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Abstract

Oneview of thedesign processisthat design isamapping from functional requirementsto artifact description.
Thisarticle presentsinitial work on amethod for mapping between functional requirementsand adescription
of the physical sructure of discrete static systems. The representation consists of a set of atomic elements,
a hierarchy of compound components from the domain, and the composition of a graph of adjacent atomic
elements. Through forward or backward chaining, this method may be used in a parsng mode to discover
the behavior and function of a given system, or in a generative mode to suggest instances of systems which
can be used to satisfy the desired functionality. Parsing discovers the behavior of the system in terms
of the compound components by matching on subgraphs within the overall adjacency graph. Generation
hierar chically instantiates subgraphs which satisfy the initial functional requirements and the requirements
propagated by previoudy ingantiated components. The graph is composed from a geometric model, but
the method is independent of the specific representation used by the geometric modeer. We focus on the
domain of gructural systemsin buildingsto describe this method.

Thiswork has been sponsored by EDRC, the Engineering Design Research Center at Carnegie Mdlon
Unlversty, an NSF-sponsor cd Engineering Research Center.




1 Introduction

In many domains a finished design consists of a description of the physical artifact's sructure® The
artifact*s structureis a description of its topology, geometry, material and manufacturing details. However,
this description does not normally contain a full specification of the artifact's desired functionality. In
contradt, at the gart of the design process the design mandate consists almost entirely of specifications of
the artifact's desired functions. Between the initiation of the design process—when no physical sructure
hasbeen given to the projected artifact—and the beginning of the manufacturing process—when a complete
physical description must be specified—the design process consists of an iteration of mappings between
function and gructure. That is, a Sructure for a system or subsystem of the design is suggested which is
thought to meet the given functional requirements through its expected behavior. Then, this gructure is
evaluated to determine whether it meets the behavioral and functional requirements and what its side effects
might be. Thisloop continuesuntil the current structure can be mapped to the required functions, and vice
versa. Thus, in an evaluation-synthesis-analysisdesign loop, the mapping from function to gructureis a
high level view of the synthesis stage, the mapping from gructureto behavior isaview of the analysis stage,
and themapping from behavior to function isahigh level view of theevaluation stage. Wedescribe amethod
for performing the two-way mappings between gructure and function within discr ete static systems based
on the adjacency structure representation, a representation that extends the concept of adjacency graphs by
adding geometric, material and behavioral information to each node.

This paper is organized into 6 sections. Section 2 presents a review of some of the related research
and defines discrete static systems—the design domain which motivates this research. Section 3 presents
adjacency structuresin terms of their elements and composition. The introduction to adjacency structures
begins with an example to give the reader a fed for the information we would like to express using this
representation then describes the atomic and compound elements of adjacency structures. Section 3 also
presents three-aspects of the construction of adjacency sructures. compositioﬁ operations, the inclusion of
condraintsin the composition of adjacency sructures and a method of gener ating adjacency sructures from
ageometric model. Thenext two sections present the potential uses of an adjacency sructurerepresentation
in design processes, presenting the two dir ections of the function-structure mapping. Section 4 presentsthe
parsing of a given adjacency sructure, describing how the function and behavior of a given gructure are
discovered, whereas Section 5 presentsthe use of adjacency gructuresin the generation process, describing
how a set of functional requirementsand aminimal geometric description can beused to synthesize adjacency
gructuresin abehavior-oriented derivation of gructure. Thepaper endswith asummary and brief discussion
of the use of adjacency dructureswithin a larger synthesis system.

In this paper we adopt theterminology of [Gero 91] using thetermfunction to describetheintentions and pur posesof the artifact
b@i ng designed; the term behavior to describe how the functions are achieved in the design; and the term structure to describe the
physical components specified by the design. An example of these distinctions in structural engineering is thaf the function of a
building isto resist lateral and gravity loads within a prescribed limit of deflection, vibration etc.; the sructure of the building may
be a set of beams, columns and slabs of a particular material arranged in a specific configuration; the behavior of the building-may
bethat it resiststhe abplied loads through theflexural strength of the components. )

1




2 Background and Motivation

In the domains of interest, the form variables—the topological and geometric aspects of the design which are
to be determined during the design process—are given valuesin order to satisfy functiona requirements—the
function variables. The form variables may also generate additional function variables or help to complete
the specification of existing function variables. These function variables are generally at a higher level of
abstraction than the form variables. A useful design method and representation must be able to mediate
between the multiplelevels of abstraction used during the design process, tracking the detailed representation
of geometry as well as the abstract representation of function and behavior. The adjacency structure method
we propose may be viewed as a geometric modeling representation that focuses on design components at a
higher level of granularity than typical geometric modelers. A boundary representation geometric modeler,
for example, represents adesign component such as a rectangular beam as a graph containing vertex nodes,
edge-half nodes, face nodes, etc. Asthe number of design componentsincreases the representation becomes
extremely cumbersome to manipulate. Adjacency structures represent an individual design component such
as a beam as a single node, and form a graph of adjacent nodes to represent the system of connected
components in adesign. Additionally, the geometric model is apurely syntactic representation having few
facilities for expressing the non-geometric aspects or the domain dependent semantics of the objects being
represented. The inclusion of material and behavioral information in the nodes of the graph alows the
expression and propagation of functional and behavioral aspects of the system of components.

The representation of design elements within a particular domain using graph structures has been
the subject of considerable investigation, notably for the specification of languages in computer science
[Knuth 68, Nagl 79], inarchitectural research[Mitchell 76, Krishnamurti 78, Hemming 86a], andindynamic
systems design [Karaopp 68, Ulrich 87, Finger 89]. Each of these areas has provided domain or theoretical
background for the ideas presented in this paper. The relevant contributions will be briefly sketched in the
remainder of this section.

2.1 Graph Grammarsin Computer Science

One method of specifying the logical structure of programming languages and algorithms is through the
use of graphs. The best known method may be the traditional flow chart but more forma methods exist,
particularly for the specification of compilers [Culik73, Schneider 75]. An operational definition of a
program can be given concisely by a program graph with the nodes of the graph representing data structures
and operations on the data and the arcs of the graph representing data flow. Program graphs are an abstract
notation that facilitates data-flow analyses in a manner which textual algorithm specification methods are
unable to provide. An interpretef for such a program specification can be described as a graph rewriting
system. Substantial research on the forma characteristics of graphs has been performed to ensure desirable
propertiesin asystem expressed as agraph rewriting system [Ehrig 86, Nagl 86]. Also, anumber of different
- graph rewriting systems, or grammars, have been characterized to op'erationalizethe devel opment of specific
languages expressi bl e using graph representations[Rozenberg 86, Deransart 88, Bunke 79]. These rewriting
- systemsdiffer in the definition of the vocabul ary elements and in the detail s of the transformation mechanisms.
The formality of rewriting systems operating over graphs, and their utility in design through their expression
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of complex structural interreationships at multiple levels of abgtraction, is attractive from the viewpoint of
both the development of system logic and its implementation. The ability of graphs to represent complex
gructural reationships between any type of object being modeled by the nodes of the graph allows a
hierarchical and multidimensional system to beformally evaluated Additionally, the smilarity between the
representation of the program's specification language and the internal representation of the program's data
gructures smplifies the implementation of thelogic invested in the language.

Theapplication of graph grammar variants hasbegun to receive attention in the engineering design field
[Finger 89, Pinilla 89, Rinderle 91]. The necessity for repramting both the geometric and non-geometric
aspects of partial designs, and the need for basing the transformationsin the design process on both aspects
of ther epresentation, focusesour attention on the attribute grammar formalism begun by Knuth [Knuth 68].
Asdescribed more fully by Deransart, et al. [Deransart 88], an attribute grammar beginsfrom a context-free
grammar specified by the four-tuple:

G = {N,T,P,2).
Where _
N: Thefiniteset of non-terminal symbols,
T: Thefiniteset of terminal symbals,
P:  Thefinite set of productions of the form XQ —e Xi. XiyX", .. X"
y/ithX,eN.
Z: The garting symbol of the form afli
with/3 €N,

a,7 € {NU 7}, the set of al finite length strings composed of symbolsfrom {N U T}.

An attribute grammar associates an attribute system to the underlying grammar. Each non-terminal
symbol except the starting symbol has two finite sets associated with it: a set of inherited attributes and a
st of synthesized attributes. The inherited attributes of a symbol can be evaluated from the attributes of its
parent symboal in the graph, whereas the synthesized attributes can be evaluated from the children symbols
attributes. Therefore, the gart symbol has only synthesized attributes and the lowest level symbols have
only inherited attributes? Each production/? £ Pis given a set ofsemantic rules defining how the attributes
Syn(Xo) and Inh(Xj), 1 < j < n, art computed for the elements of AttriXi),0 < * < np,. Each semantic
ruleis a function over the production, the symbolsin N and the attributes. Within a production ah attribute
associated with the i™ position of symbol X is called an attribute occurrence a(i). More specifically:

for each Xi e N, AttrtX) = Inh(X) U Syn(X),
forallX,r e Ng Inh(X)nSyn(Y) =0

ai@y = fpafail),...ax(is))
a(i) € Syn(Xo) for/ = 0J= | and k=n,
afi) € Inh{Xi) for 1 < i < nyand; =k=0

TypicaUy, the terminal symbols have no attributes, but this is not a necessary property of the formalism. Assumed|y terminal
symbols do not have, or need, a semantic interpretation. More accurately, the whole tree is used to derive the semantics of the
terminal string. ‘




The semantic rules associated with aproduction p induce an order of computation, the local dependency
relation D(p)s on the set of all attribute occurrences inp. Properties of the local dependency relation reveal
the attendant properties of the grammar. An attribute grammar is well-formed iff for every derivation tree t
of the grammar G» the collective dependency relation Rd(f) is cycle free. For awell-formed grammar an
evaluation order exists and every attribute's value may be determined.

Attribute grammars have been used in computer science for compiler and program specification, for data-
flow analysis and for database specification. Two interrelated points are worth noting about the standard
definition of attribute grammars and their applicability to engineering design:

1. Thereareessentially two coupled grammars; asymbol grammar and an attribute grammar, with astrict
partitioning of the total vocabulary. For acompiler itisrelatively easy to partition the vocabulary into
programming language symbols and machine code "attributes’. For an engineering design grammar
it isnot as simple to partition the relevant vocabulary into a syntactic set and a semantic set.

2. The influence between symbols and attributes is unidirectional. The attributes are used to present
a second view of the derivation tree, but take no part in guiding the productions towards their final
state. In the original definition, the attributes form a semantic interpretation of the syntactic state.
This approach parallels the unending debate within linguistics of the relative primacy of syntax versus
semantics. In engineering design the interaction of syntax and semantics necessitates bidirectional
influence between the two descriptive systems.

The partitioning of the vocabulary into two grammars is itself a difficult issue when syntax and semantics
are fuzzy definitionsfor adomain. It may seem natural to associatethe form variablesto the grammar symbols
and the function variables to the attributes. However, if the semantic rules are a mapping to the attributes
of a symbol only, the function variables can have no impact on the form variables. If the opposite choice is
made, associating the function variables to the symbols and the function variables to the attributes, the form
variables have no feedback to the function variables. Either partitioning tactic reduces the interplay between
form and function variables. This is a severe restriction on the expressiveness of the transformations and
therefore on the expressiveness of the grammar for engineering design.

2.2 Orthogonal Structuresin Configuration Studies

In configuration studies, Flemming's orthogonal structures represent the topological relations of a set of
rectangular shapes placed within a bounding rectangle. This representation has formed the basis of a
two-stage method for exploring the possible non-overlapping placements of component rectangles within
abounding rectangle [Flemming 86b]. Two classes of constraints are successively employed: topological
constraintswhich specify the spatial relationship between rectangles and geometric constraintswhich restrict
dimensional properties (e.g., maximum or minimum area of a rectangle). The topological description
‘specifies a class of solutions containing all the geometric instantiations. This approach is exemplary in
abstracting the topological and geometric aspects of a rectangular dissection in order to develop a formal
representation of the topological aspect as a graph whose nodes represent the rectangles and whose directed
arcs represent one of two spatial relationships, above or to the right. A well-formed solution is assured by

4




proving that the representation is closed and complete under the application of a small set of generative
rules. Thus, the representation is used to prove theorems about the solutions, placing the approach on afirm
theoretical basis.

Two aspects of orthogonal structuresdiscount their use in representing the structural systemsof buildings.
First, the rules for generating orthogonal structures are embedded in a design method in which the precise
number of elements to be used must be known beforehand and the elements are added one at a time while
meeting a set of apriori adjacency constraints. In a structural system the number of elements employed
may change from one potential solution to the next; the exact number of elements is rather unimportant.
Likewise, the adjacency requirements on the elements of the design are a function of the partial solution
rather than a part of the problem statement. Secondly, we would like to be able to employ elements whose
edges are not necessarily parallel to an orthogonal grid. That is, we would like to be able to use diagonal
elements such as those in trusses or braced frames. Therefore, we are inspired by orthogonal structures and
their formation of the basis of a design method, but we are searching for a representation more appropriate
to our domain.

23 Bondgraphsfor Dynamic Sysems

Bondgraphs are a forma representation for describing the transformation of energy in lumped-parameter
systems [Paynter 61]. The applicable domains are classified according to the type of their energy transfer
electrical, fluid, mechanical translation and mechanical rotation. A bondgraph is composed of ports and
bonds; the nodes and vertices of the graph. There is one type of bond and four types of ports: sources,
1-ports, 2-ports and N-ports. Each bond represents a path for the flow of power which may be described by
the combination of aflow variable and an effort variable [Ulrich 87]. Thus, power flow in the mechanical
translation domain, for example, is the product of force and velocity which are the effort and flow variables,
respectively.

Source nodes describe el ements of a system which specify an effort or flow. Lumped-parameter elements
are represented with 1-port nodes which constrain the effort-flow relationship on its associated bond. For
example, a 1-port representing a mass constrains the derivative of the velocity of the mass and the force on
that mass to be related by the mass parameter embodying Newton's Second Law. Elements of the domain
which transform efforts or flows are represented as 2-ports. The transformation may be between an effort
and a flow within the same domain, or into the same variable type in another domain. N-ports represent
junctions of bonds where all the bonds share a common flow and whose effort sums to zero, or where al the
bonds share acommon effort and their flows sum to zero.

There are many attractive features of the bondgraph concept. First, bondgraphs represent the important
components of a system along with their behavioral attributes in a computable form. By explicitly repre-
senting the the effort-flow relationships among al the elements of the graph the qualitative representation of
. bondgraphs can be used to derive a quantitative description of the system's behavior. Second, bondgraphs
may represent subsystems or compl ete systems, and therefore two complete bondgraphs may be used to
compose alarger bondgraph using an n-port and its bondsto connect the subgraphs. Therefore, the concept of
prototypes| Gero 90, Gero 88] is readily extended to bondgraphsthrough the use of standardized subgraphsin
the composition of system level bondgraphs. Finally bondgraphs are a formal language with a well-defined
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grammar allowing methods for ensuring well-formed graphs.

Although structural systems are often represented using mass-spring systems during analysis, this is
an overly cumbersome representation for the design of systems with a large number of components. Also,
bondgraphs arc not applicable for systems with components whose behavior is context-dependent. For
example, the reduction ratio of a gear is independent of the rotation direction or applied torque, but the
deflected shape of a column is dependent on its support conditions. Furthermore, it may be argued that by
the time abuilding can be modeled as alumped-parameter system, the configuration problem, and therefore
amajor part of the structural design problem as awhole, has been completed. Whilethe analogy between the
specification of the power variables of effort and flow and the work variables of force and displacement for
the description of a "static" system may lead to a quantitative description within our qualitative adjacency
structures, we contend that the geometry of a building is a crucial element of this domain and must have
amagjor role in the representation and design process, an aspect which bondgraphs ignore. Nevertheless,
another inspiration in the development of adjacency structures is the schematic description of systems using
bondgraphs.

24 Discrete Static Systems

In discrete static systems there is no action at adistance. There are no magnetic or electrical fields. There
is no transmission of electric energy between components of the system. In adiscrete static system, such as
the structural system of a building, all communication of forces occur through the physical, virtual "pushing
and pulling" of adjacent members of the system. Systems are composed of adjacent members arranged in a
particular orientation. This orientation may be with respect to other members of the system or with respect
to the environmental conditions (loads and displacements) the system is meant to counteract. A common
informal language for describing the behavior of a building's structural system is in terms of load paths.
These paths consist of networks of adjacent members and subsystems which communicate the loads from
their sources to their supports (sinks). The introduction of any physical discontinuity in the network may
obviate aload path. The introduction of a new continuous path from load source to sink within the network
can introduce a new load path dependent on the geometry of that new path. The new path may quantitatively
change the distribution of forces within the system or qualitatively change its behavior. The confirmation of
expected load paths, and the discovery of new load paths and their quantitative assessment is one view of
behavioral evaluation. The circulation and communication of building occupants between the architectural
volumes of a building is another example of afunctional regquirement of a system predicated on the adjacency
of elements (rooms, corridors, floors etc.) of the building.

Of course, building structures are not completely static—they bend, compress and shear in response to
lateral, gravity and temperature loads. Y et, the members remain in arelatively fixed position and orientation
in relation to other membersin the system. Also, itisacomplex processto quantitatively describethe motion

-and forces within a given building as'it responds to these_loadings; M'einy mathematical methods such as
matrix and finite element methodshave been used to quantitativel'y describe the transmission of forces within
structural systems. However, during the design process we would also like to have a more qualitative and
less computationally expensive method of describing-the interrelation of physical members. Furthermore,
we would like to be able to describe the potential interrel ationships of physical members before the complete
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geometry (e.g. .member sizes) of the system has been determined. Nevertheless, we take another major
ingpiration for adjacency structures from the assembly step within the matrix and finite eement analysis
methods.

3 Adjacency Structures

This section beginsby introducing adjacency structures and their expr essiveness using an intuitive example
of atruss. Then, we begin a detailed presentation of the adjacency gructure concept by describing the
atomic and primitiveelementsthat areused to compose adjacency sructures. Next, thetypesof composition
operations for developing higher-level adjacency sructures are presented, after which a few of the possible
compound components from the domain are described. Finally, the types of congtraints incor porated into
the non-atomic components are described and a method for discretizing the geometric model to produce a
canonical trandation to and from adjacency gructuresispresented. Thetrandation of thecomplete geometric
model into an uninterpreted adjacency sructure will bereferred to as the overall adjacency structure. As
typically used, an adjacency graph is a purely topological description of a system. Each element of the
system is represented as a node in the graph and each directed or undirected arc represents an adjacency
relation between the two elementsit connects. Our extension of adjacency graphs to adjacency sructures
adds basic geometric and material information to each nodein a graph with undirected arcs.

We begin the presentation of adjacency gructures by considering a truss. Figure 1 shows a smple
nine-bar trussand three graphs. Graph arepresentsthetrussjointsasthegraph'snodesand thetrussbarsas
itsarcs. Thisrepresentation is adequate for describing the spatial relationships of the bars. It can be seen
that each node is a member of aminimal cyclewith alength of three. Furthermore, if each node containsits
coordinatesin three-space it could be determined whether or not the trussliesin a single plane. However,
since thisrepresentation contains no information about the elements connecting the nodes it is inadequate
for answering questions about the functional adeguacy of the truss such as its resistance to applied loads
or itsredstance to buckling. Graph b representsthe bars of the truss as nodes, with the arcs representing
adjacencies among the bars. It can be seen that the proper cycle information has been lost. For example
bar BC is a part of a cycle of length three containing bars AB and BD, three bars adjacent at node B but
which do not form-a triangle. Thisrepresentation fails on its inability to represent the topological nature
that characterizes a truss. Graph ¢ contains two types of nodes. Triangular nodesrepresent the truss bars
and circular nodesrepresent the trussjoints. The arcs of graph ¢ simply represent the adjacency relations
between the bars and joints of thetruss. In thisrepresentation each node is a member of a minimal cycle
of length six composed of three pairs of alternating bar and joint nodes. Furthermore, therepresentation of
joint nodes allows for a simple detennination of the planarity of the truss and the attributes associated with
thebar nodes allowsthe determination of the functional adequacy of the truss. Theremainder of this section
presents a mor e specific description of the composition of adjacency structures.

31 Elementsof Adjacency Structures

‘The physical objectsto berepresented by the adjacency structuresdescribed in this section are those objects
representable in any geometric modeling system. Section 3.4 briefly describesthetrandation requirements
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a. Nodal Adjacencies b. Member Adjacencies

C. Adjacency Structure-.

Figure 1. Nine-bar truss énd associated ad] acen_'cy graphs.
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of various geometric modeling schemes. In this section the two lowest levels of a representation hierarchy
are presented. The classification begins with the types of nodes in adjacency structures and the objects
they may represent, i.e. the leaf nodes of the hierarchy. Next, two primitive elements of the structural
engineering domain are described. Operationally, the hierarchy may be composed through a graph grammar,
and Section 3.2.1 begins by presenting the three types of graph composition operations before presenting a
number of system components from the representation hierarchy.

3.1.1 Atomic Elements of Adjacency Structures

The leaf nodes, or atomic elements, of the representation hierarchy are the indivisible nodes of the graph
structure. These atomic elements of adjacency structures are translations of the objects in the geometric
model, and are classified according to their gross dimensional proportions. We allow four classes of nodes
or atomic elements based on the gross dimensionality of the element; we admit zero-, one-, two- and
three-dimensional nodes.

A zero-dimensional node has position but no size or form. This node may represent an interface between
two adjacent elements of a geometric model such as ajoint in atruss or frame.

A one-dimensional node has alength greater than both its cross-sectional dimensions and may be used to
represent a bar of atruss, a column or a beam. Its geometric information may be represented by its
two end points.

A two-dimensional node has abreadth and depth much greater than its height, and may represent awall or
floor plate. The geometric information of a two-dimensional polygonal node may be represented by
an ordered list of its vertices.

A three-dimensional node has each dimension of roughly the same scale, may represent an architectural
volume or a foundation footing, and may have its geometric information represented as a nested list
of the vertices of its bounding faces.

Each node is represented using a common data structure regardless of its dimensionality. The require- '
ments of the data structure include the ability to represent non-physical attributes which express aspects of
the node's behavior and the ability to model the environmental conditions such as loads and displacements
for which we are constructingload paths. A singledatastructureis used to represent both physical or member
objects as well as virtual objects. Member objects encompass those physical objects being modeled in the
geometric modeler, e.g., truss bars and floor slabs, whereas virtual objects include the loads and displace-
ments imposed on a system as well as the interface between adjacent member objects. The data structure
containsfive attribute fields: dimensional ity,-geometry, magnitude, composition and stiffhess: There aretwo
~ additional fields, one for anode identifier and another for alist of poi n.ters to other data structures. Additional
fields may be used for other domains, but thesefields provide a compact yet expressive representation of the
geometric and non-geometric aSpects of a single design component in the domain of tall building design.
This representation is shown in Table 1. '




I II Objects |

Fields H Member ~Interface L oad Displacement
|dentifier I| String String String String
Dimensionality 6{1A3} €{0,1,2} €{0,1,2,3} €{0,1,2,3}
Geometry Vertex Coordinates | Vertex Coordinates | Vertex Coordinates | Vertex Coordinates
Magnitude X-Sect. Dimensions | X-Sect. Dimensions Load Vector Displ. Vector
Composition €{R.G, Steel} 0 "L oad" " Displacement"
Stiffness {E,I} 0 0 0
Arcs List of Pointers List of Pointers List of Pointers List of Pointers

Table 1. Data structure for adjacency structure nodes.

3.1.2 Primitive Elements of Adjacency Structures

Aggregations of atomic elements are organized into a hierarchy based on topological and behavioral dis-
tinctions. The hierarchy begins with lower level primitive elements which are, in turn, used to construct
higher level system components. A primitive element consists of a specific number of nodes arranged in
a specific topology. The exact geometry associated with each node in a primitive element is not specified
by the component's definition; the geometry of each node is merely constrained to a specified relationship
with other nodes in the primitive. A system component is composed of an indefinite, but finite, repetition
of primitive elements also constrained to specified geometric relationships. A system component class is
defined in terms of its constituent primitives. The system class retains the constraints of its primitives and
subsystems, and uses additional constraintsto define their composition into a system. A system class may
be composed of a repetition of a single primitive element, or it may be composed of more than one type of
primitive. We will call these two types of systems uniform systems and composite systems, respectively.

The atomic elements of adjacency structuresrepresent the syntactic elementsof all discrete static systems.
Any classification of aggregations of nodes gives adomain-dependent rel evanceto certain subgraph structures
composed of these nodes. Therefore, the definition of non-atomic elements and system components identifies
relevant syntactic structures and attaches a particular semantic importance to them. For this reason, we will
call the union of al the non-atomic components specified as being semantically relevant to the domain the
semantic templates of that domain. The forma specification of these templates may form the basis of an
algorithm for discovering the semantics of the purely syntactic overall adjacency structure. In this section
we present an informal specification of two primitive elements from the domain of building structures.

Truss Panel. A truss panel is represented as a graph whose nodes form a cycle of length six composed of
three pairs of alternating zero- and one-dimensional nodes. The elements define a single plane parallel
to the orientation of the loads it resists (if these loads exist). Also any applied loads present must be
applled only at the zero-dimenSional nodes

Bent, A bent is represented as a graph whose nodes form a non-cyclic series of fivenodes. The seriesis
composed of three one-dimensional nodes each of which is separated by a zero-dimensional node.
As in the truss panel, the elements are arranged in a single plane parallel td the orientation of the
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loads the bent resists. However, loads may be applied to either the zero- or one-dimensiona nodes.
Additional congtraints on the relative angles and absolute orientations of the one-dimensional nodes
must be included in the graph template.

32 Sysem Components

The expressive richness of the adjacency structure representation hierarchy may be defined by the union of
all potential semantic templates over the domain of interest. A representation hierarchy should express the
elements and systems relevant to the domain because these elements and systems are the building blocks
of the parsing and generation processes. The composition operations described in this section facilitate the
composition of systems from elements and the decomposition of systems into elements. A representation
hierarchy for design must also be flexible enough to accommodate additions to the design vocabulary;
it should allow the easy composition of new templates from lower-level components. A collection of
composition operations over the set of atoms and primitives may be able to generate al relevant systems,
but if the generation process is unguided it will also generate many irrelevant systems. The generation and
even the "discovery" of new elements of the vocabulary is not the topic of this paper, but is an interesting
part of future research with adjacency structures. The purpose of this paper is to provide a discussion of the
adjacency structure representation and its use within a design process.

3.21 Template Composition Operations

There are three types operations useful for combining subgraphs into higher level graphs. One operation
combines two separate graphs by unifying nodes which have the same dimensionality and the same location
in both graphs. This is particularly useful for systems, such as plane trusses, which are defined in terms
of components—triangular panels—which share atomic elements—a one-dimensional node and its two
adjacent zero-dimensional nodes. A second operation connects two geometrically adjacent subgraphs
without unifying nodes in the two subgraphs. This second operation connects geometrically distinct nodes
in the two separate subgraphs, but because arcs denote physical adjacency in the graph structure and because
an interface is a virtual object represented by a node, this operation adds a 'bridge’ composed of two arcs
éeparated by a node between the two subgraphs being connected. The dimensionality and geometry of
the inserted node is the dimensionality and geometry of the intersection of the nodes being connected.
This operation is useful for combining two systems which do not share components, e.g., two orthogonal
shearwalls. The third type of operation embeds one graph within another by replacing arcs (and possibly
nodes) of the host graph with new arcs into the immigrant graph. Embedding is useful for rearranging
the components of a system being combined, e.g., when combining a frame and a shearwall by removing
columns at the intersection and rcattaching the beams to the shearwall.

~ The three types of composition operations, joining two graphs G\ and Gi to produce graph G3 are
constructed by partitioning each graph G;,z =1,2 into two sets-of nodes, Uy which are involved in the
composition operation, and t/| which are copied directly into G3. The arcs between nodes wholly in'£/)
are also copied directly into G3. The difference between the operations lies in how the two sets of nodes
£*,i = 1,2, and the arcs attendant to these nodes are transformed before bei ng inserted into G3.
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« Merge: .unify one or more nodes in G\ and G* The sets U»i = 1,2 are al nodes which are
geometrically and dimensionally equivalent in graphs G\ and G,. For each pair of nodes to be unified,
Mi € U\ and 12 € 1/2 from G\ and G2 respectively, copy node u\ into G3 and attach to this node all
the arcs it possessed in G\ plus all the arcs possessed by u% in G,.

e Abut: G\ and G, arc adjacent, but there are no geometrically equivalent nodes in G\ and G,. The
sets Ui, I ss 1,2 are dl those nodes in graph G\ which are adjacent to nodesin graph G,. Copy graphs
G\ and G, into G3 and add one or more 'bridges9 between U\ and £/,. For each node u\ e U\ and
U2 € U2 insert anode, u*, into G3 with the dimensionality and geometry of the intersection of u\ and
U2f and insert into G3 an arc connecting Ub to u\ and an arc connecting u& to us.

* Embed: insert G\ into the middle of Gz. There are no dimensionally and geometrically equivalent
nodes in G\ and G,. The sets U»i = 1,2 are specified to achieve a particular behavior. U\ may be
transformed, possibly by removing some of its nodes, before being inserted into G3. The embedding
begins by copying G2 into G3, removing all the arcs between nodes Ui now in G3, copying G\ into
G3, and adding arcsto {U\ U f/,} as specified to achieve the desired behavior in the combined Gs.

These three types of composition operations are used to describe the transformation of graphs composing
the representation hierarchy. The parsing and generation processes require these complex transformations
because the graphs are not simply split when parsing or connected with afew arcs when generating. When
parsing orthogonal frames into two sets of plane frames, for example, the single column at each frame
intersections must be copied twice when forming the graphs representing the two frames. Therefore, the
specification of the representation hierarchy requires an operational definition of the transformation of one
level of templates into the templates of another level. These operations are used in describing the system
components presented below.

3.2.2 Planar System Components of Adjacency Structures

Each of the components described in Section 3.1.2 is represented by a planar graph. The components are
planarin graph-theoreticterms aswell asrepresenting physical objectswhich arerelatively two-dimensional.
This section describes groupings of these compound components into larger graphs which continue to be
planar. The next section will extend these compound systems into non-planar graphs and into physical
objects which are highly three-dimensional.

Unifonn compound systems are composed by repeating a single compound component within a set of
prescribed geometric constraints. For example, a truss, in order to be aplane truss, must have each of its
panels constrained to a single plane. In contrast, a space truss may be composed of the same type and
number of compound components, but by using different geometric constraints the semantic template of a

different system is specified..
' Compound systems may be specified through the Juxtaposmon of multiple compound components or
. multiple unifonn systems within a set of prescribed geometric constrai nt. For example, a braced frame may
" be specified as a horizontally adjacent: set of planeframes and vertical plane trusses, dl in the same plane.
In this way a hierarchy of higher-level relevant graph templates may be defined usi ng a small number of
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simple graphswhich may be repeated an indefinite number of times during their instantiationin an adjacency
structure. A few uniform and compound systems are informally specified below.

Plane Truss. A plane truss is represented as a graph repeating the truss panel component, i.e., each of
whose nodes is a member of aminimal cycle of length six composed of three pairs of alternating zero-
and one-dimensional nodes. Each panel is merged with at least one other panel, i.e. each cycle has at
least one one-dimensional node and its two adjacent zero-dimensional nodes as members of one other
cycle. The zero-dimensional elements (and therefore the one-dimensional elements also) are arranged
in a single plane parallel to the orientation of the forces the truss resists, and the forces are applied
only to the zero-dimensional elements.

Plane Frame. A plane frame is represented as a graph repeating the bent component, i.e., each of whose
nodes is a member of a minimal cycle of length eight composed of four pairs of aternating zero- and
nonzero-dimensional nodes. The composition of the plane frame is achieved by horizontally merging
bent primitives and vertically abutting bent primitives. Additionally, the zero-dimensiona elements
are arranged in a single plane parallel to the orientation of the forces the frame resists.

Braced Frame. A braced frame is a compound system composed of one or more planeframes and one or
more vertical plane trusses adjacent to each other and in the same plane. Each adjacency of the two
system types isamerging along avertical line of shared alternating zero- and one-dimensional nodes.

Shearwall. A shcarwall is represented as a vertical non-cyclic series of two-dimensional nodes. Each pair
of two-dimensional nodes is mediated by a horizontal one-dimensional interface node.

Shearwall-Plane Frame. A shearwall-plane frame combination is represented as an embedding of a shear-
wall within aplane frame. All one-dimensional nodes within the intersection of the shearwall and the
plane frame are removed from the plane frame adjacency structure before arcs are inserted to combine
the two systems.

3.2.3 Three-Dimensional System Components

The systems described above are planar compositions of smaller subgraphs. Higher level compositions
of these planar systems can be defined to specify three-dimensional compound systems.®> A few of the
large number of three-dimensional systems are described in this section to explain their expression in the
adjacency structure representation. First, gravity load resisting systems are discussed, separately from the
lateral load resisting systems which they must eventually be unified with.

A bay of aflooring system is represented as a graph containing a two-dimensional node whose geometry
is asingle horizontal plane. Loads applied to the two-dimensional element are oriented normal to its plane.
“Various flooring types have_differ_ent adjacency characteristics, and three examples are described below.

A frequént rerﬁark from experienced sructural .engineers, when discussing historical developmentsin sructural engineering,
has focused on developing the ability to think (compute) & visualize about sructures in three dimensions. The specification of
three-dimensional adjacency structures provides the ability to reason in three dimensions.
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Flat Plate. A bay of aflat plate flooring system is represented as a graph composed of a two-dimensional
node and four pairs of one-dimensional nodes. A zero-dimensional node (denoting the interface) is
adjacent to the two-dimensional element and each of the paired one-dimensional nodes as shown in
Figure 2. Each one-dimensional node is oriented normal to the two-dimensional element.
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Figure 2: Pictorial and graph representation of flat plate flooring system.

One-way Slab. A one-way flat slab system is represented as a graph composed of a horizontal two-
dimensional element abutted to bent components on alternating edges of the two-dimensional element.
As shown in Rgure 3, the two-dimensional element and each of the bent components is mediated 'by
an édjacent horizontal one-dimensional interface element introduced during the abut operation.

B A c

o,

O zan omermicrns siement
M 45 OneDimensional vemert
0 TewDimensonal siement

A L

Rgure 3: Pictorial and graph representation of 1-way flat slab flooring system.

Two-way Slab, A two-way flat slab system is represented as a graph composed of a horizontal two-
dimensional node abutted to horizontally merged bent components on each edge of the two-dimensional
node. As shown in Rgure 4, the two-dimensional node and each of the bent components is mediated
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by an adjacent horizontal one-dimensional interface node introduced during the abut operation. The
number of merged bent components equals the number of edges of the horizontal two-dimensional
node. In addition tothetopological and orientation requirements listed above, abound on the aspect
ratio of the two-dimensional element of the two-way flat slab must be included in the graph template.

Figure 4: Pictoria and graph representation of 2-way flat slab flooring system.

At ahigher level of the representation hierarchy, orthogonal plane frames remain a predominant three-
dimensional framing system incurrent buildingpractice. Thisthree-dimensional lateral-loadresisting system
is composed of two sets of plane frames. Each set of frames is oriented orthogonally to the other, and the two
sets of frames -share columns where they intersect. Non-orthogonal intersecting systems of plane frames
may also be used in buildings which are based on other than orthogonal architectura grids. In contrast, the
tube structural system can be viewed as a wrapping of a planar system about the three-dimensional envelope
of the building volume.

A more complex composition in three dimensionsis the hat truss, combining anumber of planar trusses
into a system which must also be defined in terms of its adjacency with other subsystems in the building
and in term of its location within the overall system. A hat truss is a three-dimensional arrangement of
plane trusses placed at the top a building. The function of the hat truss is to reduce the building's lateral
deflection. It accomplishes this function through the behavior of tying together the building's core and
perimeter frames, and thereby altering the shape of the building's deflection curve. The specialized location,
topology and desired behavior of a hat truss lead to different types of constraints which must be incorporated
in the semantic template of a hat truss, and which can sufficiently describe a hat truss without overburdening
the process of matching on the overall adjacency structure. A belt truss fulfills a similar function through
asimilar behavior, but is located in a geometrically different relation to the overall structural system. The
" identificati on and distinction of these two systerr]é is a severe measure of the type of representation and
process which we are introducing. '

Ofthogonal Plane Frames. Anorthogonal planeframe system isanon-planar graph composed of intersect-
ing plane frame uniform systems, braced frame systems orframe and shearwall systems. Each frame
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intersection isalong a merged vertical series of paired zero- and vertically oriented one-dimensional
nodes. Each shearwall inter section occur s along an abutted vertical edge of two shearwall panels, and
each shearwall-frame inter section occurs by embedding a bent and shearwall primitive, removing a
vertical one-dimensional node and reattaching itstwo adjacent zer o-dimensional nodesto thevertical
two-dimensional node representing the shearwall pandl.

Framed Tube. A framed tube is a graph combining three or more planeframe uniform systems. Each
successiveplaneframe is attached to the previousplaneframe by merging a vertical series of paired
zer 0- and one-dimensional nodes. Each oftheone-dimensional nodesin the seriesisoriented vertically,
and the last planeframe system mer ges to thefir st plane frameto complete a cycle. At ahigher level
of granularity the framed tube is a cycle of 2n nodes. Every other node represents aplane frame and
itstwo adjacent nodes represent their shared, vertical interface.

33 Congraints Within Semantic Templates

. The semantic templates specify a graph structure relevant to the domain. The topology of the graph clearly
specifies how the nodes are configured, but the template nodes representing physical objects have only
their dimensionality fixed by the template; the template does not assign the geometry, magnitude etc. of
the congtituent nodes. Previous sections have mentioned the constraints associated with components and
systems. This section discussesthe various types of constraints which may be associated with the semantic
templates. Congraints are represented as part of the transformations which decompose (or compose) the
templates during parsing (or generation.) The five type of congtraints are geometric constraints, congraints
on the location of the template, constraints on the association of node types within the template, functional
congtraintswhich are expressed in terms loads and behavioral congtraints which reate applied loadsto the
resulting displacements.

. Geomet_ric congtraints: -

- Planarity: All thenodes of the graph, or of a specific subgraph, must residewithin a singleplane.
The orientation of this plane may be specified as horizontal, vertical etc.

- Symmetry: The geometry of a subgraph (each node and its arcs) must be equivalent to that of
another node in the graph under areflective transformation.
- Aspect ratio:
* Single node: The geometric proportions of an individual two- or three-dimensional node
must be within a certain upper or lower bound, or within a particular range.

* Complete graph: The geometric proportions of the convex hull of a semantic template must
be within a certain range.

e Location within a larger system: " A subgraph must be placed in a particular relation to the overall
model in world coordinates. o ' :

» Associativity: The nodes of one subgraph mug bejoined to the nodes of a specific dimensionality,
location or orientation in another subgraph.
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. Functiona_l constraints;

- Dimensionality: the applied loads or displacements must be of a specific dimensionality; e.g.,
zero-dimensional or point loads applied to atruss template.

- Location: the applied loads or displacements must be located at specific positions of the graph to
which they are attached; e.g., point loads attached to zero-dimensional nodes of atruss template.

- Orientation: the applied loads or displacements must be oriented in a specific direction relative
to the graph to which they are attached; e.g., distributed |oads oriented perpendicular to nonzero-
dimensional nodes.

* Behavioral constraints:

- Stiffhess: the lateral deflection of a specific location of the template is directly proportional to
the applied load and inversely proportional to the flexural stiffness of constituent members or

compound components. This type of constraint can also implicitly describe the stiffness of joints
in the composition.

- Strength: the internal forces of constituent members or compound components in the template

are related to the applied loads, and the material properties and cross section area of the members
or components.

3.4 Trandation and Discretization of the Geometric M odel

Adjacency structures are a graphical representation of individual, physical objects and their adjacencies.
Geometric modeling systems represent these objects in various ways. This section presents an algorithm
for translating an arbitrary geometric modeling representation into a canonical overall adjacency structure.
It is the responsibility of a translation function to be able to recognize, for a particular geometric modeling
system, the characteristics which determine what data structures represent a physical object being modeled
inthat particular geometric modeling system. For example, when using aboundary representation geometric
model, each node of the overall adjacency structure will represent one solid, or the discretization of one
solid, inthe geometric model. In anon-manifold geometric modeling system, in contrast, dangling faces and
edges may also rebresent physical objects in the domain. Once the individual obj ect's representations have
been distinguished, these individual objects may need to be discretized into smaller objects before becoming
part of the overall adjacency graph. One motivation for discretizing the model is to arrive at a scheme for
producing a canonical representation of any model. For example, when representing a 40-story building,
is a geometrically continuous column to be a 40-story tall object? We could use the maximal line method
from shape grammars to produce a canonical representation. However, looking back at the truss example
of Figure 1, with the maximal line method the top and bottom chords of a truss would each be modeled as
one node rather than as separate nodes for each panel. Instead, we work under a minimal extent scheme,
discretizing every modeled object at any location of intersection or adjacency with another modeled object.

The discretization of the geometric.model is the trandlation of the geometric model into the overal
- adjacency structure. The formation of the overall adjacency structure begins by translating each object
in the geometric model into one node in the overall adjacency structure. For each two objects, u and v,
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which are adjacent in the geometric model, an arcisplaced in theoverall adjacency gructure connectingthe
corresponding nodes u' and v\ Next, a nonregularized intersection is performed on each pair of adjacent
nodes. Four results of the intersection are possible, each of which leads to a distinct operation in forming
the overall adjacency sructure. Thefour conditionsand ther results are listed below and shown pictorially
in Figure 5.

1. The nonregularized intersection of it' and v' describes a point set which divides neither of the nodes
into two digtinct point sets. One interface node W with the dimensionality and geometry of the
nonregularized intersection is introduced into the overall adjacency sructure. The arc previousy
connecting u' and V' isreplaced by an arc connectingu' and w' and an arc connectingVv' and wA

2. The nonregularized intersection of u' and v' describes a point set which divides only one of the
nodes, say U\ into two distinct point sets outside of the intersection. One interface node w' with
the dimensionality and geometry of the nonregularized intersection is introduced into the overall
adjacency structure, and u' is split intotwo nodess and f. The arc previoudy connectingu' and v' is
replaced by an arc connectingVv' and w', an arc connectings and W, and an arc connectingt and w'.

3. The nonregularized intersection of vC and v' describes a point set which dividesboth u' and v' into
two digtinct point sets apart from the intersection. One interface node w' with the dimensionality
and geometry of the nonregularized intersection is introduced into the overall adjacency Sructure,
and both U and v' are split into two nodes s and i\ and X’ and W\ respectively. The arc previoudy
connecting u” and v' is replaced by four arcs connecting W to each of the nodes s\fx? and yA

4. The nonregularized intersection of u' and V' describes a pbint set which divides one node, say u\
into two distinct point sets and inter sectsthe other node, v\ within itsboundary. Thiscase requires a
two-stageprocess: oneinterfacenodew” with the dimensionality and geometry of thenonregularized
intersection is introduced into the overall adjacency sructure, and u' is split into two nodes s and
t' which are also inserted into the overall adjacency dructure. However, v' temporarily remains
one node. When all objects adjacent to V are processed V' may be divided into multiple nodes as
follows. All interface nodes within or adjacent to v' are collected into a set and ordered according to
their geometric location. A temporary graph is formed from these nodes with each node connected
to its nearest neighbors.* Finally v' is divided along the geometric lines connecting each node in
the temporary graph to its neighboring nodes. The subdivisionsof V arc inserted into the overall
adjacency gructure separated by appropriate interface nodes. The arc previoudy connectingu' and v'
is replaced by two arcs connecting connectingw" to thenodess and t\ and an arc connectingw" to
each adjacent node resulting from the subdivision of W

When trandating the geometric model of a flooring system for example, each u' will be a one-
dimensional node oriented perpendicular to the two-dimensional node v' (columns perpendicular to
the slab). Each w" will be a zero-dimensional node located in the plane of W\ If the one-dimensional

“*Thc assistance of the user is required to determine the precise meaning of " nearest neighbors' for_many interesting problems.
Therefore, we do not complete the specification of this part of the case.
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Figure 5. Results of nonrcgularized intersection of adjacent geometric objects.
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nodes arc arranged according to an orthogonal grid the interface nodes on the corners of v' will be
connected to two other interface nodes* whereas other nodes on the boundary of v* will be connected
to three other interface nodes, and nodeson the interior of v' will be connected to four other interface
nodes in the temporary graph. Each subdivision of v' is a two-dimensional node adjacent to four
zero-dimensional interface nodes and adjacent to multiple one-dimensional interface nodes separating
it from the other two-dimensional subdivision nodes.

4 Semantic Interpretation of Syntactic Structure

The formation of the overall adjacency sructure from a geometric model is a trandation of one modédl's
syntax into the syntax of another modeling system. The expense of this trandation is only worthwhile if
the new modeling system is more useful for some particular purpose. In this section we present how the
adjacency gructurerepresentation of ageometric model may be used to discover both intended and emer gent
semantics within the syntactic representation. Thisdiscovery process isthe parsng mode mentioned at the
beginning of this paper.

Asintimated above, the parsing of an existing representation is basically a subgraph matching problem.
General subgraph matching is regarded to be an NP-complete problem [Aho 74]. That is, no algorithm,
bounded by polynomial time, is known for deciding whether a graph G\ contains a subgraph G2. The
inclusion of geometric information within the adjacency graph, in addition to providing the ability to reason
about the system's behavior and functionality, alleviates much of the matching complexity attendant to the
general subgraph matching problem [Schnitzler 82]. By incor porating node dimensionality and geometric
information into the representation the matching is made more specific because more information is being
matched upon.

The parsing of an overall adjacency structure in terms of semantic templates is an inductive procedure,
trandating a specific syntactic sructureinto a set of semantic templates general to the domain. To illugtrate
this procedure let us assume that we have trandated the geometric mode representing the sructural system
of a building into the overall adjacency sructure as described in Section 3.4. Beginning from the highest
level of the adjacency structure taxonomy, an attempt is made to unify semantic templates with the overall
adjacency dructure. Thisis a hierarchical process because the high-level templates are defined in terms of
lower level templates. In gructural engineeringthereisaset of three-dimensional systemswhich incorporate
both alateral load resisting system and, with the addition of floor dabs, a gravity load resisting system. This
st includes the varieties of tube gructures and orthogonal framing systems. Therefore, the firg templates
which may be unified with the overall adjacency dructure are these three-dimensional system templates.
No more than one semantic template should match on a given overall adjacency structure during parsing if
thetemplates are defined in exclusiveterms. For example, a framed tube gructure should not be described
as an orthogonal rigid frame structure even though the framed tube may consist of four rigid frames oriented
" orthogonally. - ' R '

" After the highest level adj acehcy gtructure has been unified with the overall adjacency structure, matches
are soughf for any remaining subgraphs. These ancillary adjacency structures must be compatible with the
previoudly unified adjacency structures. Adjacency ‘gructure compatibility entails being able to combine
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multiple subgraphs through the available composition operation described in Section 3.2.1 while satistying
the applicable constraintson each adjacency structure® The need for ancillary adjacency structureswill be
common for building with non-rectangular plans and massings, for example.

The purdy syntactic matching process can discover emergent systems because it inspects the graph
gructure to find what is contained in the modd* not what is said to be in the model. For example, if the
dructural system isgenerated as a set of plane frames in the x-z plane, and then each frame is connected by
beams (at thejoints of each frame) in they-z plane the planeframe template will match on frames in both
the x-z plane and in they-z plane, thereby discovering that there is an orthogonal plane frame system, i.e.,
plane frames exist in both directions.

Additionally, thisrepresentation and par sing process may be used to confirm intended syntactic compo-
sitionsand to evaluate the condition of existing syntactic compositions. That is, the matching process may
also be utilized tofind the presence of extraneous elements or the omission of necessary elements. After the
gructural system has been parsed, the resulting definition of the system in terms of semantic templates may
be compared to the sructural system graph trandated from the geometric model. 1f a boolean difference be-
tween the overall adjacency sructure and the union of semantic templates parsed from the overall adjacency
gructureleaves any sructural elements remaining, these remaining elements may be said not to participate
in the gructural system described by the semantic templates. These dements which arenot included in the

semantic templates are extr aneousto the system defined by the templates and possibly may be removed from
thedesign.

Alternately, theinitial architectural definition of the building contains a set of components which may
form an intentionally incomplete sructural system. For example, thefloor dab and column placements may
be specified by the architectural design. However, this design is not meant to rule out the use of beams in
the structural design or to preclude the use of a one-way or two-way fiat slab gravity system. Parsing the
overall adjacency sructurefindsthat there are no lateral load resisting system templatesthat will match on
theoverall adjacency gtructure, but that many templates may be unified with it if the design processis shifted
tothe generation of a lateral load resisting system.

Thesethreeresultsof parsing can be used to summarize the syntactic condition of thedesign. Theoverall
adjacency gructuremay be completely parsed into atomic elements ther eby describing the overall adjacency
dructure in terms of the templates at successive levels of decomposition. This signifies a syntactically
complete design. Alternately, the overall adjacency sructure may be decomposed, but the decomposition
leaves elements that are not parsed out of the overall adjacency sructure. This signifies an intentionally or
unintentionally redundant design. Finally, the overall adjacency structure may beincompletely decomposed,
halting at the system level unableto match on the existing adjacency sructure. Thissignifiesa syntactically
incomplete design that requires additional elements for completion.

*Therecurrent combining of adjacency structures not contained as single compound componentsin therepresentation hierarchy
during the parsing process may afford one method of learning or " chunking" new or appropriate system components.
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5 Adjacency Structuresin A Design Process

Thevarious design processes in which an architect and a sructural engineer interact may be viewed along
the two axes of phase and domain, shown in Figure 6. The predominant architect-engineer design process
beginswith an architectural parsingoftheclient'sdesign brief, then proceedswith an ar chitectural generative
phase. Next, gructural design begins with a parsing of the architectural design to find pertinent geometric
and functional information, then proceeds through a sructural generative phase. In thisdesign process, the
architectural phase sets the geometry of the building envelope and congrains the location of any internal
elementswhich the gructural engineer may introduce. Therole of the gructural engineer during prdiminary
design becomes one of proposing a small number of " good" sructural systems which can support, and be
accommaodated within, the architecturally subdivided envelope. This section presents the use of adjacency
dructuresin the transformation of functional requirements into a structural description.
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Figure 6: Design as processes along Domain - Phase axes.

The mapping from the functional requirements of a design to instances of design structure which satisfy
thoserequirementscan be performed as a successiver efinement of elements of a functional hierarchy. A
rcprcsentation for such a process must include attributes which can explicitly rcprcsent at least function, if
not behavior. The inclusion in the semantic templates of nodes representing loads and displacements can
represent both given and propagated functional requirementssuch asapplied loadsor imposed displacements.
Behavior, in the form of the flexural tiffness and axial forces of the system, is represented as constraints
on the system corﬁponents of thercpr csentation hierarchy. Thus, a uniformrcprcsentationis used to mode
function and gtructure, providing a transparent method of propagating functional reguirements within a
partial design solution.

Toillugratethe use of adjacency sructures in a design process let us assume that we have a geometric
model representing a preiminary architectural design of a building. The architectural description includes
a definition of the building's envelope as the external surface of the geometric model, plus any interior
geometric entities representing the location of partitions such as the service core, floors and permanent
_internal” walls.  The geometric mode of the building is trandated into the overall adjacency sructure
accor ding to the minimal extent principle described in Section 3.4. Thfough design sandards or experience,
. lateral and gravity loadsarc specified for thebuildingform as afunction of height and occupancy type. These
lateral and gravity loads arc added to the overall adjacency sructure as load nodes. Also through design
standardsor experience, allowable deflections are specified as a function of the applied loads. Together, the
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architectural envelopeand internal elements, and theapplied loadsand allowabledeflectionsform the specific
functional requirements for the sructural design. The gructural design phase consists of ingtantiating sets
of subgraphs which together satisfy the specific functional requirementsfor an individual building, along
with the general requirementsfor all buildingssuch as congraints on member for ces.

Design generation, like the parsing process, begins by seeking matches for the semantic templates of
the representation hierarchy giving primacy to three-dimensional systems. The control mechanism for the
generation process differs from that of the control of the parsing process in that multiple ingantiationsare
sought which can satisfy the functional requirements; the control of the generation process should branch the
single sat of design requirementsinto multiple potential solutions. The complete ingantiation of ssmantic
templates to form an adjacency gructure which satisfies the functional requirements may be divided into
two phases: topology and parameterization. In the first phase the building envelope is populated with
specific types and number s of semantic templates. In the second phasethe (primarily geometric) unassigned
data fields of the nodes composing the templates are assigned values. An attempt is made to topologically
instantiate the highest level semantic templates possible through matching on the object and load nodes in
the overall adjacency sructure while satisfying the templates constraints. The load nodes are propagated
subject to the constraints on the allowable dimensionality, location and orientation for load nodes on the
semantic templatesbeingingantiated. Originally thelateral and gravity loads of the functional requirements
are digributed loads inserted into the overall adjacency gructure as two-dimensional nodes. The lateral
loads must be propagated as one-dimensional nodes when ingantiating such templates as frames or framed
tubes, as zer o-dimensional nodes when ingtantiating truss templates or remaining astwo-dimensional nodes
when ingantiating shearwall templates.

Another fundamental constraint on each high-level system during topological instantiation is that the
system must becomposed of an integer repetition of its constituent templates. For example, aplane frame
template must be composed of an integer number of horizontally merged bent templates and an integer
number of vertically abutted bent templates. Thus, topological ingantiation involves a determination of the
dimension of thetarget region® for the potential instantiation of a template and a comparison of thetemplate's
application limits to arrive at possible dimensions for the region's division. The order of these two steps
is dependent of the design process in which it isused. In the design process described at the beginning
of this section, it is appropriate to first determine the acceptable range of the subdivision dimensions. For
example, if an office building is being designed with a 45 foot core-to-perimeter dimension which has
no permanent interior walls besides the core, isit acceptable to place a column between the core and the
perimeter? Ifit is not architecturally acceptable to do so, then this congraint must be considered during the
instantiation of any internal frame or flooring system. Thissuggeststheneed for an interactiveability during
the congraint satisfaction necessary in thetopological ingtantiation of semantic templates; their own limits of
application are undercongrained. When the number of component templates composing the specific system
is determined the topological ingtantiation itself can be accomplished by generating the proper number of

" subgraphs which. realize acompound template, assigning values, to the appropriate data fildsin each node
of the template, and embedding it.in the overall adjacency dructire. After the first template system is

®A region is a general geometric spacein R, Z% or R® i.e. thé division of aregion may be the division of a beam, floor plan or
architectural volume.
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ingantiated and added to the overall adjacency model, subsequent instantiations are also congrained to
accommodate the existing adjacency structuresin the model through the composition operations presented
earlier. For example, if thelateral load system is satisfied firs by an orthogonal rigid frame, the gravity load
system isconstrained to using the existingbeams and columnsfor instantiatingthe gravity system templates.

The parametric ingantiation isprimarily concerned with the defining of member cross-sections. In order
to accomplish thisparameterization somelevel of analysisisneeded. One advantage of the node and system
representation wehavedescribed isitsease of trandation intothe matrix methods of analysis. Each member
node, if it had its cross-section geometry defined, would contain enough information to form the member
stiffness matrix. The overall adjacency structure would then contain enough information to compose the
edement stiffhess matrices into the global stiffness matrix. Then, the product of the inverse global stiffness
matrix (the flexibility matrix) and the for ce vector resultsin the deflection vector. However, the topological
ingtantiation does not provide the information needed to complete the eement iffhess matrices, it only
provides enough information to compose the global matrix from defined element stiffhess matrices. Thus,
onepossibledesign process is as follows:

1. The topological ingtantiation defines the length of one-dimensional elements and the breadth and
depth of two-dimensional elements when the building envelopeis subdivided into an integer number
of templates.

2. Therédative gtiffness of all member nodes is defined. Thisrelative stiffness is used to define element
stiffnessmatrices for each member nodein the overall adjacency structure as a function of its moment
of inertia/ and the modulus of dasticity £ of a material.

3. Therédative stiffness matrix of each element along with the defined topology is used to construct the
global tiffness matrix.

4. The deflections of the building structure are determined as a function of the relative stiffness and the
applied loads.

5. The giffnessisassigned to limit the deflectionsto an allowable amount. The assigned stiffness allows
the back calculation of the member stiffnesses and, therefore, the defining of their cr oss-sections.

The ingtantiation process continuesuntil the overall adjacency sructure becomes a complete connected
graph, that is, when the applied propagated loads have been connected to system templates for resistingthese
loads, and when the system templates have been completely ingantiated down to their atomic dements. In
thisway we perform the gener ative mapping from functional requirements, sated in terms of the ar chitectural
form and the applied loads, through the behavior of load propagation and flexural siffness to derive the
gdructure of a design solution represented as a network of adjacent members.

A design process must also include provisionsfor changing the mode as new information is introduced
or existing information is altered. We have discussed the introduction of adjacency structures into the
design model, but must also consider the requirements of editing existing adjacency structures. Asin ther
introduction, the editing of adjacency structures may be divided into topological alterations and parametric
alterations. A graph grammar may be used for topological edits such as embedding a shearwall or braced
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frame template into an existing plane frame system within the overall adjacency sructure. On the other
hand, the object oriented programming technique of methods which operate on a redtricted set of absract
datatypes appearsmore appropriate for the parametric editing of a specific system component. Ingantiation
and editing, thus, form the basic oper ations of the design process with adjacency sructures.

6 Concluson

Thisresearchismotivated by thebelief that a hierar chical organization of design componentsr eflectstheway
human designer sthink about building structur es, and that basing a graph r epr esentation on the adjacencies of
physical componentsreflects both the way building sructures are built and the way they behave as systems.
Therepresentation presented in this paper provides a more convenient, higher-level means of operating on
a system of geometric objects than such representations as the split-edge data sructure used by boundary
representation geometric modeling. At the same time, the graph representation of adjacency sructures
providesamore explicitly system-oriented representation than obj ects, frames or prototypesfor adomain in
which a design is composed of a large number of highly interconnected, primarily geometric objects. For
these reasons, we fed that adjacency sructuresprovidean intuitiveand convenient representation for design
generation and evaluation, arepresentation which capturesthe essential geometric and systematic nature of
discrete gtatic systems.

The typical result of a design process is a description of the physical shape and material composition
of an artifact delivered in response to a set of functional requirements. The drawings and specifications
delivered by an architectural/engineering firm as the design of a building are a purély syntactic description
of the building. However, the design mandate for the artifact was given in terms of the semantics of the
design; thefunctionsthe proposed artifact must satisfy. Theparalld between the form—function dichotomy
and the syntax—semantics dichotomy is apparent in a domain where a design may be specified purédy in
terms of a description of the artifact's shape and material. The syntax of the design describes the form
of the proposed artifact whereas the semantics of the design describes the functional requirementsand the
behavioral expectations of the proposed artifact.

We have presented arepresentation which incor porates syntactic agpects of a design in terms of adjacent
physical objects with semantic aspects of the domain in terms of systems, loads and displacements. We
have also presented methods for utilizing thisrepresentationin the design process as bidir ectional mappings
between thefunctional, behavioral and structural viewsof adesign description. Thesetwomappingdirections
support design through mapping from function to gructure (synthesizing potential solutions), through
mapping from gructure to behavior (qualitatively analyzing potential solutions), and through mapping
from behavior to function (evaluating a potential solution.) The adjacency structure representation also
provides an important link between design visualization, provided by geometric modeling, and design
analysis provided by the matrix methods. Through these mappings, thisrepresentation and design process
’ suppor_tsafunction-to—structured%igjn method fo_r' the domain of disgrete gatic systems. ' ‘
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