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0. INTRODUCTION. The Carnegie Mellon Proof Tutor project was
motivated by pedagogical concerns: we wanted to use a "mechanical11

(i.e. computerized) tutor for teaching students

(1) how to construct derivations in a natural deduction calculus,

and

(2) how to apply the acquired skills in non-formal argumentation.

No available CAI system in logic provided support for these goals;
neither did automated theorem provers, as they were largely based
on machine-oriented resolution techniques not suitable for our
purposes. So we started developing a proof search program that was
to constitute the logical core of a "proof tutor". Indeed, we
developed a novel calculus, the intercalation calculus, in terms of
which the search is conducted.

This report focuses on the broad aspects of the project
concerned with (1), and is long overdue.1 Some of our plans for (2)
are indicated in the Concluding Remarks. In the first part of this
report we sketch the background against which the distinctive
features of our proof tutor stand out. That is followed, in the
second part, by a discussion of the conceptual framework and the
intercalation calculus; there we describe the search space and
important metamathematical properties of the calculus. The third
and last part is concerned with proof heuristics; i.e. motivated and
efficient ways for traversing the search space.

1. BACKGROUND. For our project it was crucial to have a "theorem
proving system" that can provide advice to a student user; indeed,
pertinent advice at any point in an attempt to solve a proof
construction problem. To be adequate for this task a system must be
able to find proofs, if they exist, and follow a strategy that in its
broad direction is logically motivated, humanly understandable, and

1The project has been pursued by us since 1986 together with Jonathan Pressler and
Chris Walton. The very basic ideas go actually back to 1985, when Sieg and Preston
Covey discussed the underlying issues, and when the first steps were taken with Leslie
Burkholder and Jonathan Miller.



memorable. Thus, we have been developing an algorithm that does
perform a DIRECT, HEURISTICALLY GUIDED SEARCH for derivations, as a
first step, in just sentential logic. We argue implicitly against the
view that there is a deep-seated conflict between a logical and a
heuristic approach: given an appropriate formal frame, these
approaches complement each other in a most satisfactory way. So
let us describe such a frame for the representation of arguments.

1.1. NATURAL DEDUCTION. If procedures that search for solutions to
problems, e.g. proving mathematical theorems, are to have
implications for (the theory of) human problem-solving, they should
be "cognitively faithful". That was emphasized by Newell, Shaw, and
Simon in their classical work Empirical Explorations with the Logic
Theory Machine - A case study in heuristics (1957)2. Already in the
twenties, David Hilbert had maintained that logical formalisms
provide a framework for modelling cognitive processes that underly
rigorous mathematical arguments. He claimed indeed more in the
polemical discussions with Brouwer; let us quote from his 1927-
paper The Foundations of Mathematics :

The formula game that Brouwer so deprecates has, besides its mathematical value, an
important general philosophical significance. For this formula game is carried out
according to certain definite rules, in which the technique of our thinking is expressed.
These rules form a closed system that can be discovered and definitively stated. The
fundamental idea of my proof theory is none other than to describe the activity of our
understanding, to make a protocol of the rules according to which our thinking actually
proceeds. ... If any totality of observations and phenomena deserves to be made the
object of serious and thorough investigation, it is this one.3

To emphasize, the claims are: (1) logical rules express directly
techniques of our thinking, and (2) derivations in a calculus based on
them can serve as protocols of ways we actually think! If there is a
plausible candidate for an early programmatic statement of tasks
for cognitive science, this is one. But Hilbert's claim, it seems to
us, was given some plausibility only by Gentzen's work on natural
deduction calculi.4 Rules in those calculi were fashioned explicitly

2 Reprinted in: Siekmann and Wrightson.
3 reprinted in: van Heijenoort (ed.), From Frege to Godel, p. 475.
4 Gentzen was a student of Hilbert's. Note also that the axiomatic calculi discussed by
Hilbert were organized in such a way that the distinctive role of each logical connective
was brought out - in analogy to the organization of the axioms of geometry in Hilbert's
NGrundlagen der GeometrieM. Most of the axioms correspond directly to rules in the
Gentzen calculus; see pp. 465-466 of Hilbert's paper quoted above.



after informal ways of reasoning; they were to reflect, according to
Gentzen , "as accurately as possible the actual logical reasoning
involved in mathemat ica l proofs."5 They incorporate indeed
strategies for the use and the introduction of logically complex
formulas based on the understanding of their principal connectives.
That they underly "cognitive processing11 in ordinary propositional
reasoning has been supported by recent psychological investigations
of L.J. Rips.6

The natural deduction rules for the sentential connectives &, v,
-> , and ~ are divided into elimination and introduction rules. The
former specify, how components of complex formulas can be used,
the latter provide conditions under which complex formulas can be
inferred from components. In the presentation of the rules we
indicate that an assumption has been cancelled by enclosing it in
brackets .

The rules for & are absolutely straightforward:

&E & l

(j) & Y <j> & Y $ I
(J) y (j) & y

The introduction rule for v is similarly direct; the elimination rule
corresponds to an argument by cases:

vE v l

v y a Ji <j> <J>
) yv

5 p.74 of: G. Gentzen, Investigations into logical deduction, in: The collected papers of
Gerhard Gentzen, pp. 68-131.
6 See his "Cognitive Processing in Propositional Reasoning" and also "Deduction".



The elimination rule for -> is the traditional rule of modus ponens;
the introduction rule codifies the informal strategy of establishing
a conditional by giving an argument from the antecedent to the
consequent:

4) -> V

The negation elimination rule is the characteristic rule of classical
logic and is needed to prove, for example, the law of the excluded
middle and Peirce's law; the introduction rule captures the form of
indirect argument as used in the Pythagorean argument for the
irrationality of VI:

(ft ~(D (Q

In the elimination rules we call the premise that contains the
characteristic connective the major premise. - Notice that the first
negation rule implies "ex falso quodlibet", i.e.

- L
4>;

where i is any contradiction of the form q> & ~<p. - The precise
metamathematical description of derivations in this calculus is a
little cumbersome, as one has to keep track of the open assumptions.
If a simple description of derivations is desired, e.g. for the proof of
Godel's Incompleteness Theorems, it is better to use axiomatic
presentations; however, the tree representation reflects graphically
the structure of arguments. For the tutor we chose a Fitch style



representation; that has similar graphical advantages, but is easier
to put on a screen and avoids the duplication of parts of proofs.

1.2. AUTOMATED PROOF SEARCH. Despite the "naturalness" of natural
deduction calculi, the part of proof theory that deals with them has
hardly influenced developments in automated theorem proving.7 For
that, a different tradition in proof theory has been important; a
tradition that is founded on the work of Herbrand and that of Gentzen
concerned with sequent calculi. The keyword here is clearly
resolution. From a purely logical point of view this is peculiar: it is
after all the subformula property of special kinds of derivations8

that makes resolution and related techniques possible, and normal
derivations in natural deduction calculi have that very property
(with a minor addition). A derivation is called normal if it does not
contain an application of an l-rule whose conclusion is the major
premise of an E-rule. As every derivation can be transformed into a
normal one, normal derivations suffice to specify syntactically the
logical consequences of assumptions. This theoretical fact,
established by Prawitz already in 1965, can be exploited for
automated proof search, not just automated theorem proving.

For some, however, natural deduction calculi are unsuited even
for automated theorem proving. To point to one very recent example,
Melvin Fitting writes in his book First Order Logic and Automated
Theorem Proving (1990):

Hilbert systems are inappropriate for automated theorem proving. The same applies to
natural deduction, since modus ponens is a rule in both.9

If natural deduction calculi required unrestricted chaining as
axiomatic Hilbert systems do, employed e.g. by the Logic Theory
Machine, then they would indeed be inappropriate for theorem
proving: there would not be any significant restriction on the search
space. However, the presence of modus ponens can be a reason for
considering natural deduction calculi as inappropriate only if one
does not appreciate the normalization theorem and its corollary,
asserting that normal derivations have the subformula property.

7 For a survey of natural deduction theorem proving, see: W.W. Bledsoe,1977.
8 Derivations in Herbrand's calculus and derivations in the sequent calculus without cut
have the subformula property: they contain only subformulas of their endformula,
respectively endsequent. Both calculi enjoy the completeness property.
9 page 95.



Before describing the framework in which our automated proof
search proceeds, we want to make a few remarks about related work
by, among others, Andrews and Pfenning. The former has been using
(versions of) his theorem proving system TP for higher order logic in
an educational setting. Students can give natural deduction
derivations and are even allowed to work bottom-up and top-down.
But the underlying prover is based on mating procedures, and does
not provide advice. Pfenning developed an algorithm that uses a
mating proof as the basis for a natural deduction argument. As the
latter is by no means determined uniquely by the former, it is
necessary to use strategic considerations of a similar sort as they
are developed below; but they have not been pushed very far in
Pfenning's dissertation. Analogous remarks apply to work on broad
frameworks for the implementation of varieties of logical systems,
in particular natural deduction systems, as reported e.g. by Paulson
and Felty. Tactics and tacticals for generating derivations are
introduced, but there is no attempt to join them strategically in an
automated search for proofs.

2. CONCEPTUAL FRAMEWORK. The broad problem is this: How
can one derive a conclusion cp from assumptions <t>i, ... , <J>n ? or, to
put it more vividly, how can one close - via logical rules - the gap
between a conclusion cp and assumptions <j>i, ... , (j)n ? This question
is at the heart of spanning the search space via the INTERCALATION

CALCULUS.10 The basic rules of that calculus are, locally, direct
reformulations of those for Gentzen's natural deduction calculus; it
is the preservation of inferential information and the restricted way
in which the rules are used (to close the gap and thus) to build up
derivations that is distinctive.

2.1. INTERCALATING. The idea is roughly this: one tries to bridge the
gap between assumptions and conclusion by systematically
intercalating formulas using the available rules of the natural
deduction calculus. I.e., one pursues A L L possibilities of using
elimination rules to come closer to the conclusion "from above" and

1 ° This calculus was proposed by Sieg in August 87 to capture the essence of the problem
formulated above; the basic metamathematical properties, also concerning predicate
logic, were established then. The detailed proofs of these results will be reported in a
separate publication.



inverted introduction rules to come closer to the assumptions "from
below". Let us look at two easy examples where the gap is indicated
by a question mark:

EXAMPLE 1:
P->Q

p

Q

An application of the -> elimination rule leads to:

P->Q
P
Q

Clearly, the gap is closed now. From the "intercalation derivation"
one reads off immediately the corresponding natural deduction
derivation:

P P->Q
Q

This example allows only one straightforward way of attempting to
close the gap, namely by using the elimination rule for the
conditional. The next example gives us choices, as the conclusion is
a complex formula.

EXAMPLE 2:

P&Q

Q&P
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If we do use the (inverted) &-introduction rule we are led to the
configuration:

P&Q P&Q

Q
Q&P

But now it is quite clear how to close the remaining gaps - by
application of the &-elimination rule. The idea underlying these
simple examples is captured in the intercalation calculus. Its rules
operate on triples of the form

a;p?G .

a is a sequence of formulas, namely of the available assumptions; G
is the current conclusion or goal; and p is a sequence of formulas
obtained by &-elimination and ->-elimination from elements of a.
Let us list the intercalating rules. The 1-rules correspond to
elimination rules, the t -rules to (inverted) introduction rules. We
use the following conventions: if a and p are sequences, the
concatenation of a and p is indicated by juxtapositing a and P; if a is
a sequence of formulas and <|> is a formula, the extension of a by <j> is
indicated by a,^. We use <|> € a to abbreviate that the formula <|> is an
element of the sequence a.

* & : a;p?G , <t>i&<tee <*P => a;p,<|>i?G OR a;P,02?G

iv: a;p?G , <j>iv<|>2 e ap => a,<|)i?G AND a,<j>2?G

* - > : a;p?G , <t>r><te e ap , <j>i e ap => a;p,<J>2?G

The question a;p?G is the same question as a*;p*?G just in case the
sets of formulas in the sequences a;P and a*;P* are identical; if the
first set is contained in the second, then the question a*;P*?G is
easier than a;p?G. The rules can be restricted to avoid obvious
repetitions of questions and also the asking of easier questions; e.g.



r i & f : a ; p ? G , <t>i&<t>2 ̂  <*P , <$>i « <*P => a;P,<

r i v a ; ( 3 ? G , <J>iV<t>2
 € a P , <t>i < ocp, <!>2 < <*P = > <M>i?G A N D

r l - > : a;p?G , <|>r>4>2
 € <*P , 0i € ap , <|>2 * a(3 => a;p,(t>2?G

It is important to use these restricted rules when building up the
search space. 1 1 - Here we continue the presentation of the
intercalation calculus by formulating the t-rules.

t&: oc;P?<t>i&02
 = > ct;P?0i AND oc;P?<t>2

tv: a;P?d>iV02 => a;P?<h OR a;p?(t>2

t -> : a;p?<}>i-><j>2 => oc,<J>

The rules for negation are split into three, where we consider 1 as a
placeholder for a pair of contradictory formulas:

l c : a;p?<t) , 0*1 => a,-6;?l

l i : a;P?-0 => a,<j>;?l

1F : a;p?i , <p € T => a;p?cp AND a;p?-(p .

In the last rule, T is the finite class of formulas consisting of all
subformulas of elements in the sequence ap. That T can be taken to
be finite is clearly crucial for the finiteness of the search space.
Smaller and yet sufficient classes are specified below; here we just
remark that we always discount double negations: if ~<j) is in T, then
we consider only the pair ~<j> and <|> in the first two negation rules, not
also ~(j> and ~~<|>. A final technical note: it is for metamathematical
simplicity that we suppressed in the rules which introduce new
assumptions the sequence p of inferred formulas. Logically nothing
is lost, as these formulas can be re-inferred; for an efficient

11 That is described in the next subsection; compare also section 3.1.
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implementation such a duplication of efforts has to be, and can be
easily, avoided.12

2.2. SEARCH SPACE. Instead of presenting all the logical details, we
just indicate the pertinent considerations. We choose to do so by
discussing the search tree for the question ?(Pv~P); it is partially
presented below. We start out by applying three intercalation rules
to obtain three new questions; namely, ?P OR ?~P OR, proceeding
indirectly, ~(Pv~P);?i. That the branching in the tree is disjunctive
is indicated by D. Let us pursue the leftmost branch in the tree: to
answer ?P we have to use lc and, because of the restriction on the
choice of contradictory pairs, we have only to ask ~P;?P A N D

~P;?~P. 0 indicates that the branching is conjunctive here. In the

first case only lc can be applied and leads to the "same" situation
we just analyzed: using ~P as an assumption, i has to be proved.
Thus we close the branch with a circled F, linking it to the "same"
earlier question on this branch. In the second case the gap between
assumptions and goal is obviously closed, so we top this branch with
a circled T. The other parts of the tree are constructed in a similar
manner. But the tree is not quite full: at the nodes that are
distinguished by arrows the additional contradictory pair consisting
of P and ~P has to be considered. At nodes 2 and 3 the resulting
branches are almost immediately closed with a circled F; at node 1,
in contrast, the resulting subtree is of interest and will be
discussed below.

12 See section 3.1.
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~(Pv~P),P,P;?i

(Pv~P),~P;?~P WPv~P),P;?P ~(Pv~P),P;?~P~(Pv~P),~P;?P

~(Pv~P),~P;?Pv~P \ ~(Pv~P),P;?Pv~P

(

Pv~P),~P;?

P;?p ~py~p
 P;?P ~(Pv-P);?~P~(Pv~P);?P

~(Pv~P);?Pv~P

?(Pv~P)

Every branch in a search tree constructed with the intercalation
rules is finite and is being topped by either T or F. We can give
rules that associate one of these values to a node N, given that its
predecessors Mj have such values, and thus associate recursively a
value with the initial question. This is done as follows: (i) if N has
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exactly one predecessor M, the value of N is that of M; (ii) if N has
exactly two predecessors and the branching is conjunctive, the value
of N is T if both predecessors have T, otherwise it is F; (iii) if N
has two or more predecessors and the branching is disjunctive, the
value of N is F if all predecessors have F, otherwise it is T. Using
these rules it is quite easy to see that the basic question in our tree
has the value T. Small subtrees will often lead already to this
evaluation: in our example, from either of the branches with thicker
vertices results the value T. - These subtrees contain enough
information for the extraction of derivations in a variety of styles
of natural deduction. For our calculus we can easily obtain the
corresponding derivations; namely, from the "left" (darkened) branch:

Pv~P

Pv~P
Pv-P

The proof extracted from the "right" (darkened) branch is very
similar; it is obtained by just interchanging the formulas ~P and P.
Let us indicate the third proof that can be extracted when the
branching at node 1 with P and ~P is taken into account. (The
branchings at the remaining numbered nodes do not give additional
proofs.) It is a combination of the two proofs just described.

Pv -P Pv~P

~p

Pv~P

To summarize: given assumptions and a conclusion, we can build up
systematically a finite search tree and thereby explore all (non-
repetitive) possibilities of gap-closing via the intercalation rules.
It can be shown, that if the original question evaluates to T, then a
normal derivation can be extracted; otherwise, the full search tree
allows us to define a semantic counterexample to the question. Thus
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we have a new kind of completeness proof suited to natural
deduction calculi; it is similar to those for semantic tableaux or the
sequent calculus. The completeness claim for the intercalation
calculus can be formulated as follows:

COMPLETENESS THEOREM. The (full) search tree for the problem
<l>i»—*4>n; ? <P either contains a subtree from which a normal derivation
can be effectively constructed or it provides a counterexample to
the problem.

There are a number of direct and easy consequences (of the proof);
namely,

(1) we have a decision procedure for sentential logic, as every
search tree is finite;

(2) there are canonical ways of extracting derivations in various
forms of natural deduction calculi;

(3) the extracted derivations are normal and satisfy the subformula
property.

More details concerning (3) will be discussed below. - If we were
not restricted by computational concerns, the basic procedure for
answering a question of the form oc;?G could be: generate the full
search tree; if the value associated with the question is F, the
answer is negative; if the value is T, then determine the "smallest"
subtree of the full search tree that allows the T evaluation, and
extract its derivation. But as it stands we want to find a subtree,
that allows the T evaluation and provides us with a good proof as
quickly as possible and hopefully without generating the full search
tree. It is for this purpose that guiding heuristics are needed.

3. HEURISTICS FOR SEARCH. There is no conflict between the use
of heuristics to build up proper pieces of the search space to find a
derivation quickly and the generation of, ultimately, the full space
to guarantee completeness of the procedure! If there is no
counterexample to the question we can close the gap between
assumptions and conclusion by a finite sequence of intercalating
steps: (i) from above via elimination rules, (ii) from below via
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inverted introduction rules, or (iii) via the rules for indirect
argumentation. The central questions are: (1) can one reduce further
the need for exploring paths in the search tree? and (2) which of the
finitely many possibilities of proceeding should be selected before
the others? - As to the second question, we consider three classes
of heuristic advice based on logical ideas; they are, clearly, related
to (i) - (iii). But before presenting those, we refine the steps that
have already been taken to cut down the search space; this is
obviously relevant to (1).

3.1. PRUNING. The build-up of the search tree guarantees, first of
all, that the same question is not answered twice on a particular
branch and, secondly, that extracted derivations are normal. The
first feature helps to insure that no infinite paths are generated and
is implemented, partly, by using the restricted forms of the
intercalation rules and, partly, through the F-closure condition.
Normality guarantees that derivations do not contain detours, as an
introduction rule is never followed immediately by an elimination
rule whose major premise is the conclusion of the introduction rule.
This is a consequence of the fact that the 4-rules (corresponding to
elimination rules) are used only to close a gap from above, wheras
the t-rules (corresponding to introduction rules) are only used to
close a gap from below.

This separation of l-rules and t - ru les has actually another
significant consequence, as extracted derivations satisfy a stricter
subformula property. Let us define the usual notion of positive and
negative subformula of a given formula A: (1) A is a positive
subformula of A; (2) if B&C or BvC are positive [negative]
subformulas of A, so are B and C; (3) if B->C or ~B are positive
[negative] subformulas of A, then B is a negative [positive] and C a
positive [negative] subformula of A. We say that a formula is a
strictly positive subformula of A, just in case it can be shown to be
a positive subformula without appealing to clause (3) in the above
definition. It is not difficult to show that for extracted derivations
from a to G the following holds: every formula is either a positive
subformula of an assumption, a subformula of the conclusion, or (the
negation of) a negative subformula of a ,~G. This is a property of
completed derivations. In stepping from one question to the next the
syntactic connection is tighter and leads to a considerable further
restriction on the choice of contradictory pairs: we have to consider
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only pairs 0 and ~<j>, such that -<)> is a strictly positive subformula of
an available assumption.

The considerations in the last paragraph allow us to formulate
the rule L? for smaller classes T and thus reduce the number of
branchings at certain nodes in the search tree. Now we make use of
the already constructed part of the search tree to avoid answering a
question that has been asked and answered before; indeed, that can
be slightly generalized as we do not just focus on identical
questions. That is done in three parts.

(A.1) We store globally all negative answers to questions of the
form a;p?G, and stop pursuing - on other branches - questions of the

form a*;p*?G, when the set of formulas in ap is a superset of those

in a *p* . Clearly, if G cannot be derived from ap then it cannot be

derived from cc*p*. As it is not necessary to know how the negative
answer was obtained, we discard the part of the tree leading to it.

(A.2) We store locally, i.e. in the current search tree that may lead
to a derivation, all positive answers to questions of the form oc;p?G,
and stop pursuing - on other branches - questions of the form
a*;p*?G, when the set of formulas in ap is a subset of those in a*p*.
Clearly, if G is already derivable from ap then it is derivable a

fortiori from a * p * ; w e are dealing with an easier question! (The
positive information could also be stored globally, but we do not
believe at the moment that that would speed up the search.)

(A.3) In parallel to the search tree we build up partial Fitch-
derivations. This particular representation can be exploited to avoid
re-obtaining positive answers by using a broader notion of "formula
available on a branch". Roughly speaking, when asking the question
a;p?G at a particular node we consider as available not only the
formulas in ap, but all formulas on the branch leading to this node
that are available in the corresponding partial Fitch-derivation. In
the case of conjunction and indirect arguments this can be further
extended, as we consider naturally the first derivation of one of the
conjuncts, respectively one component of the contradictory pair as
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part of the partial Fitch-derivation.13 (Here is a computational
advantage of the Fitch-style representation over the tree
representation; the latter would require duplication of subtrees.)

Up to now we sidestepped, in a sense, the difficult problems
either by avoiding to ask questions (through the restricted
formulation of rules and the narrower choice of contradictory pairs)
or by exploiting already obtained answers. But how do we obtain,
intelligibly and efficiently, answers that allow us to close the gap
between assumptions and conclusion?

3.2. EXTRACTING and INVERTING.14 If we consider just the t - ru les ,
they seem to help to bridge the gap. They may lead to derivations
longer than necessary, but in general - when no indirect argument is
required - they go in the right direction. The reason is that answers
to the newly raised questions provide immediately an answer to the
original question. 4-rules, in contrast, may go off in completely
irrelevant directions when applied "mechanically". After all, among
the assumptions may be formulas that are not appealed to in any
normal derivation of the conclusion. Here it is necessary to ensure
the directedness of applications, so that they lead to formulas
"closer" to the conclusion. For that purpose we introduce an
additional, complex rule, the Extraction Strategy: try to obtain the
goal via a sequence of elimination rules when the goal is a strictly
positive subformula of available formulas. This will lead in general
to new problems, as the minor premises of the elimination rules
have to be derived. But, as in the case of the t-rules, if all the
subproblems are solved, the original question has been answered. -
Instead of describing this in utter generality let us show by an
example what is involved. Consider the problem:

(S&Q)-> ((P&Q)v(Q&T)), ~T, P&S, ~T->Q; ? P&Q

As P&Q is a strictly positive subformula of the first assumption, we
try to extract P&Q from it. We have immediately the configuration:

13 In these two cases we are facing a conjunctive branching and address canonically the
wleff problem first. (In principle, one should even here make a contextually informed
choice.)
14 i.e. here: extracting of formulas from assumptions via elimination rules.
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S&Q (S&Q) -> ((P&QMQ&T))

(P&Q) v (Q&~n P&Q P&Q
P&Q

So the problem is reduced to finding from the remaining assumptions
a proof of

(1) S&Q

and of

(2) P&Q

using also the temporary assumption Q&T. But that is easy to do as
seen by the following derivations:

P&S ~T ~ T - > Q

Q
S&Q

and

Q&T
T

P&Q

We hope the idea behind the extraction strategy is clarified by this
example. We chose it, however, also to indicate the real problem.
How are we to make a choice between inversion and extraction? -
In this particular example, taking the inversion step first leads to a
shorter and better derivation, namely:

~T ~T -> Q

Q _

P&Q
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What we can do (also when the goal is not a strictly positive
subformula of an assumption) is to pursue the Inversion Strategy:
apply inverted introduction rules for & and ->, in stages, until these
rules cannot be applied or the new goals are strictly positive
subformulas of available formulas.

3.3. CHOOSING. The above considerations point to a general moral:
the choice of the Hnext step" has to be informed by the purely
syntactic context consisting of available formulas and the goal. We
use that context to determine a ranking of the rules or strategies by
means of which the goal can be prima facie obtained. Several
factors play a role in determining this ranking; let us formulate
relevant questions for the extraction strategy:

(a*) Is the goal G a strictly positive subformula of an available
formula?

(bl) How deeply is G embedded, in case (ai) has an affirmative
answer or, indeed, several affirmative answers?

(c i ) What are the main connectives of the formulas in which G is
embedded?

Similar questions can be asked for the inversion strategy:

(at) Can the conclusion be built up out of other formulas?

(bt) Are these other formulas strictly positive subformulas of
available formulas?

(ct) In case (bt) has an affirmative answer, (bl) and (c4) apply.

We assign numerical scores depending on the answers to these
questions and rank the rules and, thus, strategies accordingly.15 In
the example just discussed, this ranking indeed favors the second
derivation. The point is that we take into account obviously
significant contextual features whose determination is local.

15 We give preference to lower scores. Here and below, if there is a tie, i.e. at least two
possibilities attain the same score, pick one.
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Up to now we have hardly addressed the rules for negation. We
turn to this next. Once we have decided to "go indirect" and pursue
the refutation strategy, we have to select a formula ~<j> and prove
both it and its unnegated matrix. It is here that an additional
ranking comes in, namely the ranking of contradictory pairs of
formulas. Since indirect proof works when the assumption y of an
indirect proof leads to absurdity, we favor those contradictories
that have an obvious connection to \j/. That is, we rank highly those
contradictories that are positive subformulas of y or contain y as a
positive subformula. Then the procedures used to determine the
earlier ranking are exploited: it is after all largely a matter of
trying to determine which pair of contradictory formulas is easiest
to prove.

The overall strategy of selecting the question following a;p?G
is very roughly described now. (For a corresponding flow-diagram
see Appendix 1.) The first distinction is made according to the
form of G. If G is a conjunction or conditional we order the
inversion-extraction possibilities and pursue the one with the
lowest score; in case these possibilities do not lead to a positive
answer, we pursue the refutation strategy. If G is a disjunction,
negation, or an atomic formula, we make one step towards an
indirect argument using G itself as the new goal and then proceed as
before; in case this does succeed, we check whether the assumption
~G was used in the proof at all and construct, in case it was not, a
direct argument. If we apply this procedure of building the search
tree piecewise to our problem ?(P v ~P), the part of the tree that is
being traversed at all is the "left" (thickened) branch in the earlier
t ree:



20

~(Pv~P),~P;?~P

\
~(Pv~P),~P;?Pv~P

\

~(Pv~P);?P

~(Pv~P);?Pv~P

?(Pv~P)

The memorable and very crude guiding strategy is then this: try
to extract the conclusion; if that is not possible invert, in case the
conclusion is a conjunction or a conditional, and refute, in case the
conclusion is an atomic formula, a negation, or a disjunction. When
pursuing this strategy one has to keep in mind these imperatives: (1)
avoid pursuing avenues that have been pursued; (2) take into account
the context and possibly change the order of extraction and
inversion; (3) turn refutations, if possible, into direct arguments.
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4. CONCLUDING REMARKS. We think it is logically significant
that fast automated proof search is possible. However, for our
project it is more important that the tutor based on the search
algorithm seems to be pedagogically effective in teaching students
strategies for problem solving. We have used the tutor within a
totally computerized introduction to logic, a version of the VALID
program developed by Patrick Suppes and collaborators at Stanford
University. Students who took the course within the tutor
environment (i.e., having the possibility of working forward and
backward) surpassed students who were allowed to either work just
forward or just backward significantly in their ability to solve
difficult problems.16

We plan to extend the search algorithm to predicate logic and
then to elementary parts of set theory. There are clearly non trivial
difficulties to be overcome, but they are not insurmountable. Apart
from logical and mathematical problems, we will continue to
address the psychological and pedagogical issues surrounding
informal argumentation. To do this we plan to supplement the
logical part of the tutor by a linguistic module that translates
between (relatively regimented) parts of English, as used in
elementary set theory, and the appropriate, definitionally expanded
formal language. Students should be able to give informal arguments
that are controlled - using the linguistic module - by the checker
that is trivially contained in the search algorithm; and the latter
should be powerful enough to provide intelligible and subject-
specific assistance.17

1 6 The experiments that we carried out and are carrying out will be discussed in our
contribution to the Fifth Conference on Computers and Philosophy, held at Stanford
University, August 1990; for a brief description of experiments concerning only the
interface, see Appendix 3.
1 7 It should be possible to use diagrams as steps in arguments - via their proper
linguistic representation.
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APPENDIX
1. Diagram. Concerning the choice of the next question, when it has been determined
that the branch with question <x;fl?G as top node has to be expanded.

f
current questionion \ new question:

a;G*?G

Form EXTRACTION

strategies

Form INVERSION

strategies

no

Form REFUTATION
strategies

ORDER strategies

new question(s), de-
pending on strategy

At 1 we ask: are we in an indirect argument w.r.t. G ? If not, we ask at 2: is G a negation,
a disjunction, or an atomic formula? If yes, we let in the latter two cases G* be ~G; in
the first case G* is the unnegated matrix of G. Finally, at 3 we determine, whether the
set of inversion and extraction strategies is empty or not.
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2. Further examples of machine proofs. We give Proof Tutor proofs of (1) Peirce's
Law that was not provable for the Logic Theory Machine, and (2) a problem from
Pelletier's list characterized as "not solvable by unit resolution nor by 'pure1 input
resolution". (The naming of rules is different from the one used above, but self-
explanatory; or-elimination is here also formulated in a different way, namely as
allowing the inference from (<(> v y) and -<t>, respectively *v , to y , respectively <j>.)

tutor dcrno

2

3

4

5

6

7

8

9 (

iu.edu/usrO/cdcc/cpt/tutor dcrno.t

The Proof 10O3.1

ip
-

p
p

p

->q)
p

P

q
->q

->p

p -> q) -> p) -> p

The proof is complete !

assumption
assumption
assumption

assumption

neg_elim,4,2,
>jntro,3 /5

neg_eiim,2,7,

^introj.S

[9] ((p -> q) -> p) -> p 1

[1] (P -> q) •> P

fflp

JSL-P
[6] p -> q

[7] p

> intro

(p -> Q) -> p p -> q

r
> eiim

neg eiim

I
P

>Jntro

( (P -> q) -> P ) -> P

Goal Tree
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QQH The Proof 100.3.2

1
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3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

pv~q
*-*-q

~9
(pvq)8c(-pvq)
pvq

q
—p
(pvq)&(~pvq)
"pvq
q

~p
(p v q) & (~p v q)
pvq

q
pv~q
~q

v ~
20 (((p vq)bt ;~p v q>; & (p v ~q))-> -

assumption
assumption
assumption
assumption
8c_elimJ,i

negJntro,4/3,4,7

8c_elim_r,9 ;
vjefimj'jo^

v_eiimj,2j2

8c_elimJ,i4
v_elim_r j 5,13

q) >Jntro,t,i9

The proof is complete !
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3. Experiments. Computerized proof checkers have proliferated, but little
experimental work has been done to assess their effectiveness as learning environments,
or the effectiveness of various of their features. In the fall of 1989 we conducted
experiments in which three proof construction environments were compared - in the
context of a course on introductory logic taught entirely on-line by VALID. In each
course unit, VALID introduces students to concepts in logic and then requires them to
complete a series of proof construction exercises before beginning the next unit. Since
VALID is fully uniform and impervious to who sits before it, and since it handles
virtually the entire teaching duties for the course, it presents a perfect platform upon
which to perform controlled experiments.

We gave all our VALID students a pretest for "logical aptitude" (designed by the
Education Testing Service). We used the results of the test to split the class into three
matched groups. Each group used VALID to learn logical concepts, but used a separate
version of PT (the Proof Tutor) to complete all of the sentential proof construction
problems in VALID's curriculum. The first group used a version of PT that simulated
standard proof checking programs, i.e., the student was only allowed to work forwards
from the premises toward the conclusion, and the proofs were represented as columns of
lines with a dependency field. Call this group Forwards-only. The second group used a
version of PT in which students had a sophisticated graphical display representing their
search for a proof and their paritally completed proof. However, they were only allowed
to work backwards from the conclusion toward the premises. Call this group Back-only.
The third group had the ability to work forwards or backwards and had the sophisticated
display. No group received intelligent help from PT. Thus all groups used identical
computer environments save the differences described above. Everyone took the same
online midterm with the version of PT that they had used throughout. There were eight
problems on the test of the same sort they had faced in the regular course. Two problems
were quite easy, three of medium difficulty, and three fairly hard. Below we list the
results.

All results are group means, expressed as percentages. The sample size of each group is
in parentheses. The pretest means are not identical due to students who dropped the
course after the groups were created.

Midterm
Group Pretest Total Easy Med. Hard

PT-full (11) 66.06 80.63 95.4 81.8 70.0
Back-only (9) 76.27 76.37 100.0 92.7 44.4
Forwards-only (8) 68.33 68.75 87.5 79.1 45.8

It is clear that the group that worked in a standard proof checking environment
(forwards only) did the worst. On the easy and medium problems, they did the worst,
but were within the general range of the other two groups. The difference on the hard
problems is dramatic, however. It seems, the full version of PT significantly improved
the students' ability to solve problems that weren't either immediately obvious or
almost so.
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