensions. The specification of
three-dimensional adjacency structures provides the ability to reason in three dimensions.

13

Flat Plate. A bay of a flat plate flooring system is represented as a graph composed of a two-dimensional

node and four pairs of one-dimensional nodes. A zero-dimensional node (denoting the interface) is

adjacent to the two-dimensional element and each of the paired one-dimensional nodes as shown in

Figure 2. Each one-dimensional node is oriented normal to the two-dimensional element.

M

Figure 2: Pictorial and graph representation of flat plate flooring system.

One-way Slab. A one-way flat slab system is represented as a graph composed of a horizontal two-

dimensional element abutted to bent components on alternating edges of the two-dimensional element.

As shown in Rgure 3, the two-dimensional element and each of the bent components is mediated by

an adjacent horizontal one-dimensional interface element introduced during the abut operation.

Rgure 3: Pictorial and graph representation of 1-way flat slab flooring system.

Two-way Slab, A two-way flat slab system is represented as a graph composed of a horizontal two-

dimensional node abutted to horizontally merged bent components on each edge of the two-dimensional

node. As shown in Rgure 4, the two-dimensional node and each of the bent components is mediated

14

by an adjacent horizontal one-dimensional interface node introduced during the abut operation. The

number of merged bent components equals the number of edges of the horizontal two-dimensional

node. In addition to the topological and orientation requirements listed above, a bound on the aspect

ratio of the two-dimensional element of the two-way flat slab must be included in the graph template.

Figure 4: Pictorial and graph representation of 2-way flat slab flooring system.

At a higher level of the representation hierarchy, orthogonal plane frames remain a predominant three-

dimensional framing system in current buildingpractice. This three-dimensional lateral-load resisting system

is composed of two sets of plane frames. Each set of frames is oriented orthogonally to the other, and the two

sets of frames share columns where they intersect. Non-orthogonal intersecting systems of plane frames

may also be used in buildings which are based on other than orthogonal architectural grids. In contrast, the

tube structural system can be viewed as a wrapping of a planar system about the three-dimensional envelope

of the building volume.

A more complex composition in three dimensions is the hat truss, combining a number of planar trusses

into a system which must also be defined in terms of its adjacency with other subsystems in the building

and in term of its location within the overall system. A hat truss is a three-dimensional arrangement of

plane trusses placed at the top a building. The function of the hat truss is to reduce the building's lateral

deflection. It accomplishes this function through the behavior of tying together the building's core and

perimeter frames, and thereby altering the shape of the building's deflection curve. The specialized location,

topology and desired behavior of a hat truss lead to different types of constraints which must be incorporated

in the semantic template of a hat truss, and which can sufficiently describe a hat truss without overburdening

the process of matching on the overall adjacency structure. A belt truss fulfills a similar function through

a similar behavior, but is located in a geometrically different relation to the overall structural system. The

identification and distinction of these two systems is a severe measure of the type of representation and

process which we are introducing.

Orthogonal Plane Frames. An orthogonal plane frame system is a non-planar graph composed of intersect-

ing plane frame uniform systems, braced frame systems orframe and shearwall systems. Each frame

15

intersection is along a merged vertical series of paired zero- and vertically oriented one-dimensional
nodes. Each shearwall intersection occurs along an abutted vertical edge of two shearwall panels, and
each shearwall-frame intersection occurs by embedding a bent and shearwall primitive, removing a
vertical one-dimensional node and reattaching its two adjacent zero-dimensional nodes to the vertical
two-dimensional node representing the shearwall panel.

Framed Tube. A framed tube is a graph combining three or more plane frame uniform systems. Each
successive plane frame is attached to the previous plane frame by merging a vertical series of paired
zero- and one-dimensional nodes. Each of the one-dimensional nodes in the series is oriented vertically,
and the last plane frame system merges to the first plane frame to complete a cycle. At a higher level
of granularity the framed tube is a cycle of 2n nodes. Every other node represents a plane frame and
its two adjacent nodes represent their shared, vertical interface.

33 Constraints Within Semantic Templates

The semantic templates specify a graph structure relevant to the domain. The topology of the graph clearly
specifies how the nodes are configured, but the template nodes representing physical objects have only
their dimensionality fixed by the template; the template does not assign the geometry, magnitude etc. of
the constituent nodes. Previous sections have mentioned the constraints associated with components and
systems. This section discusses the various types of constraints which may be associated with the semantic
templates. Constraints are represented as part of the transformations which decompose (or compose) the
templates during parsing (or generation.) The five type of constraints are geometric constraints, constraints
on the location of the template, constraints on the association of node types within the template, functional
constraints which are expressed in terms loads and behavioral constraints which relate applied loads to the
resulting displacements.

• Geometric constraints:

- Planarity: All the nodes of the graph, or of a specific subgraph, must reside within a single plane.

The orientation of this plane may be specified as horizontal, vertical etc.

- Symmetry: The geometry of a subgraph (each node and its arcs) must be equivalent to that of
another node in the graph under a reflective transformation.

- Aspect ratio:

* Single node: The geometric proportions of an individual two- or three-dimensional node

must be within a certain upper or lower bound, or within a particular range.

* Complete graph: The geometric proportions of the convex hull of a semantic template must

be within a certain range.

• Location within a larger system: A subgraph must be placed in a particular relation to the overall

model in world coordinates.

• Associativity: The nodes of one subgraph must be joined to the nodes of a specific dimensionality,

location or orientation in another subgraph.

16

• Functional constraints:

- Dimensionality: the applied loads or displacements must be of a specific dimensionality; e.g.,

zero-dimensional or point loads applied to a truss template.

- Location: the applied loads or displacements must be located at specific positions of the graph to

which they are attached; e.g., point loads attached to zero-dimensional nodes of a truss template.

- Orientation: the applied loads or displacements must be oriented in a specific direction relative

to the graph to which they are attached; e.g., distributed loads oriented perpendicular to nonzero-

dimensional nodes.

• Behavioral constraints:

- Stiffness: the lateral deflection of a specific location of the template is directly proportional to

the applied load and inversely proportional to the flexural stiffness of constituent members or

compound components. This type of constraint can also implicitly describe the stiffness of joints

in the composition.

- Strength: the internal forces of constituent members or compound components in the template

are related to the applied loads, and the material properties and cross section area of the members

or components.

3.4 Translation and Discretization of the Geometric Model

Adjacency structures are a graphical representation of individual, physical objects and their adjacencies.

Geometric modeling systems represent these objects in various ways. This section presents an algorithm

for translating an arbitrary geometric modeling representation into a canonical overall adjacency structure.

It is the responsibility of a translation function to be able to recognize, for a particular geometric modeling

system, the characteristics which determine what data structures represent a physical object being modeled

in that particular geometric modeling system. For example, when using a boundary representation geometric

model, each node of the overall adjacency structure will represent one solid, or the discretization of one

solid, in the geometric model. In a non-manifold geometric modeling system, in contrast, dangling faces and

edges may also represent physical objects in the domain. Once the individual object's representations have

been distinguished, these individual objects may need to be discretized into smaller objects before becoming

part of the overall adjacency graph. One motivation for discretizing the model is to arrive at a scheme for

producing a canonical representation of any model. For example, when representing a 40-story building,

is a geometrically continuous column to be a 40-story tall object? We could use the maximal line method

from shape grammars to produce a canonical representation. However, looking back at the truss example

of Figure 1, with the maximal line method the top and bottom chords of a truss would each be modeled as

one node rather than as separate nodes for each panel. Instead, we work under a minimal extent scheme,

discretizing every modeled object at any location of intersection or adjacency with another modeled object.

The discretization of the geometric model is the translation of the geometric model into the overall

adjacency structure. The formation of the overall adjacency structure begins by translating each object

in the geometric model into one node in the overall adjacency structure. For each two objects, u and v,

17

which are adjacent in the geometric model, an arc is placed in the overall adjacency structure connecting the
corresponding nodes u' and v\ Next, a nonregularized intersection is performed on each pair of adjacent
nodes. Four results of the intersection are possible, each of which leads to a distinct operation in forming
the overall adjacency structure. The four conditions and their results are listed below and shown pictorially
in Figure 5.

1. The nonregularized intersection of it' and v' describes a point set which divides neither of the nodes
into two distinct point sets. One interface node W with the dimensionality and geometry of the
nonregularized intersection is introduced into the overall adjacency structure. The arc previously
connecting u' and v' is replaced by an arc connecting u' and w' and an arc connecting v' and w\

2. The nonregularized intersection of u' and v' describes a point set which divides only one of the
nodes, say u\ into two distinct point sets outside of the intersection. One interface node w' with
the dimensionality and geometry of the nonregularized intersection is introduced into the overall
adjacency structure, and u' is split into two nodes s' and f. The arc previously connecting u' and v' is
replaced by an arc connecting v' and w', an arc connecting s' and W, and an arc connecting t and w'.

3. The nonregularized intersection of vC and v' describes a point set which divides both u' and v' into
two distinct point sets apart from the intersection. One interface node w' with the dimensionality
and geometry of the nonregularized intersection is introduced into the overall adjacency structure,
and both u and v' are split into two nodes s' and i\ and xy and y\ respectively. The arc previously
connecting uf and v' is replaced by four arcs connecting W to each of the nodes s\ffx? and y\

4. The nonregularized intersection of u' and v' describes a point set which divides one node, say u\
into two distinct point sets and intersects the other node, v\ within its boundary. This case requires a
two-stage process: one interface node w" with the dimensionality and geometry of the nonregularized
intersection is introduced into the overall adjacency structure, and u' is split into two nodes sf and
t' which are also inserted into the overall adjacency structure. However, v' temporarily remains
one node. When all objects adjacent to V are processed v' may be divided into multiple nodes as
follows. All interface nodes within or adjacent to v' are collected into a set and ordered according to
their geometric location. A temporary graph is formed from these nodes with each node connected
to its nearest neighbors.4 Finally v' is divided along the geometric lines connecting each node in
the temporary graph to its neighboring nodes. The subdivisions of V arc inserted into the overall
adjacency structure separated by appropriate interface nodes. The arc previously connecting u' and v'
is replaced by two arcs connecting connecting w" to the nodes s' and t\ and an arc connecting w" to
each adjacent node resulting from the subdivision of v\

When translating the geometric model of a flooring system for example, each u' will be a one-
dimensional node oriented perpendicular to the two-dimensional node v' (columns perpendicular to
the slab). Each w" will be a zero-dimensional node located in the plane of v\ If the one-dimensional

4Thc assistance of the user is required to determine the precise meaning of "nearest neighbors" for many interesting problems.

Therefore, we do not complete the specification of this part of the case.

18

1.
u

A
•

2. U

Figure 5: Results of nonrcgularized intersection of adjacent geometric objects.

19

nodes arc arranged according to an orthogonal grid the interface nodes on the corners of v' will be
connected to two other interface nodes* whereas other nodes on the boundary of v' will be connected
to three other interface nodes, and nodes on the interior of v' will be connected to four other interface
nodes in the temporary graph. Each subdivision of v' is a two-dimensional node adjacent to four
zero-dimensional interface nodes and adjacent to multiple one-dimensional interface nodes separating
it from the other two-dimensional subdivision nodes.

4 Semantic Interpretation of Syntactic Structure

The formation of the overall adjacency structure from a geometric model is a translation of one model's
syntax into the syntax of another modeling system. The expense of this translation is only worthwhile if
the new modeling system is more useful for some particular purpose. In this section we present how the
adjacency structure representation of a geometric model may be used to discover both intended and emergent
semantics within the syntactic representation. This discovery process is the parsing mode mentioned at the
beginning of this paper.

As intimated above, the parsing of an existing representation is basically a subgraph matching problem.
General subgraph matching is regarded to be an NP-complete problem [Aho 74]. That is, no algorithm,
bounded by polynomial time, is known for deciding whether a graph G\ contains a subgraph G2. The
inclusion of geometric information within the adjacency graph, in addition to providing the ability to reason
about the system's behavior and functionality, alleviates much of the matching complexity attendant to the
general subgraph matching problem [Schnitzler 82]. By incorporating node dimensionality and geometric
information into the representation the matching is made more specific because more information is being
matched upon.

The parsing of an overall adjacency structure in terms of semantic templates is an inductive procedure,
translating a specific syntactic structure into a set of semantic templates general to the domain. To illustrate
this procedure let us assume that we have translated the geometric model representing the structural system
of a building into the overall adjacency structure as described in Section 3.4. Beginning from the highest
level of the adjacency structure taxonomy, an attempt is made to unify semantic templates with the overall
adjacency structure. This is a hierarchical process because the high-level templates are defined in terms of
lower level templates. In structural engineering there is a set of three-dimensional systems which incorporate
both a lateral load resisting system and, with the addition of floor slabs, a gravity load resisting system. This
set includes the varieties of tube structures and orthogonal framing systems. Therefore, the first templates
which may be unified with the overall adjacency structure are these three-dimensional system templates.
No more than one semantic template should match on a given overall adjacency structure during parsing if
the templates are defined in exclusive terms. For example, a framed tube structure should not be described
as an orthogonal rigid frame structure even though the framed tube may consist of four rigid frames oriented
orthogonally.

After the highest level adjacency structure has been unified with the overall adjacency structure, matches
are sought for any remaining subgraphs. These ancillary adjacency structures must be compatible with the
previously unified adjacency structures. Adjacency structure compatibility entails being able to combine

20

multiple subgraphs through the available composition operation described in Section 3.2.1 while satisfying
the applicable constraints on each adjacency structure.5 The need for ancillary adjacency structures will be
common for building with non-rectangular plans and massings, for example.

The purely syntactic matching process can discover emergent systems because it inspects the graph
structure to find what is contained in the model* not what is said to be in the model. For example, if the
structural system is generated as a set of plane frames in the x-z plane, and then each frame is connected by
beams (at the joints of each frame) in the y-z plane the plane frame template will match on frames in both
the x-z plane and in the y-z plane, thereby discovering that there is an orthogonal plane frame system, i.e.,
plane frames exist in both directions.

Additionally, this representation and parsing process may be used to confirm intended syntactic compo-
sitions and to evaluate the condition of existing syntactic compositions. That is, the matching process may
also be utilized to find the presence of extraneous elements or the omission of necessary elements. After the
structural system has been parsed, the resulting definition of the system in terms of semantic templates may
be compared to the structural system graph translated from the geometric model. If a boolean difference be-
tween the overall adjacency structure and the union of semantic templates parsed from the overall adjacency
structure leaves any structural elements remaining, these remaining elements may be said not to participate
in the structural system described by the semantic templates. These elements which are not included in the
semantic templates are extraneous to the system defined by the templates and possibly may be removed from
the design.

Alternately, the initial architectural definition of the building contains a set of components which may
form an intentionally incomplete structural system. For example, the floor slab and column placements may
be specified by the architectural design. However, this design is not meant to rule out the use of beams in
the structural design or to preclude the use of a one-way or two-way fiat slab gravity system. Parsing the
overall adjacency structure finds that there are no lateral load resisting system templates that will match on
the overall adjacency structure, but that many templates may be unified with it if the design process is shifted
to the generation of a lateral load resisting system.

These three results of parsing can be used to summarize the syntactic condition of the design. The overall
adjacency structure may be completely parsed into atomic elements thereby describing the overall adjacency
structure in terms of the templates at successive levels of decomposition. This signifies a syntactically
complete design. Alternately, the overall adjacency structure may be decomposed, but the decomposition
leaves elements that are not parsed out of the overall adjacency structure. This signifies an intentionally or
unintentionally redundant design. Finally, the overall adjacency structure may be incompletely decomposed,
halting at the system level unable to match on the existing adjacency structure. This signifies a syntactically
incomplete design that requires additional elements for completion.

5The recurrent combining of adjacency structures not contained as single compound components in the representation hierarchy
during the parsing process may afford one method of learning or "chunking" new or appropriate system components.

21

5 Adjacency Structures in A Design Process

The various design processes in which an architect and a structural engineer interact may be viewed along
the two axes of phase and domain, shown in Figure 6. The predominant architect-engineer design process
begins with an architectural parsing of the client's design brief, then proceeds with an architectural generative
phase. Next, structural design begins with a parsing of the architectural design to find pertinent geometric
and functional information, then proceeds through a structural generative phase. In this design process, the
architectural phase sets the geometry of the building envelope and constrains the location of any internal
elements which the structural engineer may introduce. The role of the structural engineer during preliminary
design becomes one of proposing a small number of "good" structural systems which can support, and be
accommodated within, the architecturally subdivided envelope. This section presents the use of adjacency
structures in the transformation of functional requirements into a structural description.

DOMAIN

architecture

PHASE
parsing generating

structure

Figure 6: Design as processes along Domain - Phase axes.

The mapping from the functional requirements of a design to instances of design structure which satisfy
those requirements can be performed as a successive refinement of elements of a functional hierarchy. A
rcprcsentation for such a process must include attributes which can explicitly rcprcsent at least function, if
not behavior. The inclusion in the semantic templates of nodes representing loads and displacements can
represent both given and propagated functional requirements such as applied loads or imposed displacements.
Behavior, in the form of the flexural stiffness and axial forces of the system, is represented as constraints
on the system components of the rcprcsentation hierarchy. Thus, a uniform rcprcsentation is used to model
function and structure, providing a transparent method of propagating functional requirements within a
partial design solution.

To illustrate the use of adjacency structures in a design process let us assume that we have a geometric
model representing a preliminary architectural design of a building. The architectural description includes
a definition of the building's envelope as the external surface of the geometric model, plus any interior
geometric entities representing the location of partitions such as the service core, floors and permanent
internal walls. The geometric model of the building is translated into the overall adjacency structure
according to the minimal extent principle described in Section 3.4. Through design standards or experience,
lateral and gravity loads arc specified for the building form as a function of height and occupancy type. These
lateral and gravity loads arc added to the overall adjacency structure as load nodes. Also through design
standards or experience, allowable deflections are specified as a function of the applied loads. Together, the

22

architectural envelope and internal elements, and the applied loads and allowable deflections form the specific
functional requirements for the structural design. The structural design phase consists of instantiating sets
of subgraphs which together satisfy the specific functional requirements for an individual building, along
with the general requirements for all buildings such as constraints on member forces.

Design generation, like the parsing process, begins by seeking matches for the semantic templates of
the representation hierarchy giving primacy to three-dimensional systems. The control mechanism for the
generation process differs from that of the control of the parsing process in that multiple instantiations are
sought which can satisfy the functional requirements; the control of the generation process should branch the
single set of design requirements into multiple potential solutions. The complete instantiation of semantic
templates to form an adjacency structure which satisfies the functional requirements may be divided into
two phases: topology and parameterization. In the first phase the building envelope is populated with
specific types and numbers of semantic templates. In the second phase the (primarily geometric) unassigned
data fields of the nodes composing the templates are assigned values. An attempt is made to topologically
instantiate the highest level semantic templates possible through matching on the object and load nodes in
the overall adjacency structure while satisfying the templates' constraints. The load nodes are propagated
subject to the constraints on the allowable dimensionality, location and orientation for load nodes on the
semantic templates being instantiated. Originally the lateral and gravity loads of the functional requirements
are distributed loads inserted into the overall adjacency structure as two-dimensional nodes. The lateral
loads must be propagated as one-dimensional nodes when instantiating such templates as frames or framed
tubes, as zero-dimensional nodes when instantiating truss templates or remaining as two-dimensional nodes
when instantiating shearwall templates.

Another fundamental constraint on each high-level system during topological instantiation is that the
system must be composed of an integer repetition of its constituent templates. For example, a plane frame
template must be composed of an integer number of horizontally merged bent templates and an integer
number of vertically abutted bent templates. Thus, topological instantiation involves a determination of the
dimension of the target region6 for the potential instantiation of a template and a comparison of the template's
application limits to arrive at possible dimensions for the region's division. The order of these two steps
is dependent of the design process in which it is used. In the design process described at the beginning
of this section, it is appropriate to first determine the acceptable range of the subdivision dimensions. For
example, if an office building is being designed with a 45 foot core-to-perimeter dimension which has
no permanent interior walls besides the core, is it acceptable to place a column between the core and the
perimeter? If it is not architecturally acceptable to do so, then this constraint must be considered during the
instantiation of any internal frame or flooring system. This suggests the need for an interactive ability during
the constraint satisfaction necessary in the topological instantiation of semantic templates; their own limits of
application are underconstrained. When the number of component templates composing the specific system
is determined the topological instantiation itself can be accomplished by generating the proper number of
subgraphs which realize a compound template, assigning values, to the appropriate data fields in each node
of the template, and embedding it in the overall adjacency structure. After the first template system is

6 A region is a general geometric space in Rl, Z?2 or R3 i.e. the division of a region may be the division of a beam, floor plan or
architectural volume.

23

instantiated and added to the overall adjacency model, subsequent instantiations are also constrained to
accommodate the existing adjacency structures in the model through the composition operations presented
earlier. For example, if the lateral load system is satisfied first by an orthogonal rigid frame, the gravity load
system is constrained to using the existing beams and columns for instantiating the gravity system templates.

The parametric instantiation is primarily concerned with the defining of member cross-sections. In order
to accomplish this parameterization some level of analysis is needed. One advantage of the node and system
representation we have described is its ease of translation into the matrix methods of analysis. Each member
node, if it had its cross-section geometry defined, would contain enough information to form the member
stiffness matrix. The overall adjacency structure would then contain enough information to compose the
element stiffness matrices into the global stiffness matrix. Then, the product of the inverse global stiffness
matrix (the flexibility matrix) and the force vector results in the deflection vector. However, the topological
instantiation does not provide the information needed to complete the element stiffness matrices; it only
provides enough information to compose the global matrix from defined element stiffness matrices. Thus,
one possible design process is as follows:

1. The topological instantiation defines the length of one-dimensional elements and the breadth and
depth of two-dimensional elements when the building envelope is subdivided into an integer number
of templates.

2. The relative stiffness of all member nodes is defined. This relative stiffness is used to define element
stiffness matrices for each member node in the overall adjacency structure as a function of its moment
of inertia / and the modulus of elasticity £ of a material.

3. The relative stiffness matrix of each element along with the defined topology is used to construct the
global stiffness matrix.

4. The deflections of the building structure are determined as a function of the relative stiffness and the
applied loads.

5. The stiffness is assigned to limit the deflections to an allowable amount. The assigned stiffness allows
the back calculation of the member stiffnesses and, therefore, the defining of their cross-sections.

The instantiation process continues until the overall adjacency structure becomes a complete connected
graph, that is, when the applied propagated loads have been connected to system templates for resisting these
loads, and when the system templates have been completely instantiated down to their atomic elements. In
this way we perform the generative mapping from functional requirements, stated in terms of the architectural
form and the applied loads, through the behavior of load propagation and flexural stiffness to derive the
structure of a design solution represented as a network of adjacent members.

A design process must also include provisions for changing the model as new information is introduced
or existing information is altered. We have discussed the introduction of adjacency structures into the
design model, but must also consider the requirements of editing existing adjacency structures. As in their
introduction, the editing of adjacency structures may be divided into topological alterations and parametric
alterations. A graph grammar may be used for topological edits such as embedding a shearwall or braced

24

frame template into an existing plane frame system within the overall adjacency structure. On the other
hand, the object oriented programming technique of methods which operate on a restricted set of abstract
data types appears more appropriate for the parametric editing of a specific system component. Instantiation
and editing, thus, form the basic operations of the design process with adjacency structures.

6 Conclusion

This research is motivated by the belief that a hierarchical organization of design components reflects the way
human designers think about building structures, and that basing a graph representation on the adjacencies of
physical components reflects both the way building structures are built and the way they behave as systems.
The representation presented in this paper provides a more convenient, higher-level means of operating on
a system of geometric objects than such representations as the split-edge data structure used by boundary
representation geometric modeling. At the same time, the graph representation of adjacency structures
provides a more explicitly system-oriented representation than objects, frames or prototypes for a domain in
which a design is composed of a large number of highly interconnected, primarily geometric objects. For
these reasons, we feel that adjacency structures provide an intuitive and convenient representation for design
generation and evaluation, a representation which captures the essential geometric and systematic nature of
discrete static systems.

The typical result of a design process is a description of the physical shape and material composition
of an artifact delivered in response to a set of functional requirements. The drawings and specifications
delivered by an architectural/engineering firm as the design of a building are a purely syntactic description
of the building. However, the design mandate for the artifact was given in terms of the semantics of the
design; the functions the proposed artifact must satisfy. The parallel between the form—function dichotomy
and the syntax—semantics dichotomy is apparent in a domain where a design may be specified purely in
terms of a description of the artifact's shape and material. The syntax of the design describes the form
of the proposed artifact whereas the semantics of the design describes the functional requirements and the
behavioral expectations of the proposed artifact.

We have presented a representation which incorporates syntactic aspects of a design in terms of adjacent
physical objects with semantic aspects of the domain in terms of systems, loads and displacements. We
have also presented methods for utilizing this representation in the design process as bidirectional mappings
between the functional, behavioral and structural views of a design description. These two mapping directions
support design through mapping from function to structure (synthesizing potential solutions), through
mapping from structure to behavior (qualitatively analyzing potential solutions), and through mapping
from behavior to function (evaluating a potential solution.) The adjacency structure representation also
provides an important link between design visualization, provided by geometric modeling, and design
analysis provided by the matrix methods. Through these mappings, this representation and design process
supports a function-to-structure design method for the domain of discrete static systems.

25

References

[Aho74]

[Bunkc79]

[Cortes 89]

[Culik73]

[Deransart 88]

[Eastman 91]

[Ehrig 86]

[Finger 89]

[Hemming 86a]

[Hemming 86b]

[Gero 87]

[Gero 88]

[Gero 90]

A, V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

H. Bunke. "Programmed graph grammars/' In Graph-Grammars and Their Application
to Computer Science and Biology, volume 73 of Lecture Notes in Computer Science and
Biology, pages 155-166, Berlin, Springer- Verlag, 1979.

L. A. P. Cortes. "Graflog: A theory of semantics for graphics with applications to
human-computer interaction and CAD systems/' PhD thesis, University of Edinburgh,
1989.

K. I. Culik. "A model for the formal definition of computer languages.'9 International
Journal of Computer Mathematics, A(3):315-345,1973.

P. Deransart, M. Jourdan, and B. Lorho. Attribute Grammars: Definitions, Systems
and Bibliography, volume 323 of Lecture Notes in Computer Science. Springer-Veiiag,
Berlin, 1988.

C. M. Eastman, A. H. Bond, and S. C. Chase. "A formal approach for product model
information." Research in Engineering Design, 2:65-80,1991.

H. Ehrig. 'Tutorial introduction to the algebraic theory of graph grammars." In Graph-

Grammars and Their Application to Computer Science, Lecture Notes in Computer
Science, Berlin, Springer-Verlag, 1986.

S. Finger and J. Rinderle. "A transformational approach to mechanical design using a
bond graph grammar." In Proceedings, Design Theory and Methodology Conference,

ASME, Montreal, September 1989.

U. Flemming. "On the representation and generation of loosely packed arrangement of

rectangles." Environment and Planning B: Planning and Design, 13:189-205,1986.

U. Flemming, M. Rychener, R. Coyne, and T. Glavin. "A generative expert system for the

design of building layouts, version 1." Progress report, Center for Art and Technology,

Carnegie Mellon University, June 1986.

J. Gero. "Prototypes: A new schema for knowledge-based design." Working paper,
Architectural Computing Unit, University of Sydney, 1987.

J. Gero, M. Maher, and W. Zhang. "Chunking structural design knowledge as prototypes."
Technical Report 12-25-88, Engineering Design Research Center, Carnegie-Mellon Uni-
versity, 1988.

J. Gero. "Design prototypes: A* knowledge representation schema for design." AI

Magazine, ll(4):26-36, Winter 1990.

26

[Gcro91]

[Kamopp68]

[Knuth68]

[Krishnamurti 78]

[Mitchell 76]

[Nagl79]

[Nagl 86]

[Payntcr61]

[Pinilla89]

[Rinderic91]

[Rozenberg 86]

[Schneider 75]

[Schnitzler82]

J. Gere, H. Lee, and K. Tham. "Behaviour A link between function and structure in
design." In IntCAD f9h WTP Working Group 5.2,Columbus, OH, October 1991.

D. Kamopp and R. C. Rosenbeig. Analysis and simulation of multiport systems; the bond
graph approach to physical system dynamics. M.I.T. Press, 1968.

D. E. Knuth. "Semantics of context-free languages." Mathematical Systems Theory,
2(2): 127-145,1968. Corrections in MST Vol. 5 No. 1 pp. 95-96.

R. Krishnamurti and R H. O. Roe. "Algorithmic aspects of plan generation and enumer-
ation." Environment and Planning B: Planning and Design, 5:157-177,1978.

W. Mitchell, J. Steadman, and R. Liggett. "Synthesis and optimization of small rectan-
gular floor plans." Environment and Planning B9 3:37 - 70,1976.

M. Nagl. "A tutorial and bibliographic survey on graph grammars." In Graph-Grammars
and Their Application to Computer Science and Biology\ volume 73 of Lecture Notes in
Computer Science, pages 70-126, Berlin, Springer-Verlag, 1979.

M. Nagl. "Set theoretic approaches to graph grammars." In Graph-Grammars and
Their Application to Computer Science, Lecture Notes in Computer Science, Berlin,
Springer- Verlag, 1986.

H. M. Paynter. Analysis and Design of Engineering Systems. MTT Press, 1961.

J. Pinilla, S. Finger, and F. Prinz. "Shape feature and recognition using an augmented
topology graph grammar." In Proceedings of the 1989 NSF Engineering Design Research
Conference, Amherst, MA, 1989.

J. R. Rinderle. "Grammatical approaches to engineering design 2: Melding configu-
ration and parametric design using attribute grammars." Technical Report 24-53-91,
Engineering Design Research Center, Carnegie Mellon University, 1991.

G. Rozenberg. "An introduction to the NLC way of rewriting graphs." In Graph-

Grammars and Their Application to Computer Science, Lecture Notes in Computer
Science, Berlin, Springer-Verlag, 1986.

H. J. Schneider. "Syntax-directed description of incremental compilers." In Graph-
Grammars and Their Application to Computer Science, volume 26 of Lecture Notes in
Computer Science^ pages 192-201, Berlin, Springer-Verlag, 1975.

M. Schnitzler. "The isomorphism problem is polynomially solvable for certain graph
languages." In H. Ehrig, M. Nagl, and G. Rozenbeig, editors, Graph-Grammars and

Their Application to Computer Science, Lecture Notes in Computer Science, pages 369-
379, Berlin, Springer-Verlag, 1982.

27

[Stiny 81] G. Stiny.4< A note on the description of designs." Environment and Planning B: Planning
and Design, 8:257-267,1981.

[Ulrich 87] K, Ulrich and W. Seering. "A computational approach to conceptual design." In Pro-

ceedings of the International Conference on Engineering Design, August 1987.

28

