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PREFACE.

The material of these notes was presented in lectures I gave in Milano
in May 1992. Some of the material in the first, third, and fourth lectures had
been developed for courses in Siena and Miinchen in the Spring of 1988, but
the remainder is based on papers and manuscripts written during the last
three years in Pittsburgh.

My reasons for selecting the material are elaborated in the Introduc-
tion. Here I simply say that I attempted to give a partial snapshot of proof
theory from one particular perspective by describing three themes that hang
together quite intimately: foundational reduction, computational informa-
tion, and (heuristics in the) automated search for proofs. These are themes
that were emphasized in the twenties, but have been developed more distinc-
tively only since the fifties. Technically the themes are held together by the
possibility of normalizing proofs and thus, in the case of first order logic, of
bounding the logical complexity of formulas occurring in them. But these
themes are also held together conceptually: That is the rationale for including
an unusual amount of philosophical and historical material.

Thanks are due to Wilfried Buchholz and Helmut Schwichtenberg
who made my sabbatical stay in Miinchen possible (during the academic year
1987-88), to Franco Montagna who invited me to Siena, and — most of all - to
Daniele Mundici who was my host in Milano. Mundici encouraged me
during my wonderfully intense and vibrant visit in Milano to complete these
notes. I am also grateful to the students in Siena, Miinchen, and Milano who
attended and criticized my lectures. Mario Chiari helped me to bring the early
material into proper shape; Connie Bartusis proofread all lectures with a keen
eye and critical pen, improving their style considerably. Finally, I want to
acknowledge the financial support of CNR, DFG, and Carnegie Mellon
University.

Pittsburgh, July 1,1992
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INTRODUCTION

If one tries to characterize what is distinctive about logic in our century
one clearly has to point to its close association with mathematics: Logic has
been using mathematical tools in its presentation and critical self-
examination, and mathematics has been logic's primary field of application
and source of problems. Yet underneath the mathematical shell, the
philosophical origins of fundamental issues have been preserved to a great
extent. It is the glory of logic that it complements formal mathematical work
by informal rigorous reflection. Here are three prime examples: (1) the
analysis of "logical consequence" (in its semantic and syntactic guise from
Aristotle to Frege, Hilbert, Godel, and Tarski); (2) the analysis of "set" (from
Cantor and Dedekind through Zermelo's cumulative hierarchy to
constructive sets — in both Godel's technical sense and the informal sense);
(3) the analysis of "formality" (from the quasi-normative requirements in
Leibniz to Turing's Thesis and subsequent generalizations). These examples
are not isolated from the rest of logic, but actually constitute its core of
permanent contributions; they are not isolated either from each other, but are
deeply connected through questions concerning the nature of mathematical
experience and, ultimately, the nature of the human mind. It was the
concern with these general philosophical questions that led, in the very first
place, to the methodological emphasis on constructivity in mathematics and
on effectiveness in metamathematics. Not surprisingly, this has led to
developments that are of increasing significance in computer science.

With respect to all of these issues Hilbert had a directing influence in
the twenties and even earlier. As to (1), he formulated most clearly the
completeness problem; as to (2), he emphasized that the axiomatic method
should be applied to the notion of "set" and inspired Zermelo, but also von
Neumann and Bernays; finally, as to (3), he formulated sharply the decision
problem for predicate logic and viewed it as a fundamental problem. I want
to emphasize this in contradistinction to the conventional view that ties
Hilbert's foundational work exclusively to his PROGRAM. Clearly, Hilbert's
desire to settle foundational problems in mathematics by finitist consistency
proofs was important and, indeed, it was for the purpose of this program that
he quite literally invented a new subject, namely PROOF THEORY. In my view,
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one can discern three main themes of proof theoretic research: (1) the
reductive foundational, (2) the informative mathematical (computational),
and (3) the cognitive psychological.

The first theme has been the dominant one, because of the founda-
tional aims of Hilberts program. In the early twenties Hilbert set himself the
task of securing the instrumental usefulness of all of classical mathematics.
He hoped to achieve that aim by reducing analysis and even set theory to a
fixed, absolutely fundamental part of arithmetic, so-called finitist
mathematics. The specific proposal of how to achieve such a reduction is the
mathematical centerpiece of Hilbert1 s program: A finitist consistency proof
would allow the transformation of "classical", set theoretic proofs of finitist
statements into finitist proofs. Note that this takes on a methodologically
most important problem Dirichlet had posed through his use of analytic
methods in number theory! The program was refuted fortunately or
unfortunately by Godel's Incompleteness Theorems. A general reductive
program has been pursued, and significant progress has been made in its
pursuit. The aim of obtaining an "absolute reduction" for all of classical to
finitist mathematics had to be replaced, however, by the more modest task of
establishing the consistency of theories for parts of classical mathematics
relative to suitable constructive theories. As that amounts to establishing
partial conservativeness, the main question really is: What more than finitist
mathematics do we have to know to recognize the (partial) correctness of a strong classical

theory?

The theme concerning mathematical and, later, computational
information was at first completely subsidiary to the first theme: One had to
see that certain formal theories could serve as frames for mathematical
practice. Whitehead and Russell's Principia Mathematica and the set theoretic
developments in mathematics were taken by Hilbert as evidence that type
theory or set theory could serve for that purpose. Godel's First
Incompleteness Theorem established that arithmetical truth cannot be fully
captured by derivability in formal theories and it removed one of the crucial
(implicit) assumptions of Hilbert. However, by exposing the limitations of
formal methods Godel's result opened the possibility of exploiting formal
proofs to obtain "information" beyond establishing the truth of a theorem. If



the proper inclusion of provability in truth is to be exploited, it seems that it
is best to use weak theories that are nevertheless adequate for the
formalization of mathematical practice- As a matter of fact, the presentation
of analysis given by Hilbert (during the early twenties in second order
arithmetic) can be viewed in this light as an important first step.
Refinements during the subsequent fifty years have made dear that all of
classical analysis can be carried out in theories that are reducible to
elementary arithmetic; parts of analysis and also of algebra can be carried out
in even weaker theories. Joining such quasi-empirical investigations with
proof theoretic work allows then the in-principle-extraction of detailed
"computational information". That comes under the heading of provably
recursive (or provably total) functions; i.e., one determines exactly the class of
those recursive functions whose termination can be proved in the formal
theory at hand. Such results give (in general, crude) bounds from proofs of

F^-theorems and, turning the table, are used to prove the independence of
such theorems. In any event, here we have one way of answering the main
question : What more than its truth do we know, if we have proved a theorem in a weak

formal theory ?

The third theme is intimately connected with the mechanical
modelling of reasoning in the tradition of Leibniz, and, to a certain extent,
Frege. This theme was definitely taken up by Hilbert himself; in "Uber das
Unendliche" he claimed:

The formula game that Brouwer so deprecates has, besides its mathematical value, an
important general philosophical significance. For this formula game is carried out according to
certain definite rules, in which the technique of our thinking is expressed. These rules form a
closed system that can be discovered and definitively stated. The fundamental idea of my
proof theory is none other than to describe the activity of our understanding, to make a protocol
of the rules according to which our thinking actually proceeds.

If anything is an early formulation of goals for contemporary cognitive
psychology, this is. The claims were made (somewhat) plausible only by
Gentzen's development of the calculi of natural deduction. In German they
are called "Kalkiile des natiirlichen Schliefiens" emphasizing that they (are
to) correspond to an argumentative practice that comes naturally. Strangely
enough (and it is indeed surprising, even if one takes into account the variety
of different aims that are being pursued), this tradition has hardly influenced



the (automated) theorem proving systems of today; for them a different
tradition in proof theory has been more important, namely one that is
reflected in Herbrand s theorem and related results. Here the main question
is (or rather should be): What more than the formal rules of a calculus should a computer

know, when searching f o r a proof of a statement?

In my lectures I want to illustrate these central themes paradigmatically
and discuss some of the answers in technical detail — dearly, in areas where I
feel competent and where I can add to what is in the literature. These
considerations underlie my selection of topics, and I apologize at the outset

for the wholesale omission of, e.g., systems of ordinal notations or T^jrLogic or
Linear Logic. For each of the questions I do consider, answers can be obtained
by investigating suitable formalisms in a variety of ways. It turns out that one
approach to the original programmatic consistency problem is particularly
successful. It is due to Gentzen and involves the representation of reasoning
in special calculi, that is, sequent calculi and natural deduction calculi; for
both kinds of calculi crucial NORMAL FORM THEOREMS can be established.

Sequent calculi were used by Gentzen to give consistency proofs for
(parts of) arithmetic, and they have been used ever since for stronger and
stronger subsystems of analysis in the pursuit of theme (1) (e.g., Schiitte,
Takeuti, Tait, Feferman, Buchholz, Pohlers, Sieg). They have also been
employed in work on theme (2), as witnessed by Schwichtenberg's beautiful
reformulation of Kreisel's early work on the characterization of the provably
recursive functions of Peano arithmetic and by the more recent work (e.g., of
Buss) on the proof theoretic characterization of complexity classes. In
relation to theme (3), I point to Hao Wang's work in automated theorem
proving; he exploited already in the early sixties a particular way of
establishing the completeness of sequent calculi without cut. Let me note
that the single most fundamental fact (and most useful for applications) is the
subformula property of normal derivations; it is a direct consequence of the
normal form theorem. This property guarantees the crucial bounding (of the
logical complexity) of formulas that may occur in derivations.1

* References to the literature will be given throughout these notes; let me mention some pertinent
sources: for (1) [Kxeisel 1958A & 19681 and [Sieg 1988 & 19901; for (2) [Kreisel 1951 & 1958BJ, [Parsons 1970
& 19721, [Sieg 1985 & 19911, and (Buss 19861; for (3) [Gallier 19861 and [Fitting 19911.



PART A. BACKGROUND.

1. Proof theoretic perspectives. After depicting themes and surveying topics,
let me start out with some historical remarks on the context in which
Hilbert's program arose, because it is still widely and deeply misunderstood as
an ad hoc weapon against the growing influence of Brouwer's intuitionism.

Reductive programs. The problems that motivated Hilbert's program can be
traced back to the central foundational issue in 19th century mathematics,
namely securing a basis for analysis. A possible resolution was indicated by
the slogan "Arithmetize analysis!" That direction was given already by
Gauss, and its meaning can be fathomed from Dirichlet's claim that any
theorem of analysis can be formulated as a theorem concerning the natural
numbers. For some the arithmetization of analysis was accomplished by the
work of Cantor, Dedekind, and Weierstrass; for others, e.g., Kronecker, a
stricter arithmetization was required, one which would base the whole
content of all mathematical disciplines (with the exception of geometry and
mechanics) on "the concept of number taken in its most narrow sense, and
thus to strip away the modifications and extensions of this concept, which
have been brought about in most cases by applications in geometry and
mechanics" ([Kronecker 1887], p. 253). In a footnote, Kronecker makes clear
that he has in mind "in particular the addition of the irrational and
continuous magnitudes". Kronecker strongly opposed Cantor's and
Dedekind's free use of set theoretic notions, as it violated methodological
restrictions on "legitimate" mathematical concepts and arguments.

Having been informed (by Cantor in 1897) about the problematic
character of some set theoretic considerations and the inconsistency of
Dedekind's "Was sind und was sollen die Zahlen", Hilbert addressed the
issues directly in his paper "Uber den Zahlbegrifff and again in his Paris
lectures of 1900. His goal was to establish by a consistency proof the existence
of the set of natural and real numbers and of the Cantorian alephs; but he
gave only a very rough indication, how such a proof could be carried out:
Provide models for an axiomatic characterization of the reals and the alephs.
In his Heidelberg address of 1904 Hilbert gave up this first attempt at



circumventing the Cantorian problems in set theory as far as they affected
analysis.1 The then recently discovered elementary contradictions of Zermelo
and Russell had changed his outlook on these problems. Bemays is quoted in
Reid's biography of Hilbert as saying:

Under the influence of the discovery of the antinomies in set theory, Hilbert temporarily
thought that Kronecker had probably been right there. [I.e., right in insisting on restricted
methods.] But soon he changed his mind. Now it became his goal, one might say, to do battle
with Kronecker with his own weapons of finiteness by means of a modified conception of
mathematics. .. ([Reid 1970], p. 173)

The key question was, how might that be done? The radicalization of the
axiomatic method, high lighted in his own Grundlagen der Geometrie, and
the fresh developments in logic due to Frege and Peano provided the basic
background for Hilbert's way of answering this question. The ultimate goal of
his proposal in 1904 was the same as the one he had formulated earlier. But
now Hilbert indicated a possibility of giving consistency proofs without
presupposing set-theoretic notions. He proposed a simultaneous formal
development of logic and arithmetic, so that proofs could be viewed as finite
mathematical stuctures. The new task was to show by mathematical means
that such formal proofs could not lead to a contradiction. But neither the
formal logical apparatus was clearly specified, nor was there an explicit
concern about the mathematical means needed to prove such facts.

This formulation foreshadowed aspects of the proof-theoretic program
Hilbert pursued in the twenties together with, e.g., Bernays, Ackermann, von
Neumann, Herbrand. There was, however, a crucial and sophisticated shift
in what a consistency proof was to establish and how it was to be given. To
bring this out, let P be a formal theory in which mathematical practice can be
represented and let F be a theory formulating principles of finitist mathe-
matics. Under weak assumptions on P (satisfied by the usual formal theories)
the consistency statement for P is equivalent to the reflection principle

Pr is the canonical proof predicate for P, a(y) indicates (the Godel-number of)

the translation of the F-statement \|/ into the language of P, and a(\|/) is the

1 For details about these early considerations, see (Sieg 1990).



corresponding numeral in that language. Proving the reflection principle in
F amounts to recognizing — from the restricted standpoint of F — the truth of
the F-statements whose translations have been derived in P. As a matter of
fact, the proof would yield a method of turning any P-proof of aty) into an F-
proof of \|f. Finitist mathematics was viewed as a fixed part of elementary
arithmetic and its philosophical justification seemed to be unproblematic
Thus Hilbert thought that the consistency proof for P would solve the
foundational problems "once and for all" by mathematical considerations.
Bernays emphasized in 1922: "This is precisely the great advantage of Hilbert's
proposal, that the problems and difficulties arising in the foundations of
mathematics are transferred from the epistemological-philosophical to the
genuinely mathematical domain".

The radical foundational aims of Hilbert's program had to be
abandoned on account of G6delfs Incompleteness Theorems. A
"generalization" of the program was developed in response to GodeTs results,
and it has been pursued with great vigor and mathematical success for parts
of analysis.2 The basic task of the generalized reductive program can be seen
as follows: Find for a significant part of classical mathematical practice,
formalized in a theory P*, an appropriate constructive theory F*, such that F*
proves the partial reflection principle for P*. That is, F* proves for any P*-
derivation D

and y is in a class A of F*-statements. It follows immediately that P* is
conservative over F* with respect to the statements in A; consequently, P* is
consistent relative to F*. (I made the assumption satisfied by the theories
discussed below, that F* is easily seen to be contained in P*. If this is not the
case, reductions in both directions have to be established.) The Godel
Gentzen reduction of classical elementary arithmetic (Z) to its intuitionistic
version (HA) is the early paradigm of a successful contribution to the
generalized program. Clearly, (Z) is taken as P*, (HA) as F*, and A consists of

2 Bernays and Kreisel were highly influential in this development; for relatively recent and polished
formulations see (Bernays 1970], pp.186-187 and [Kreisel 1968], pp321-323.



all negative arithmetic and Il2-sentences. It was incidentally this result that
showed to the Hilbert school that intuitionistic and finitist reasoning did not
coincide, "contrary to the prevailing views at the time" as Bernays put it3. In
addition, it gave an important positive impetus to(wards) the generalized
program.

It thus became apparent that the "finite Standpunkt" is not the only alternative to classical
ways of reasoning and is not necessarily implied by the idea of proof theory. An enlarging of
the methods of proof theory was therefore suggested: instead of a restriction to finitist methods
of reasoning, it was required only that the arguments be of a constructive character, allowing us
to deal with more general forms of inferences.4

The questions that had sweeping general answers in the original Hilbert
program had to be addressed anew, indeed in a much more subtle way.
Which parts of classical mathematical practice can be represented in a certain
theory P*? What are (the grounds for) the principles in the "corresponding"
constructive F*? Briefly put, if a metamathematical conservation result has
been obtained, it has to be complemented by additional mathematical and
philosophical work establishing its foundational interest by answering these
questions. Classical analysis was viewed as decisive for the generalized
program, and its basic notions and results were presented carefully and in
detail by Hilbert and Bernays in Supplement IV of their Grundlagen der
Mathematik II .

Analysis or second order arithmetic. The extremely elegant formalism used
by Hilbert and Bernays involves the e-calculus and is, essentialy, equivalent
to the theory (AC) described below. I will give now a description of the
standard formal frame for second order arithmetic; its basic structure is the
septuple

o, •, <, > , ( ) 0 , ( \ >
Thus we consider natural numbers and unary functions from N to N as the
basic objects of the theory. Alternatively, one can consider sets of natural

3[Bemaysl967],p.5O2.
4 [Bernays, 19671 p. 502.



numbers as the second order entities; the latter can be represented in our
framework by their characteristic functions. <, > is a pairing function; ( ) 0 and
()a are the corresponding projection fimctions. For convenience we add a
standard enumeration <fj>jeN °* *he unary primitive recursive fimctions,
turning the septuple into an octuple. The language L2, appropriate for this
structure, contains the language L of elementary number theory: x,y,z,... are
used as individual variables; a,b,c,... as individual parameters; 0,f, < , >, ( ) 0 ,
( ) v fj as constants. Terms are built up in the usual way: Using s,t,.... as
syntactic variables over terms, we call numerical equations expressions of the
form s=t. Formulas are obtained from numerical equations and inequalities
by closing under A,V,3,V. The connectives -»,<->, and the negation of complex
formulas are definable. To expand L to L2 we add second order variables
f/g,h,..., parameters u,v,w,..., and second order quantification.

The basic theory (BT) contains the familiar axioms for 0/, pairing, and
projections, the recursion equations for all primitive recursive function(al)s,
and the schema for explicit definition of functions in the form

(3f)(Vx)f(x)=ta[x]

or, upon changing the language a little, in the form

(Vx) Xx.t(x)=ta[x]

If the term t contains second order parameters, they are considered to be
universally quantified in these principles of explicit definition. The theory
contains also the induction schema IA for quantifier-free formulas 0 of L2:

<j>0 & (VxX^x-^x1) -> (Vx)<|>x

where <)> may contain second order parameters. Full second order arithmetic
or classical analysis (CA) extends (BT) by the second order induction axiom

(VO[f(0)=l&(Vx)(f(x)=l^f(xf)=l) -> (Vx)(f(x)=l)]

and by the comprehension principle CA

(3f)(Vx)[f(x)=l<-»<|>x]



where 0 is any formula of L2; if <|> contains parameters, they are taken to be
universally quantified in CA. There are a number of other function existence
principles that are important for mathematical practice and which yield —
over (BT) — proof theoretically equivalent formalizations of classical analysis.
I will just consider some choice principles:

AQ: (Vx)(3y)<|>xy -> (3f)(Vx)<|>xf(x)
AC: (Vx)(3f)<|>xf -> (3g)(Vx)<j>x(g)x

where (g)x is the function with (g)x(z) = g(<x,z>) for all z;

DC (Vg)(3h)0gh -> (Vg)(3f)(Vx)[(f)0(x)=g(x)&(|)(0x(f)x+l]

Theorem. (CA)=(AC0)^(AC)C(DO

Proof (of (CA)s(ACo)). Assume (30(Vx)(f(x)=l<->y(x)) and (Vx)(3y)x(x,y); show:
(3f)(Vx)pcf(x). Proof: g(<xo,x1>)=l <-> X(XO/XI)A(VZ)(Z<XO-^^X(XO^)). Then g
exists according to CA; define f(x)=y <-» g(<x,y>)=l. - Consider y for CA; then
build up x(x,y) as (\|/(x)Ay=l)v(-«y(x)Ay=O). By AC0 there is an f, such that
X(x,f(x)) and clearly f(x)=l<-H[f(x). Q.E.D.

These are interesting stability results for the axiomatic characterization of
classical analysis, but there are also some most important relations to parts of
set theory: Zermelo-Fraenkel set theory [with the axiom of choice but]
without the powerset axiom is of the same proof theoretic strength as (CA)
[repectively, (AC)].

But we are far from being able to treat full analysis for purposes of the
reductive program; thus the focus has to shift to subsystems of analysis. They
are principally distinguished by their restricted function existence principles
including, for example, the comprehension principle or forms of the axiom of

choice for classes of formulas, like nn, FL, nn. There is a second important
distinguishing feature that comes to the fore when the function existence
principles are restricted. This feature concerns the induction principle; it can
be formulated either as a second order axiom or as a schema (for all formulas
of the language). In the former case, the principle is available only for
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functions that can be proved to exist in the theory. For example, (lu-CA)

denotes the theory obtained from (BT) by adding the comprehension

principle for all formulas in FL and the full induction schema; (rci-CA) T or

Mrestricted-(rd-CA)tf is the corresponding theory with the induction axiom.

Clearly, (r&-CA)r is equivalent to the theory obtained from (BT) by just

adding the arithmetic comprehension principle. The resulting theories are of

remarkably different strength: (EL-CA)T is a conservative extension of

elementary number theory (Z), whereas (ru-CA) proves the consistency of

(Z).

There is one very weak system we shall consider: It was introduced by
Friedman and is labelled (WKL0). An equivalent formulation is this:

(F): =(BT + L?-ACo + L?-IA + WKL).

The principle WKL is Konig's infinity lemma for trees of 0-1 sequences. In
our framework it can be formulated as follows:

(Vf)[T(f) A (Vx)(3y)(lh(y)=x A f(y)=l) -> (3g)(Vx) f(g(x))=l];

T(f) expresses that f is (the characteristic function of) a tree of 0-1 sequences; lh
is the length-function for sequences of numbers. T(f) is the purely universal
formula

(Vx)(Vy) [(f(x*y)=l -> f(x)=l) A (f(x*<y>)=l -> y<l)]

This theory is surprisingly strong for mathematical work, but metamathe-
matically it is weak: (F) is conservative over (PRA) for ^-sentences. That is
the reason (F) can be taken as the starting-point for computational reductions:
if (F) proves (Vx)(3y)Rxy, then there is a primitive recursive function f and a
proof in PRA of (Vx)Rxf(x).

Found at ional reductions. Recall that the goal is to reduce certain P* in which
parts of mathematical practice can be developed to theories F* that are
distinguished for philosophical, foundational reasons. Examples are the

11



reductions of (F) to (PRA) and of (rfl-CA) r to (HA). But there are founda-

tionally satisfying reductions for much stronger theories, indeed for theories

like (rii-CA)r and (L2-AC) that are for the actual practice of analysis far too
strong. The F*'s to which they are reducible are justified from an intuition-
istic point of view. Let me describe these reductive results.

Generalized inductive definitions play a central role here, both
technically and conceptually. Classes given by inductive definitions, i.d.
classes for short, have been used in constructive mathematics ever since
Brouwer. Two familiar examples of such classes are well-founded trees of
finite sequences of natural numbers (the "unsecured sequences" of Brouwer)
and Borel sets. The former were employed in Brouwer !s justification of bar-
induction; the latter in Bishop's original development of measure theory. In
spite of the fact that i.d. classes can be avoided in the current practice of
constructive analysis, particular ones are of intrinsic mathematical and
foundational interest. The constructive (well-founded) trees form such a
distinguished class, called O. It is given by two inductive clauses, namely:

(1) if e is 0, then e is in O, and

(2) if e is (the Godel number of) a recursive function enumerating elements
of O, then e is in O.

The elements of O are thus generated by joining recursively given sequences
of previously generated elements of O and can be pictured as infinite, well-
founded trees. Locally the structure of such a tree can be visualized as
follows:

12



e
Higher tree classes are obtained by a suitable iteration of this definition along
a given recursive well-ordering of the natural numbers. Suitable means here
that branchings in the trees are not only taken over the natural numbers but
also over already given lower tree classes. Constructive theories for O have
been formulated as extensions of intuitionistic arithmetic with the following
principles:

O.l. (Vx)(A(O,x) -» Ox)

0.2. (Vx)(A0F,x) (Vx)(Ox

where A(O,x) is the disjunction of the antecedents of the generating clauses
for O; it is obviously arithmetic in O (indeed, just 11? in O). A0F,x) is obtained
from A(O,x) by replacing all occurrences of Oz with *¥z. O.I may be called a
definition principle making explicit that applications of the defining clauses
to elements of O yield elements of O. O.2 is a schematic proof principle by
induction on O for any formula *Fz of the language. The resulting theory is
called IDi(O). For the higher tree classes the definition and proof principles
can be formulated in a similar, though more complicated manner. The
theory is denoted by ID<x(O), when the iteration proceeds along arbitrary
initial segments of the given well-ordering of type X.
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The theories (for higher tree classes) remain meaningful from a
classical point of view, even when more general defining clauses are
considered. Let P be a unary predicate variable and consider formulas A(P,x)
that contain P only positively5. Each such formula determines an i.d. class PA

that is definable in the standard way by an impredicative instance of the
comprehension principle. The theories obtained from classical number
theory by adding the definition and proof principles for all i.d. classes PA

given such A is denoted by IDf. As above, one can consider iterations of such
definitions and obtain theories ID^.. Feferman (1970) and Friedman (1970)

established that, for example, (nj<A)l\ (A -̂CR), and (A^CA) are equivalent to
ID<(o, ID<co«, and ID<£o respectively. Thus, it is sufficient — for reducing these
impredicative subsystems — to reduce the classical theories of inductive
definitions to suitable intuitionistic theories. That was achieved (among
other things) by Buchholz, Pohlers, and myself in 1977; we did this in differ-
ent ways and for different intuitionistic theories, see [Buchholz e.a.]. This is
the reduction I achieved.

Theorem. For any primitive recursive well-ordering of limit characteristic X,

ID<x is conservative over ID< (̂O) for all negative arithmetic and Il^-formulas.

Reductions to theories of tree classes are most satisfactory from an
intuitionistic point of view. The question is whether still stronger (that is,

"stronger" in the syntactic classification schema of the nn) parts of (CA) can be

reduced in this way. Unfortunately the answer is "no". It is a well-known

result of Addison and Kleene that the iteration of the hyperjump (and thus of

inductive definitions) along recursive ordinals leads only to A2-sets.

Consequently, theories for i.d. classes cannot be used for reductions of (n n -
CA) with n>2. Here is a major conceptual problem, namely, to find a broad
notion of "constructive mathematical object" and suitable principles for it
that can serve as a starting point for foundational reductions of parts of

^The class of positive (in P) formulas can be given inductively - together with that of negative ones - as
follows: (i) any formula of the language of arithmetic is in POS and NEG; Pt is in POS for any term t; (ii) if 0
and <p are in POS (NEG), then their conjunction, disjunction, universal and existential quantification are
in POS (NEG); (iii) if 0 is in POS (NEG) and <p is in NEG (POS), then ($ -> <p) is in NEG (POS) and - • is in
NEG (POS).
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analysis beyond (A2-CA). There are results for (A2-CA+BI): Jager and Pohlers
determined the proof theoretic ordinal of the theory, and Jager reduced it to
Feferman's constructive theory To (thus establishing with earlier work of
Fefennan the equivalence of these theories). The system of notations used by
Jager and Pohlers was based on work by Buchholz who recast that work in a
most perspicuous way in his (1986). The system of notations used by Jager
and Pohlers actually is more extensive than needed for the ordinal-theoretic
analysis of the theory (A2-CA+BI), but it presumably falls far short of the

ordinals needed for (riz-CA). Significant new work is due to Rathjen (e.g.,
1991) and Weiermann (1991). Good presentations of some of this work are in
[Jager 1986], [Buchholz and Schutte 1988], and [Pohlers 1989].

For me logic, and proof theory in particular, still have the fascination
that arises from the combination of detailed, rigorous work with open, wide-
ranging reflections. The possibility and, indeed, need for the latter is some-
times hidden, alluded to in brief remarks, delegated to Postscripta, or (sup-)
pressed into footnotes. From the discussion of the foundational aims of proof
theory it should be quite clear that mathematical reductive results have to be
complemented by analyses of the philosophical distinctiveness of the con-
structive theory to which a classical one has been reduced. That is very much
in the open, but there is also the more subtle (and pervasive) assumption,
namely, that we are dealing with formal theories! The focus on formal theories,
i.e., theories whose axioms and rules are somehow effectively presentable, is
required so that our considerations satisfy epistemological, normative de-
mands. How these demands were "transformed" into precise mathematical
definitions will be the main concern of the next lecture.
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2* Effectiveness and provability. This lecture is concerned with the analysis of
effective calculability in the thirties and is roughly divided into five sections.
I shall discuss the logical decision problem first and describe briefly connections
to issues of decidability in mathematics. Then I'll analyze under the heading
step-by-step to absoluteness the connection between work of Church & Kleene,
Godel, and Hilbert & Bernays. I will argue — against accepted wisdom — that
their work focused on one central informal notion, namely, "computability
in a symbolic calculus", and that in each case a serious stumbling-block to a
convincing analysis emerged; a stumbling-block that was overcome only by
Turing. Turing's solution is discussed in the third section entitled determinacy
& finiteness. The fourth section focuses on Gddel's concept of a general recursive
function that is related to Herbrandfs proposal of generalizing the concept of a
primitive recursive function. Finally, an elaboration of the difference
between GodeTs and Herbrand's proposals will lead to the notion of provably
total function. And that forms a natural stepping-stone to the next part of my
lectures, in which I address the question of how to extract computational
information from formal proofs.

Decidability. In some respects, the issues I alluded to go back to Greek
mathematics and philosophy; they concern, on the one hand, the axiomatic
presentation of geometry (Euclid) and, on the other hand, the formalization
of logical reasoning (Aristotle). But it was only Frege who provided, with his
Begriffsschrift, a sufficiently expressive formal language and a sufficiently
strong logical calculus that allowed the realization of the earlier intentions
with respect to mathematics. Frege required that (i) all assumptions be
explicitly formulated in the formal language, and that (ii) each step in a proof
be taken in accord with one of the antecedently specified rules of the logical
calculus. He considered the second requirement as his way of sharpening the
axiomatic method he explicitly traced back to Euclid. With this sharpening
Frege pursued the aim of recognizing the "epistemological nature" of
theorems. In the introduction to Grundgesetze der Arithmetik he wrote:

By insisting that the chains of inference do not have any gaps we succeed in bringing to light
every axiom, assumption, hypothesis or whatever else you want to call it on which a proof
rests; in this way we obtain a basis for judging the epistemological nature of the theorem.

But that can be done, Frege realized, only if inferences do not require
contentual knowledge: their applications have to be recognizable as correct on
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account of the syntactic form of the sentences occurring in them. Indeed,
Frege claimed that in his logical system "inference is conducted like a
calculation" and continued:

I do not mean this in a narrow sense, as if it were subject to an algorithm the same as... ordinary
addition and multiplication, but only in the sense that there is an algorithm at all, i.e.f a
totality of rules which governs the transition from one sentence or from two sentences to a new
one in such a way that nothing happens except in conformity with these rules.*

Almost fifty years later, in 1933, Godel referred back to Frege and Peano
when he formulated "the outstanding feature of the rules of inference" in a
formal mathematical system. The rules, Godel said, "refer only to the
outward structure of the formulas, not to their meaning, so that they can be
applied by someone who knew nothing about mathematics, or by a
machine."2 Frege did not consider the possibility of mechanically drawing
inferences to be among the logically significant achievements of his
Begriffsschrift. But Hilbert grasped the potential of this aspect, radicalized it,
and exploited it in his formulation and pursuit of the consistency problem.
In doing so he believed to have found the basis for mediating between
Kronecker's foundational position and the ever more strongly set theoretic
practice of mathematics: The restrictive demands of Kronecker were accepted
for metamathematics; set theory was to be formulated in a strictly formal way;
and within that formal framework mathematics could be freely developed —
assuming satisfaction of the minimal requirement, i.e., consistency. It is in
this way that I understand Bernays' remark quoted earlier, "...it became his
goal, one might say, to do battle with Kronecker with his own weapons of
finiteness by means of a modified conception of mathematics." And over the
years the strict formalization of mathematics seemed to open up also new
ways of solving mathematical problems (through calculation). In Hilbert and
Ackermann's book this is called the "rechnerische Behandlung von
Problemen", i.e., the calculatory treatment of problems!

The most famous problem among these was the so-called
Entscheidungsproblem or decision problem. It is closely related to the
consistency problem and was pursued by some (e.g., Herbrand) on account of

1 [Frege 1984], p. 237. But he was careful to emphasize (in other writings) that all of thinking "can never be
carried out by a machine or be replaced by a purely mechanical activity" fFrege 1969], p. 39.
2 [Godel 1933], p. 1.
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this connection. Its classical formulation in terms of validity and satisfiability
is found in Hilbert and Ackermann's book:

The Entscheidungsproblem is solved if one knows a procedure that permits the decision
concerning the validity, respectively, satisfiability of a given logical expression by a finite
number of operations.3

Hilbert and Ackermann emphasized the fundamental importance
("grundsatzliche Wichtigkeit") of a solution to the decision problem.
Researchers in the Hilbert school realized full well that a positive solution for
predicate logic — together with the assumption of the finite axiomatizability of
theories and the quasi-empirical completeness of Principia Mathematical —
would allow the decision concerning the provability (truth) of any mathe-
matical statement. For some that was sufficient reason to expect a negative
solution; von Neumann, for example, expressed his views as follows.

.. it appears that there is no way of finding the general criterion for deciding whether or not a
well-formed formula a is provable. (We cannot at the moment establish this. Indeed, we have
no clue as to how such a proof of undecidability would go.) ... the undecidability is even the
conditio sine qua non for the contemporary practice of mathematics, using as it does heuristic
methods, to make any sense. The very day on which the undecidability does not obtain any
more mathematics as we now understand it would cease to exist; it would be replaced by an
absolutely mechanical prescription Ceine absolut mechanische Vorschrift"), by means of
which anyone could decide the provability or unprovability of any given sentence.
Thus we have to take the position: it is generally undecidable, whether a given well-formed
formula is provable or not.3

When claiming that we have no clue as to how a proof of undecidability
would go, von Neumann pointed to the conceptual problem. After all, there
were well-known proofs for the unsolvability of mathematical problems. But
note, all such impossibility results were given relative to a determinate class
of admissible means, e.g., doubling the cube by using only ruler and compass.
And exactly here lies the problem: A negative solution to the Ent-
scheidungsproblem required a mathematically precise answer to the question
"What are absolut mechanische VorschriftenV According to the
conventional view, we were given an answer to this question by the work of
Church, Turing, and others (e.g., Godel, Kleene, Post, Hilbert, Bernays): there

3 [Hilbert and Ackermann], pp. 72 - 73.
4 That was already explicit in (Ldwenheim], see (van Heijenoort), p. 246. Cp. also [Herbrand 1930al, p. 207,
where Herbrand speaks of an "experimental certainty" that Principia Mathematica allows the
representation of all mathematical statements and arguments.
5 [von Neumann 1927], pp. 11-12.

18



is a precise mathematical description of mechanical procedures. Further-
more, Church and Turing proved that there are no recursive (Turing-
machine computable) functions providing a positive solution to the decision
problem. These results seemed to confirm von Neumann's hunch that
heuristic methods will continue to be needed in mathematics; that is, proofs
have to be given, new principles have to be recognized, important new
notions have to be introduced! That need had already been made most
plausible, though not proved, by GodeTs Incompleteness Theorems; after all,
they were formulated in Godel's 1931 paper only for particular theories. A
convincing analysis of effective computability was thus required in order to
give a negative solution to the decision problem and to come to a proper
understanding of the generality of the incompleteness theorems. The
question for us is: What are the grounds for accepting the various
(equivalent) notions as actually constituting a precise mathematical
description of mechanical procedures?

Step-by-step to absoluteness. In his 1934 Lectures at Princeton Godel strove to
make the incompleteness results less dependent on particular formalisms6,
but he did not succeed in resolving the conceptual issue of giving a general
notion of "formal theory1. He viewed the primitive recursive definability of
formulas and proofs as a "precise condition which in practice suffices" to
describe particular formal systems, but he was clearly looking for a condition
that would suffice in principle. But in what direction could one search? —
Godel considered it as an "important property" that, for any argument, the
value of a primitive recursive function can be computed by a "finite
procedure" and he added in footnote 3:

The converse seems to be true if, besides recursions according to the scheme (2) [of primitive
recursion], recursions of other forms ... are admitted. This cannot be proved, since the notion of
finite computation is not defined, but it can serve as a heuristic principle.

In the last section of the Lecture Notes Godel described "general recursive
functions" (to be discussed in greater detail below); they are obtained as
unique solutions of certain functional equations, and their values must be
computable in an "equational calculus". For Godel, the crucial point of his
proposal was the specification of mechanical rules for the computation of

6 The theory Godel considered is actually second order arithmetic!
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function values. Though the footnote I just quoted may seem to express a
form of Church's Thesis, Godel emphasized in a 1965 letter to Martin Davis
that no formulation of Church's Thesis was intended. He wrote:

The conjecture stated there only refers to the equivalence of "finite (computation) procedure"
and "recursive procedure". However, I was, at the time of these lectures, not at all convinced
that my concept of recursion comprises all possible recursions;

At the time, Godel was equally unconvinced by Church's proposal to
identify effective calculability with ^-definability. In conversation with
Church in early 1934, he called that proposal "thoroughly unsatisfactory11.7

Nevertheless, Church announced his "thesis" in a talk he contributed to the
meeting of the American Mathematical Society on April 19, 1935; but he
formulated it in terms of recursiveness, not ^-definability. In the subsequent
famous 1936 paper An unsolvable problem of elementary number theory
Church wrote:

The purpose of the present paper is to propose a definition of effective calculability which is
thought to correspond satisfactorily to the somewhat vague intuitive notion in terms of which
problems of this class are often stated, and to show, by means of an example, that not every
problem of this class is solvable.

Church proposed again to identify effective calculability with recursiveness.
The fact that ^-definability was known to be an equivalent concept simply
added for Church "... to the strength of the reasons adduced below for
believing that they [these precise concepts] constitute as general a
characterization of this notion [i.e., effective calculability] as is consistent with
the usual intuitive understanding of it." To give a deeper analysis Church
pointed out, in section 7 of his paper, that two methods suggest themselves to
characterize effective calculability of number theoretic functions. The first of
these methods uses the notion of algorithm, and the second employs the
notion of calculability in a logic. He argued that they do not lead to
definitions more general than recursiveness. Let me indicate briefly the
argument pertaining to the second method. Church considered a logic L, i.e.,
a system of symbolic logic whose language contains the equality symbol =, a
symbol { }( ) for the application of a unary function symbol to its argument,
and numerals for the positive integers. For unary functions F he defined:

7 Church in a letter to Kleene, dated November 29,1935, and quoted in [Davis 19821, p. 9.
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F is effectively calculable if and only if there is an expression f in the logic L such that:
{f)(ji)=v is a theorem of L iff F(m)=n; here, \L and v are expressions that stand for the positive
integers m and n.

Church claimed that such F are recursive, assuming that L satisfies certain
conditions; these conditions amount to the recursive enumerability of Lfs
theorem predicate, and the claim follows by an unbounded search. The
crucial condition in Church's list requires the steps in derivations of
equations to be, well, recursive! Here we hit on a serious stumbling-block for
Church's analysis, since an appeal to the thesis when arguing for it is logically
circular. And yet, Church's argument achieves something: The general
concept of calculability is explicated as derivability in a symbolic logic, and the
step-condition is used to sharpen the idea that we operate by effective rules in
such a formalism. I suggest the claim that the steps of any effective procedure
must be recursive be called Church's Central Thesis. Robin Gandy aptly called
Church's argument for his thesis the "step-by-step argument": If steps in
computations are recursive, then the functions being calculated are recursive.
The mathematical essence of these observations is captured by appropriate
versions of Kleene's normal form theorem.

The concept of "calculability in a logic" used in Church's argument is
an extremely natural and fruitful one. Of course, it is directly related to
"Entscheidungsdefinitheit" for relations and classes introduced by Godel in
his 1931 paper and to "representability" as used in his Princeton lectures. It
was used in other contemporary analyses: Godel defined that very notion in
his 1936 note On the length of proofs and emphasized its "type-absoluteness".
In his contribution to the Princeton Bicentennial Conference (1946) Godel
reemphasized absoluteness (in a more general sense) and took it as the main
reason for the special importance of recursiveness. Here we have, according
to Godel, the first interesting epistemological notion whose definition is not
dependent on the chosen formalism. But the stumbling-block Church had to
face shows up here, too; after all, absoluteness is achieved only relative to the
description of formal systems.

The more general definition of absoluteness Godel gave in 1946 is
actually derived from work of Hilbert and Bernays in Supplement 2 of the
second volume of Grundlagen der Mathematik. They called a number-
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theoretic function "regelrecht auswertbar11 if it is computable in some
"deductive formalism" and they formulated three "Rekursivitats-
bedingungen" for deductive formalisms. Then they showed: (i) a function
that is computable in a deductive formalism satisfying their "recursiveness"
conditions can be computed in a very restricted number theoretic formalism,
and (ii) the functions computable in the latter formalism are exactly the
recursive functions.

Hilbert and Bernays' analysis is in my view a natural and satisfactory
capping of the development from Entscheidungsdefinitheit to an "absolute"
notion of computability. But their analysis does not overcome the major
stumbling-block; rather, it puts the stumbling-block in plain view through
the recursiveness conditions that deductive formalisms must satisfy. The
crucial condition requires the proof predicate for such formalisms to be
primitive recursive! Now I want to show you, how Turing got around the
fundamental difficulty.

Determinacy & finiteness. Turing's classical paper On computable numbers
opens with a description of what is ostensibly its subject, namely,
"computable numbers" or "real numbers whose expressions as a decimal are
calculable by finite means". Turing is quick to point out that the fundamental
problem of explicating "calculable by finite means" is the same when
considering, e.g., computable functions of an integral variable. Thus it
suffices to address the question: What does it mean for a real number to be
calculable by finite means? In §9 he argues that the operations of his
machines "include all those which are used in the computation of a
number". But he does not try to establish the claim directly; he rather
attempts to answer "the real question at issue", i.e., What are the possible
processes which can be carried out (by a human computor) in computing a
number?

Turing imagines a mechanical computor writing symbols on paper that
is divided into squares "like a child's arithmetic book". As the two-
dimensional character of this computing space is taken not to be essential,
Turing takes a one-dimensional tape divided into squares as the basic
computing space and formulates one important restriction. That restriction is
motivated by definite limits of our sensory apparatus to distinguish - at one
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glance - between symbolic configurations of sufficient complexity. It states
that only finitely many distinct symbols can be written on a square. Turing
suggests as a reason that "If we were to allow an infinity of symbols, then
there would be symbols differing to an arbitrarily small extent" and we would
not be able to distinguish at one glance between them. A second (and related)
way of arguing the point uses a finite number of symbols and strings of such
symbols: for example, Arabic numerals like 17 or 9999999 are distinguishable
at one glance; however, it is not possible for us to determine at one glance
whether 9889995496789998769 is identical with 98899954967899998769 or
whether they are different

Now let us turn to the question: What determines the steps of the
computor, and what kind of elementary operations can he carry out? The
behavior is uniquely determined at any moment by two factors: (i) the
symbols or symbolic configuration he observes, and (ii) his "state of mind" or
his "internal state". This uniqueness requirement may be called the
determinacy condition (D); it guarantees that computations are deterministic.
Internal states are introduced to have the computorfs behavior depend
possibly on earlier observations, i.e., to reflect his experience. Since Turing
wants to isolate operations of the computor that are "so elementary that it is
not easy to imagine them further divided", it is crucial that symbolic
configurations relevant for fixing the circumstances for the actions of a
computor are immediately recognizable. So we are led to postulate that a
computor has to satisfy two finiteness conditions:

(F.i) there is a fixed finite number of symbolic configurations a computor can
immediately recognize;

(F.2) there is a fixed finite number of states of mind that need be taken into
account.

For a given computor there are consequently only finitely many different
relevant combinations of symbolic configurations and internal states. Since
the computer's behavior is — according to (D) — uniquely determined by such
combinations and associated operations, the computor can cany out at most
finitely many different operations. These operations are restricted as follows:
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(O.l) only elements of observed symbolic configurations can be changed;

(O.2) the distribution of observed squares can be changed, but each of the new

observed squares must be within a bounded distance L of an immediately

previously observed square.

Turing emphasizes that "the new observed squares must be immediately
recognisable by the computer", and that means that the distributions of the
new observed squares arising from changes according to (O.2) must be among
the finitely many ones of (F.I). Clearly, the same must hold for the symbolic
configurations resulting from changes according to (O.l). Since some of the
operations may involve a change of state of mind, Turing concludes:

The most general single operation must therefore be taken to be one of the following: (A) A
possible change (a) of symbol [as in (O.l)] together with a possible change of state of mind. (B)
A possible change (b) of observed squares [as in (O.2)] together with a possible change of state
of mind.

With this restrictive analysis of the possible steps of a computer, the
proposition that his computations can be carried out by a Turing machine is
established rather easily. Indeed, Turing first "constructs" machines that
mimic the work of computors directly and then observes:

The machines just described do not differ very essentially from computing machines as defined
in § 2, and corresponding to any machine of this type a computing machine can be constructed to
compute the same sequence, that is to say the sequence computed by the computer [in my
terminology: computer ].

Thus we have Turing's Theorem: Any number theoretic function F that can be
computed by a computor, satisfying the determinacy condition (D) and the
conditions (F) and (O), can be computed by a Turing machine.

Turing's analysis and his theorem can be generalized by making an
observation concerning the determinacy condition: (D) is not needed to
guarantee the Turing computability of F in the theorem. Computors that do
not satisfy (D) can be mimicked by non-deterministic Turing machines and
thus, exploiting the reducibility of non-deterministic to deterministic
machines, by deterministic Turing machines. And that allows us to connect
Turing's considerations with those of Church we discussed earlier. Consider,
for that purpose, an effectively calculable function F and a (non-deterministic)
computor who calculates the value of F in a logic L. Using the generalized
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form of Turing's Theorem and the fact that Turing computable functions are
recursive, F is recursive. This argument for Fs recursiveness does no longer
appeal to Church!s Thesis; rather, such an appeal is replaced by the
assumption that the calculation in the logic is done by a computer satisfying
the conditions (F) and (O). If that assumption is to be discharged, then a
substantive thesis is needed again. And it is this thesis I want to call Turing's
Central Thesis. It expresses the fact that a mechanical computer indeed satisfies
the finiteness conditions (F), and that the elementary operations he can cany
out are restricted as conditions (O) require.

Church wrote in his review of Turing's paper when comparing Turing
computability, recursiveness, and ^-definability: "Of these, the first has the
advantage of making the identification with effectiveness in the ordinary (not
explicitly defined) sense evident immediately ..." For Godel, Turing's work
provided "a precise and unquestionably adequate definition of the general
concept of formal system". In the historical and systematic context Turing
found himself, he asked exactly the right question: What are the possible
processes a human computor can carry out in computing a number? The
general problematic required an analysis of the idealized capabilities of a
mechanical computor. Let me emphasize that the separation between
conceptual analysis (leading to the axiomatic conditions) and rigorous proof
(establishing Turing's Theorem) is essential for clarifying on what the
correctness of his general thesis rests; namely, on recognizing that the
axiomatic conditions are true for computers who proceed mechanically. We
have to remember that quite clearly when moving to methodological
discussions in artificial intelligence and cognitive science. Even Godel got it
wrong, when he claimed that Turing's argument in his 1936 paper was
intended to show that "mental processes cannot go beyond mechanical
procedures".

GodeVs recursive functions. Another proposal Godel got thoroughly wrong
was Herbrand's! Recall that in the last section of his Princeton Lecture Notes
Godel addressed the question What other recursions beyond primitive ones
might be admitted in defining functions whose values can still be determined
by a finite computation? This is discussed under the heading "general
recursive functions", and Godel gave a definition of a general notion of
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recursive function that (he thought) had been suggested to him by Herbrand
in a private communication, as we know now, of April 7,1931:

If <}> denotes an unknown function, and yi , . . . ,\|/ic are known functions, and if the y's and <t> are
substituted in one another in the most general fashions and certain pairs of resulting expressions
are equated, then, if the resulting set of functional equations has one and only one solution for 0,
<|> is a recursive function.8

Godel went on to make two restrictions on this definition and required, first
of all, that the left-hand sides of the functional equations be in a standard
form with $ being the outermost symbol and, secondly, that "for each set of
natural numbers ki,..., k\ there shall be exactly one and only one m such that
<|>(ki,..., kj)=m is a derived equation11. The rules that were allowed in giving
derivations are of a very simple character: Variables in any derived equation
can be replaced by numerals, and if the equation <j>(ki, ... , ki)=m has been
obtained, then occurrences of <(>(ki,..., ki) on the right-hand side of a derived
equation can be replaced by m. So much about this proposal; it was taken up
for a systematic development in [Kleene 1936].

What was important about Godel's modifications? For Godel himself
the crucial point was the precise specification of mechanical rules for deriving
equations or, to put it differently, for carrying out computations. That point
of view was also expressed by Kleene who wrote with respect to the definition
of "general recursive function of natural numbers":

It consists in specifying the form of the equations and the nature of the steps admissible in the
computation of the values, and in requiring that for each given set of arguments the computation
yield a unique number as value.9

In a letter to van Heijenoort, dated 14 August 1964, Godel asserted that "it was
exactly by specifying the rules of computation that a mathematically workable
and fruitful concept was obtained".10 When making this claim Godel took for
granted what he had expressed in an earlier letter to van Heijenoort, namely,
that Herbrand's suggestion had been "formulated exactly as on page 26 of my

8 [Godel I], p. 368.
9 [Kleene 1936L p. 727.
10 [van Heijenoort 1985], p. 115.
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lecture notes, i.e. without reference to computability."11 But Godel had been
unable to find Herbrand's letter among his papers and had to rely on his
recollection which, he said, "is very distinct and was still very fresh in 1934".
However, the letter from Herbrand was found by John W. Dawson in Gddel's
Nachlass, reads like a preliminary version of parts of [Herbrand 1931c], and on
the evidence of that letter it is clear that Godel misremembered. Herbrand as
a matter of fact wrote - describing a system of arithmetic and the introduction
of recursively defined functions into that system with intuitionistic, i.e.,
finitist, justification —

In arithmetic we have other functions as well, for example functions defined by recursion,
which I will define by means of the following axioms. Let us assume that we want to define all
the functions <t>n(M/ X2/ •••/ xpn) of a certain finite or infinite set F. Each <t>n(

xl/ —) will have
certain defining axioms; I will call these axioms (3F). These axioms will satisfy the following
conditions:

(i) The defining axioms for fa contain, besides fa, only functions of lesser index.
(ii) These axioms contain only constants and free variables.
(iii) We must be able to show, by means of intuitionistic proofs, that with these

axioms it is possible to compute the value of the functions univocally for each specified system
of values of their arguments.

It is most plausible that Herbrand admitted, in addition to the
(intuitionistically interpreted) axioms, substitution rules of the sort
formulated by Godel as rules of computation. Indeed, he asserted in his paper
[1931c] - as he had done in his letter to Godel - that all intuitionistic
computations can be carried out, e.g., in the formal system P of Principia
Mathematica. This is not to suggest that Godel was wrong in his assessment,
but rather to point to the most important step he had taken, namely, to
disassociate recursive functions from an epistemologically restricted notion of
proof. Later on, Godel even dropped the regularity condition that guaranteed
the totality of calculable functions. He emphasized then12 "that the precise
notion of mechanical procedures is brought out clearly by Turing machines
producing partial rather than general recursive functions." However, at this
earlier historical juncture, the explicit introduction of an equational calculus
with purely formal, mechanical rules for computing was important for the

1 1 In a letter to van Heijenoort of 23 April 1963, excerpted in the introductory note to [Herbrand 1931c],
see [Herbrand 1971], p. 283. (Godel refers to his 1934 lectures.) The background for and the content of the
Herbrand-Godei correspondence is described in [Dawson 1991].
1 2 [Wang 1974], p. 84. The very notion of partial recursive function, of course, had been introduced in
[Kleene 1938].
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mathematical development of recursion theory and also for the conceptual
analysis. After all, it brought out clearly what, according to Godel, Herbrand
had failed to see, namely, "that the computation (for all computable
functions) proceeds by exactly the same rules."13

Herbrand's provably total functions. I want to make some additional remarks
on Herbrand's proposal(s) and to analyze in particular the restrictive
conditions he imposed. A careful description and thoughtful interpretation
of the proposal(s) can be found in [van Heijenoort 1985]. It should be noted,
however, that this paper was written before Dawson's discovery of the Godel-
Herbrand correspondence. Van Heijenoort had thus to rely on Godel's
reports concerning not only the details of Herbrand's suggestion to him, but
also its very framing as an attempt to give a general characterization of
effective calculability.

In any event, van Heijenoort distinguished three different occasions in
1931 on which Herbrand "proposed ... to introduce a class of computable
functions that would be more general than that of primitive recursive
functions". The first proposal is found in Herbrand's [1931a] on page 273,
where Herbrand described the restricted means allowed in metamathematical
arguments and required, in particular, that "all the functions introduced
must be actually calculable for all values of their arguments by means of
operations described wholly beforehand." The second proposal is the one
reported in Godel's Princeton Lectures (without making reference to
computability), and the third suggestion was made in Herbrand's [1931c] on
pages 290 and 291. It is formulated as follows, again in the context of a system
for arithmetic:

We can also introduce any number of functions fj(xi, X2,..., xni) together with hypotheses such
that
(a) The hypotheses contain no apparent variables;
(b) Considered intuitionistically, they make the actual computation of the fi(xi, X2,..., Xpn)
possible for every given set of numbers, and it is possible to prove intuitionistically that we
obtain a well-determined result.

13 in [vanH 19851 page 115

28



With van Heijenoort I assume that, here too, Herbrand used "intuitionistic"
as synonymous with "finitist11.14 This third proposal is identical with the one
made by Herbrand in his letter to Godel quoted above except for clause (i)
from the earlier definition; but that clause is implicitly assumed, as is clear
from the examples Herbrand discusses. I view the first formulation on the
one hand as a preliminary, not fully elaborated version of the second and
third formulation; on the other hand, I view it as a more explicit indication of
the Kroneckerian element in metamathematics I pointed to earlier on. Thus,
we can see the evolution of essentially one formulation!

This is (prima facie) not in conflict with the interpretations Godel
considered15, e.g., that Herbrand envisioned "unformalized and perhaps
unformalizable computation methods11 and refused "to confine himself to
formal rules of computation"; but, as we will see, it is in conflict with Godel's
understanding that Herbrand's proposal leads to a class of functions larger
than that of general recursive functions. So let us distinguish two features of
Herbrandfs schema, namely, (1) the defining axioms (plus suitable rules)
must make the actual intuitionistic computation of function values possible,
and (2) the termination of computations has to be provable intuitionistically.
That is, in modern terminology, we are dealing with "intuitionistically
provably total (or provably recursive) functions", where provability is not a
formal notion. However, a connection to a formal notion of provability is
given in the fourth section of [1931c], where Godel's Incompleteness
Theorems for the system P of Principia Mathematica is discussed. Herbrand
asserts there that any intuitionistic computation can be carried out in P and
that any intuitionistic argument can be formalized in P. He concludes, after
sketching Godel's proof, that Pfs consistency is not provable by arguments
formalizable in P, hence not intuitionistically either. What is most
interesting is his remark that Godel's argument does not apply to the system
of arithmetic that includes the above schema for introducing functions: The
functions that are introducible cannot be described intuitionistically, as we
could diagonalize to obtain additional functions. This last observation can be

14 A more detailed description of intuitionistic arguments is given in note 5 of Herbrand's 11931c), pp. 288-
289.
15 in[vanH1985],pp.H5-117.
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turned around so as to show that the class of provably total functions of a
formal theory cannot be enumerated by an element of that class.

What then is the extension of Herbrand!s class of functions? According
to the discussion reported above, it includes the primitive recursive functions
and is included in the class of provably recursive functions of P. Indeed, at
the end of [1931c] Herbrand asserts that ordinary analysis (I assume that
Herbrand means by that full second-order arithmetic) can take the place of P
in the above claims concerning the formalizability of intuitionistic
computations and arguments. Indeed, he conjectures that full first-order
arithmetic with recursion equations for only addition and multiplication
might already be sufficient. If the latter conjecture were true, Herbrand's class
would be included in the class of provably recursive functions of Peano
arithmetic. Basic in this discussion is Herbrand's conviction that the system
of arithmetic described in his [1931c] (possibly even without the infinitary rule
D) allows one to carry out all intuitionistic proofs. The paper [1931c] was
dated Gottingen, July 14, 1931; in the letter to Godel of April 7, 1931, and sent
from Berlin, the claim concerning intuitionistic proofs is explicitly stated for
the much weaker system with quantifier-free induction only. As a matter of
fact, Herbrand claims there also that "... each proof in this arithmetic, which
has no bound variables, is intuitionistic - this fact rests on the definition of
our functions and can be seen directly." If that were true, Herbrand's class
would consist of exactly the primitive recursive functions. In conclusion, it
seems that Godel was right — for stronger reasons than he put forward —
when he cautioned that Herbrand had foreshadowed, but not introduced, the
notion of general recursive function.16

16 In a letter to van Heijenoort of August 14,1964; see [vanH 19851 pp. 115-116.
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PARTB. PROVABLY TOTAL FUNCTIONS.

In the first part of these lectures I described three main themes of proof
theoretic research and their intimate historical and systematic connection
with the analysis of effective computability. As to the latter, two distinct
approaches emerged. One is connected with Godel and began with his
definition of the class of general recursive functions via a suitable equational
calculus. The other, pursued by Herbrand, also requires that effectively
computable functions be defined as solutions of functional equations, but in
addition, their totality has to be proved finitistically. It is this notion of
provably total function that will be prominent in the two lectures of this part.
However, we are not using informal finitist proofs, but rather proofs in
particular formal theories for proving the totality of simply defined functions.
In the fifties, Kreisel asked the question: Given a formal theory T, can we find
a natural class T of recursive functions, such that the T-provably total
functions are exactly the elements of F? During the last few years the
question has been turned around for small classes of recursive functions
(complexity classes): Given a class T of recursive functions, can we find a
natural theory T, such that the elements of T are exactly the T-provably total
functions? The hope has been that relationships between formal theories
might reveal relationships between the corresponding classes of functions.

1. Sequent calculi and normal derivations. A variety of technical tools have
been employed in proof theory; for example the e-calculus, the no-counter-
example interpretation, the Dialectica interpretation. However, the tools
most directly useful and most perspicuous in my view are finitary and
infinitary sequent calculi for which normalization theorems can be
established. The reductive results I mentioned in A.I have been proved by
use of such calculi and an associated lucid method that is also due to Gentzen.
This will be illustrated now by considering the first consistency result that was
(properly) obtained in the Hilbert school; its strongest version is due to
Herbrand. Then I will discuss the cut elimination theorem and some of its
extensions in detail.

A consistency proof. The classical sequent calculi we are considering are
presented in the style of Tait (1968); i.e., finite sets of formulas are proved and
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negation is directly available only for atomic formulas. Thus, the basic logical
symbols are A, V, 3, V. The rules of the calculi are included among the
following ones, where F is used as a syntactic variable ranging over finite sets
of formulas and F, <j> stands for the union of F and singleton 0:

LA: F,cp,-icp, (p atomic

r,cpo
A.

*: — ^ , i-0,1

Q

When appropriate, rules for quantifiers will be available. For example, when
considering (extensions of) number theory we have the rules:

V: £ £ a« P(T)

r,(3x)cpx

Here ae P(F) means that the parameter a occurs in one of the formulas in F.
The rules for function quantifiers are analogous. The axioms for identity will
be discussed later; we certainly should have as derived rules:

F,cpt F,cpt

and as a theorem F, a=a. Derivations are built up in tree form as usual; let
me use D,E,... as syntactic variables ranging over derivations. Gentzen's
Hauptsatz is the fundamental fact concerning these finitary calculi: Every
derivation can be transformed into a normal one, i.e., a derivation in which
the cut-rule is not applied. By inspecting the rules one see immediately that
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all formulas occurring in a normal derivation of A are subformulas of
elements of A.

Let me explain, through an example, how the subformula property
(and V-inversion) can be exploited in the "canonical" proof of the reflection
principle; the idea is simple, pervasive, and elegant. Consider a fragment of
arithmetic, say (N); it has the usual axioms for zero and successor, defining
equations for finitely many primitive recursive functions, and the induction
schema for quantifier-free formulas. Consequently, all of the axioms can be

taken to be in quantifier-free form. Now assume that (N) proves a n?-
statement and, thus, by V.-inversion a quantifier-free statement \|/. A normal
derivation of A,\jf can be obtained, where A contains only negations of (N)-
axioms. These considerations can actually be carried out in (PRA), i.e.,

PfN (¥) -> PP(A,\|/).

PfN and PP express that there is a derivation in (N) and, respectively, that
there is a normal derivation in the sequent calculus. A normal derivation of
A,\|/ contains only subformulas of elements in its endsequent. So one can use
an adequate, quantifier-free truth definition Tr (for quantifier-free formulas
of bounded complexity) to show that

(PRA) h Pfn(A,y)-» Tr(I(A,y)),

where I(A,\|/) is the disjunction of the formulas in A,y. This is possible
because the language of (N) contains only finitely many symbols for primitive
recursive functions; we can easily define a primitive recursive valuation
function for all terms built up from them. More generally, but for the same
reason, (N) could contain all functions of a fixed segment of the Grzegorczyk
hierarchy.1 As Tr is provably adequate we have

(PRA)

and, thus,

*For details concerning the standard material for truth definitions, see [Schwichtenberg 1977], pp. 893-
894.
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(PRA)h Pf

This last step can be taken, since the axioms of (N) are axioms of (PRA). The
subformula property is obviously the crucial feature of normal derivations;
this feature makes it possible to use truth definitions for formulas of
restricted syntactic complexity and to establish formally the truth of theorems.
I tried to explain this feature through a particular example; now let me
proceed directly to the general and detailed proof theoretic work.

Sequent calculus. The form of the classical sequent calculi we are considering
was presented above in a very rough way. To establish Gentzen's Hauptsatz
we need a more precise metamathematical presentation of the calculus. To
that end we start out by defining the notions of principal, minor, and side
formula for inferences and specifying the general form of those inferences
that were introduced earlier. (My presentation follows [Schwichtenberg].)

Definitions, (i) The principal formulais), p i . , of the axioms are <J> and <̂t>; the
p.f. of the inferences are the inferred formulas with the new connective; C.
does not have a p.f.;

(ii) the minor formula(s), mi., of A. in the premise F,cpi is (pi; of \Q [V, 3] it is q>{,

[cpa, cpt]; of C in the premise F,9 it is q> and in the premise F,-»(p it is -«(p;
(iii) the side formulas, s.f., of the inferences are the elements of F.

Thus all our inferences are of the form

foralli<k, 0<k<2

where A consists of the p.f. of the inference; in case of C, A=0. The Ai contain
the m.f. of the i-th premise. Consider such an inference and assume that
derivations Dx of its premises F A are given. Then D = < (Di)i<k, (Ai)i<k, F, A>
is a derivation of F, A; the latter sequent is the conclusion of the inference.
The Di are called direct subderivations of D.

Definition, (i) The length 101 of a formula 0 is defined inductively by
I <(> I = I —<> 1 = 0 if <|> is atomic; I 0A\p I = I 0v\|/1 =sup( I 0 I, I y I )+l;
l(Vx)0xl = l(3x)0xl = l0al+l (Notethat
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(ii) the length IDI of a derivation D is defined inductively to be the sup
(I Dj I +1) with Di as the direct subderivations of D;

(iii) the cut-rank p(D) of a derivation D is also defined inductively: If D\ are

the direct subderivations of D then p(D) equals either

sup( Icp 1+1, sup^^pCDj)) if the last rule in D is C with cut-formula 9

or
suPi<k P(°i)

(iv) a derivation is called normal or cut-free only when p(D)=0; if p(D)=l it is
called quasi-normal. (The cut-formulas in quasi-normal derivations are all
atomic.)

Now I formulate some lemmata that are easily established by induction
on derivations. For the formulation of the first we need the operation
D=>D,T that adds T to the side formulas of all the inferences; for the
formulation of the second, we need the operation D(a)=*D(s) that replaces all
occurrences of a by s. Clearly, one wants to replace only occurrences of a that
are "connected" to occurrences of a in an element of the endsequent and, in
addition, one has to insure that the side condition on the universal quantifier
rule is not violated: to do this we assume, without loss of generality, that with
each such inference there is associated a unique eigenvariable and that these
eigenvariables are distinct from parameters occurring in F and s, respectively.

Weakening lemma. If D is a derivation of A, then D,r is a derivation of A,F;
I D,r I = IDI and p(D,H = p(D).

This lemma allows us, most importantly, to consider a more general
formulation of the cut rule, namely,

ro,cp

Substitution lemma. If D(a) is a derivation of A(a), then D(s) is a derivation of
A(s); ID(a)l=IDfe)l;p(D(a))=p(D(s)).
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A-Invcrsion. If D is a derivation of A,\|/OA\|/I, then there are derivations Di of
A,^ i=0,l; IDt Î IDI and p(Di)<p(D).

V.-lnversion. If D is a derivation of A,(Vx)y(x) then there is a derivation Do of
A,y(c); IDb l< IDI and p(D0)<p(D).(c is new for D).

Eliminating cuts. The proof of the fact that every derivation can be
transformed into a normal one proceeds by induction on the length* of D 2

and within it by induction on the cut-rank p_(D); cf. Gentzen's proof or its
presentation in Kleene's "Introduction to Metamathematics". But instead of
carrying out this argument with inner and outer induction, we separate
matters into three steps and formulate three distinct propositions: (1) the
reduction lemma, (2) the cut elimination theorem, and (3) the normalization
theorem. The reduction lemma is the essential fact for the proof of cut-
elimination.

Reduction lemma. Let Do and Di be derivations of rO/<p and P^cp respectively;
both derivations have cut-rank p(Di)<|(p|. Then there is a derivation D of
r0 /ri with IDI < I D o I +1D! I and p(D)<|cp|.

Proof (by induction on I Do I + I Di I). The lemma is symmetric w.r.t. Do and Di,
as -»-»(p s cp and I -»<p| = |cp|.
Case l. Either cp or -»cp is not the principal formula of the last inference in Do, Di
respectively. Assume the former; then the last inference of Do is of the form

A,q>,Ai for all i<k

A,(p,A

with Ai containing the m i . of the inference, A the p.f., and A,(p the s.f. Clearly,
To = A, A. By induction hypothesis the sequences

are provable for all i<k with derivations of length < I Do I +1 Di I and cut-rank <
|cp|. The conclusion is obtained, as To =A,A, by the inference

Length* is defined like length, but in the case of C one adds the length of the immediate subderivations.
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A, A*, Ti for all i<k

A,A,Ti

Case 2. cp and ->q> are the p.f. of the last inference in Do, respectively Di.

Case 2.1. cp or -*cp is atomic. Then the last and only inferences in Do and Di

must be instances of (logical) axioms; consequently, Fo/Fi is also an instance of

an axiom.

Case 2.2. cp or ->cp is a disjunction \|/ovYi- By symmetry we can assume the

former. So -»cp = -»VOA-'\|/I. We can also assume that 9 is a s.f. of the last

inference in Do, replacing Do by Do,(p if necessary. So the last inference is of

the form

By induction hypothesis we have a derivation Do of

To, Vi,ri

of length < I Do I + I Di I and cut-rank < |cp|. By A-inversion we obtain from Di a

derivation Di of

of length < I Di I < I Do I +1D] I and cut-rank <|cp|. Joining Do and D^ by C with cut-

formula \j/j we obtain a derivation of ToXi; its length is < I Do I + I Di I and cut-

rank <|cp|.

Case 23. cp or -̂ cp is an existential statement (3y)\j/y. By symmetry we can

assume the former. So -«cp = (Vy)-«\|ry. We assume again that cp is a s.f. of the

last inference of Do- So the last inference is of the form

T0/ (p, yt

ro,cp

By induction hypothesis we have a derivation Do of

To, \|/t,ri
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of length < I Do I + I Di I and cut-rank <|cp|. By V-inversion and substitution we

obtain from Di a derivation Di of

of length < I Di I < I Do I +1 Di I and cut-rank ̂ cp|. Joining Do and Di by C with

cut-formula \|rt we obtain a derivation of Fo, Fi; its length is < I Do I +1 Di I and
its cut-rank <|cp|.

Q.E.D.

The crucial point, for sure, is that the cut-rank of the derivation D for ToXx is
bounded by |cp|; a derivation for Fo,Fi with cut-rank bounded by |(p|+l is
trivially obtained by joining the given derivations Do and Di by a cut with cut-
formula (p.

Cut elimination theorem. If D is a derivation of F with p(D)>0, then we can find a
derivation Df of F with p(D')<p(D) and I Df I <2'D' .

Proof (by induction on IDI). The claim follows by induction hypothesis in all
cases except when the last inference in D is C with cut-formula cp and
p(D)= I cp I +1. In this case we have direct subderivations Do of F,cp and Di of
r,-»cp. By induction hypothesis there are derivations Do and Di of F,cp and
F,-cp such that Di*<2' D ' and p(Di')<p(Di)£ I q> I +1. The hypotheses of the
reduction lemma are satisfied, and we can obtain a derivation of F with
length ^IDol^'^kz 8 1 1^ 1 0 0 1 ' 1 0 1 1^ 1^! 1 0 1 and cut-rank<Icpl< lcpl+l=p(D).

Q.E.D.

Corollary (normalization theorem). If D is a derivation of F, then we can find a

normal derivation D1 of F of length ^2

The corollary is obtained from the cut-elimination theorem by induction on
p(D). The function 2^ is defined by primitive recursion as follows: 2§=n and
2m+i=22 -̂ "• By n o t eliminating all cuts, for example not those with atomic
cut-formulas, one can obtain partial normalization results; this will be
pursued in a variety of ways below. But first we have to draw the crucial
consequence from the normalization theorem. It is concerned with the
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bounding of the logical complexity of formulas appearing in a (normal) proof
of a sequent T: Every formula in D is a subformula of an element in F.

Definition. $ is a subformula of \|/ iff [(<|> is y) or (y is ->£, £ is atomic and 0 is £)
or (\j/ is ^OA Î or ^v£i and 0 is a subformula of £o or £i) or (y is (Vx)£x or
and 0 is £t or a subformula of £t for any term t)].

Corollary (subformula property). If D is a normal derivation of I\ then every
formula in D is a subformula of some element in I\

Proof (by induction on normal derivations). One just has to notice that all the
rules occurring in normal derivations have the property: any formula in its
premise(s) is a subformula of a formula in its conclusion.
Q.E.D.

Remark: There is a different way of proving a normal form theorem for the
sequent calculus! The completeness proof for the calculus without the cut-
rule shows that to establish all logical truths the cut-rule is not needed; that is,
if a sequent can be proved at all, it is (by the soundness of the full calculus) a
logical truth, and thus it can be established by a normal proof.

Extensions. The considerations for pure predicate logic can be modified and
extended to treat finitary calculi with additional, mathematical axioms,
additional sorts (e.g., finite type theory), or additional rules (e.g., induction
rule), but also to treat infinitary calculi. I will consider only finitary calculi.
The first extension — to treat theories with universal axioms — admits new
axioms in addition to the logical ones. The particular way I treat them is
modeled after [Girard, 1987], pp.123-126. We start with a definition: Let T be a
set of sequents whose elements are literals (i.e., either atoms or negated
atoms); if T is closed under substitution3 it is called a Post System. Let me
describe some examples:

(l) the axioms for equality can be expressed by a Post System :

(EAi) T, t=t

3 "Closed under substitution" means: if D(a)€ T then D(t)G T for each term t in the language at hand.
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(EA2) F, s*t, ^ s , <|>t for arbitrary terms t,s but only atomic (j>.

(2) the axioms for elementary arithmetic can be formulated by a Post System
including (EAi), (EA2) and

(BA2)
(BA3)

(BA4)

r, svt1, s=t
r, s+o=s
r, s+f=(s+t)*
r,s.o=o
r, s.t'=(s.t)+s

Sometimes it is convenient to have < as a basic symbols with the axioms: 4

(BA5)

(BAA)

r, ŝ<o
r, s<f <
r, s<t <-

-^(s<t
* (s<t >

vs=t)
/s=t)

Clearly, the second sequent of (BA5) and the one of (BA6> have to be
canonically rewritten. Let me indicate this for the former:

T, ->s<f, s<t, s=t
T, -s<t, s<f
r, s*t, s<f.

(3) The axioms for additional functions in FQPR can be expressed using the
Post System that consists of all instances of the defining equations for the
elements of F. The resulting theories are (PRA) for F=PR and (KEA) for
F=E3, the class of Kalmar-elementary functions. In general, I denote the
extension of T by the defining axioms for the functions in T by T(F).

If we add to the logical axioms a Post System T(f) by admitting its
sequents as axioms, then we can readily obtain a generalization of the
Normalization Theorem — if we require that T(f) is also closed under cut. As
I think such systems are artificial, this closure won't be required. We will
consider instead of normal derivations quasi-normal ones. Such derivations
allow atomic cuts, in particular with elements from T(F) as cut-formulas. The
standard terminology can readily be extended to explicate the notion of T(F)-
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derivation and thus of T(F)f-D. (Clearly, the principal formulas of axioms F,A
are the elements of A.)

Theorem (T-nonnalization). Let D be a T(f )-derivation of F; then there is a quasi-
normal T(F)-derivation E of F with IEI <2g? and m=p(D)-l.

Proof. One proceeds as in the proof of the normalization theorem above. It is
only the proof of the reduction lemma that has to be modified slightly: in case
2.1. one has to consider the possibility that T(F)-axioms are involved. If one

of the axioms is a logical one then To, Fi must be a T(F)-axiom; if both are

T(f )-axioms, then we can infer To, Fi by a permitted cut.

Q.E.D.

Here one could require having only atomic cuts whose cut-formulas are pi.s
in some sequent of T(F). In applications this is unnecessarily restrictive, since
only the complexity of formulas is crucial: We do not obtain the full
subformula property, but the important bounding of the logical complexity of
formulas occurring in the derivation is still achieved.

Corollary. If D is a quasi-normal T(F)-derivation of F, then every formula in D
is either a subformula of some element in F or of some T(F)-axiom.

Remark. Cut-elimination does not hold in general for systems with proper
axioms. To see that, consider the following example adapted from [Girard
1987]4: assume that both A and -«A, B are (proper) axioms. Clearly, B is
provable from them by one application of the cut-rule, but there is no cut-free
derivation.

Now we shall treat a second extension — this time not by mathematical
axioms of a restricted form, but rather by a rule for induction, called 0-IA; it is
of the form:

F,(pO F,—i(pa, cpa1

F,cpt

Here the parameter a is not in P(Fu{cpt}), t is any term, and cpa is in 0, a class

of formulas like AQ, £n, nn. The theory obtained from an extension of

4section 2.7.7 on pag.125
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elementary arithmetic TCP) by adding this induction rule is denoted by (0(F)-
IA). We distinguish now between Ocuts and I-cuts; the latter are those cuts at
least one of whose cut-formulas has been inferred by the induction rule. The
O-cut-rank, say: po(D), is the sup{ I y I +1 I y is the cut-formula of an Ocut};
the I-cut-rank p^D) is sup{ I y I +1 I y is the cut-formula of an I-cut}. We call a
derivation D I-normal iff po(D)=l; in other words, D is I-normal iff all its cuts
are either I-cuts or have atomic cut-formulas. Again, the argument for the
normalization theorem is readily adapted to allow the transformation of
derivations into I-normal ones.

Theorem (I-nonnalization). If D is a 0(F)-IA-derivation of F, then we can find an
I-normal 0(f)-IA-derivation E of T; IEI <2^ and m=po(D)-l.
Proof. One proceeds as in the proof of the normalization theorem above. We
have only to modify the proof of the reduction lemma. In case 2 we consider
now only Ocuts, i.e., the situation when neither of the last inferences in D[ is
taken with the induction rule; the argument proceeds as above. We add,
however, a third case covering the possibility that at least one of the last
inferences is 0-IA. Then the claim follows immediately from the assumption
taking D as E: it satisfies the condition on the cut-rank trivially. Q.E.D.

Even in this case we have a significant bounding property for I-normal 0(F)-
IA-derivations:

Corollary. If D is an I-normal derivation of F using 0-IA, then every formula
occurring in D is either a literal or a subformula of an element in ru0u-«0.

I draw one final consequence that will be important for our intended
applications. It is a simple instance of Herbrand's theorem and will be
generalized significantly in the next lecture.

3,-inversion. Let A contain only existential formulas and let <t>a be quantifier-
free; if D is a quasi-normal T-derivation of A,(3x)<|>x, then there is a finite
sequence of terms to,...,tn and a quasi-normal T-derivation E of A,9*0/—v<ptn;
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This is proved straightforwardly by induction on the length of D. Note that
in theories that allow definition by cases the finite sequence of terms can be
joined into a single term t by defining:

t =to if cpto; =ti if -KptQACpti; ... =tn if -T£i<n(<pti)A<Ptn

This kind of "term extraction11 will be crucial for obtaining computational
information from derivations.
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2. Herbrand analyses. In this lecture I intend, first, to present techniques for
the extraction of computational information and, second, to prove paradig-
matically some results relating fragments of arithmetic and weak subsystems
of analysis to classes of recursive functions. To get at the computational
content of number-theoretic statements of the form (Vx)(3y)\|/xy I will use
derivations in sequent calculi. The normal form theorem guarantees bounds
on the logical complexity of formulas occurring in derivations; the
invertibility of the (rules for the) quantifiers V and, with suitable restrictions,
3 yields a functional analysis of the combination V3. After all, statements of
the form (3y)\py do express a functional dependence of the quantified variable
y on the parameters occurring in \|/. In case y's matrix is quantifier-free, the
uniformity of formal proofs D for such y provides the basis for Herbrand
analyses, i.e., for the extraction of a term t from D and the generation of an
associated proof D* of \j/t. The extracted term t reflects both the expressiveness
of the term language and the formal structure of the given derivation.
Furthermore, if the basic terms in D are computable, t represents also a
computation of a restricted sort.

Bounding existential quantifiers. The functional analysis of F^-theorems

will be based on suitable forms of Herbrand's Theorem for Ii-statements; its
basic form is this:

Herbrand's Theorem. Let f={<t>o,... ,$n} contain only purely existential formulas; if
D is a derivation of V, then there is a quasi-normal derivation of Ao,... ,An;
Aj={ $if] : i<nj and 0^ is an instance of the matrix of ty }, j<n. The terms
occurring in these instances are built up from terms occurring in D.

A most useful corollary can be established (directly by induction on quasi-
normal derivations).

Corollary. Let T contain only purely existential formulas and let <|> be quantifier-
free; if D is a derivation of

r, (3xo) ... (3xn)<t>,
then there are sequences of terms to,i, ... ,tn,i, i<p, and a quasi-normal
derivation of

r, 4>(to,i,... ,tn,i),... ,<Kto/P, - /tn,p).
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The corollary can be further extended to I-normal derivations; that extension

will be given only in a more specialized setting. We are considering theories

T(f) of the form (QF(F)-IA) such that T(F) and T satisfy the following two

conditions:

(H.1) T is provably closed under explicit definitions and definition by cases

(thus under Boolean operations, max, min);

(H.2) T is provably closed under bounded search, i.e., for any formula <|> in

QF(F) there is an h in T such that T(F) proves: (3y£x)<J>y <-> <|>h(x).

Theories T(F) satisfying these two conditions are called Herbrand Theories. It is

for them that I establish the most suitable form of ^-inversion.

3-inversion. Let T(F) be an Herbrand theory, let T contain only purely

existential formulas, and let \\f be quantifier-free; if D is a T(F)-derivation of

r,(3x)\|/x, then there is a term t* and a(n I-normal) T(F)-derivation D* of I\\|/t*.

Proof (by induction on I-normal T(F)-derivations). I focus on the central step

in the argument when the last inference in D is of the form

r,-id)a.d)at,Gx)wx

r,<|>t,(3x)\|/x

The induction hypothesis, applied to the derivations Do and Da leading to the

premises of the inference, yields terms r and s(a). These terms may contain

other parameters as well. The induction hypothesis yields also derivations

Do* and Da* of

(1) r,(J>0,vr
and of

(2) I><|>a,<|>af,ys(a).

T(F) proves clearly

-»<|>0,<|>t,(3x<t)(\|OC A -i\|OC')

and, with condition H.2 and ^-inversion, both

(3) -<|>0,<|>t,yh(t)

and

(4) -<j>O,<|>t,-yh(t)\

From (2), replacing the parameter a by the term h(t), one obtains

(5) r,-())h(t)/(|)h(t)f
/vs(h(t)).
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Cutting (5) successively with (4), (3), and (1) yields a derivation of
(6) r,<|>t,\|n%ys(h(t)).
Using condition H.I, definition by cases, we can define a function f in T, such
that T(F) proves r,<t>t,\|Kf(t)). Q.E.D-

For Herbrand theories I can give now an absolutely straightforward answer to
the question concerning Skolem-functions via the Term Extraction Lemma.
Its proof is immediate by ^-inversion and subsequent ^-inversion.

Term Extraction. Let TCF) be an Herbrand theory and let \f be quantifier-free; if
T(F) proves (Vx)(3y)\|/xy, then there is a term t(a) in L(F), such that T(F)
proves (Vx)\|fxt(x). Xx.t(x) denotes a function in F.

Two remarks are in order. First, that results are insensitive to extensions of
the theories by purely universal sentences. Thus the corollary I am going to
formulate now holds not only for the theories explicitly mentioned, but also

for any of their Fli-extensions. Second, all the considerations can be carried
out for standard formulations of open theories, when the induction principle
for quantifier-free formulas is given by an open axiom schema.

Corollary, (i) The provably total functions of IAo+exp are exactly the Kalmar-
elementary functions, (ii) The provably total functions of (QF(P JO-LA) are
exactly the primitive recursive ones.

For (i) it has to be observed that the Kalmar-elementary functions can be
introduced in a definitional extension of IAo+exp; the proof theoretic analysis
is then given for this definitional extension. — A fact similar to (i) can be
established, as a matter of fact, for all (Ao(£n)-IA), 3<n, thus giving a proof-
theoretic characterization of all classes En in the Grzegorczyk-hierarchy with
index greater than two.

These considerations will be expanded in three different directions:
First, I'll show how I]-Induction can be eliminated (and that result allows us
to obtain quite systematically and easily results concerning fragments of
arithmetic); second, I will show how these techniques are useful for
investigations of extremely weak fragments of arithmetic, e.g., for bounded

46



arithmetic as introduced by Buss; third, I'll investigate second-order
extensions of fragments of arithmetic, in particular Friedman's (F).

Induction and recursion. The key-word here is match-up, that is, match-up
between induction and recursion. I will show that the schema of primitive

recursion is exactly right for analyzing the Zi-induction-principle, and that

bounded iteration is exactly right for analyzing s-Z,,-induction. As
consequences we obtain very neat proofs of two facts: (1) the provably total

functions of (Zi-IA) coincide with the primitive recursive ones (established by
Parsons and independently by Mints and Takeuti), and (2) the provably total
functions of (Buss's theory) S\ are exactly the polynomial-time computable
ones. Let me start out with the considerations for the former result.

Lemma. Let F contain only Zi-formulas; if D is an I-normal derivation of F in

(Z?(PR)-IA), then there is an I-normal derivation of F in (QF(PR)-IA).

Proof. The argument proceeds by induction on the number # of applications

of theZi-induction rule in D. Clearly, if #=0, the claim is trivial. So assume

that #>0 and consider an application of the Zi-induction rule such that no
other application occurs above it in D. The subderivation E determined in
this way ends with the inference

AX3x)\{/xO A,-»(3x)\|/xa.Gx)\pca'

A,(3x)\|/xt

where \\f is quantifier-free. Without loss of generality we can assume that A
contains only existential statements; by the corollary to the I-normalization
Theorem, all formulas in D are contained in 11? or Zi; if A contained universal
formulas, we could use V.-inversion first and carry out the subsequent steps
with additional parameters — and these paramaters could be removed in the
very last step by applying first the rule for 3 and then for V. After this
digression, showing once more the significance of bounding the logical
complexity in "normal" derivations, let me continue with the main
argument. Let EQ be the derivation of the left premise and Ea that of the right
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premise- ^.-inversion applied to Eo yields a term G[0] and a derivation in
(QF(PR)-IA)of
(1) A,\|fo[0]0 .
The application of V.-inversion and then of 3,-inversion to Ea yields (for a new
parameter c) a term x[a,c] and a derivation of
(2) A,-i\|/ca/yx[a,c]aI.
Now we define a function f by primitive recursion

f(0) =o[0]
f(a') =x[a,Ka)];

one can verify directly, using (1), (2), and quantifier-free induction that there
is a (QF(PR)-IA)-derivation of

A,yf(a)a
and thus of

A,(3x)yxt.
If this derivation is used to replace E in D, the induction hypothesis on # can
be employed to infer the claim of the lemma. Q.E.D.

How can we use this fact to establish Parsons's Theorem? (Ii(PR)-IA) is a

definitional extension of (Zj-IA); the lemma tells us that the former theory is

conservative for L\ -formulas, and indeed for IT^-formulas, over (QF(PH)-IA).
But we already saw earlier, as a direct consequence of the Term Extraction
Lemma, that PR is the class of provably recursive functions of (QF(PR)-IA).

Theorem. The provably recursive functions of (Ii-IA) are exactly the primitive
recursive functions.

The schema of these considerations can be used to prove Buss's
theorem that the provably total functions of the theory S] of bounded
arithmetic are exactly the polynomial time computable functions. Indeed,
using suitable (Skolem-) operator theories [Sieg 1991], p. 421, re-obtains the
characterization of all classes in the polynomial hierarchy; in [Buchholz and
Sieg], analogous arguments are used to show that P is the class of provably
total functions of a certain theory of binary trees introduced by Ferreira. I will
give a perspicuous argument for what Buss considered to be the difficult part
of the theorem, namely, that the provably total functions of S\ are contained
inP; notably, witnessing functions will not be used. £ (£ ) , the language of
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bounded arithmetic, is the language of elementary arithmetic expanded by
function symbols I.I,?, and #, where I a I yields the length of the binary
representation of a, ? is the shift-right-function, and a#b is 2 ' a ' ' b I. The
language £(P) is obtained from £(B) by adding function symbols for each
element of P. The latter class of functions is defined inductively as the
smallest class of functions that contains certain initial functions (0, f, ?, 2 . , X/
choice1) and that is closed under composition and bounded iteration; a
function f is said to be defined by iteration from g and h with time bound p
and space bound q (p and q suitable polynomials2) iff the following holds: If x
is defined by

x(x,0) = g(x)
x(x,y') = h(x,y,x(x,y)),

then we must have
(Vy<p(lxl))

and

x indicates a sequence of variables. — Letting T stand for P or B, the set of
quantifier-free formulas in L[T) is denoted by QF(F). The bounded quantifiers
(Vx< 111) and (3x< 111), understood again as abbreviations, are called sharply

bounded. AQ(F), the class of sharply bounded formulas, is built up from
literals in L(T) using A, v, and sharply bounded quantifiers; if closure under
bounded existential quantification is also required, the set of formulas is

called 2^(F). A formula of L{T) is in s-I^f) just in case it is of the form
(3x<t)<|>, where (j) is in QF(F). The theories of bounded arithmetic to be
investigated contain the basic axioms for the non-logical symbols of £(fi), the
defining equations for the elements of P in case the theory is formulated in
£(P), and one of the induction principles O-PIND or O-LIND. The latter are
formulated as rules

r. q)0 r. -»(p?. (pa
T, cpt

and

1 2., & and choice are the shift-left-function, the characteristic function of <, and the definition by cases
function, respectively.
2 A polynomial is called suitable if it has only nonnegative integers as coefficients; thus suitable
polynomials are monotonically increasing.
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F. (pO F. -»(pa. (pa1

r, cpiti ;
where cp is in O (and the parameter a must not occur in the lower sequent).
The resulting theories are denoted by (O-PIND) and (O-LIND); the theory

(Z^(B)-PIND) is S] and allows - via a delicate boot-strapping - the introduction

of all elements of P: (I*J(P)-PIND) is a definitional extension of (E^(B)-PIND)

and by Theorem 13a in [Buss, p.52] equivalent to (I^(P)-LIND). Let me
formulate some facts whose proofs require care, but are standard and will not
be given.

Lemma, (i) P is provably in (QF(P)-LIND) closed under explicit definitions and
definition by cases.
(ii) P is provably in (QF(P)-LJND) closed under strictly bounded search, i.e.,
for any <j> in QF(P) there is an h in P, such that (QF(P)-LIND) proves:
(3y< I x I )0y <-> <>h( I x I).

The last part of the lemma asserts that in (QF(P)-LIND) every formula in

A0(P) is provably equivalent to a quantifier-free formula. By inspecting the
proof of Theorem 14 in [Buss, p.53] one can see that QF(P)-replacement is

provable in (s-L^(P)-LIND); that fact allows us to show that in (s-Z^(P)-UND)

every Z^(P)-formula is equivalent to one in s-L^P). Thus we have:

Lemma, (i) (AQ(P)-UND) is equivalent to (QF(P)-LIND).

(ii) (s-I^(P)-UND) is equivalent to (Z^(P)-UND).

This completes the preparation for the central considerations
involving the extraction of terms. (QF(P)-LIND) is an Herbrand Theory,
slightly modified to adjust for strict boundedness. The considerations for the
3-Inversion Lemma can be carried through for this theory, and the (modified)
Term Extraction Lemma shows then that the provably total functions are

exactly the elements of P. As (s-Z1 (P)-LJND) is equivalent to S2/ it is sufficient
for a proof of Buss's theorem to show the following:

Theorem. The provably total functions of (s-I^(P)-LIND) are exactly the
polynomial time computable functions.
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We only have to establish that the theory (s-I^(P)-LIND) is conservative over

(QF(P)-LIND) for IT^-formulas. That is obtained directly from the next

l emma.

Lemma. Let T contain only L^-formulas; if D is an I-nonnal derivation of T in

^ ) , then there is an I-nonnal derivation of T in (QF(P)-LIND).

Proof. The argument proceeds by induction on the number # of applications

of the s-E^(P)-induction rule in D . The claim is trivial if #=0. So assume that

#>0 and consider an application of the s-I1(P)-induction rule, such that no
further application occurs above it. The subderivation E determined in this
way ends with the inference

A.xi/aO A. "•'Xi/aa. waa*
A,ya I s I

y a a is of the form (3x)(x<t[a,a] A \j/*xaa), where y* is in QF(P) and a indicates
the sequence of parameters occurring in A,y. Let Eo be the derivation of the
left premise and Ea that of the right premise. I-inversion allows us 3 to extract
from Eo a term o[a] and a derivation in (QF(P)-LJND) of

(1) A, a[a]<t[a,0] A \|/*cr[a]aO .

The application of V.-inversion and then of 3-inversion to E a yields a new
parameter c, a term x[a,c,a], and a derivation of

(2) A, -i(c<t[a,a] A \j/*caa), x[a,c,a]£t[a,af] A \|f*T[a,c,a]aa'.

N o w define: p(a,0) =cy[a]
p(a,a') =t[a,p(a,a),a] if a< I s I

and =p(a,a) otherwise ;

p can be shown to be in P. For that note first that the term s contains neither
a nor c: a not due to the restrictive condition on the rule LJND, c not due to

3 As D is I-normal we can assume without loss of generality that A contains only existentially quantified
formulas.
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the choice in V.-inversion. Note also that t does not contain c. Using (1) and
(2) we obtain derivations in (QF(P)-UND) of

(3) A, p(a,0)<t[a,0] A \|/*p(a,O)aO
and
(4) A, -.(p(a,a)<t[a,a] A y*p(a,a)aa), p(a,a')<t[a,af] A \|r*p(a,a')aaf.

Now we can infer from (3) and (4) by QF(P)-LIND

(5) A,p(a/lsl)<t[a/lsl]A\|f*p(a/lsl)alsl

and from (5) by 3

(6) A, (3x)(x<t[a, I s I ] A y*xa I s I).

But (6) is the endsequent of E, established now by a derivation E* in (QF(P)-
LIND). The induction hypothesis yields the claim of the lemma, when
applied to the derivation obtained from D by replacing E through E*. Q.E.D.

Subsystems of analysis. The considerations concerning the elimination of Zi-
induction by means of quantifier-free induction and primitive recursion can
be carried out when the purely arithmetic theory is expanded to the second-
order theory (BT), allowing function parameters in the induction rule and in
the defining equations for primitive recursive functions. The resulting
theory is then expanded by two set-theoretical principles to Friedman's (F). In
terms of the reductive program sketched in A.I we want to reduce (F),
considered as P*, to the foundational F*, here (PRA), i.e., to eliminate WKL

and the Ii-axiom of choice - indeed, only the quantifier-free form of the
axiom of choice, since these two forms are equivalent over (BT). I will use
just the term-extraction lemma for the elimination of QF-AC; for the
elimination of WKL one uses in addition a fact concerning primitive
recursive functional, namely, that they are "hereditarily majorizable".
Leivant and Ignjatovic have obtained interesting characterizations of
complexity classes, in particular of P, via second order theories, and the
techniques presented here are again most useful; see [Ignjatovic].
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For the formulation of two crucial lemmata I assume that A consists
only of existential formulas; A[-iQF-AC0] denotes the sequent obtained from A
by adding negated instances (and instantiations) of the quantifier-free axiom
of choice; A[-iWKL] is defined similarly. We are working within (BT); explicit
definition or ^-abstraction is given by: (Vx)Xy.t[y](x)=t[x], i.e., QF-AA. All of the
axioms are presented by a Post-system JC.
QF-AC0-elimination. If D is an I-normal JC-derivation of A[-»QF-AC0], then there
is an I-normal JC-derivation of A.
In this special situation we can eliminate QF-AC in favor of just QF-XA, i.e.,
quantifier-free comprehension. The same holds for Weak Konig's Lemma:
WKL-elimination. If D is an I-normal JC-derivation of A[-»WKL], then there is an
I-normal JC-derivation of A.

Assuming these two lemmata and the eliminability of Li-induction, I give
the proof of the conservation theorem I mentioned.

Theorem. (BT+E?-IA+Ii°-ACo+WKL) is conservative over (BT) for Il2-sentences.

Proof. Notice that a derivation in (BT+I?-IA+Z?-ACo+WKL) of the re-
statement (Vx)(3y)\|/xy can be transformed into an I(Z?)-nonnal JC-derivation
with an endsequent of the form [-^QF-ACQ^WKL], (Vx)(3y)yxy . This sequent
can be assumed (by V-inversion) to be of the form [-»QF-AC0,-«WKL], (3y)\|/ay.
The main claim is this:

(*) Let A consist only of existential formulas; if D is an I(L?)-normal JC-
derivation of AHQF-ACo^WKLLQyJyay, then there is an I-normal JC-deriva-
tion E of A,(3y)yay.

Proof of (*) (proceeds by induction on the length of I(£v)-normal JC-deriva-
tions). The induction step is trivial in case of LA, C with atomic cut-formula,
or when the last rule affects an element of A or the formula (3y)yay. So we
have to consider the cases that the last rule (1) is C with Ii-cut-formula, (2) is
the Zi-induction rule, (3) introduces an instance of -̂ QF-AC0, or (4) introduces
an instance of -«WKL. Let me discuss the arguments for (1) and (2); those for
(3) and (4) are analogous to that for (2). In case (1) the derivation ends in an
inference of the form

53



AhQF-ACo,̂ WKL],(3y)\[fay

By induction hypothesis we get from Do immediately an I-normal JC-
derivation Do* of

(1) A,(3y)yay,<{>.

For the treatment of Di we first apply ^-inversion to -4 (assuming that 0 is of
the form (3x)%x) and then use the induction hypothesis to have an I-normal
DC-derivation Di* of

(2) A,(3y)\|fay,-«xc.

By the term extraction lemma we get a term t from Do* and an I-normal JC-
derivation of

(3) A,(3y)\|/ay,xt;

replace c in Di* by t to get an I-normal JC-derivation of

(4)

Joining the derivations leading to (3) and (4) by a cut — with a quantifier-free
cut-formula - yields finally the desired I-normal JC-derivation of A,(3y)yay.
(One remark should be added: In this proof we did not use at all the fact that
we are dealing with an I-cut; only the logical complexity of the cut-formula
mattered.)

In case (2) the derivation ends in an inference of the form

A[-QF-AC0/-WKL]/(3y)\|/ay,(|)t

Here <(>t is again a I] -formula. So we can apply the induction hypothesis to get
from Do immediately an I-normal JC-derivation Do* of

(5) A,(3y)yay,<t>0.
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Now use the standard trick to remove the universal quantifier by V.-
inversion, then apply the induction hypothesis, and finally re-introduce the
universal quantifier to obtain an I-normal )C-derivation Db* of

(6) A/aytyay^b^b1.

Joining the derivations leading to (5) and (6) by the Li-induction rule, we

obtain an I(L?)-normal JC-derivation of A,(3y)\|fay,<|>t But this derivation can

be transformed into an I-normal JC -derivation of the same sequent by the

Theorem concerning the elimination of Zi-induction. The remaining two
cases (3) and (4) are treated similarly using the appropriate elimination
lemmata. Q.E.D.

Now let us come back to the elimination lemmata we just applied to prove

the conservativeness of (BT+Ii-IA+Ei-ACo+WKL) over (BT) with respect to

Ffc-sentences. Let me first give the proof of the QF-ACQ-elimination lemma.

Proof (by induction on the length of D). I focus on the crucial case when an
instance of -̂ QF-AC0 has been introduced by the last rule in D. D has then
the immediate subderivations Do and Da with endsequents A[->QF-AC0],
(Vx)(3y)\pcy and A hQF-AC0 L ̂ (3f)(Vx)\|fxf(x). By V-inversion one obtains I-
normal JC-derivations D\ of

(1)
and
(2) A [-QF-ACQ, ], -(Vx)\|/xu(x),

where c and u are new number, respectively function parameters. IDJ <
for i<l, and the endsequents of DJ satisfy the conditions on the complexity of
the formulas. The induction hypothesis yields I-normal 3C-derivations of

(3) A, (3y)ycy
and
(4) A, -.(Vx)\|/xu(x) .
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By H-inversion applied to the derivation leading to (3) we obtain a term t[c]
and a quasi-normal derivation of A, \|fct[c] and, abbreviating Xx.t[x](c) by vie),
indeed of A, \|fcv(c), and thus also of

(5) A, (Vx)\|/xv(x)

Replace the function parameter u throughout the derivation leading to (4) by
the X-term v and get a derivation of

(6) A, ->(Vx)yxv(x).

The desired I-normal JC-derivation E is obtained by cutting (5) and (6) and by
subsequent I-normalizing. Q.E.D.

N o w let US proceed to the proof of the elimination lemma concerning WKL.

Proof (by induction on the length of D). I concentrate again on the central
case when the last rule in D introduces an instance of -»WKL; i.e.

TO) A (Vx)(3y)(lh(y)=x A f(y)=l) A -(3g)(Vx) f(g(x))=l.

(Recall that T(f) is a purely universal statement, expressing that f is the
characteristic function of a tree of 0-1-sequences.) Then there are I-normal JC-
derivations Di, i<2 and all shorter than D, of

A hWKL], T(f)
A hWKL], (Vx)(3y) (lh(y)=x A f(y)=l), and
A hWKL], (Vg)(3x) f(g(x))*l.

Using V.-inversion and the induction-hypothesis we obtain Ei ,i<2, of

A,T(f)
A, (3y) (lh(y)=c A f(y)=l), and
A, (3x)

with new parameters c and u. 3-inversion provides terms t and s and also I-
normal K-derivations Fiand F2 of

A, lh(t[c])=c A f(t[c])=l and A, f(u(s[u]))*l, respectively.
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The terms s and t may contain further parameters, but u does not occur in t.
Now observe: (i) t yields sequences of arbitrary length in the tree f that do not
necessarily form a branch; (ii) f(u(s[u]))*l expresses the well-foundedness of f.
In short, we have a binary tree (according to Eo) that contains sequences of
arbitrary length and is well-founded. This conflicting situation can be
exploited by means of a formalized recursion theoretic observation, namely: s
can be majorized (in the sense of [Howard]) by a numerical term s* that does
not contain u, since u can be taken to be majorized by 1. Let t[s*] be the 0-1
sequence

and define with ^-abstraction the function u* by

u*(n) = t if n< s*
n

and u*(n) equals 0 otherwise. u*(s*) equals t[s*]. According to Eo f is provably
a tree, and s* is a bound for s. Thus we have from F2 a derivation of A,
f(u(s*))*l. Replacing u by u* yields a derivation of and indeed a derivation
G2 of A, f(t[s*])*l when taking into account the equation u*(s*)=t[s*]. From
Fi one can obtain a derivation Gi of A, f(t[s*])=l by /\-inversion and the
substitution lemma, replacing c by s*. A cut of Gi and G2 yields the sought for
derivation E of A. Q.E.D.

Clearly, the Theorem does provide computational information; that is
expressed in the following corollary.

Corollary. If (BT+L?-IA+Li°-AC0+WKL) proves the restatement (Vx)(3y)\jocy,
then there is a primitive recursive function f and a proof of \|/af(a) in (PRA).

(ET) is like (BT) but it has defining axioms only for the Kalmar-elementary,
not for all primitive recursive function(al)s and it does not contain Zr
induction. By the same argument one can establish a conservation result
analogous to that for Friedman's (F); then it is possible to infer the following
corollary.

Corollary. If (ET+I1-AC0+WKL) proves the nj-statement (Vx)(3y)\|/xy, then
there is a Kalmar-elementary function f and a proof of yaf(a) in (KEA).
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Remarks. The ACo-elimination technique is useful also in other contexts: (i) It

was first used to prove that (Zn+i-AC) is conservative over (nn-CA<eo) for

classes Fn of formulas; here Fo = ni Fi = IT3andFn = n}foralln>2. (ii)The fact

that (Zn+i-AQT is conservative over (IIn-CA)r can be also be proved using

this technique; in particular, that (Zi-AQT is conservative over (IIo-CA)r s

(Fu-CAjr. Since the latter is a conservative extension of (Z), we have a

reduction of (E}-AO Tto (HA). For these results see [Feferman and Sieg 1981].
(iii) For fragments of number theory these techniques were refined in [Sieg
1985 and 1991].
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PARTC NATURALLY NORMAL PROOFS

In the first two parts of these lectures we have seen the use of the classical
sequent calculus as a technical tool for achieving two ends: For foundational
reductions of (strong) subsystems of analysis to constructive theories and for
the extraction of computational information from proofs, thus for the charac-
terization of the provably total functions of theories. I mentioned a third
theme of proof theoretic research that goes back to Hilbert, namely, the
cognitive psychological one. In "Uber das Unendliche" Hilbert described
proof theory in such a way that it can be mistaken for cognitive psychology
restricted to mathematical thinking. Let me recall his remark: "The
fundamental idea of my proof theory is none other than to describe the
activity of our understanding, to make a protocol of the rules according to
which our thinking actually proceeds." If this remark has plausibility at all,
then only through the emergence of Gentzen's natural deduction calculi.1 I
am turning now to their discussion.

1. Mechanization and natural deduction proofs. The mechanization of
human reasoning has been aimed for ever since theoretical recognition of the
formal character of inference steps was complemented by practical experience
with intricate mechanical devices. I remind you again of Leibniz! It is only
since the end of the 19th century that we have powerful logical frameworks
allowing us to formalize substantive parts of human knowledge, namely,
mathematics. And it is only since the middle of our century that we have
sufficiently intricate (electronic) devices providing the physical
underpinnings for mechanization. Up to now, it seems to me, logical
frameworks that do not reflect human reasoning have been chosen for
mechanization; that applies to resolution, to sequent calculi as well as to their
notational variant, tableaux.

Normal Proofs. Calculi that mirror closely the structure of ordinary
argumentation have been available since the mid-thirties — Gentzen's
natural deduction calculi. According to Gentzen they were to reflect "as
accurately as possible the actual logical reasoning involved in mathematical

* But one must remember that Hilbert had analyzed the role of the various connectives in such a way that
his system is an axiomatic formulation of the ND-rules.
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proofs". 2 Gentzen himself gave up using ND-calculi for his
metamathematical work, since they did not seem to have the marvelous
properties of sequent calculi. As far as the contemporary automated theorem
proving community is concerned, Fitting's remarks in his book First order
logic and automated theorem proving (1990) are perhaps symptomatic; Fitting
writes: "Hilbert systems are inappropriate for automated theorem proving.
The same applies to natural deduction, since modus ponens is a rule in both."
I think, on the contrary, that if we want to make progress in automated proof
search, then we have to use natural deduction calculi.

How do natural deduction calculi capture the logical structure of
arguments and its dependence on the syntactic form of assumptions and
conclusions? They do so by incorporating inferences from and to logically
complex formulas with characteristic principal connectives. The rules for

each logical connective, in the case of sentential logic A, V, —>, and -i, are
consequently divided into "elimination" and "introduction" rules. Let me
just formulate the rules for negation, because they are formulated here in a
way that is not the standard (Gentzen-Prawitz) mold. The negation
elimination rule ->E is the distinctive rule of classical logic and it is needed to
prove, for example, the law of excluded middle and Peirce's law; the
introduction rule -»I captures the form of indirect argumentation as used in
the Pythagorean proof of the irrationality of V2":

cp —i(p cp

0 -4

More generally, the E-rules specify how components of assumed or already
established complex formulas can be used in an argument; the I-rules provide
conditions under which complex formulas can be inferred from already
established components. This leads directly to the formulation of very
intuitive strategies; and the calculi have, after all, the crucial metamathe-
matical properties of sequent calculi.

Gentzen in his "Investigations into logical deduction", cf. [Szabo], p. 74.
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To state the first of these properties recall that the premise of an
elimination inference containing the characteristic connective is called major
premise and that a derivation is called normal, just in case there is (roughly
speaking) no formula occurrence in the derivation that is both the conclusion
of an I-rule and the major premise of an E-rule. In addition, the consequence
of -iE should not be the major premise of an elimination rule. The first
central property was established by Prawitz (1965) and can be formulated in a
slightly more general way than Prawitz did:

Normalization Theorem. Any derivation of G from a in the ND-calculus can be
transformed into a normal derivation leading from a to G.

Here a is the sequence of assumptions from which G is derived. Prawitz's
proof specifies a particular sequence of "reduction steps" to effect the
transformation.3 The second crucial fact that holds for (normal derivations
in) natural deduction calculi is a corollary of the normalization theorem and
states that normal derivations D of G from a have the subformula property in
the following sense: every formula occurring in D is (the negation of) either a
subformula of G or of an element in a.

Despite the "naturalness" of natural deduction calculi, the part of proof
theory that deals with them has hardly influenced developments in
automated theorem proving. For that the proof theoretic tradition founded
on Herbrand's work and Gentzen's work on sequent calculi have been more
important. The keywords here are resolution and logic programming. From
a purely logical point of view this is prima facie peculiar: It is after all the
subformula property of special kinds of derivations4 that makes resolution
and related techniques possible, and normal derivations in natural deduction
calculi have that very property (with the minor addition mentioned above).
Why is it then that natural deduction calculi have not been exploited for
automated proof search? The answer to this broad question lies, it seems to me,
in answers to three crucial questions: (1) How can one specify through a calculus
normal derivations? (2) How can one construct a search space that allows the

3 And holds, to be precies, only for a part of the classical calculus. The (strong) normalization theorem for
the full calculus is established by Stalmark (1991).
** Derivations in Herbrand's calculus and derivations in the sequent calculus without cut have the
subformula property: they contain only subformulas of their endformula, respectively endsequent.
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formulation of strategies for finding such derivations? and (3) How can we
prove the termination of strategies?

In the case of the sequent calculus, the analogue to the first question
has a trivial answer: The calculus without the cut rule! The syntactic normali-
zation or cut-elimination procedure is, however, not crucial for automated
deduction; it is the direct completeness proof for the cut-free part that is
fundamental, since algorithms for finding cut-free derivations are refine-
ments of strategies used in that proof. Such strategies realize the heuristic
idea of searching for semantic counterexamples and are systematic procedures
that yield trees a such that either one of a!s branches allows the definition of a
counterexample to "A has G as a logical consequence" or a constitutes a cut-
free derivation of the sequent -»A,G. In the case of natural deduction calculi,
the fact that normal derivations are sufficient for obtaining all logical
consequences from given assumptions is not established directly at all, but
rather by combining the completeness theorem for the calculus with the
normal form theorem; there is no direct characterization answering question
(1) in the literature. In order to obtain an answer to the first question I
introduce intercalation calculi; they provide natural frameworks for
answering also the second question. The completeness proofs for the calculi
provide the answer to the third question. I will present these considerations
first for classical sentential logic; I should note that, for this logic, Richard
Scheines and I implemented the first complete and heuristically guided proof
search system.

Intercalation calculi (for sentential logic). The broad problem is this: How
can one derive a conclusion or goal G from assumptions fa9... ,<|>n? or, to put
it more vividly, how can one close — via logical rules — the gap between a
conclusion G and assumptions <(>i, ... ,0n? This question is at the heart of
spanning the search space via intercalation calculi. The basic rules of such
calculi are local reformulations of those for Gentzen's natural deduction
calculi, but it is the preservation of inferential information and the restricted
way in which the rules are used to close the gap (and thus to build up
derivations) that is distinctive. I will discuss in this lecture only classical
sentential logic; however, the theoretical considerations can be extended to
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predicate logic and to non-classical logics, for example, intuitionistic logic5

(The extension to predicate logic will be sketched in the next lecture.)
The intercalation rules operate on triples of the form a;P?G. a is a

sequence of formulas, the available assumptions; G is the current goal; P is a

sequence of formulas obtained by A-elimination and —^-elimination from
elements in a. To facilitate the description of rules and parts of search trees let
us agree on some conventions. I let lower case Greek letters a, P, y, 8, ...
range over finite sequences of formulas; as syntactic variables over formulas
we use <|>, v, %y ...; p, a, x (with indices) will range over trees. At first I
consider only formulas in the language of sentential logic using the

connectives -», A, V, ->; I also use 1 (falsum) as an auxiliary symbol, tyea
expresses that <|> is an element of the sequence a; a,p is short for the
concatenation oc*p of the sequences a and p; a,<(> stands for the sequence
a*«j», where « | » is the sequence with 0 as its only element. Finally, I write

^p iff the sets of formulas in the sequences a and p are identical.

There are three kinds of intercalation rules: those corresponding to E-

rules for A, V, -»; those corresponding to I-rules for A, V, —>; and finally rules
for negation. Let me first list the rules of the first kind, i.e., the I-rules:

I A J : a;p?G, <t>iA<t>2€ap, <Map => a;p,<|>i?G for i = l o r 2

W: a;p?G, <f>iv<|>2€ap, <M<*P> <Map => a,(J>i;p?G A N D a,<|>2;P?G

! - • : a;p?G, <|>i-*h€ap, (J>i€ap, <t>2*ap => a;p,<t>2?G

The side conditions of these rules avoid repeating the "same questions";
a;p?G is the same question as a*;p*?G just in case the sets of formulas in the
sequences a,P and oc*,p* are identical. Now I formulate the rules that
correspond to inverted introduction rules, i.e., t-rules.

I A : CC;P?<1>IA<|>2 = > a;P?<(>i A N D a;p?<|>2

t v : a;p?<{>iv<t>2 => a;p?<t>i OR a;P?<(>2

= >

D That was done by Saverio Cittadini in his M.S. thesis written in May 1991; see [Cittadini 1992].
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The rules for negation are split into three, where 1 is considered as a
placeholder for (the conjunction of) a pair of contradictory formulas:

=> a,-4;P?

l i : a;p?-,<|> => (M>;j5?i

1^: a;p?i, cp€f (a) => a;p?cp A N D a;p?-.<p .

In the last rule f (a) is the finite class of formulas consisting of all PROPER
subformulas of elements in a. Clearly, If is inapplicable in case F(a) is
empty. f (a) is always finite; and that is crucial for the finiteness of the search
space. Operations leading to smaller and yet sufficient classes can be specified;
here I simply remark that double negations can be discounted in the
following sense: If -i<j> is in F(oc), then we consider only the pair -4 and 0 in
the first two negation rules and not also -t<)> and —i—1<|>. The various calculi we
are considering are distinguished through the operation F, and I denote a
particular calculus by IC(F).

The problem space. The intercalation calculus provides the computational
underpinnings for specifying informal approaches to proof search: its rules
are used to construct a search space that contains all possible ways of closing
the gap between a and G via the rules of the intercalation calculus. And as
will be seen later, the space "codes" all possibilities of building up normal
derivations leading from a to G in the natural deduction calculus. Within
this space we search for a gap-closing subtree such that it determines uniquely
a natural deduction derivation from a to G; if the search fails, the search space
will contain enough information to yield a semantic counterexample. From
this sketch of a completeness proof for the intercalation calculus you see that
there is a family resemblance to completeness proofs for the sequent calculus
without cut. The difference can be put sharply as follows: In the case of the
sequent calculus, one tries to find a semantic counterexample and, if that

search fails, one actually has found a proof; in the case of the intercalation
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calculus, one tries to find a proof and, if that search fails, one has a

counterexample.6

As an example of how the intercalation rules are used to build up the
search space for a question a;?G, let me show the search tree for the question
?Pv-iP. It is partially presented in Diagram 1 (of the Appendix to this lecture
on p. 72). We start out by applying three intercalation rules to obtain three
new questions, namely, ?P OR ?-iP OR, proceeding indirectly, -«(Pv-iP);?l.
That the branching in the tree is disjunctive is indicated by •. Let us pursue
the leftmost branch in the tree: To answer ?P we have to use lc and, because
of the restriction on the choice of contradictory pairs, we have only to ask

-̂ P;?P AND -iP;?-»P. H indicates that the branching is conjunctive here. In
the first case only lc can be applied and leads to the same question we just
analyzed: Using -iP as an assumption, i has to be proved. Thus we close this
branch with a circled F, linking it to the same earlier question on the branch.
In the second case the gap between assumptions and goal is obviously closed,
so we top this branch with a circled T. The other parts of the tree are
constructed in a similar manner. But the tree is not quite full: At the nodes
that are distinguished by arrows the additional contradictory pair consisting of
P and —iP has to be considered. At nodes 2 and 3 the resulting branches do not
help in closing the gap; at node 1, in contrast, the resulting subtree is of
interest and will be discussed below.

The darkened subtrees (in Diagram 1) contain enough information for
the extraction of derivations in a variety of styles of natural deduction. For
our calculus we can easily obtain the corresponding derivations; namely:

If

PvP

P v -.P
Pv-iP

sequent calculus provides a direct framework for motivated search for a derivation; indeed, the
search tree is a derivation, if the sequent is provable. But a sequent proof is far from reflecting the
structure of ordinary arguments. In the case of resolution based procedures, one also has the non-trivial
problem of finding an associated natural deduction derivation. Cf. Andrews, Mints, and Pfenning.
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The second derivation is analogous to this one, except that the roles of P and
-«P are interchanged; finally, the derivation that emerges from the undrawn
part at node 1 is this:

Pv-P

The (full) search or intercalation tree is specified inductively by
applying the intercalation rules to the initial question or to the "non-
terminal" leaves of an already obtained partial search tree- In either case one
addresses questions of the form oc*;j3*?G\ We distinguish two cases:

1. G* is different from 1: apply intercalation rules in all possible ways, e.g., in

the order IAJ, I A 2 , *-», i v , tA, t -», tv, and finally either 1| or i c ,

unless G*€a*,p*; in that case close the branch with T.

2. G* is 1: apply i r with cp€F(a*), unless F(a*) is empty or there is a
question ai;fSi?l on the branch determined by cc*;p*?l with ai identical to
a*; in the latter cases close the branch with F.

The intercalation tree is constructed in this way for any question a;?G. A
branch in this tree constitutes a sequence of subquestions for a;?G of the form
<a;;pj?Gj>j€i; I is a subset of N. The sequence satisfies the obvious conditions:
(1) ao;Po?Go is a;?G, and (2) for any i>0 the element CCJ;PJ?GJ is obtained from
the immediately preceding subquestion as (one of) the conclusion(s) of an
intercalating rule. Due to the finiteness of T and the complexity reducing
character of the 4- and t-rules the sequences of subquestions are all finite; as
the intercalation tree is finitely branching we have the first part of the
following proposition:

Proposition. The intercalation tree for the question ot;?G is finite, and each
branch is closed with either T or F.

Proof. Because of the above observation, only the second part of the
proposition has to be established. So assume that a particular leaf with
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question a*;(T?G* is not closed with T. Then we must have, first of all, that
neither a *-rule, nor a t-rule is applicable; 1| and lc are also not applicable,
so G* must be 1! But then the construction is terminated, because if is not
applicable either. Thus, the branch is closed with F. Q.E.D.

Every branch in a search tree is finite and is topped by either a circled T
or F. This assignment to the leaves can be easily (and uniquely) extended to
the whole tree and thus determines the value of the original question. One
can show two facts: (1) If T is assigned to the root of the intercalation tree,
then there is a normal derivation leading from the assumptions to the goal of
the question; (2) If F is assigned to the root of the intercalation tree, then
there is not only no normal derivation, but no derivation at all: The
intercalation tree contains enough information to show that the inference
from a to G is semantically invalid. Let me address just (2); the first fact is
established by a rather straightforward inductive argument.

Extracting Cunter examples. By the evaluation of intercalation trees we know
that a question a;?G obtains the value T or F. In case the value is T we can
determine an associated normal derivation. In case the question has value F,
we have as an immediate consequence 'The search failed!" But that only
means the particular possibilities of building up derivations — as reflected in
the construction of the intercalation tree — do not lead to a derivation that
establishes G from assumptions in a. We can do better: a special branch in
the intercalation tree can be selected and be used to define a semantic
counterexample to the inference from a to G. Clearly, if the question a;?G
evaluates as F, then so does a,G";?i, where G" is -iG if G is not a negation
and is its unnegated part otherwise. We establish the following lemma:

Counterexample extraction lemma. For any a and G: If the intercalation tree G for
oc;?G evaluates as F, then it contains a canonical refutation branch p that
determines a valuation v with v'((|>)=0 for all <|>€a and v'(G)=l. (That is, v is a
counterexample to the inference from a to G.)

The intercalation tree a is evaluated as F and thus it will be quite direct to see
that the following construction leads to a branch p through a, if T(a*<G">) is
non-empty. If this set is empty, a*<G"> consists only of sentential letters and
the valuation v, defined by v(P)=0 iff P€a*<G">, is a counterexample. If the
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set of proper subformulas of the elements of a*<G"> is non-empty, we need a
more sophisticated argument and, naturally, some auxiliary definitions. The
finite set f (a*<G">) for the negation rule i f can be enumerated (without
repetition). <Hfj>j€i is the sequence of formulas obtained from such an
enumeration by letting H1 be H if H is not a negation and its unnegated part
otherwise; I: - { i | l<i<n }; let Hf

0 be G". For i€| define

K(|3,i) - V&. (i<k<n A H'ke (3 A _,H'ke p) if there is such an Hf
k

0 otherwise

The sequence of nodes of p (and more) is determined as follows:

p*(0)

Mao,l)
P*(D

if 0<m:

p*(2m)

am

X(oo,m+1)

p(2m+l)

a;?G
a*<G">

K(OO,1)

ao;?i

- j*ocm-i;?H'x(ao/m)
(a m . i ; ?- .H' M a o , m )

- ram-i*<-'H\(ao,m)>

t.am.i*<H'x(ao,m)>

I = K(am,X.(ao,n\))

am;?l

if [am.^H'x^m)] is F
otherwise

if goal of p*(2m) is H'x(aO,m)

if goal of p*(2m) is -.H'x(a0,m)

Let v be the smallest m with ?i(ao,m+l)=O; then av = Ov+i, and the refutation
branch p is the restriction of p* to {m I ml2v+l}. Let me illustrate (and
clarify) this construction through Diagram 2: At each step in selecting the next
node of the canonical branch p one or the other indicated possibility of
proceeding must obtain (as long as the set of assumptions can be properly
extended), because not both conclusions of i f with the contradictory pair H\
and -iH'k can be evaluated as T. (In case both are evaluated as F, choose the
leftmost.) So we have selected a branch p through the intercalation tree a
that is F-closed, all of whose nodes evaluate as F, and whose "closing node",
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indicated by the checkered rectangle, is such that no rule other than i f is
applicable. Application of that rule with any formula in T(a*<Gft>)/ in
particular with Ho, leads to the canonical closing indicated in the diagram.

Let F:= {<j> | <j>€av+i}; thus, F consists of all the formulas appearing on
the l.h.s. of the question mark at p's top node. The set F has important
syntactic closure properties and this can be exploited to define a valuation that
will serve as a model for cc*<G">. We establish first the closure properties.

Closure lemma. For all subformulas <|>i, <J>2 of a*<G"> we have:

(i) either <|>i or -»<?i is in F, but not both;

(ii) - H - ^ F =>

(iii) ( foA^F => ̂ er and
=>

(iv) ( fav^r => 0i€F or
=> -.<|>1€F and

(v) (<|>i-M>2)€r => -i<t>i€F or (t>2€F;

=> <t>î F and

Proof, (i) is direct from the construction, (ii) is an almost immediate
consequence of (i): Assume - . - .^erand <MF; from the second assumption
and the first part of (i) it follows that -i<MF. But that together with the firsf
assumption contradicts the second part of (i).
Now let me establish (iii) paradigmatically to show the pattern of further
argumentation. We have to show:

=> (her and

=> H>i€F or

For (*) assume (<t>iAp2)€r and <MF (the case <j>2$F is symmetric); by (i)
Given these conditions we can close the branch as follows, applying IA2 to the
left node above the checkered one :
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This contradicts the fact that the checkered node is evaluated as F. (**) is
established in an analogous way applying IA instead of IAJ: Assume that
-i(<t>iA<|>2)€r, -i<J>i$r, and —i<j>2$r; from the last two assumptions and (i) follows
<|>i€r and <|>2€r, and the branch can be closed as indicated in the next diagram.

Q.E.D
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Now define a valuation by v(P) = 0 iff P€l\ Using this valuation and the
closure lemma we can prove the Proposition that for every $€T: vr((j))=O. Hence
v is a model for a*<GM>; this concludes the proof of the lemma concerning
the extraction of counterexamples. Putting these considerations together, we
obtain a completeness theorem for classical sentential logic in the following
form:

Completeness theorem. The intercalation tree for the question a;?G allows us to
determine either a normal derivation G from a or a branch that provides a
counterexample to the inference from a to G.

So we have a semantic argument for the normalizability of ND proofs.

Normal form theorem. If G can be proved from assumptions in a, then there is a
normal proof of G from a.

This is, as far as I know, the first semantic proof of the normal form theorem
for a natural deduction calculus. It is also extremely easy to obtain (from
intercalation derivations) the interpolation theorem.
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APPENDIX to Uctuie Cl

Diagram 1
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Diagram 2
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2. Proof search. This last lecture will consist of two parts: a systematic, logical
part extending the intercalating considerations to predicate logic; a speculative,
partly historical part extending my earlier analytic report on computablity. The
latter will be concerned mainly with Turing's and Gddel's views on whether
and how the limits of mechanical procedures can be overcome in mathematics.
They agree that such a phenomenon would show up in the search for proofs —
including the finding of axioms and the introduction of concepts.

Problem space for predicate logic. The metamathematical considerations of the
last lecture can be extended to classical predicate logic. To that end we consider
the following formulation of the elimination and introduction rules for the
quantifiers. For V:

VE VI
(Vx)(bx 4&

<|>t (Vx)<t>x

The I-rule must satisfy the restriction that a does not occur in any assumption
on which the derivation of <j>a depends. — For 3 we have the rules:

3E 31

with the usual restriction on the elimination rule, namely, a must not occur in
rj or (3x)(j>x nor in any assumption (other than 0a) on which the proof of (the
upper occurrence of) r\ depends.

In building up the intercalation tree one also applies quantifier rules "to
close the gap between assumptions and conclusions". In the formulation of the
rules T(y,G) denotes the set of terms occurring in the formulas

IV: a;(5?G, (Vx)<|>x€ap, t€T(a(3,G), <t>t*ap => a;p,<J>t?G
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*3: a;[J?G, (3x)<|>x€aP, a is new for cc,(3x)<|>x,G, and there is no t€T(<x|J,G)
with(|)t€ap => a,(|>a;P?G

tV: a;P?(Vx)(|)x, a is new for a,(Vx)<|>x => a;P?<|>a

t3: a;p?(3x)<|>x, t€T(ap,G) => a;P?<|>t

Intercalation trees are now inductively specified as in the case of sentential
logic: if a*;p*?G* is an open question, all possibilities of intercalating formulas
are considered. In case G* is different from 1 one proceeds, e.g., in the order

W, • & ! , *&2, *->, *3 , Iv , tV, t&, t->, t3 , tv , and finally either l i O r
lc; in case G* is 1 we apply L? with T containing all proper subformulas of a*
(where subformulas of quantified formulas are taken only with terms in
T(oc*,i)). Branches are closed with T and F under the same conditions as
before. However, intercalation trees will in general not be finite; that means at
every stage there will be a branch without a definite value, and to evaluate
partial trees a* we assign a third value O to the leaves of such branches. Given
the valuation va\ the value of the question at a*fs root is determined by
recursion on a* following Kleene's scheme [IM, p. 334] for three-valued logic:

[N]a* = v(N) if N is a leaf of a*

[N ] a * = [M ] a * if M is the unique predecessor of N

in case N is at a conjunctive branching,

[N]a* = ( T if for all immediate predecessors M of N: [M]a*=T
F if for some immediate predecesor M of N: [M]a*=F
O otherwise

in case N is at a disjunctive branching,

[N]a* = F if for all immediate predecessors M of N: [M]a*=F
4 T if for some immediate predecesor M of N: [M]a*=T
„ O otherwise

The intercalation tree a for a;?G is thus defined in stages as follows: aois a;?G;
is an if [a;?G]an is either T or F, otherwise an+i is obtained from a n by
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expanding each open branch by all applicable rules. Three possibilities can
arise: (1) for some n€N [a;?G]Gn=T, (2) for some n€N [a;?Glan=F/ and (3) for all
n€N [a;?G]an=O. In the first case a normal derivation can be associated with a
subtree of an; the second case provides a finite counterexample; the third case
requires additional considerations. For case (1) one selects an appropriate
subtree and proves (by induction) that it determines uniquely a normal
derivation of G from elements in a. The associated derivations have the
subformula property; i.e., every formula that occurs in them is either a
subformula of an element of a or of G, except possibly for assumptions that are
cancelled by -»E. "Subformula" is again taken in the sense appropriate for
predicate logic: any instance <j>t is a subformula of the quantified formula
(Qxfox.

Completeness and normal form. For case (2) we can construct a finite canonical
refutation branch as in sentential logic and define from it a counterexample.
Case (3) requires a little more circumspection: Instead of directiy constructing a
refutation branch, we determine first a particular infinite subtree of the
intercalation tree; Konig's Lemma is then applied to this canonical refutation
tree and yields an infinite branch from which a counterexample can be defined.

Counterexample extraction. For any a and G: if the intercalation tree a for a;?G is
such that for each natural number n [a;?G]an=O, then a contains an infinite
refutation branch p that determines a structure tt with ttt=<|>, for all (j) in a, and

Thus, ft is a counterexample to the inference from a to G.

The reason for having to cut down the intercalation tree a to the canonical
refutation tree x is this: Refutation branches have to satisfy suitable syntactic
closure conditions, and it is trivial to construct infinite branches of a that don't.
So we define x in such a way that all of its infinite branches satisfy the closure
conditions. The pertinent considerations extend those for sentential logic with
variations on Henkin and tableaux constructions, and thus I emphasize only
the crucial points.

The construction of x (as a subtree of the intercalation tree a) for the
question a;?G proceeds in two waves: The first aims for "sub-maximization"
with respect to a given finite set of formulas, whereas the second introduces
new subformulas by witnessing — through instances with new variables —
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existential and negated universal formulas that occur on the l.h.s. of ?. We
start out the construction of the binary tree x (using conventions and
definitions from the last lecture) with the first wave for the enumeration of the
proper subformulas of formulas in a*<G"> (where immediate subformulas of
quantified formulas are taken only with terms in T(a*<G">,i):

t(0)
ao
Mao,l)
t(l)

a;?G
a*<G">

K(ao,l)
cto;?l

Now let 0<m; at level 2m we extend each open branch with a question of the
form (3;?1 at its leaf by

if both questions p;?H and p;?-»H evaluate as O; if only one of them evaluates
as O, then the branch is extended at just that question. And one of these cases
must hold, because the question |3;?i evaluates as O. (Clearly, as before, H is the
first element in the given enumeration that extends p properly.) At the next
level 2m+l, every open branch is extended by applying the appropriate
negation rule. After finitely many steps this construction cannot be continued.
However, at least one branch in the tree constructed so far has to be open (for
extensions by rules other than L?), as for all n€N [cc;?G]an=O. In sentential
logic, as we saw, that cannot happen; the resulting set of formulas T is
deductively closed in the sense of the earlier Closure Lemma. Here, some of
the Ffs associated with the top nodes cannot satisfy the closure conditions

(3 x)<)>x € r => <t>t€F for some term t
and
-i(Vx)<{>x € F => -»<J)t€r for some term t.

In the first case the rule 13 is applicable (with a canonically chosen new
variable); in the second case we are able to extend the branch in the following
way (also with a canonically chosen new variable):
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p;?(Vx)<i>x

The right extension closes with T, whereas the left one remains open. This
then brings us to the second wave: We apply 13 in all possible cases and then
perform the above analysis for all -i(Vx)<J>x for which no negated instance is
available. Now the first wave can be repeated for an extended set of formulas,
and so on, obviously! We obtain in this way an infinite, binary subtree x of the
intercalation tree; Konig's Lemma applied to this canonical refutation tree
yields an infinite branch p. Define Fp » {\|/1 y occurs on the l.h.s. of ? in some
question on p}; this set has all the appropriate closure properties needed to
serve as the basis for the counterexample definition.

Closure Lemma. For all subformulas <|>i, <|>2 of <x*<G"> we have:

(i) either <|>i or -ifo is in I\ but not both;

(ii) -"to€r =>

(iii) (<J>iA02)€r => <t>ie r and (t>2er;
=> --faer or

(iv) (<>iv <t>2)€r => <Mr or
=> -^icr and --

(v) (<h-K|>2)€r => -.foer or

=> ^ ^ r and

(vi) (3x)<|>x€r => (|>ter for some term t;
-i(3x)(()x€r => -><{>t€r for all terms t;

(vii) (Vx)<t>xer => <J>ter for all terms t;

->(Vx)<|)x€r => -«J)t€r for some term t.
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The definition of a structure ft from Tp is now utterly standard, and we obtain
a completeness theorem for classical predicate logic in the following form:

Completeness Theorem. The intercalation tree for the question cc;?G allows us to
determine either a normal derivation G from a or a branch that provides a
counterexample to the inference from a to G.

So we have a semantic argument for the nonnalizability of ND proofs.

Corollary (Normal Form Theorem): If G can be proved from assumptions in a, then
there is a normal proof of G from a.

Remark. As in the case of sentential logic the Interpolation Theorem with its
standard consequences (Beth Definability, Robinson Joint Consistency) can be
obtained easily and constructively.

Let me address the question of finding proofs in mathematics — with
logical and mathematical understanding. If one looks, as one naturally would,
at Georg Polyafs writings on mathematical reasoning and heuristics, one
realizes very quickly that his most general strategies for argumentation are
logical ones. Quite sophisticated strategies are involved in a program, the
Carnegie Mellon Proof Tutor, that searches automatically and efficientiy for
natural deduction proofs in sentential logic; that program was developed by
Richard Scheines and myself with assistance from Jonathan Pressler and Chris
Walton. l Presently we are extending the program to predicate logic. Though it
is undoubtedly not logical formality per se that facilitates the finding of proofs,
logic does help to bridge the abyss between assumptions and conclusions. It
does so by suggesting very rough structures for arguments, that is, logical
structures that depend solely on the syntactic form of assumptions and
conclusions. This role of logic may seem modest, but it seems to be critical for
penetrating to essential subject-specific considerations supporting a conclusion.
It is our very ambitious goal (that will take some years of sustained work) to do
automated proof search in elementary set theory, say, up to the Schroder-
Bernstein Theorem; and in combinatorics, say up to van der Waerden's
Theorem and other Ramsey type theorems.

1 For details, in particular concerning heuristics, see [Sieg and Scheines 19921.
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So what? Let us assume for speculation's sake that we have written a
program that develops — in a completely automatic mode and guided by
intelligible heuristics (in Polya's sense) - the parts of mathematics indicated at
the end of the last section. What may we have learned? Perhaps only that
computational power is the crucial ingredient for the success of the program;
but perhaps more, namely, how to make partially explicit the collective
wisdom contained in the structure of mathematics.

Proofs provide explanations of what they prove by putting their
conclusions in a context that shows them to be correct. The deductive
organization of parts of mathematics is the classical methodology for specifying
such contexts. This methodology has two crucial aspects: the formulation of
appropriate principles and the reasoning from such principles. For founda-
tional purposes one formulates quasi-constructive principles as axioms —
principles that underly the "construction" of objects in the intended model —
e.g., of natural numbers, sets in the cumulative hierarchy, or elements of
inductively defined classes; for mathematical practice one formulates principles
for concepts that characterize general structures without canonically generated
elements — in order to make analogies between different parts of mathematics
precise and to achieve generality of arguments in that way. Reasoning from
principles is mediated through logical inferences and subject-specific lemmata.
These two aspects correspond schematically to intuition and ingenuity, the two
faculties Turing thought are involved in mathematical reasoning.

The activity of the intuition consists in making spontaneous judgments which are not the result of
conscious trains of reasoning. These judgments are often but by no means invariably correct...
Often it is possible to find some other way of verifying the correctness of an intuitive judgment.
We may, for instance, judge that all positive integers are uniquely factorizable into primes; a
detailed mathematical argument leads to the same result. This argument will also involve
intuitive judgments, but they will be less open to criticism than the original judgment about
factorization.2

Ingenuity is to aid intuition by "suitable arrangements of propositions, and
perhaps geometrical figures and drawings". If the latter are arranged suitably,
then "the validity of the intuitive steps which are required cannot seriously be
doubted11. Clearly, the role played by these faculties differs from mathematician
to mathematician, from subfield to subfield. This arbitrariness, Turing

[Turing 19391, pp. 208-209.
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believed, is removed by the introduction of a "formal logic"; formal rules (that
correspond to intuitively valid inferences) reduce greatly the necessity for
appealing to intuition, and the idea of ingenuity takes on a more definite
shape, when we work in a formal logic:

In general a formal logic will be framed so as to admit a considerable variety of possible steps in
any stage in a proof. Ingenuity will then determine which steps are the more profitable for the
purpose of proving a particular proposition.

These broad considerations are connected directly to the discussion of actual or
projected computing devices in his Lecture to the London Mathematical
Society and Intelligent Machinery, where Turing calls for both "intellectual
searches11 (i.e., heuristically guided searches) and "initiative" (that includes, in
the context of mathematics, proposing intuitive steps). So Turing faces both
problems: formulating heuristics with respect to a fixed search space, that is,
derivations of a particular formal system, but also finding new principles. The
latter problem has to be addressed since, in Turing's own phrase, the necessity
for intuition cannot be entirely eliminated because of Godel's theorems.

Indeed, in his investigation of ordinal logics, Turing was not about to
formulate "ingenious" ways of finding proofs; on the contrary, ingenuity was
replaced by "patience" based on the fact that the theorems of a formal logic can
always be effectively enumerated and on the assumption that "all proofs take
the form of a search through this enumeration for the theorem for which a
proof is desired". And he focused on ways of transcending the limitations
imposed by the Incompleteness Theorems. In 1947, when he was more
concerned with the actual construction of computing machines, he
nevertheless emphasized the shift of the theoretical issues:

As regards mathematical philosophy, since the machines will be doing more and more
mathematics themselves, the centre of gravity of the human interest will be driven further and
further into philosophical questions of what can in principle be done etc.**

If the interpretation of the Incompleteness Theorems (seen as formulating
particular answers to the question of what in principle can be done) is to be
informative, the relation of Turing computability to effective calculability and
the informal understanding of the latter notion must come to the fore.

3 [Turing 1947], p. 122.
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GodeVs disjunct. Post emphasized in his 1936 paper that the Incompleteness
and Undecidability Theorems exemplify "a fundamental discovery in the
limitations of the mathematizing power of Homo Sapiens". In his 1944-paper
he remarked with respect to these results:

Like the classical unsolvability proofs, these proofs are of unsolvability by means of given
instruments. What is new is that in the present case these instruments, in effect, seem to be the
only instruments at man's disposal.4

For Godel - in contrast to Post - the Incompleteness Theorems do not establish
"any bounds for the powers of human reason, but rather for the potentialities
of pure formalism in mathematics".5 Turing's work provides, according to
Godel, "a precise and unquestionably adequate definition of the general concept
of formal system"; consequently, the Incompleteness Theorems hold for
arbitrary formal systems (satisfying the usual conditions). Curiously enough,
in [Godel 1972a] there is a discussion of a "philosophical error in Turing's
work" that can be regarded as a footnote to the word "mathematics" in the first
quotation. Godel claims that Turing, on page 136 of [Davis 1965], gives an
argument to show that "mental procedures cannot go beyond mechanical
procedures". What is given on that page is a very brief argument showing that
"the number of states of mind that need be taken into account is finite". The
context makes crystal-clear that mechanical procedures are being analyzed, and
thus I cannot see a philosophical error in Turing's work; rather, I believe the
error is in Godel's interpretation.

However, the interest of Godel's remarks in this note is quite
independent of his error; they summarize points for which he had argued
more extensively in his Gibbs Lecture (1951). If mathematics, Godel stated
there, is viewed as a body of propositions that "hold in an absolute sense", then
the Incompleteness Theorems express the fact that mathematics is not
exhaustible by a mechanical enumeration of its theorems. After all, the First
Theorem yields, for any consistent formal system S containing a modicum of
number theory, a simple arithmetic sentence that is independent of S. But
Godel emphasized that it is the Second Theorem that makes this phenomenon
of inexhaustibility particularly evident.

4 [Post 1944], p. 310 in [Davis 19651.
5 [Godel 1964], pp. 72-73.
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For it makes it impossible that someone should set up a certain well-defined system of axioms and
rules and consistently make the following assertion about it: All of these axioms and rules I
perceive (with mathematical certitude) to be correct, and moreover I believe that they contain
all of mathematics.6

If someone claims this, he contradicts himself: Recognizing the correctness of
all axioms and rules means recognizing the consistency of the system. Thus, a
mathematical insight that does not follow from the axioms has been gained.
To explain carefully the meaning of this situation, Godel distinguished
between "objective" and "subjective" mathematics: Objective mathematics
consists of all true mathematical propositions; subjective mathematics contains
all humanly provable mathematical propositions. Clearly, there cannot be a
complete formal system for objective mathematics; but it is not excluded that,
for mathematics in the subjective sense, there might be a finite procedure
yielding all of its evident axioms (though we could never be certain that all of
these axioms are correct). But if there were such a procedure, then — at least as
far as mathematics is concerned - the human mind would be equivalent to a
Turing machine. Furthermore, there would be simple arithmetic problems
that could not be decided by any mathematical proof intelligible to the human
mind. If we call such a problem absolutely undecidable we have established
with full mathematical rigor that either mathematics is inexhaustible in the
sense that its evident axioms cannot be generated by a finite procedure or there
are absolutely undecidable arithmetic problems.7

Aspects of mathematical experience. This theorem appears to Godel to be of
"great philosophical interest". That is not surprising, since he explicates the
first alternative in the following way: "... that is to say, the human mind (even
within the realm of pure mathematics) infinitely surpasses the powers of any
finite machine". However, if one takes seriously this reformulation, then one
certainly should try to see in what ways the human mind "transcends" the
limits of mechanical computors. Godel suggested in (1972a) that there may be
(humanly) effective, but non-mechanical procedures. Yet even the most
specific of his proposals, Godel admitted, "would require a substantial advance
in our understanding of the basic concepts of mathematics". That proposal
concerned the extension of systems of axiomatic set theory by axioms of

6 [Godel 1951], pp. 5-6.
7 [Godell951],p.7.
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infinity, i.e., extending segments of the cumulative hierarchy. The problem of
extending what I call accessible domains is not special to the case of set theory;
rather, there are completely analogous issues for the theory of primitive
recursive functionals and for the theory of constructive ordinals in the second
number class. This is the first of the two aspects of mathematical experience I
want to describe briefly; as a matter of fact, both aspects are related to features of
"mental procedures" Godel discussed.

Accessible domains, constituted by inductively generated elements, are
most familiar from mathematics and logic. In proof theory, for example,
inductively defined higher constructive number classes have been used in
consistency proofs for impredicative subsystems of analysis. These and other
classes provide special cases in which generating procedures allow us to grasp
the intrinsic build-up of mathematical objects. And such an understanding is a
fundamental source of our knowledge of mathematical principles for the
domains constituted by them; for it is the case, I suppose, that the definition
and proof principles for such domains follow directly from the comprehended
build-up.8 If we understand, for example, the set-theoretic generation procedure
for a segment of the cumulative hierarchy, then it is indeed the case that the
axioms of ZF" (i.e., ZF without the postulate for the existence of the first infinite
ordinal), together with a suitable axiom of infinity, "force themselves upon us
as being true" in Godel's famous phrase; they simply formulate the principles
underlying the "construction" of the objects in this segment.9

The sketch of this quasi-constructive aspect of mathematical experience
is extremely schematic and yet, I think, helpful for further orientation. For
Dedekind, consistency proofs were to ensure that axiomatically characterized
notions (like that of a complete ordered field) were free from "internal
contradictions". Here we are dealing with abstract notions without an

8 A broad framework for the "inductive or rule governed generation" of mathematical objects is described
in [Aczel 1977]; it is indeed so general that it encompasses not only finitary i.d. classes, higher number
classes, and models of a variety of constructive theories, but also segments of the cumulative hierarchy. It
provides a uniform framework in which the difficulties (in our understanding) of generating procedures can
be compared and explicated.
9 There is a rich literature dealing with the "iterative conception of set" including papers by Parsons and
Wang; that cannot be discussed here. For references to this literature, see the second edition of Philosophy
of Mathematics, edited by Benacerraf and Putnam, Cambridge, 1983.
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"intended model" constituted by inductively generated elements.10 And these
notions are distilled from mathematical practice for the purpose of
comprehending complex connections, of making analogies precise, and of
obtaining a more profound understanding. It is in this way that the axiomatic
method teaches us, as Bourbaki (1950) expressed it in Dedekind's spirit,

to look for the deep-lying reasons for such a discovery [that two, or several, quite distinct
theories lend each other "unexpected support"], to find the common ideas of these theories,... to
bring these ideas forward and to put them in their proper light.

Notions like group, field, topological space, and differentiable manifold are
abstract in this sense and are properly investigated, i.e., in full generality, in
category theory. Another example of such a notion is that of Turing's
mechanical computor! Though Godel (1972 a) uses "abstract11 in a more
inclusive way than I do here, it seems that the notion of computability
exemplifies his broad claim "that we understand abstract terms more and more
precisely as we go on using them, and that more and more abstract terms enter
the sphere of our understanding". This conceptional aspect of mathematical
experience and its profound function in mathematics have been entirely
neglected in the logico-philosophical literature on the foundations of
mathematics - except in the writings of Paul Bernays.

Final remarks. I argued that the sharpening of axiomatic theories to formal
ones was motivated by epistemological concerns. A central point was the
requirement that the checking of proofs ought to be done in a radically
intersubjective way; it should involve only operations similar to those used by
a computor when carrying out an arithmetic calculation. Turing analyzed the
processes underlying such operations and formulated a notion of computability
by means of his machines; that was in 1936. In a paper written about ten years
later and entitled Intelligent Machinery, Turing stated what really is the central
problem of cognitive psychology:

If the untrained infant's mind is to become an intelligent one, it must acquire both discipline and
initiative. So far we have been considering only discipline [via the universal machine, W.S.]. ...
But discipline is certainly not enough in itself to produce intelligence. That which is required in

^ The categoricity of the second-order theory of complete ordered fields does not argue against this point;
as another example of a theory exhibiting similar features consider the theory of dense linear orderings
without endpoints.
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addition we call initiative. This statement will have to serve as a definition. Our task is to
discover the nature of this residue as it occurs in man, and to try and copy it in machines.

The task of copying is difficult, some would argue impossible in the case of
mathematical thinking. But before we can start copying, we have to discover —
at least partially — "the nature of the residue". Thus we are led back to the
questions: What are essential aspects of mathematical experience? Are they
mechanizable? I have tried to give a very tentative and partial answer to the
first question. As far as the second question is concerned, I don't have even a
conjecture on how it will be answered. Whatever the right answers may be,
mathematical experience represents an extremely important component of
Turing's problem, and we should investigate crucial aspects vigorously — by
historical case studies, theoretical analyses, psychological experimentation and,
quite in Turing's open spirit, by machine simulation.
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