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Turing's "Machines". These machines are humans who calculate.

Wittgenstein

0. Introduction. Wittgenstein's terse remark1 captures the
feature of Turing's analysis of calculability that makes it
epistemologically relevant. To focus on the philosophy of
mathematics, I will contrast this feature with two striking aspects
of mathematical experience emphasized repeatedly by Godel. The
first, "conceptional" aspect is connected to the notion of mechanical
computability through his assertion that "with this concept one has
for the first time succeeded in giving an absolute definition of an
interesting epistemological notion"; the second, "quasi-
constructive" one is related to axiomatic set theory through his
claim that its axioms "can be supplemented without arbitrariness by
new axioms which are only the natural continuation of the series of
those set up so far". Godel speculated, how the second aspect might
give rise to a humanly effective procedure that cannot be
mechanically calculated and thus provide a reason for his belief that
the class of mental procedures is not exhausted by mechanical ones.
Leaving this latter speculation aside, Godel's remarks point to data
that underly the two aspects and "challenge", in the words of Charles
Parsons, "any theory of meaning and evidence in mathematics".2

Not that I will present a theory accounting for these data;
rather, I will mainly clarify the first datum by reflecting on the
question that is at the root of Turing's analysis and central for
mathematical logic, as well as cognitive psychology and artificial
intelligence. In its sober mathematical form the question simply
asks "What is an effectively calculable function?". The equivalent
answers given in the mid-thirties are widely taken to be of
fundamental significance also for the less sober question "Are we
(reducible to) machines?"; after all, Turing's answer to the

1 from [1980], § 1096. I first read this remark in [Shanker 1987], where it is described as a
"mystifying reference to Turing machines".
2 [Parsons 1990], p. 23. - The speculation is taken up briefly in the last section of this paper
and, in detail, in my joint paper with Tamburrini, "Does Turing's Thesis matter?".



mathematical question used the concept of an idealized computing
machine. Turing presented his characterization in 1936 to give a
negative solution to Hilbert's Entscheidungsproblem, and his
characterization is generally accepted as correct or at least as more
convincing than others. But what are the reasons for such a
judgement? It seems to me that this issue has yet to be treated
adequately.3

When approaching the original question it is important to
expose its emergence from work in the foundations of mathematics.
Thus, the first part of my essay is to provide BACKGROUND by
presenting epistemological concerns that motivated the use of
effectively decidable notions in mathematics as well as in logic, and
by summarizing (meta-) mathematical issues that required an
analysis of effective calculability. The second part starts out with
a discussion of general recursive functions as introduced by
(Herbrand and) Godel, but it focuses on Church's main argument for
the proposal to identify recursiveness with the informal notion of
effective calculability. Thus, CHURCH'S THESIS is at the center of the
second part. I will point out unsatisfactory aspects of Church's
argument, but also the centrality of the concept calculability in a
logic for this early discussion. That prepares the ground for TURING'S
ANALYSIS of mechanical processes carried out by a human computor.
The third part refines and generalizes that analysis, isolates TURING'S

T H E S I S as asserting that a human computor satisfies certain
finiteness conditions, and argues for the pertinency and correctness
of the thesis.4

3 But see [Tamburrini 1988] and the critical survey of the literature given there. The present
paper is part of a book project Tamburrini and I have been pursuing for a number of years. • A
detailed review of the classical arguments is in Kleene's Introduction to Metamathematics or,
briefly, IM sections 62, 63, and 70; section 6.4 of [Shoenfield] contains also a careful
discussion of Church's Thesis; and, finally, the first chapter of [Odifreddi 1989] provides a
broad perspective for the whole discussion.

* In his interesting [1990] Mendelson intends "to renounce the standard views concerning the
nature of Church's thesis" and concludes (p. 233) that the thesis is true on account of Turing's
analysis of the essential elements involved in computation". Very standardly, however, he
emphasizes (i) that the "independently proposed" explications of Church, Post, and Turing are
"quite different", and (ii) that Turing used his machines directly as mathematical models "to
capture the essence of computability". (The real target of) Turing's analysis and the source of



The generalized form of the analysis allows us to connect
Turingfs considerations in a most informative way with Church's
argument and Godel's proposal. These systematic connections
reinforce the conceptual core of the early investigations and
weaken, if not undermine, the "argument from confluence of
different notions" in favor of Church's Thesis. Turing's analysis was
in perfect accord with Church's views as can be gathered from the
1937 review Church wrote of Turing's paper. In his review Church
asserted, it is "immediately clear" that the notion of Turing
computability "can be identified with ... the notion of effectiveness
as it appears in certain mathematical problems (various forms of
the Entscheidungsproblem ... and in general any problem which
concerns the discovery of an algorithm)." Godel, similarly, was
convinced of the correctness of Church's Thesis by Turing's analysis
and used the adequacy of Turing's notion to establish rigorous
consequences for the mind & machine problem. The fourth part of my
essay presents these Godelian consequences and what I take to be
closely related, but more general ASPECTS OF MATHEMATICAL EXPERIENCE;

they reflect the two striking features alluded to in Godel's remarks I
quoted above. But note that these features are separable from his
Platonism; they are more subtly attuned, as I will argue, to the
practice of mathematics.
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and 3 have profited from discussions with Guglielmo Tamburrini and Robin Gandy. As to
the published literature, the original papers of Godel, Church, Turing, Post, Kleene, and
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learned a great deal from the historical papers of Martin Davis [1982] and Stephen C.
Kleene [1981, 1988]. To Clark Glymour I owe Herbrand's remarkable letter to Claude
Chevalley and to Catherine Chevalley the permission to quote from it. Thanks for
improvements are due to A. Behboud, A. Ignjatovic, G. H. Muller, P. Odifreddi, T.
Seidenfeld, and, especially, to J. W. Dawson. Finally, I am grateful to the editors of
Gfidel's Collected Works (Solomon Feferman, John W. Dawson, Warren Goldfarb, and
Charles D. Parsons) for access to the correspondence between Herbrand and Godel,
Bernays and Gddel, and to Godel's as yet unpublished lectures [1933] and [1951]. The
Institute for Advanced Studie, Princeton, gave me permission to quote from this
unpublished material; similarly, the Bibliothek der ETH, Zurich, allowed me to use
Bernays1 correspondence with Church, Herbrand, and Turing.

the restrictive, "normalizing assumptions" for Turing machine computations are not mentioned
at all; compare section 3.2 below.



1. Background. The precise connection between the informal
notion of effective calculability and the mathematical notion of
computability is brought to light, as section 3 will show in detail,
by Turing's analysis of effectively calculable functions. According
to Turing "A function is said to be 'effectively calculable1, if its
values can be found by some purely mechanical process*5; and this
latter notion — with a specifically human touch — was
characterized by Turing through axiomatic conditions and was shown
to be equivalent to Turing machine computability. For a critical
appreciation of the analysis and its remarkable pertinency it is
crucial to be clear about the mathematical and philosophical context
in which it arose; indeed, section 3.2 argues that the general
"problematic" required an analysis of the kind Turing offered.

1.1. Effectiveness (in mathematics and logic).6 The problematic
of effective calculability emerged within two traditions in logic and
mathematics where proper symbolic representations of problems
and their algorithmic solution were searched for. These traditions
met briefly in Leibniz; he viewed algorithmic solutions of
mathematical and logical problems as paradigms of problem solving
in general. Remember that he recommended to disputants in any
field to sit down at a table, take pens in their hands, and say
"Calculemus!". His recommendation was clearly based on high hopes
for his lingua characterica and calculus ratiocinator. This is
relevant pre-history; relevant history begins in the second half of

5 [Turing 1939], see [Davis 1965], p. 160. I want to warn the reader against misinter-
pretations of Turing's Thesis by "mechanists" - as in [Webb 1980], p. 9, where it is claimed
that it is a very strong thesis indeed, "for it says that any effective procedure whatever,
using whatever 'higher cognitive processes' you like, is after all mechanizable"; but also
against the misunderstanding of the thesis and an emphasis of absolutely misleading issues by
"anti-mechanists" - as in [Searle 1990], in particular pp. 24-28. On p. 26 Searle claims, for
example, that the standard definition of "digital computer" he traces back to Turing seems to
imply: "For any object there is some description of that object such that under that description
the object is a digital computer."
6 Here and in section 4.3 I draw on my paper [1990] and refer to it for additional and relevant
details. - For a comprehensive discussion of Leibniz's views, see [Spruit and Tambumni];
[Kramer] traces the historical development of calculi in a very informative way. Note that I
focus here on the - for my purposes - most relevant background and do not discuss, for
example, Babbage's (theoretical) work; for that see [Gandy 1988].



the 19th century with detailed work in the foundations of
mathematics, in particular, with the so-called arithmetization of
analysis and the axiomatic characterization of the real numbers.
Dirichlet had demanded that a systematic arithmetization should
show that any theorem of algebra and higher analysis could be
formulated as a theorem about natural numbers. In this way, I
assume, he hoped to clarify the role of analytic methods in number
theory; recall that it was he who had introduced such methods in the
proof of his famous theorem on arithmetic progressions. Dedekind
and Kronecker, both deeply influenced by Dirichlet, sought to give an
arithmetization satisfying Dirichlet's demand, but they proceeded in
radically different ways. Their pertinent essays brought out
conflicting philosophical positions that have influenced, directly or
indirectly, the subsequent foundational discussion. But -- and I
would like to emphasize this very strongly -- these positions
evolved from and influenced their closely related mathematical
work in algebraic number theory. (The background and the evolution
of their work should be the focus of a case study concerned with the
revolutionary changes in mathematics during the 19th century.)

Kronecker admitted as objects of analysis only natural
numbers outright; from them he constructed in now familiar ways
integers and rationals. Even algebraic reals were introduced, since
they can be isolated effectively as roots of algebraic equations. The
general notion of irrational number, however, was rejected in
consequence of two restrictive methodological conditions to which
mathematical considerations have to conform: (i) concepts must be
decidable in finitely many steps, and (ii) existence proofs must be
carried out in such a way that they present objects of the required
kind. Consequently, there could not exist any infinite mathematical
objects for Kronecker. All of this adds up to a strictly arithmetic
procedure, and Kronecker thought that following it analysis could be
re-obtained. More than one hundred years later, we know that such a



redevelopment is not as chimerical as people in the twenties, for
example Hilbert, believed.7

Dedekind opposed Kronecker's methodological restrictions. He
maintained with respect to the decidability condition (i) that it is
determined independently of our knowledge, whether an object does
or does not fall under a concept. He also used infinite sets of
natural numbers as respectable mathematical objects, e.g., in his
definition of real numbers by cuts. But how, you may ask, was the
EXISTENCE of such mathematical objects to be secured? - Dedekind
intended to give purely logical proofs for the existence of models of
axiomaticaily characterized notions, not of individual mathematical
objects. Thus the "consistency" of the notions would be guaranteed.
With regard to the development in his booklet Was sind und was
sollen die Zahlen he wrote to Keferstein in a letter dated February
27, 1890:

After the essential nature of the simply infinite system, whose abstract type is the
number sequence N, had been recognized in my analysis ... the question arose: does such a
system exist at all in the realm of our ideas? Without a logical proof of existence it
would always remain doubtful whether the notion of such a system might not perhaps
contain internal contradictions. Hence the need for such a proof.8

Dedekind viewed his considerations not as specific for foundational
systems, but rather as paradigmatic for a general mathematical
procedure intended to secure the coherence of axiomatically given
notions. -- In sum, Dedekind tried to safeguard his axiomatic
approach by consistency proofs relative to logic broadly conceived,
whereas Kronecker insisted on a radical restriction of mathematical
objects and methods.

Dedekind recognized that Frege's logical foundation for natural
numbers agreed with his own: in the details of justifying induction,
but also in assuming the unrestricted comprehension schema as a

7 There is much mathematical work, partly related to proof theory, that started with Weyl's
"Das Kontinuum" and early lectures of Hilberfs presented in the second volume of Grundlagen
der Mathematik. During the last decade important and most relevant work was done in
"reverse mathematics"; see my review [1990 a].
8 [van Heijenoort 1967], p.101.



logical principle. Dedekind's development of his theory was
uncompromisingly rigorous, but mathematically informal; Frege, by
contrast, insisted on giving arguments in his Begriffsschrift. With
this formula language Frege had realized some of Leibniz's hopes and
provided for the first time the means necessary to formalize
mathematical proofs. His booklet Begriffsschrift did not only offer
a rich language with relations and quantifiers, but its logical
calculus also required that all assumptions were explicitly listed,
and that each step in a proof was taken in accord with one of the
antecedently specified rules. Frege considered this last require-
ment, correctly, as a sharpening of the axiomatic method he traced
back to Euclid's Elements. With this sharpening Frege pursued the
aim of recognizing the "epistemological nature" of theorems. In the
introduction to Grundgesetze der Arithmetik he wrote:

By insisting that the chains of inference do not have any gaps we succeed in bringing to
light every axiom, assumption, hypothesis or whatever else you want to call it on which
a proof rests; in this way we obtain a basis for judging the epistemological nature of the
theorem.9

But such a basis can be obtained only, Frege realized, if inferences

do not require contentual knowledge: their applications have to be

recognizable as correct on account of the form of the sentences

occurring in them. Indeed, Frege claimed that in his logical system

"inference is conducted like a calculation", and he continued:

I do not mean this in a narrow sense, as if it were subject to an algorithm the same as ...
ordinary addition and multiplication, but only in the sense that there is an algorithm at
all, i.e. a totality of rules which governs the transition from one sentence or from two
sentences to a new one in such a way that nothing happens except in conformity with
these rules.10

Almost fifty years later, in 1933, Godel pointed back to Frege and
Peano when he formulated "the outstanding feature of the rules of

9 [Frege 1893].
10 [Frege 1984], p. 237. But he was careful to emphasize (in other writings) that all of
thinking "can never be carried out by a machine or be replaced by a purely mechanical
activity"; [Frege 1969], p. 39. He went on to claim: "Wohl laBt sich der Syllogismus in die
Form einer Rechnung bringen, die freilich auch nicht ohne Denken vollzogen werden kann, aber
doch durch die wenigen festen und anschaulichen Formen, in denen sie sich bewegt, eine grosse
Sicherheit gewahrt. "
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inference" in a formal mathematical system. The rules, Godel said,
"refer only to the outward structure of the formulas, not to their
meaning, so that they can be applied by someone who knew nothing
about mathematics, or by a machine."11 Formulas represented for
Frege (abstract) propositions in a concrete way; and their concrete
character provided the basis for the algorithmic transitions
reflecting logical inferences. For this to be really useful the
representation had to be adequate, and Frege asserted, "Proper use
can be made of this only if the content is not just indicated, but if it
is built up from its components by means of the very same logical
signs, that serve for the computation." (This continues the quote in
note 10.) Frege believed that his Begriffsschrift provided the means
to represent content adequately.

1.2 Finitist mathematics. It is all too well-known that Frege's
precise formal (re-) presentation did not prevent Russell from
deducing a contradiction from the basic laws. A contradiction could
also be obtained from the principles for Dedekind's notion of system.
How this problem in Dedekind's foundational work already stirred
Hilbert's concerned interest in the last few years of the 19th century
is detailed in [Sieg 1990]. But it was only in his paper of 1904 that
Hilbert proposed a radically new, though still vague approach to the
consistency problem for mathematical theories. He suggested using
the finiteness of mathematical proofs in order to establish directly,
not through models, that contradictions could not be derived within
particular mathematical theories. When during the early twenties
he turned the issue into an elementary arithmetical problem, he
strategically joined the developments arising out of Frege's formal
logical work with Kronecker's requirements for "genuine"
mathematics (in order to save Dedekind's conception of the
subject).12

11 [G&del 1933], p. 1. He added parenthetically: "This has the consequence that there can
never be any doubt [as] to what cases the rules of inference apply, and thus the highest
possible degree of exactness is obtained."
12Another significant influence was the sharpening of the "hypothetico-deductive method"
within mathematics; a sharpening that brought about a separation of syntax and semantics for



Frege did not consider the possibility of mechanically drawing
inferences and of algorithmically solving some problems to be
among the logically significant achievements of his Begriffsschrift.
But Hilbert grasped the potential of this formal aspect, radicalized
it, and exploited it for programmatic purposes; namely, to justify
finitistically the use of classical theories T for establishing
finitist statements without taking into account the (problematic)
content of T . 1 3 That amounted to giving a finitist proof of the
reflection principle

PrT(x,y) - +

where Prj is the finitist proof predicate for T, <j> a finitist
statement, and >' its translation in the language of T. This is
directly related to the consistency problem, as the reflection
principle is equivalent to the consistency statement for T under
well-known conditions. - It is perhaps worthwhile to mention that
the connection to the 19th-century issues in the foundations of
analysis was emphasized also by the independently-minded Jacques
Herbrand, who described in his [1929b] a special case of the general
consequence to be drawn from a (finitist) consistency proof for the
system of Principia Mathematical

If an arithmetical theorem has been proved by using incommensurable numbers or
analytic functions, then it can also be proved by using only purely arithmetic elements
(integers and functions defined by recursion). Examples of this are Dedekind's theorem
of prime numbers, and class field theory.14

It seemed that proof theoretic investigations would resolve
the earlier methodological problems in a most satisfactory way,

mathematical theories. This separation was, for example, clear to Dedekind. Wiener's talk at
the meeting of the Deutsche Mathematiker Vereinigung in Halle, succinctly summarized in his
[1891], made this methodological point very forcefully and impressed Hilbert strongly. For
this development compare [Guillaume 1985], pp. 766-777.
1 3 Clearly, an adequate representation of content was taken for granted. - Cf. [Kreisel 1968]
for the following discussion.
1 4 [Herbrand 1929b], p. 43. I assume that Herbrand had in mind Dirichlefs theorem mentioned
above. - Cf. also [Herbrand 1930], p. 187, where he hopes that his approach will allow the
elimination of "transcendental methods" from proofs of arithmetic theorems.
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because of the restricted character of finitist mathematics. Hilbert
took finitist mathematics to be an elementary part of arithmetic,
and it was assumed to coincide with the part of mathematics
accepted by Kronecker and Brouwer.15 Thus, for his metamathe-
matical investigations Hilbert joined the constructivist tradition in
mathematics whose crucial features had been formulated by
Kronecker. The latter's views influenced the French discussion
surrounding the validity of the axiom of choice and set theoretic
methods generally at the very beginning of the twentieth century,
and they were alive and well in Germany even during the twenties.16

The epistemological motivation for the restrictions was quite
explicit in those discussions. As far as the still evolving program of
Hilbert's and its direction are concerned, it was clearly formulated
by Bernays in a talk at the 1921 meeting of the Deutsche
Mathematiker Vereinigung in Jena17:

The assumption of such a system with particular connection properties [i.e., the
assumption of the existence of a set of objects that satisfies certain axioms, W.S.]
contains something as it were transcendent for mathematics, and thus the question
arises, which principled position one should take with respect to it. ... It would be quite
hasty to deny from the very beginning any farther-reaching kind of intuitive evidence;
nevertheless, we certainly want to take into account the tendency of the exact sciences to
eliminate the more subtle organs of knowledge and use only the most primitive means of
[acquiring] knowledge. From this perspective we are going to try [to determine]
whether or not it is possible to justify those transcendent assumptions in such a way
that only primitive intuitive knowledge is being applied.

Bernays goes on to discuss how Hilbert's approach addresses this
problem and how it combines what is "positively fruitful" in the
attempts of the intuitionists and logicists to provide a foundation
for mathematics. - A methodological point, similar to the main

15 Support for this claim is given in [Sieg 1990], pp. 271-272. The "mediating" role of the
program was not only described by the immediate members of the Gottingen school, but also,
for example, by Herbrand; see [Herbrand 1971], pp. 211-12.
16 These connections are elaborated in [Sieg 1984]; as to the lively interest in Kroneckei^s
ideas in Germany in the twenties, see [Pasch 1918] and [Kneser 1925]. When describing the
central features of "intuitionist" mathematics, e.g. in [1931a] and [1931c], Herbrand
emphasized exactly Kronecker's points; see [Herbrand 1971], p. 273 and footnote 5, pp. 288-
289.
17 [Bernays 1922], p. 11. I will come back to these remarks in section 4.2.
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point in the above quotation, was made by Bernays in his [1923],
where he emphasized (on page 163):

The possibility of a philosophical position that recognizes [natural] numbers as
existent, non-sensory objects is not excluded by Hubert's theory - but then, logically
speaking, the same kind of ideal existence would have to be granted also to transfinite
numbers, in particular, to the numbers of the so-called second number class. It is its
[the theory's] goal, however, to make such a position dispensable for the foundation of
the exact sciences.

Within the finitist frame this ultimate goal of Hilbert's program
could not be achieved due to Godel's Incompleteness Theorems; the
latter forced a reevaluation of the epistemological perspective that
had been underlying Hilbert's program.18

There is one point I would like to emphasize; namely, Hilbert's
metamathematical way of precisely describing formalisms and of
investigating them with finitist means opened the way to the
rigorous treatment of fascinating issues that are still being
pursued. This novel approach, going radically beyond Frege, and its
parallel to ordinary mathematical investigations were lucidly
expressed in Hilbert and Ackermann's Grundzuge der theoretischen
Logik:

Mathematical logic achieves more than a sharpening of language by a symbolic
representation of inferences. Once the logical formalism is fixed, we can expect that a
systematic, so-to-speak calculatory treatment [rechnerische Behandlung] of logical
formulas is possible that corresponds roughly to the theory of equations in algebra. ...

Herbrand, as well as other young and quite brilliant mathematicians,
was attracted by Hilbert's approach and viewed mathematical logic
as a new branch of mathematics. He emphasized that it was
independent of Hilbert's philosophical opinions, but that the novel
questions opened "a scarcely explored domain of arithmetical
investigations of the greatest interest, which may well contain

18 That is expressed in the Nachtrag to [Bernays 1930], p. 61 of [Bernays 1976]. - In a letter
to Gddel, written on September 7, 1942, Bernays emphasized that the methodological points of
the above character do not correspond to a "strict formalist standpoint"; he continued:" ... aber
einen solchen habe ich niemals eingenommen, insbesondere habe ich mich in meinem (Sommer
1930 geschriebenen) Aufsatz 'Die Philosophie der Mathematik und die Hilbertsche
Beweistheorie1 deutlich davon distanziert, und noch mehr dann in dem (Ihnen wohl bekannten)
Vortrag 'Sur le piatonisme dans les math<§matiques\"
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surprises".1 9 In particular, metamathematics allowed a mathe-
matical treatment of what Herbrand viewed "in a sense" as "the most
general problem of mathematics". Already at the end of his thesis
he had emphasized, "The solution of this problem would yield a
general method in mathematics and would enable mathematical logic
to play with respect to classical mathematics the role that analytic
geometry plays with respect to ordinary geometry."20 We turn to
this problem now.

1.3 Entscheidungsproblem. The problem Herbrand alluded to is
closely related to the consistency problem; it is the so-called
Entscheidungsproblem or decision problem and was to be subjected
to a rechnerische Behandlung (i.e., a calculatory treatment). Its
classical formulation in terms of validity, or respectively,
satisfiability, is found in Hilbert and Ackermann's book:

The Entscheidungsproblem is solved if one knows a procedure that allows one to decide
the validity (respectively, satisfiability) of a given logical expression by a finite
number of operations.2^

Hilbert and Ackermann italicized this paragraph and emphasized the
fundamental importance of a solution to the decision problem.
Indeed, Herbrand viewed the decision problem as another route to
establishing consistency. Assume that T is a theory with finitely
many axioms Hi Hn

22; if - 4 is a theorem of T, then the validity

(for Herbrand that meant provability in predicate logic) of the
formula (Hi & ... & Hn) -* <t> is equivalent to the inconsistency of T.
This connection is explained by Herbrand after having described the
decision problem most interestingly as follows:

However, there is another viewpoint from which work can be done and in which
encouraging results have already been obtained: the study of what the Germans call the

1 9 [Herbrand 1931a], p. 276.
2 0 [Herbrand 1930] p. 188; the same point is made in [1930a], p. 214.
2 1 [Hilbert and Ackermann], pp. 72 • 73.
2 2 Herbrand thought that this assumption was not restrictive: "And in general", he wrote in his
[1930 a], p. 213, "we can contrive so as to make all usual mathematical arguments in theories
that have only a determinate finite number of hypotheses. Thus we can see the importance of
this problem, whose solution would allow us to decide with certainty with regard to the truth of
a proposition in a determinate theory."
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Entscheidungsproblem, which consists of seeking a method allowing us to recognize with
certainty (at the end of a number of operations which can be determined beforehand)
whether or not a given proposition is an identity, and if it is to find a proof of the
proposition.23

Thus, a solution to the decision problem must consist of a method
that yields an answer effectively (i.e., after finitely many steps) and
of a finitist proof that establishes the termination of the method;
such a proof would guarantee certainty and would also provide a
bound on the number of required steps.24 These additional
requirements make understandable why Herbrand reproved and
extended partial results that had been obtained by Lowenheim and
Behmann.25 He emphasized that only his, not Lowenheim's proof
satisfied the stringent metamathematical or finitist requirements:
"We could say that Lowenheim's proof was sufficient in mathe-
matics; but, in the present work, we had to make it 'metamathe-
matical1 ... so that it would be of some use to us."26

Researchers in the Hilbert school realized full well that a
positive solution for predicate logic - together with the assumption
of finite axiomatizability of theories and the quasi-empirical
completeness of Principia Mathematica27 - would allow the decision
concerning the provability (truth) of any mathematical statement.

23 [Herbrand 1930a], p. 213.
24 In [Gandy 1988], p. 64-65, one finds the remark that this idea of requiring bounds turns up
over and over "like a bad penny"; but in the context of the issues Herbrand and others were
working on it is a most natural constructivity requirement. However, and there I agree with
Gandy, in a general theory of computability there is no good reason to "mix together
constructive and nonconstructive notions of existence". This point will come up again in the
discussion of Gddel's notion of general recursive function that was based, as Godel put it, on a
suggestion of Herbrand's.

25 Lowenheim's work on the decision problem was done in the Boole-Schroder tradition of
algebraic logic. He had established results that could be used to obtain (partial) answers to the
decision problem also for Frege's Begriffsschrift; namely, he solved the problem for monadic
predicate logic and reduced that for full predicate logic to the fragment with just binary
predicates. Independently, Behmann (1922) proved these results directly for a system of
symbolic logic building on Frege's and Whitehead and Russell's work.
26 [Herbrand 1930], p. 176; compare also [Herbrand 1929b], p.42.
27 That was already explicit in [Lowenheim]; see [van Heijenoort 1967], p. 246. Cf. also
[Herbrand 1930a], p. 207, where Herbrand speaks of an "experimental certainty" that
Principia Mathematica allows the representation of ail mathematical statements and arguments.
That point was made forcefully also in his [1930], p. 48.
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For some that was a sufficient reason to expect a negative solution;
von Neumann, for example, expressed his views already in 1927 as
follows.

... it appears that there is no way of finding the general criterion for deciding whether or
not a well-formed formula a is provable. (We cannot at the moment establish this.
Indeed, we have no clue as to how such a proof of undecidability would go.) ... the
undecidability is even the conditio sine qua non for the contemporary practice of
mathematics, using as it does heuristic methods, to make any sense. The very day on
which the undecidability does not obtain any more, mathematics as we now understand it
would cease to exist; it would be replaced by an absolutely mechanical prescription (eine
absolut mechanische Vorschrift), by means of which anyone could decide the provability
or unprovability of any given sentence.
Thus we have to take the position: it is generally undecidable, whether a given well-
formed formula is provable or not.28

When claiming that we have no clue as to how a proof of
undecidability would go, von Neumann pointed to the underlying
conceptual problem. After all, there were well-known proofs for the
unsolvability of certain mathematical problems; but these impos-
sibility results were given relative to a determinate class of
admissible means, e.g., doubling the cube by using only straightedge
and compass. And exactly here lies the problem: a negative solution
to the Entscheidungsproblem required a mathematically precise
answer to the question "What are absolut mechanische
Vorschriften?".

It is almost a platitude to say that particular aspects of
mathematical experience informed broad philosophical views on the
nature of human knowledge; we just need to remind ourselves of
Plato, Leibniz, Kant, or - closer to our own days - Frege and Husserl.
On the other hand, epistemologically motivated concerns evolved, as
we saw, into normative requirements for the presentation of
axiomatic mathematical theories. The resulting formal development
of parts of mathematics seemed to give substance to the Hobbesian
claim that mathematical reasoning is nothing but mechanical
computation. This view came to the fore through the formalist and
polemical side of Hubert's Program: the whole "thought-content" of

[von Neumann 1927], pp. 11-12.



15

mathematics, so it was claimed, can be expressed in a
comprehensive formal theory; mathematical activity can be reduced
to the manipulation of symbolic expressions, and mathematics itself
can be viewed as a formula game. Hilbert defended this playful view
of classical mathematics against the intuitionists by remarking:

The formula game that Brouwer so deprecates has, besides its mathematical value, an
important general philosophical significance. For this formula game is carried out
according to certain definite rules, in which the technique of our thinking is expressed.
These rules form a closed system that can be discovered and definitively stated. The
fundamental idea of my proof theory is none other than to describe the activity of our
understanding, to make a protocol of the rules according to which our thinking actually
proceeds. Thinking, it so happens, parallels speaking and writing: we form statements
and place them one behind another. If any totality of observations and phenomena
deserves to be made the object of serious and thorough investigation, it is this one - ...29

Hilbert's last remark is undoubtedly correct. However, if we take
the possibility of developing mathematics formally as a significant
datum for reflection, we must keep in mind that the formality
requirement expressed a philosophically motivated restriction on
human cognitive capacities for particular purposes.30 By addressing
von Neumann's conceptual problem we will lay the basis also for a
characterization of those restricted cognitive capacities that are
presupposed in formal presentations.

2. Church's Thesis. The background I just described - with its
interweaving of mathematical, logical, and philosophical questions -
should be kept in mind, when we turn our attention to the central
conceptual issue. I want to underline that in depicting the decision
problem as the immediate context in which an analysis of effective
calculability was needed I do not intend to neglect two other
significant and closely related issues; namely, the general
formulation (and thus applicability) of the Incompleteness Theorems

2 9 [Hilbert 1927], translated in [van Heijenoort 1967], p. 475.
3 0 This observation extends to the interpretation of the Incompleteness and Undecidability
Theorems of Gddel, Church, and Turing. The most striking and contentious "consequence" of
these particular metamathematical results is briefly formulated: minds are (not) machines. As
to the unnegated statement, see [Myhill 1952], [Webb 1981], and [Webb 1990]; the negated
statement has been defended in, e.g., [Lob 1959] and [Lucas 1961].
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and the general characterization of effective solvability for
mathematical problems31. Indeed, it was the detailed examination
of the Incompleteness Theorems and the notion of Entscheidungs-
definitheit, so pivotal for their proofs, that led the way to the
(informal) understanding of effective calculability as rule-governed
evaluation of number-theoretic functions in something like a formal
calculus. That understanding underlies Godel's proposal, is crucial
for Church's early considerations and for his main argument analyzed
below, and it leads to a specially important) class of Post's finitary
processes32; it is this notion that is recognized by Godel as absolute
and was generalized, later on, by Hilbert and Bernays to their notion
of regelrechte Auswertbarkeit (i.e., evaluation according to rules)
in deductive formalisms. Technically, this understanding found its
distinctive expression in Kleene's Normal Form Theorem. Here we
have a conceptual core that is associated, however, with a major
stumbling-block. After all, this core does not provide a convincing
analysis: steps taken in a calculus must be of a restricted character
and they are assumed, for example by Church, without argument to
be recursive. A related assumption is made by Hilbert and Bernays;
the proof predicate of their deductive formalisms has to be
primitive recursive. Finally, Post offers only as a working
hypothesis that the primitive acts (steps) of his formulation 1 are
sufficient for a reduction of ever wider formulations. As to Godel's
dissatisfaction with his proposal, see the discussion below in 2.1
and 2.4. We will see in the next section that Turing's analysis
removes exactly this stumbling-block.

31 Herbrand and Church reacted to the Incompleteness Theorems in the same way: "They can't
apply to my formalism!" • As to Gddel's interest in the first issue compare section 2.4. That
the second issue was central for Godel should be clear from the discussion below. So I agree
with [Shapiro 1983] who emphasized that the problem of generalizing Gddel's Incompleteness
Theorem was a "central item" in the development of a theory of computability. GSdel was also
concerned about the third problem as evidenced by his discussion of Diophantine problems in
[1931] and [1934]. That naturally connects to Hilberfs Tenth Problem and other mathematical
problems requiring decision procedures, like Thue's word problem for semigroups; compare
[Gandy 1988], pp. 60-61.
32 See footnote 7 of [Post 1936], p. 291 in [Davis 1965]. Post's proposal is discussed below
in section 3.1, where I also describe the major difference with Turing's.
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2.1 Gddel's general recursion. Examples of effectively
calculable functions were given by primitive recursive functions;
they had been used in mathematical practice for a long time. The
standard arithmetic operations like addition, multiplication,
exponentiation, but also the sequence of prime numbers and the
Fibonacci numbers are all primitive recursive. The schema of
primitive recursion leads from primitive recursive g and h to a new
function f satisfying the equations:

f(xi, ... ,xn , 0) =g(Xi xn)

f(xi xn, y
1) = h(xi,... ,xn, y, f(xi, . . . , xn, y)).

The defining equations for f can be used as rules for determining the
value of f for any particular set of arguments. Clearly, in order to
recognize that this is a well-defined procedure one appeals to the
build-up of the structure N. Dedekind gave a set theoretic
foundation for these functions33, whereas Skolem used them directly
with their naive number-theoretic meaning in his development of
elementary arithmetic through the recursive mode of thought.
Hilbert and Bernays, finally, sharpened Skolem's mathematical frame
to their Primitive Recursive Arithmetic PRA. And it is most
plausible that finitist mathematics as intended by them coincides
with PRA - up to an elementary and unproblematic coding of finite
mathematical objects as numbers.34

Primitive recursive functions and predicates were used in
Godel's classical paper Ober formal unentscheidbare Satze der
Principia Mathematica und verwandter Systeme I to describe a
simplified system of Principia Mathematica; obviously, syntactic
structures had to be coded as numbers. From a finitist standpoint
it was perfectly sensible to restrict the means for describing
syntactic structures to primitive recursive functions; from a
broader perspective, however, there was no reason to exclude other

3 3 in § 9 of his [1888]; see, in particular, theorem 126 and its applications in §§ 11-13.
3 4 [Tait 1981] argues for this claim. Godel's system A in his [1933] seems to be just PRA and
is claimed to contain all of finitist mathematics (actually used by "Hilbert and his disciples").
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effective procedures in presenting "formal" theories. Ackermann
gave in his [1928] an effectively calculable, non-primitive recursive
function; that result had been mentioned already in 1925 by Hilbert.
In his Princeton Lectures of 1934 Godel strove, as indicated by their
title On undecidable propositions of formal mathematical systems,
to make his incompleteness results less dependent on particular
formalisms. In the introductory §1 he discussed the notion of "a
formal mathematical system" in some generality and required that

the rules of inference, and the definitions of meaningful formulas and axioms, be
constructive; that is, for each rule of inference there shall be a finite procedure for
determining whether a given formula B is an immediate consequence (by that rule) of
given formulas Ai An, and there shall be a finite procedure for determining whether
a given formula A is a meaningful formula or an axiom.35

Again, he used primitive recursive functions and relations to present
syntax, viewing the primitive recursive definability of formulas and
proofs as a "precise condition which in practice suffices as a
substitute for the unprecise requirement of §1 that the class of
axioms and the relation of immediate consequence be
constructive".36 But a notion that would suffice in principle was
really needed, and Godel attempted to arrive at a more general
notion. He considered the fact that the value of a primitive
recursive function can be computed by a "finite procedure" for each
set of arguments as an "important property" and added in footnote 3:

The converse seems to be true if, besides recursions according to the scheme (2) [i.e.
primitive recursion as given above], recursions of other forms (e.g., with respect to
two variables simultaneously) are admitted. This cannot be proved, since the notion of
finite computation is not defined, but it can serve as a heuristic principle. 37

What other recursions might be admitted is discussed in the
last section of the Lecture Notes under the heading "general
recursive functions". Godel described in it a proposal for the
definition of a general notion of recursive function that (he thought)

35 [Godel I], p. 346.
36 [G6del 1934] in [Davis 1965] p. 61.
37 [G6del I], p. 348. GSdel added for the publication of the Lecture Notes in [Davis 1965]:
"This statement is now outdated; see the Postscriptum, pp. 369-371." He refers to the
Postscriptum appended to the lectures for Davis' volume.
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had been suggested to him by Herbrand in a private communication,

as we know now, of April 7, 1931:

If <|> denotes an unknown function, and y i , . . . . ^ are known functions, and if the y's and <t>
are substituted in one another in the most general fashions and certain pairs of resulting
expressions are equated, then, if the resulting set of functional equations has one and
only one solution for +, $ is a recursive function.38

He went on to make two restrictions on this definition and required,

first of all, that the left-hand sides of the functional equations are

in a standard form with <f> being the outermost symbol and, secondly,

that "for each set of natural numbers ki , ... , k| there shall be exactly
one and only one m such that 4>(ki k|) = m is a derived equation".

The rules that were allowed in giving derivations are of a very
simple character: variables in any derived equation can be replaced
by numerals, and if the equation <p(ki k|) = m has been obtained,

then occurrences of <|>(ki k|) on the right-hand side of a derived

equation can be replaced by m. So much about this proposal; it was

taken up for a systematic development in [Kleene 1936].

What was important about Godel's modifications? For Godel

himself the crucial point was the precise specification of

mechanical rules for deriving equations or, to put it differently, for

carrying out computations. That point of view was also expressed

by Kleene who wrote in his [1936] with respect to the definition of

"general recursive function of natural numbers":

It consists in specifying the form of the equations and the nature of the steps admissible
in the computation of the values, and in requiring that for each given set of arguments
the computation yield a unique number as value.39

In a letter to van Heijenoort, dated 14 August 1964, Godel asserted

that "it was exactly by specifying the rules of computation that a

mathematically workable and fruitful concept was obtained".40

38 [G6del I], p. 368. As to the background for Herbrand's proposal see subsection 2.3. -
Kalmar [1955] pointed out that the class of functions satisfying such functional equations is
strictly greater than the class of (general) recursive functions.
3 9 [Kleene 1936], p. 727.
4 0 [van Heijenoort 1985], p. 115.
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When making this claim Godel took for granted what he had
expressed in an earlier letter to van Heijenoort, namely, that
Herbrand's suggestion had been "formulated exactly as on page 26 of
my lecture notes, i.e. without reference to computability".41 But
Godel had been unable to find Herbrand's letter among his papers and
had to rely on his recollection which, he said, "is very distinct and
was still very fresh in 1934". However, the letter of Herbrand's was
found by John W. Dawson in Godel's Nachlass, reads like a
preliminary version of parts of [Herbrand 1931c], and on the
evidence of that letter it is clear that Godel misremembered.
Herbrand as a matter of fact wrote — describing a system of
arithmetic and the introduction of recursively defined functions into
that system with intuitionistic, i.e., finitist, justification:

In arithmetic we have other functions as well, for example functions defined by
recursion, which I will define by means of the following axioms. Let us assume that we
want to define all the functions f n (x i , X2, ..., xp n) of a certain finite or infinite set F.
Each f n (x i , ...) will have certain defining axioms; I will call these axioms (3F). These
axioms will satisfy the following conditions:

(i) The defining axioms for fn contain, besides fn, only functions of lesser index.
(ii) These axioms contain only constants and free variables.
(Hi) We must be able to show, by means of intuitionistic proofs, that with these

axioms it is possible to compute the value of the functions univocally for each specified
system of values of their arguments.

It is most plausible that Herbrand admitted, in addition to the
(intuitionistically interpreted) axioms, substitution rules of the
sort formulated by Godel as rules of computation. Indeed, he
asserted in his [1931c] - as he had done in his letter to Godel - that
all intuitionistic computations can be carried out, e.g., in the formal
system P of Principia Mathematica. This is not to suggest that
G5del was wrong in his assessment, but rather to point to the most
important step he had taken; namely, to disassociate recursive
functions from an epistemologically restricted notion of proof.
Later on, GodeLeven dropped the regularity condition that guaranteed

41 in a letter to van Heijenoort of 23 April 1963, excerpted in the introductory note to
[Herbrand 1931c], see [Herbrand 1971], p. 283. (Godel refers to his 1934 lectures.) - The
background for and the content of the Herbrand-Godel correspondence is described in [Dawson
1991].
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the totality of calculable functions. He emphasized then42 "that the
precise notion of mechanical procedures is brought out clearly by
Turing machines producing partial rather than general recursive
functions." At this earlier historical juncture, the explicit
introduction of an equational calculus with purely formal,
mechanical rules for computing was however important for the
mathematical development of recursion theory and also for the
conceptual analysis. After all, it brought out clearly what,
according to Godel (in [vanH 1985], page 115), Herbrand had failed to
see, namely, "that the computation (for all computable functions)
proceeds by exactly the same rules".

2.2 Herbrand's provabiy recursive functions. Before moving on
to the further development I want to make some additional remarks
concerning Herbrand's proposai(s) emphasizing, in particular, the
restrictive provability conditions he imposed. These remarks
complement the discussion of the last subsection, but do constitute
a digression: the main considerations are taken up again in 2.3. - A
careful description and thoughtful interpretation of the proposal(s)
can be found in [van Heijenoort 1985]. It should be noted, however,
that this paper was written before Dawson's discovery of the Godel-
Herbrand correspondence, van Heijenoort had thus to rely on Godel's
reports concerning the details of Herbrand's suggestion to him and
its very framing as being concerned with a general characterization
of effective calculability. In any event, van Heijenoort distinguished
three different occasions in 1931 on which Herbrand "proposed ... to
introduce a class of computable functions that would be more
general than that of primitive recursive functions".43 The first
proposal is found in Herbrand's [1931a] on page 273, where Herbrand
described the restricted means allowed in metamathematical
arguments and required, in particular, that "all the functions

4 2 [Wang 1974], p. 84. The very notion of partial recursive function, of course, had been
introduced in [Kleene 1938].
4 3 [van Heijenoort 1985], p. 114. - The connection between the "different" proposals is also
discussed by Godel in correspondence with van Heijenoort, partially contained in [vanH 1971],
and in footnote 34 of Gddel's [1934]; that note was expanded in 1964. An earlier discussion of
this issue is found in a letter to J.R. BOchi, that was written by Godel on November 26, 1957.
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introduced must be actually calculable for all values of their
arguments by means of operations described wholly beforehand."
The second proposal is the one reported in Godel's lectures (without
reference to computability), and the third suggestion was made in
Herbrand's [1931c] on pages 290 and 291. It is formulated as
follows, again in the context of a system for arithmetic:

We can also introduce any number of functions f j (xi , X2 xnj) together with
hypotheses such that
(a) The hypotheses contain no apparent variables;
(b) Considered intuitionistically, they make the actual computation of the
fn(xi. X2, .... Xpn) possible for every given set of numbers, and it is possible to prove
intuitionistically that we obtain a well-determined result.

Herbrand attached to the first occurrence of "intuitionistically" in
this quotation the footnote: "This expression means: when they are
translated into ordinary language, considered as a property of
integers and not as mere symbols." With van Heijenoort I assume
that Herbrand used also here "intuitionistic" as synonymous with
"finitist". (A more detailed description of intuitionistic arguments
is given in note 5 of Herbrand's [1931c], pp. 288-289.44) This third
proposal is identical with the one made by Herbrand in his letter to
Godel quoted above except for clause (i) from the earlier definition;
but that clause is implicitly assumed, as is clear from the examples
Herbrand discusses. I view the first formulation on the one hand as
a preliminary, not fully elaborated version of the second and third
formulation; on the other hand, I view it as a more explicit
description of the Kroneckerian elements in metamathematics that
were pointed out in section 1. Thus, we can see the evolution of
essentially one formulation!

In any event, there is certainly no conflict (between the
proposals) of the sort Godel considered in [vanH 1985], pp.115-117;
e.g., that Herbrand envisioned "unformalized and perhaps
unformalizable computation methods" and indeed refused "to confine

44 Herbrand considered the Ackermann function to be a finitist function, as he asserts -
without giving a hint of an argument, why (b) is satisfied - that it can be introduced according
to the schema; compare note 45.
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himself to formal rules of computation". That should become clear
from the following discusssion. Two features of Herbrand's schema
have to be distinguished; namely, (1) the defining axioms (plus
suitable rules) must make the actual intuitionistic computation of
the function value possible, and (2) the termination of the
computation with a unique value has to be provable
intuitionistically. That is, in modem terminology, we are dealing
with "intuitionistically provabiy total (or provabiy recursive)
functions", where provability is however not a formal notion.

A connection to a formal notion is given in the fourth section
of [1931c]. Godel's Incompleteness Theorems for the system P of
Principia Mathematica is discussed there, and Herbrand asserts that
any intuitionistic computation can be carried out in P and that any
intuitionistic argument can be formalized in P. He concludes, after
sketching Godel's proof, that P's consistency is not provable by
arguments formaiizable in P, thus not intuitionistically. What is
most interesting is his remark that Godel's argument does not apply
to the system of arithmetic that includes the above schema for
introducing functions: the functions that are introducible cannot be
described intuitionistically, as we could easily diagonalize and
obtain additional functions. -- In two side remarks I want to
mention that (i) Herbrand's last observation can be turned around so
as to imply that the class of provabiy total functions of a formal
theory cannot be enumerated by an element of that class, and (ii) the
aim of precisely characterizing the class of provabiy total functions
for formal theories has been taken up in proof-theoretic research
starting with [Kreisel 1952]; see also [Gandy 1988], pp. 74-75, and
my "Herbrand analyses".

What is the extension of Herbrand's class of functions ? --
According to Herbrand's discussion reported in the last three
paragraphs, it includes properly the primitive recursive functions
and is included in the class of provabiy recursive functions of P.
Indeed, at the end of [1931c] Herbrand asserts that ordinary analysis
(I assume that means full second-order arithmetic) can take the
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place of P in the above claims concerning the formaiizability of
intuitionistic computations and arguments. Indeed, he conjectures
that full first-order arithmetic with recursion equations for just
addition and multiplication might already be sufficient. If the latter
conjecture were true, Herbrand's class would be included in the
class of provably recursive functions of Peano arithmetic. Basic in
this discussion is Herbrand's conviction that the system of
arithmetic described in his [1931c] (even without the infinitary rule
D) allows one to carry out all intuitionistic proofs. The paper
[1931c] was dated Gdttingen, July 14, 1931; in the letter to Gddel of
April 7, 1931 and sent from Berlin, the claim concerning
intuitionistic proofs is explicitly stated for the much weaker
system with just quantifier-free induction. As a matter of fact,
Herbrand claims there also that "... each proof in this arithmetic,
which has no bound variables, is intuitionistic - this fact rests on
the definition of our functions and can be seen directly." If that
were true, Herbrand's class would consist of just the primitive
recursive functions.45 In conclusion, it seems that Godel was right
-- for stronger reasons than he put forward - when he cautioned
that Herbrand had foreshadowed, but not introduced the notion of
general recursive function.46

45 And that in spite of the explicit (but in this case definitely false) claim that the Ackermann
function is among those that can be introduced intuitionistically. How is this confusing state of
affairs to be understood? The discrepancy between Herbrand's conjecture in April and that in
July is elucidated, it seems to me, by letters of Bernays to Godel from this period. Bernays
and Herbrand had been in contact, in Berlin and also in Gdttingen; Herbrand even sent Bernays a
copy of his letter to Godel •- with an interesting accompanying letter dated, as the letter to
Godel, April 7, 1931. In his letter of April 20, 1931, Bernays asked Gddel, why the recursive
definition of arithmetic truth cannot be formalized in Z and why Ackermann's consistency proof
cannot be carried out in Z. Without waiting for Godel's response, Bernays conjectures in his
next letter to G5del of May 3, 1931, that the answer to his questions lies in the
unformalizability of certain types of recursive definitions in Z, the definition of truth and that
of the Ackermann function being among them. (As to the Ackermann function, Bernays is still

not right: it cannot be introduced in the fragment of arithmetic with induction for X-j formulas,

but in the fragment with Flo induction it can be introduced.)
46 In a letter to van Heijenoort of August 14, 1964; see [vanH 1985], pp. 115-116.
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2.3 Church's main argument. A wide class of calculable
functions had been characterized by the concept introduced by Godel,
a class that contained all known effectively calculable functions.
Indeed, footnote 3 of the Princeton Lectures I quoted earlier seems
to express a form of Church's Thesis. But in a letter to Martin Davis,
dated February 15, 1965, Godel emphasized that no formulation of
Church's Thesis is implicit in that footnote. He wrote:

... The conjecture stated there only refers to the equivalence of "finite (computation)
procedure" and "recursive procedure". However, I was, at the time of these lectures,
not at all convinced that my concept of recursion comprises all possible recursions; and
in fact the equivalence between my definition and Kleene's ... is not quite trivial.47

At the time, Godel was equally unconvinced by Church's proposal to
identify effective calculability with ^-definability. In a conversa-
tion with Church early in 1934 he called the proposal "thoroughly
unsat isfactory".4 8 In spite of Godel's not exactly encouraging
reaction Church announced his "thesis" in a talk contributed to the
meeting of the American Mathematical Society in New York City on
April 19, 1935. It was formulated in terms of recursiveness, not A.-
definability.49 I quote the abstract of the talk in full.

Following a suggestion of Herbrand, but modifying it in an important respect, GOdel has
proposed (in a set of lectures at Princeton, N.J., 1934) a definition of the term
recursive function, in a very general sense. In this paper a definition of recursive
function of positive integers which is essentially Gddel's is adopted. And it is maintained
that the notion of an effectively calculable function of positive integers should be
identified with that of a recursive function, since other plausible definitions of effective

4 7 [Davis 1982], p. 8. In the Postscriptum, [Davis 1965] p. 73, Godel asserts that the
question raised in footnote 3 of the Lectures can be "answered affirmatively" for
recursiveness as given in section 9 "which is equivalent with general recursiveness as defined
today". As to the contemporary definiton he seems to point to ^-recursiveness. But I do not
understand how that definition could have convinced Godel that "all possible recursions" are
captured; nor do I understand how the Normal Form Theorem • as Davis indicates in his [1982],
p. 11 - could do so without assuming some version of Church's Central Thesis. Indeed, such
arguments seem to me to require crucially an appeal to that thesis and are, essentially,
reformulations of Church's argument analyzed below. That holds also for the appeal to the
recursion theorem in IM, p. 352, when Kleene argues that "Our methods ... are now developed
to the point where they seem adequate for handling any effective definition of a function which
might be proposed."
4 8 Church in a letter to Kleene, dated November 29, 1935, and quoted in [Davis 1982], p. 9.
4 9 As to the evolution of the concept of X-definability and an earlier formulation of the thesis
see the Appendix.
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calculability turn out to yield notions that are either equivalent to or weaker than
recursiveness. There are many problems of elementary number theory in which it is
required to find an effectively calculable function of positive integers satisfying certain
conditions, as well as a large number of problems in other fields which are known to be
reducible to problems in number theory of this type. A problem of this class is the
problem to find a complete set of invariants of formulas under the operation of
conversion (see abstract 41.5.204). It is proved that this problem is unsolvable, in the
sense that there is no complete set of effectively calculable invariants.50

In his famous 1936-paper An unsolvable problem of elementary
number theory Church described the form of such number-theoretic
problems and restated his proposal for identifying the class of
effectively calculable functions with a precisely defined class:

There is a class of problems of elementary number theory which can be stated in the
form that it is required to find an effectively calculable function f of n positive integers,
such that f(xi, X2, ... , xn) = 2 is a necessary and sufficient condition for the truth of a
certain proposition of elementary number theory involving x<i, X2, ... , xn as free
variables The purpose of the present paper is to propose a definition of effective
calculability which is thought to correspond satisfactorily to the somewhat vague
intuitive notion in terms of which problems of this class are often stated, and to show,
by means of an example, that not every problem of this class is solvable.51

ChurcIVs arguments for his proposal were given using recursiveness
as before. The fact that ^-definability was an equivalent concept
added according to Church "... to the strength of the reasons adduced
below for believing that they [these precise concepts] constitute as
general a characterization of this notion [i.e. effective calculability]
as is consistent with the usual intuitive understanding of it."52

Church claimed that those reasons, to be presented and examined in
the next paragraph, justify the identification "so far as positive
justification can ever be obtained for the selection of a formal
definition to correspond to an intuitive notion11.53 Why was there a
satisfactory correspondence for Church? What were his reasons for
believing that the most general characterization of effective
calculability had been found?

50 [Church 1935a].
51 [Church 1936] in [Davis 1965] pp. 89 and 90. f is the characteristic function of the
proposition; that 2 is chosen to indicate 'truth1 is, as Church remarked, accidental and non-
essential.
52 [Church 1936], footnote 3, p. 90 in [Davis 1965].
53 [Church 1936], in [Davis 1965], p. 100.
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To give a deeper analysis Church pointed out, in section 7 of
his paper, that two methods suggest themselves to characterize
effective calculability of number-theoretic functions. The first of
these methods makes use of the notion of algorithm, and the second
employs the notion of calculability in a logic. He argued that they do
not lead to a definition that is more general than recursiveness; as
these arguments have a similar structure, I discuss only the one
pertaining to the second method.54 Church considered a logic L, i.e. a
system of symbolic logic whose language contains the equality
symbol =, a symbol { }( ) for the application of a unary function
symbol to its argument, and numerals for the positive integers. For
unary functions F he gave the definition:

F is effectively calculable if and only if there is an expression f in the logic L such that:
{f}(ji)=v is a theorem of L iff F(m)=n; here, \L and v are expressions that stand for the
positive integers m and n.

Church claimed that such functions F are recursive, assuming that L
satisfies certain conditions. And the conditions amount to requiring
the theorem predicate of L to be recursively enumerable. Clearly,
(for us) the claim then follows immediately by an unbounded search.
(The reason for the parenthetical addition in the last sentence is
given in footnote 63.)

To argue for the recursive enumerability of L's theorem
predicate Church started out by formulating conditions any system
of logic has to satisfy, if it is "to serve at all the purposes for
which a system of symbolic logic is usually intended"55. These
conditions, Church noted in footnote 21 , are "substantially" those of
GodePs for a formal mathematical system I quoted above from the
Princeton Lectures; they state that (i) each rule must be an

54 An argument pertaining quite closely to the first method is given in [Shoenfield 1967], p.
120. - Church grappled with the connection of intuitive (effective) definability and
representability in a system of symbolic logic already in his [1934].
55 [Church 1936] in [Davis 1965], p. 101. As to what is intended, namely for L to satisfy
epistemologically motivated restrictions of the sort mentioned above, see [Church 1956],
section 07, in particular pp. 52-53.
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effectively calculable operation, (ii) the set of rules and axioms (if
infinite) must be effectively enumerable, and (Hi) the relation
between a positive integer and the expression which stands for it
must be effectively determinable. Church supposed that these
conditions can be, as he put it, "interpreted" to mean that via a
suitable Godel numbering for the expressions of the logic (i1) each
rule must be a recursive operation, (ii') the set of rules and axioms ^
(if infinite) must be recursively enumerable, and (in1) the relation <|
between a positive integer and the expression which stands for it f-
must be recursive. The theorem predicate is then recursively |
enumerable; but the crucial interpretative step is not argued for at J
all and thus seems to depend on the very thesis that is to be §
supported !

5 6 Compare footnote 20 on p. 101 in [Davis 1965] where Church remarks: "In any case where
the relation of immediate consequence is recursive it is possible to find a set of rules of
procedure, equivalent to the original ones, such that each rule is a (one-valued) recursive
operation, and the complete set of rules is recursively enumerable."
5 7 The remark is obtained from footnote 19 of [Church 1936] on p. 101 in (Davis 1965] by
replacing "an algorithm" by "a system of symbolic logic". - Cf. Church's letter to J. Pepis
quoted in Remark 2 of the Appendix.

§

Church's argument in support of the thesis may appear to be ,
viciously circular, but that would be too harsh a judgement. After %
all, the general concept of calculability is explicated by that of - §
derivability in a logic, and Church used (i') to (Hi') to sharpen the §
idea that within such a logical formalism one operates with an - f
effective notion of immediate consequence.56 I.e., the thesis is only ;|
appealed to in a very special case. It is precisely here that we §
encounter the major stumbling-block for Church's analysis, and that |J
was quite clearly seen by Church. To substantiate the latter claim, %
let me modify a remark Church made with respect to the first j
method of characterizing effectively calculable functions: If this §
interpretation [what I called the "crucial interpretative step" in the Jt
above argument] or some similar one is not allowed, it is difficult to K
see how the notion of a system of symbolic logic can be given any 5
exact meaning at all.57 Given the crucial role this observation jf-
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plays, it is appropriate to formulate the central thesis of Church as
a normative requirement:

CHURCH'S CENTRAL THESIS. The steps of any effective procedure
(governing derivations of a symbolic logic) must be recursive.

If this central thesis is accepted and a function is defined to be
effectively calculable if, and only if, it is calculable in a logic, then
what Robin Gandy called Church's "step-by-step argument" proves
that all effectively calculable functions are recursive.58 All of
these considerations can, for sure, be easily adapted to Church's
first method of characterizing effectively calculable functions via
algorithms. The detailed reconstruction of Church's justification
for the "selection of a formal definition to correspond to an
intuitive notion" and the pinpointing of the crucial difficulty show,
first of ail, the sophistication of Church's methodological attitude
and, secondly, that at this point in 1936 there is no major opposition
to Godel's attitude. (A rather stark contrast is painted in [Shapiro
1991] and is indeed quite commonly assumed.) These last points are
supported by the directness with which Church recognized - in
writing and already early in 1937 -- the importance of Turing's work
as making the identification of effectiveness and (Turing)
computability "immediately evident".

2.4 Absoluteness. The concept used in Church's argument is an
extremely natural and fruitful one and is, of course, directly related
to "Entscheidungsdefinitheit" for relations and classes introduced by
Godel in his [1931] and to representability of functions as used in
[Godel 1934]59. Clearly, the equational calculus and the X-calculus
are two particular "logics" allowing the formal, mechanical

58 It is most natural and general to take the underlying generating procedures directly as
finitary inductive definitions. That is Post's approach via his production systems; using
Church's central thesis to fix the restricted character of the generating steps guarantees the
recursive enumerabiiity of the generated set - Cf. Kieene's discussion of Church's argument in
IM, pp. 322-323. To see how pervasive this kind of argument is, compare footnote 47 and
Remark 2 of the Appendix.
59 As to the former, compare Collected Works /, pp. 170 and 176; as to the latter, see p. 58 in
[Davis 1965].
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computation of calculable functions in ways that are motivated by
special circumstances. Godel himself used the general notion "f is
computable in a formal system S" in a brief note of 1936, entitled
On the length of proofs. He considered a hierarchy of systems Sj (of
order i, 1<i) and observed in a Remark added to the note in proof,
that this notion of computability is independent of i in the following
sense: if a function is computable in any of the systems Sj, possibly
of transfinite order, then it is already computable in Si . "Thus",
Godel concluded, "the notion 'computable' is in a certain sense
'absolute', while almost all metamathematical notions otherwise
known (for example, provable, definable, and so on) quite essentially
depend upon the system adopted."60 For someone who stressed the
type-relativity of provability as strongly as Godel did, this must
have been a very surprising insight indeed. In his contribution to the
Princeton Bicentennial Conference (1946) Godel reemphasized this
absoluteness and took it as the main reason for the special
importance of general recursiveness or Turing computabiiity: here
we have, Godel thought, the first interesting epistemological notion
whose definition is not dependent on the chosen formalism. -- The
significance of his discovery was described by Godel in a letter to
Kreisel of May 1, 1968: "That my [incompleteness] results were valid
for all possible formal systems began to be plausible for me (that is
since 1935 61) only because of the Remark printed on p. 83 of "The
Undecidable" ... But I was completely convinced only by Turing's
paper."62 And there was good reason not to be completely convinced.
After all, the absoluteness was achieved, ironically, only relative to

6 0 [Collected Works I], p. 399. There is no indication of an argument for the absoluteness of
computability; I can think only of proofs of the "normal form theorem"-type. Also. Godel did
not compare the class of computable functions with other classes of functions except for
remarking that, "In particular e.g. all recursively defined functions are already computable in
classical arithmetic", i.e. the system S-|. But here, I assume, he used "recursive" either in the
sense of "primitive recursive" or "recursive of arbitrarily high order", but not "general
recursive". (The concept of recursion of arbitrarily high order is used in [Godel 1936b], a
review of [Church 1935], in the context of ^-definability.)
6 1 The content of Godel's note was presented in a talk on June 19, 1935. See [Davis 1982], p.
15, footnote 17 and [Dawson 1986], p. 39.
6 2 in [Odifreddi 1990], p. 65. "Remark printed on p. 83" of [Davis 1965] refers to the remark
concerning absoluteness that Gddel added in proof (to the original German publication).
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the description of the "formal" systems S i : the stumbling-block
shows up exactly here.

Remark. If Godel had been completely convinced of the adequacy of
this notion, he could have established most easily the unsolvability
of the decision problem for first-order logic: given that mechanical
procedures are exactly those that can be computed in the system Si
(or any other system to which Godel's Incompleteness Theorem
applies) the unsolvability follows from Theorem IX of [Godel 1931].
The theorem states that there are formally undecidable problems of
predicate logic; it rests on the observation (made by Theorem X) that
every sentence of the form (Vx)F(x), with F primitive recursive, can
be shown in Si to be equivalent to the question of satisfiability for
a formula of predicate logic. Historically, Theorem IX made a
positive solution of the decision problem very unlikely. But for the
Appendix to his [1931] Herbrand wrote in April 1931, when he knew
Godel's results already quite well (on p. 259): "Note finally that,
although at present it seems unlikely that the decision problem can
be solved, it has not yet been proved that it is impossible to do so."
End of Remark.

The absoluteness of the notion of computability in Godel's
sense follows from a marvelous and detailed example of conceptual
analysis due to Hilbert and Bernays. They established independence
from formalisms in an even stronger sense in the second volume of
Grundlagen der Mathematik, supplement 2; the supplement was
entitled: "Eine Prazisierung des Begriffs der berechenbaren Funktion
und der Satz von Church uber das Entscheidungsproblem". They made
the core notion of calculability in a logic directly explicit and
defined a number-theoretic function to be "regelrecht auswertbar",
when it is computable (in the above sense) in some deductive
formalism. Deductive formalisms must satisfy three "Rekursivi-
tatsbedingungen" (recursiveness conditions); the crucial condition,
their analogue to Church's Central Thesis, requires that the
theorems of the formalism can be enumerated by a primitive
recursive function or, equivalents, that the proof-predicate is
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primitive recursive. Then it is shown (i) that a special number-
theoretic formalism (included in Godei's Si) suffices to compute the
functions that are "regelrecht auswertbar", and (ii) that the
functions computable in this particular formalism are exactly the
general recursive ones. Hilbert and Bernays's analysis is in my view
a natural and most satisfactory capping of the development from
Entscheidungsdefinitheit to an "absolute" notion of computability, as
it captures directly the informal notion of rule-governed evaluation
of effectively calculable number-theoretic functions and isolates
the necessary restrictive conditions. But this analysis does not
overcome the major stumbling-block; it puts it rather in plain view.

Let me emphasize the main point of this subsection: the notion
of rule-governed computation (in something like a logical calculus)
provides a conceptual core for the attempts to characterize
effective calculability of number-theoretic functions; the core is
associated, however, with a major stumbling-block. It is Turing's
analysis, taking processes underlying computations (in a "calculus")
as a starting-point, that removes the stumbling-block.

3. Turing's analysis. Turing's notion of machine computability
turned out to be equivalent to recursiveness and ^-definability, but
it was hailed by Go del as providing "a precise and unquestionably
adequate definition of the general concept of formal system". In his
review of Turing's paper Church claimed, when comparing Turing
computability, recursiveness, and X-definability: "Of these, the first
has the advantage of making the identification with effectiveness in
the ordinary (not explicitly defined) sense evident immediately - i.e.
without the necessity of proving preliminary theorems."63 What
distinguished, at least for Godel and Church, Turing's proposal so
dramatically from Church's? - One has to find an answer to this

6 3 [Church 1937], p. 43. - Church's remark about the "necessity of proving preliminary
theorems" can be easily clarified: in my description of his argument for the recursiveness of
the function F that is calculable in a logic I glossed over the very last step; to take it Church
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question, since the naive examination of Turing machines hardly
produces the conviction formulated by Godel and hardly carries the
immediate evidence asserted by Church. (The key to the answer to
the question is offered at the end of subsection 3.1, the answer in
3.2 and 3.3.)

3.1 Turing's machines and Post's workers. Let me describe
Turing machines very briefly following [Davis 1958], not Turing's
original presentation.64 A Turing machine consists of a finite, but
potentially infinite tape; the tape is divided into squares, and each
square may carry a symbol from a finite alphabet, say, just the two-
letter alphabet consisting of 0 and 1, or B(lank) and |. The machine
is able to scan one square at a time and perform, depending on the
content of the observed square and its own internal state, one of
four operations: print 0, print 1, or shift attention to one of the two
immediately adjacent squares. The operation of the machine is given
by a finite list of commands in the form of quadruples q, Sk q qm

that express: if the machine is in internal state qi and finds symbol
Sk on the square it is scanning, then it is to carry out operation q
and change its state to q m . The deterministic character of the
machine operation is guaranteed by the requirement that a program
must not contain two different quadruples with the same first two
components. Gandy gave a lucid description of a Turing machine
computation in very general terms without using internal states or,
as Turing called them, states of mind: "The computation proceeds by
discrete steps and produces a record consisting of a finite (but
unbounded) number of ceils, each of which is either blank or contains
a symbol from a finite alphabet. At each step the action is local and
is locally determined, according to a finite table of instructions." 6 5

How the reference to internal states can be avoided should be clear

refers to an earlier theorem (IV) in his paper asserting that the class of recursive functions is
closed under the ^-operator - in the "normal case".
6 4 As to the crucial points of difference, see Kleene's discussion in IM, p. 361, where it is also
stated that this treatment "is closer in some respects to Post 1936".
6 5 [Gandy 1988], p. 88.
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from the discussion of Post's worker below, and why such a general
formulation is appropriate will be seen in section 3.2.

For the moment, however, let me consider the special Turing
machines I just described. Taking for granted a representation of
natural numbers in the two-letter alphabet and a straightforward
definition of when to call a number-theoretic function Turing
computable, I put the earlier remark as a question before you: Why
does this notion provide (via some Godel-numbering) "an
unquestionably adequate definition of the general concept of formal
system"? Is it at all plausible that every effectively calculable
function is Turing computable? - It seems to me that a naive
inspection of the seemingly very restricted notion of Turing
computability should lead to "No!" as a tentative answer to the
second (and thus to the first) question. However, a systematic
development of the theory of Turing computability convinces one
quickly that it is indeed a powerful notion. One goes almost
immediately beyond the examination of particular functions and the
writing of programs for machines computing them; instead, one
considers machines that correspond to operations on functions and
that yield, when applied to computable functions, ones that are again
computable.66 Two such functional operations are crucial, namely,
composition and minimalization: given those and the Turing
computability of a few simple initial functions the computablity of
all recursive functions follows. (Taking for granted [Kleene 1936]
with its proof of the equivalence between general recursiveness in
Godel's sense and (i-recursiveness.) As the Turing computable
functions are readily shown to be among the recursive ones, it
seems that we are now in exactly the same position as before --
with respect to the evidence for Church's Thesis. This remark holds

6 6 In [Feferman 1991] the case is made "for the primary significance for practice of the
various notions of relative (rather than absolute) computability, ..." (pp. 1-2). Indeed,
Feferman argues later (p. 25) that "notions of relative computability have a much greater
significance for practice than those of absolute computability." The reason given (p. 25) is that
the organization and control of computational devices have to be structured into "conceptual
levels and at each level into interconnected components.* Though I can hardly disagree with
that remark, it is heeded above in the theory of absolute computability and, furthermore, if
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also for Post's model of computation that is so strikingly similar to
Turing's.

•
In 1936, the very year in which Turing's paper appeared, Post

published a brief note in the Journal of Symbolic Logic with the title
Finite Combinatory Processes - Formulation 1. Here we have a
worker who operates in a symbol space consisting of

a two way infinite sequence of spaces or boxes, i.e., ordinally similar to the series of
integers ... . The problem solver or worker is to move and work in this symbol space,
being capable of being in, and operating in but one box at a time. And apart from the
presence of the worker, a box is to admit of but two possible conditions, i.e., being empty
or unmarked, and having a single mark in it, say a vertical stroke.67

The worker can perform a number of primitive acts; namely, make a
vertical stroke [V], erase a vertical stroke [E], move to the box
immediately to the right [Mr] or to the left [M|] (of the box he is in),
and determine whether the box he is in is marked or not [D]. In
carrying out a particular combinatory process the worker begins in a
special box (the starting point) and then follows directions from a
finite, numbered sequence of instructions. The i-th direction, i
between 1 and n, is in one of the following forms: (i) carry out act V,
E, Mr, or M| and then follow direction jj, (ii) carry out act D and then,
depending on whether the answer was positive or negative, follow
direction jj1 or j j". (Post has a special stop instruction, but that can
be replaced by the convention to stop, when the number of the next
direction is greater than n.) Are there intrinsic reasons for choosing
Formulation 1, except for its simplicity and Post's expectation that
it will turn out to be equivalent to recursiveness ? An answer to
this question is not clear (from this paper of Post's), and the claim
that psychological fidelity is aimed for seems quite opaque. Post
wrote at the very end of his paper:

The writer expects the present formulation to turn out to be equivalent to recursiveness
in the sense of the GOdel-Church development. Its purpose, however, is not only to
present a system of a certain logical potency but also, in its restricted field, of

some process carried out by a device is to be called a "computation", it will certainly have to
satisfy the general conditions formulated for absolute computabiiity.
67 [Post 1936], p. 289 in [Davis 1965]. Post remarks that the infinite sequence of boxes can
be replaced by a potentially infinite one, expanding the finite sequence as necessary.
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psychological fidelity. In the latter sense wider and wider formulations are
contemplated. On the other hand, our aim will be to show that all such are logically
reducible to formulation 1. We offer this conclusion at the present moment as a working
hypothesis. And to our mind such is Church's identification of effective calculability
with recursiveness.68

Investigating wider and wider formulations and reducing them to
Formulation 1 would change for Post this "hypothesis not so much to
a definition or to an axiom but to a natural law" .6 9

It is methodologically remarkable that Turing proceeded in
exactly the opposite way when trying to justify that all computable
numbers are machine computable or, in our way of speaking, that all
effectively calculable functions are Turing computable: he did not
try to extend a narrow notion reducibly and obtain in this way
additional quasi-empirical support, but analyzed the intended broad
concept and reduced it to a narrow one - once and for all. (I would
like to emphasize this, as it is claimed over and over that Post
provided in his 1936 paper "much the same analysis as Turing"70.)
By examining Turing's analysis and reduction we can find the key to
answer the question I raised on the difference between Church's and
Turing's proposals. Very briefly put it is this: Turing deepened
Church's step-by-step argument by focusing on the mechanical
operations underlying the steps and by formulating finiteness
conditions that guarantee their recursiveness. Let me now present
Turing's considerations in systematic detail with simplifications
and added structure.

3.2 Mechanical computer.71 Turing's classical paper On comput-
able numbers, with an application to the Entscheidungsproblem

68 in [Davis 1965], p. 291; the emphasis is mine. - To clarify some of the difficulties here,
one has to consider other papers of Post's. A good starting point might be the discussion on pp.
21-22 of [Davis 1982] and Post's remarks on finite methods on pp. 426-428 in [Davis 1965].
69 [Post 1936], p. 291 in [Davis].
70 This is from [Kleene 1988], p.34. In [Gandy 1988], p. 98, one finds the pertinent and
correct remark on Post's 1936 paper: "Post does not analyze nor justify his formulation, nor
does he indicate any chain of ideas leading to it." Church in his review of that paper is also
quite critical. But compare the second part of note 68.
71 I am following the useful convention of Gandy's whereby a human carrying out a computation
is a computer, whereas computer refers to some machine or other. In the Oxford English
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opens with a brief description of what is ostensibly its subject,
namely, "computable numbers" or "the real numbers whose
expressions as a decimal are calculable by finite means".72 Turing
is quick to point out that the fundamental problem of explicating
"calculable by finite means" is the same when considering
computable functions of an integral variable, computable predicates,
and so forth. So it suffices to address the question: What does it
mean for a real number to be calculable by finite means? Turing
admits:

This requires rather more explicit definition. No real attempt will be made to justify
the definitions given until we reach §9. For the present I shall only say that \h£.
justification lies in the fact that the human memory is necessarily limited.73

In §9 he argues that the operations of his machines "include all
those which are used in the computation of a number". (Clearly, the
operations need not be available as basic ones; it suffices that they
can be mimicked by suitably complex subroutines.) He does not try
to establish the claim directly; rather he attempts to answer "the
real question at issue", i.e., "What are the possible processes which
can be carried out [implicitly: by a human computor] in computing a
number?" Given the systematic context that reaches back to
Leibniz's "Calculemus!", this is exactly the pertinent question to ask,
as the general problematic requires an analysis of the possibilities
of a mechanical computor. Gandy emphasizes, absolutely correctly
as we will see, that "Turing's analysis makes no reference
whatsoever to calculating machines. Turing machines appear as a
result, as a codification, of his analysis of calculations by
humans."74

Turing imagines a mechanical computor writing symbols on
paper that is divided into squares "like a child's arithmetic book".

Dictionary the meaning of "mechanical" as applied to a person is given by: "resembling
(inanimate) machines or their operations; acting or performed without the exercise of thought
or volition; ... ".
7 2 [Turing 1936], p. 116 in [Davis 1965].
7 3 [Turing 1936] p. 117 in [Davis 1965]; my emphasis. This justification is discussed in 3.3.
7 4 [Gandy 1988], pp. 83-84.
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As the two-dimensional character of this computing space is taken
not to be an "essential of computation"75 Turing takes a one-
dimensional tape divided into squares as the basic computing
space.76 What determines the steps of the computor, and what kind
of elementary operations can he carry out? Before turning to these
questions, let me formulate one important restriction. It is
motivated by definite limits of our sensory apparatus to distinguish
- at one glance - between symbolic configurations of sufficient
complexity; it states that only finitely many distinct symbols can be
written on a square. This restriction will be part of condition (1.1)
below. Turing suggests a reason for this restriction by remarking77,
"If we were to allow an infinity of symbols, then there would be
symbols differing to an arbitrarily small extent." There is a second,
but closely related way of arguing for this restriction: if, for
example, Arabic numerals like 17 or 9999999 are considered as one
symbol, then it is not possible for us to determine at one glance,
whether or not 9889995496789998769 is identical with
98899954967899998769.

The behavior of a computor is determined at any moment
uniquely by two factors: (i) the symbols or symbolic configuration he
observes, and (ii) his "state of mind" or his "internal state". This
uniqueness requirement may be called the determinacy condition
(D) and guarantees that computations are deterministic. Internal
states are introduced to have the computor's behavior depend
possibly on earlier observations, i.e. to reflect the computor's
experience.78 Turing wants to isolate operations of the computor

7 5 I.e. p. 135.
7 6 A formulation of a computor operating in a two-dimensional computing space will be given in
[Sieg 199X]; such a computor satisfies appropriately generalized finiteness conditions, and it
can be shown that his computations can be carried out by a "linear* computor. So this step is
indeed without theoretical consequence. (This analysis is of a significantly more general
character than the investigations of generalized Turing machines in Kleene's IM.)
77 I.e. p. 135; a very similar reason is given for restricting the number of states of mind. •
My account here is not a pure reconstruction, but joins Turing's considerations for restricting
the number of symbols and states of mind with the (later) ones on immediate recognizability.
78 Turing relates state of mind to memory in §1, I.e. p. 117, for his machines: "By altering its
m-configuration [i.e. its state of mind] the machine can effectively remember some of the
symbols which it has 'seen' (scanned) previously." This point is also emphasized by [Kleene



39

that are "so elementary that it is not easy to imagine them further
divided"79. Thus it is crucial that symbolic configurations relevant
for fixing the circumstances for the actions of a computor are
immediately recognizable, and we are led to postulate that a
computor has to satisfy two finiteness conditions:

(1.1) there is a fixed finite number of symbolic configurations a
computor can immediately recognize;

there is a fixed finite number of states of mind that need be
taken into account.

For a given computor there are only finitely many different relevant
combinations of symbolic configurations and internal states. As the
computer's behavior is -- according to (D) -- uniquely determined by
such combinations and associated operations, the computor can
carry out at most finitely many different operations and,
consequently, his behavior is fixed by a finite list of commands. The
operations a mechanical computor can carry out are restricted as
follows:

(2.1) only elements of observed symbolic configurations can be
changed; 80

(2.2) the distribution of observed squares can be changed, but each
of the new observed squares must be within a bounded distance L of
an immediately previously observed square.8"1

1988], p. 22: "A person computing is not constrained to working from just what he sees on the
square he is momentarily observing. He can remember information he previously read from
other squares. This memory consists in a state of mind, his mind being in a different state at a
given moment of time depending on what he remembers from before."
7 9 I.e. p. 136.
8 0 Turing actually argues that the changed squares must satisfy similar conditions as the
observed squares and, for that reason, can be taken as being among them; the changes can be
carried out, in addition, one square at a time.
8 1 This last condition is specific for a "linear" computor; in general, one would have to require
that there is a fixed finite number of configurations that can serve as "paths" from one
observed symbolic configuration to the next. (Cf. note 76.)
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Turing emphasizes that Hthe new observed squares must be
immediately recognisable by the computer", and that means the
distributions of the new observed squares arising from changes
according to (2.2) must be among the finitely many ones of (1.1).
Clearly, the same must hold for the symbolic configurations
resulting from changes according to (2 .1 ) . As some of the
operations may involve a change of state of mind, Turing concludes:

The most general single operation must therefore be taken to be one of the following: (A)
A possible change (a) of symbol [as in (2.1)] together with a possible change of state of
mind. (B) A possible change (b) of observed squares [as in (2.2)] together with a
possible change of state of mind.82

With this restrictive analysis of the steps a mechanical computor
can take the proposition that his computations can be carried out by
a Turing machine is established rather easily. Indeed, Turing first
"constructs" machines that mimic the work of the computor directly
and then observes:

The machines just described do not differ very essentially from computing machines as
defined in § 2, and corresponding to any machine of this type a computing machine can be
constructed to compute the same sequence, that is to say the sequence computed by the
computer [in my terminology: computor].83

Thus we have, shifting back to computations of number-theoretic
functions, TURING'S THEOREM: any number-theoretic function F that
can be computed by a computor satisfying the determinacy condition
(D) and the conditions (1.1)-(2.2) can be computed by a Turing
machine.

Both Godel and Church state they were convinced by Turing's
analysis that the identification of effective calculability with
Turing computability (thus also with recursiveness and X,-
definability) is correct. Church expressed his views in the 1937
review of Turing's paper, from which I quoted already in the
introduction: on account of Turing's work the identification is
"immediately evident". As to Godel I have not been able to find in his

82 [Turing 1936] in [Davis 1965], p. 137.
83 [Turing 1936] in [Davis 1965], p. 138.
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papers any reference to Turing's analysis before [Godel 1946]; that
paper was discussed in section 2.3. - But what did convince them?
Godel gave some indication in the Postscriptum to the Princeton
Lectures, where he is perfectly clear about the structure of Turing's
argument. "Turing's work", he writes there, "gives an analysis of the
concept 'mechanical procedure' (alias 'algorithm* or 'computation
procedure' or 'finite combinatorial procedure'). This concept is
shown [my emphasis] to be equivalent with that of a 'Turing
machine1." In a footnote attached to this observation he called
"previous equivalent definitions of computability" -- referring to X-
definability and recursiveness -- "much less suitable for our
purpose". What is not elucidated by any remark of Godel's, as far as I
know, is the result of Turing's analysis; namely, the axiomatic
formulation of restrictive conditions. And there is consequently no
discussion of the reasons for the correctness of these conditions or,
for that matter, of the analysis.

Church was very much on target in his review, though there is
a misunderstanding as to the relative role of the human computor
and machine computability in Turing's argument. For Church,
computability by a machine "occupying a finite space and with
working parts of finite size" is analyzed by Turing; then one can
observe that "in particular, a human calculator, provided with pencil
and paper and explicit instructions, can be regarded as a kind of
Turing machine". On account of the analysis and this observation it
is for Church then "immediately clear" that (Turing-) machine
computability can be identified with effectiveness. This is re-
emphasized in the rather critical review of Post's 1936 paper in
which Church pointed to the essential finiteness requirements in
Turing's analysis: "To define effectiveness as computability by an
arbitrary machine, subject to restrictions of finiteness, would seem
to be an adequate representation of the ordinary notion, and if this
is done the need for a working hypothesis disappears." This is right,
as far as emphasis on finiteness restrictions is concerned. But
Turing analyzed, as we saw, a mechanical computor, and that
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provides the basis for (judging the correctness of) the finiteness
conditions.

Church's apparent misunderstanding is rather common; see, for
example, Mendelson's paper [1990] mentioned in note 4. So it is
worthwhile to point out that machine computability was analyzed
only much later in [Gandy 1980]. Turing's three-step-procedure of
analysis, axiomatic formulation of general principles, and proof of a
"reduction theorem" is followed there, but for "discrete
deterministic mechanical devices". Gandy showed that everything
computable by a device satisfying the principles, a "Gandy machine",
can already be computed by a Turing machine. To see clearly the
difference between Turing's and Gandy's analysis, note that Gandy
machines incorporate parallelism. They compute directly, e.g.,
Conway's game of life, and thus violate the basic assumption that
mechanical computors operate only on symbolic configurations of
bounded size. Furthermore, the different boundedness conditions for
Gandy machines are motivated not by limitations of the human
sensory apparatus, but rather by physical considerations.

3.3 Turing's thesis. Turing's analysis and his theorem can be
generalized by making an observation concerning the determinacy
condition: (D) is not needed to guarantee the Turing computability of
F in the theorem. More precisely, (D) was used in conjunction with
(1.1) and (1.2) to argue that computors can carry out only finitely
many operations; this claim follows already from conditions (1.1)-
(2.2) without appealing to (D). Thus, the behavior of computors can
still be fixed by a finite list of commands, but it may exhibit non-
determinism. Such computors can be mimicked by non-deterministic
Turing machines and thus, exploiting the reducibility of non-
deterministic to deterministic machines, by deterministic Turing
machines.

This observation is by no means difficult, but I was surprised
and rather pleased that it can be used in a straightforward way to
connect Turing's considerations with those of Church discussed in
section 2.3. Consider an effectively calculable function F and a non-
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deterministic computor who calculates -- in Church's sense -- the
value of F in a logic L. Using the generalized theorem and the fact
that Turing computable functions are recursive, F is then recursive.
This argument for F's recursiveness does no longer appeal to
Church's Thesis, not even to the more restricted Central Thesis;
rather, such an appeal is replaced by the assumption that the
calculation in the logic is done by a computor satisfying the
conditions (1.1)-{2.2). Indeed, any system satisfying these
axiomatic conditions would do. Turing's analysis thus leads to a
result that is in line with Gddel's general methodological
expectations expressed to Church in 1934 (and reported by Church to
Kleene in 1935):

His [i.e. Gddel's] only idea at the time was that it might be possible, in terms of effectiv/
calculability as an undefined notion, to state a set of axioms which would embody trje
generally accepted properties of this notion, and to do something on that basis.84

 x

If the assumption in the argument for the recursiveness of F is
to be discharged, then a substantive thesis is needed. And it is this
thesis I want to call TURING'S THESIS. It expresses that a
mechanical computor satisfies the finiteness conditions (1.1) and
(1.2) and that the elementary operations the computor can carry out
are restricted as conditions (2.1) and (2.2) require. In short, // the
clarification of effective calculability as meaning computability by
a mechanical computor is accepted, then Turing's Thesis is the final
piece to guarantee the equivalence of that notion and recursiveness.
And if Turing's Thesis is correct, then the conceptual problem of von
Neumann's is resolved, as we have a precise and -- via Turing's
Theorem -- mathematically handy characterization of "absolut
mechanische Vorschriften"; Godel is then also right when concluding
that Turing computability captures the "essence" of formal systems,
namely, "that reasoning is completely replaced by mechanical
operations on formulas".85

8 4 Church in the letter to Kleene of November 29, 1935, quoted in {Davis 1982], p. 9.
8 5 Postscriptum to [GQdel 1934], p. 72 in [Davis 1965]. Cp. also Turing's remark in which
formal systems are characterized as "mechanical" ones; [Turing 1939], p. 194 in [Davis
1965].
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The first section of my paper had the explicit purpose of
describing the context for the investigations of Herbrand, Godel,
Church, Kleene, and Turing. There is no doubt, it seems to me, that
(i) an analysis of human computability on finite (symbolic)
configurations was called for, and that (ii) the epistemological
restrictions were cast in "mechanical" terms; vide as particularly
striking examples the remarks of Frege and Godel quoted in section
1.1. Thus, Turing's clarification of effective calculability as
calculability by a mechanical computer should be accepted. - Two
related issues remain: first of all, the question whether the thesis
is correct and, secondly, Turing's claim that its ultimate
justification lies in the necessary limitation of human memory. As
to the first issue we have to ask ourselves whether the restrictive
conditions do in fact apply to mechanical computors. According to
Gandy, Turing arrives at the restrictions "by considering the
limitations of our sensory and mental apparatus". However, only
limitations of our sensory apparatus seem to be involved, unless
"state of mind" is given a mental touch. That is technically
unnecessary as I pointed out in section 3.1 and not central to Turing:
in section 9 (III) of his paper he describes a modified computor and
avoids introducing "state of mind", considering instead "a more
physical and definite counterpart of it".86 Without discussing this
modification, whose context is a little complex, only sensory
limitations of the type I discussed at the beginning of section 3.2
are appealed to. And such limitations are operative when we work
as purely mechanical computors.87

Turing sees memory limitations as ultimately justifying the
restrictive conditions. But none of the conditions is motivated by
such a limitation; so how are we to understand his claim? I suggest
the following: if our memory were not subject to limitations of the
same character as our sensory apparatus, we could scan (with the

86 [Turing 1936], p. 139 in [Davis 1965].
87 It should be possible to present counterexamples that would show - as those in [Gandy
1980] • that weakening of the conditions (1.1) • (2.2) leads to "omniscient computors".
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limited sensory apparatus) a symbolic configuration that is not
immediately recognizable, read in sufficiently small parts so that
their representations can be assembled in a unique way to a
representation of the given symbolic configuration, and finally carry
out (generalized) operations on that representation in memory. Is
one driven to accept Turing's assertion as to the limitation of
memory? I suppose so, if one thinks that information concerning
symbolic structures is physically encoded and that there is a bound
on the number of available codes.

Turing viewed his argument for the identification of
effectively calculable functions with functions computable by his
machines as being basically Ma direct appeal to intuition". Indeed, he
claimed more strongly, "All arguments which can be given [for this
identification] are bound to be, fundamentally, appeals to intuition,
and for that reason rather unsatisfactory mathematically.1188 If we
look at his paper on ordinal logics [Turing 1939] the claim that such
arguments are "unsatisfactory mathematically" becomes at first
rather puzzling, as he observed there that intuition is inextricable
from mathematical reasoning. Turing's concept of intuition is much
more general than that ordinarily used in the philosophy of
mathematics. It is introduced in Turing's 1939 paper explicitly to
address the general issues raised by Godel's First Incompleteness
Theorem in the context of work on ordinal logics or, what was later
called, progressions of theories; the discussion is in section 11, pp.
208-210 in [Davis 1965].

Mathematical reasoning may be regarded rather schematically as the exercise of a
combination of two faculties, which we may call intuition and ingenuity. The activity of
the intuition consists in making spontaneous judgements which are not the result of
conscious trains of reasoning. These judgements are often but by no means invariably
correct (leaving aside the question of what is meant by "correct1*). ... The exercise of
ingenuity in mathematics consists in aiding the intuition through suitable arrangements
of propositions, and perhaps geometrical figures or drawings. It is intended that when
these are really well arranged the validity of the intuitive steps which are required
cannot seriously be doubted.

88 [Turing 1936], p. 135 in [Davis 1965].
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It seems to me that the propositions in Turing's argument are
arranged with sufficient ingenuity so that "the validity of the
intuitive steps which are required cannot seriously be doubted"; or,
at least, their arrangement allows us to point to the central
conditions with clearer, adjudicable content than Church's normative
Central Thesis.

4. Aspects of mathematical experience. Let us emerge from
the details of the conceptual analysis to its use for an
interpretation of the Incompleteness Theorems. If their formulation
and their interpretation is to be general, the relation of Turing
computability to effective calculability and the informal
understanding of the latter notion come to the fore. I argued that,
historically, the insistence on formality was motivated by
epistemological concerns; and it is quite clear that a genuine
restriction on our cognitive, more particularly, mathematical
capacities was intended. Thus it may be surprising that some of the
pioneers interpreted these results, prima facie, in a quite dramatic
way. Post, for example, emphasized in his [1936] that the theorems
I mentioned exemplify "a fundamental discovery in the limitations of
the mathematizing power of Homo Sapiens". In his [1944] he
remarked with respect to these results:

Like the classical unsoivabiiity proofs, these proofs are of unsoivabiiity by means of
given instruments. What is new is that in the present case these instruments, in effect,
seem to be the only instruments at man's disposal.89

The last part of my paper will start out with reflections of Godel's
on these issues. His considerations will lead us to look at two
aspects of mathematical experience: the first, quasi-constructive
aspect has to do with the recognition of laws for "accessible
domains"; this includes, in particular, our recognition of set
theoretic axioms and their extendibility by suitable axioms of

8 9 [Post 1944], p. 310 in [Davis 1965]. See also footnote of [Post 1941/1965]
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infinity. The second, conceptional aspect deals with the uncovering
of abstract, axiomatically characterized notions; Turing's analysis
shows, it seems to me, that calculability exemplifies the second
aspect.

4.1 Gddel's consequences. Turing's work provides "a precise and
unquestionably adequate definition of the general concept of formal
system" and, consequently, the Incompleteness Theorems hold for
arbitrary formal systems (satisfying the usual conditions). But for
Godel - in contrast to Post -- they do not establish "any bounds for
the powers of human reason, but rather for the potentialities of pure
formalism in mathematics".90 In [Godel 1972a] there is a discussion
of a "philosophical error in Turing's work" that can, so Godel, be
regarded as a footnote to the word 'mathematics' in this very
quotation. Godel claims that Turing, on page 136 of [Davis 1965],
gives an argument to show that "mental procedures cannot go beyond
mechanical procedures". What is given on that page is a very brief
argument showing that "the number of states of mind that need be
taken into account is finite". As the context makes crystal-clear
that mechanical procedures are being analyzed, I cannot see a
philosophical error in Turing's work, but rather in Godel's
interpretation.91 However, the interest of the further remarks in
Godel's note is independent of Godel's error; they summarize points
he had made more extensively in his Gibbs Lecture of 1951.

If mathematics, Godel stated in the Gibbs Lecture, is viewed
as a body of propositions that "hold in an absolute sense", then the
Incompleteness Theorems express that it is not exhaustible by a
mechanical enumeration of its theorems. After all, the First
Theorem yields for any consistent formal system S containing a
modicum of number theory a simple arithmetic sentence that is
independent of S. But Godel emphasized that it is the Second

90 [G6del 1964] , pp. 72-73.
91 Compare [Webb 1990] for a detailed discussion that is in my view mistaken - mainly,
because Webb accepts the premise of Godel's argument; that premise is clearly congenial to
Webb's understanding of Turing's Thesis. (For the latter, see note 5.)
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Theorem that makes this phenomenon of inexhaustibility
particularly evident.

For it makes it impossible that someone should set up a certain well-defined system of
axioms and rules and consistently make the following assertion about it: All of these
axioms and rules I perceive (with mathematical certitude) to be correct, and moreover I
believe that they contain all of mathematics.92

If someone claims this, he contradicts himself: recognizing the
correctness of all axioms and rules means recognizing the
consistency of the system. Thus, a mathematical insight has been
gained that does not follow from the axioms. To explain the meaning
of this situation carefully Godel distinguished between "objective"
and "subjective" mathematics: objective mathematics is viewed as
the body of true mathematical propositions; subjective mathematics
is conceived of as consisting of all humanly provable mathematical
propositions. There clearly cannot be a complete formal system for
objective mathematics, but it is not excluded that for mathematics
in the subjective sense there might be a finite procedure yielding all
its evident axioms. Clearly, we could never be certain that all of
these axioms are correct; but if there were such a procedurertherr^-
at least as far as mathematics is concerned — the human mind
would be equivalent to a Turing machine. Furthermore, there would
be simple arithmetic problems that could not be decided by any
mathematical proof intelligible to the human mind. If we call such a
problem absolutely undecidable we have established in full
mathematical rigor: either mathematics is inexhaustible in the
sense that its evident axioms cannot be generated by a finite
procedure or there are absolutely undecidable arithmetic
problems.93

This fact appears to Godel to be of "great philosophical
interest". That is not surprising, as he explicates the first
alternative in the following way: "that is to say, the human mind
(even within the realm of pure mathematics) infinitely surpasses

9 2 [Godel 1951], pp. 5-6.
9 3 [G6del 1951], p. 7.
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the powers of any finite machine". The further philosophical
consequences Godel tries to draw are concerned with his Platonism,
familiar from some of his published writings. Already in 1933 Godel
claimed that the axioms of set theory, "if interpreted as meaningful
statements, necessarily presuppose a kind of Platonism". But at
that time he added the relative clause "which cannot satisfy any
critical mind and which does not even produce the conviction that
they are consistent".94 It would lead too far afield, if I tried to
present why I do not find Godel's general considerations (in the
Gibbs Lecture) convincing. My criticism would not start with his
Platonism for set theory, but already when he contrasts the objects
of finitist, respectively intuitionistic mathematics in his Dialectica
paper. There he tried to draw an extremely sharp distinction within
constructive mathematics that seems to me to be mistaken (and
parallel to his equally mistaken radical opposition of classical and
constructive mathematics). The specifically finitist character of
mathematical objects requires them to be, according to Godel,
"finite space-time configurations whose nature is irrelevant except
for equality and difference"; and in proofs of propositions concerning
them one uses only insights that derive from the combinatorial
space-time properties of sign combinations representing them.95

These remarks stand in conflict with Bernays' position, to which
Godel appealed in his Dialectica paper; Bernays stressed, already in
his [1930], the uniform character of the generation of natural
numbers, the local structure of the schematic "iteration figure", and
the need to "reflect on the general features (allgemeine
Charakterzuge) of intuitive objects". Indeed, our understanding of
natural numbers as being generated in such a uniform way allows us
to grasp laws concerning them. This observation is correct, it
seems to me, also for more general inductively generated classes

94 [Gddel 1933], p. 7.
95 [Gddel 1958], in Collected Works II, p. 240. It is informative to compare this statement of
Godel's with the (incorrect) translation on p. 241 AND, most significantly, with the
corresponding remark in [Godel 1972], p. 273. In the latter Gddel in effect added "from a
reflection upon" to "insights that derive " in this remark.
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and points to the first of two critical aspects of mathematical
experience I want to describe now.

4.2 Accessibility and conception. If one takes seriously the
reformulation of the first alternative in Godel's Main Theorem, then
one certainly should try to see in what ways the human mind
"transcends" the limits of mechanical computors. Godel suggested in
[1972a] that there may be (humanly) effective, but non-mechanical
procedures. But even the most specific of his proposals, Godel
admitted, "would require a substantial advance in our understanding
Of the basic concepts of mathematics". That proposal concerned the
extension of systems of axiomatic set theory by axioms of infinity,
i.e., extending segments of the cumulative hierarchy. The problem of
extending, what I call, accessible domains is not special to the case
of set theory (and Platonism); rather, there are completely
analogous issues for the theory of primitive recursive functionals
(and finitism) and the theory of constructive ordinals in the second
number class (and intuitionism). This is the first of the two aspects
of mathematical experience I want to focus on; both are related to
features of "mental procedures" Godel discussed, but their interest
is quite independent of Godel's speculations.

Accessible domains, constituted by inductively generated
elements, are most familiar from mathematics and logic. In proof
theory, for example, inductively defined higher constructive number
classes have been used in consistency proofs for impredicative
subsystems of analysis. These and other classes provide special
cases in which generating procedures allow us to grasp the intrinsic
build-up of mathematical objects. And such an understanding is a
fundamental source for our knowledge of mathematical principles
for the domains constituted by them: for it is the case, I suppose,
that the definition and proof principles for such domains follow
directly from the comprehended build-up. A broad framework for the
"inductive or rule governed generation" of mathematical objects is
described in [Aczel 1977]; it is indeed so general that it
encompasses not only finitary i.d. classes, higher number classes,
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and models of a variety of constructive theories, but also segments
of the cumulative hierarchy. It provides a uniform framework in
which the difficulties (in our understanding) of generating
procedures can be compared and explicated. If we understand the
set-theoretic generation procedure for a segment of the cumulative
hierarchy, then it is indeed the case that the axioms of ZF~ (i.e. ZF
without the postulate for the existence of the first infinite ordinal)
together with a suitable axiom of infinity "force themselves upon us
as being true" in Godel's famous phrase; they just formulate the
principles underlying the "construction11 of the objects in this
segment.96

The sketch of this quasi-constructive aspect of mathematical
experience is extremely schematic and yet, I think, helpful for
further orientation. Recall that for Dedekind consistency proofs
were to ensure that axiomatically characterized notions (like that
of a complete ordered field) were free from "internal
contradictions". Here we are dealing with abstract notions without
an "intended model" constituted by inductively generated elements.97

These notions are distilled from mathematical practice for the
purpose of comprehending complex connections, of making analogies
precise, and of obtaining a more profound understanding. It is in this
way that the axiomatic method teaches us, as Bourbaki expressed it
in Dedekind's spirit,

to look for the deep-lying reasons for such a discovery [that two, or several, quite
distinct theories lend each other -unexpected support"], to find the common ideas of
these theories, ... to bring these ideas forward and to put them in their proper light.98

96 The power-set is the critical generating principle when applied to infinite sets: ZF" is
equivalent to elementary number theory; ZF without the power-set axiom is equivalent to
second-order arithmetic. - There is a rich literature dealing with the "iterative conception of
set" including papers by Parsons and Wang; that cannot be discussed here. For references to
this literature, see the second edition of Philosophy of Mathematics, edited by Benacerraf and
Putnam, Cambridge, 1983.
97 The categoricity of the second-order theory of complete ordered fields does not argue
against this point; as another example of a theory exhibiting similar features consider the
theory of dense linear orderings without endpoints.
98 [Bourbaki 1950], p. 223.
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Notions like group, field, topological space, differentiate manifold
are abstract in this sense and are properly investigated, i.e., in full
generality, in category theory. Another example of such a notion is
that of Turing's mechanical computor! Though Godel uses "abstract"
in a more inclusive way than I do here, it seems that the notion of
computability exemplifies his broad claim "that we understand
abstract terms more and more precisely as we go on using them, and
that more and more abstract terms enter the sphere of our
understanding".99

This conceptional aspect of mathematical experience and its
profound function in mathematics has been entirely neglected in the
logico-philosophical literature on the foundations of mathematics -
except in the writings of Paul Bernays. Indeed, detailed
investigations of these two aspects of mathematical experience can
be viewed as addressing the central problem expressed by Bernays in
the quotation from his [1922] given in section 1.2: Which principled
position can we take regarding the "transcendent assumptions" of
mathematics? Those assumptions are reflected through accessible
domains, relative to which abstract notions can be shown to be
consistent via structural reductions. That is a generalized and
redirected Hilbert Program, mediating between Richard Dedekind and
a liberalized version of Leopold Kronecker! The traditional contrast
between "platonist" and "constructivist" tendencies in mathematics
comes to light here in refined distinctions concerning the
admissibility of operations, of their iteration, and of deductive
principles. The considerations on the quasi-constructive aspect of
mathematical experience cut across traditional "school" boundaries;
so do those on its conceptional aspect.

5. Final remarks. I argued that the sharpening of axiomatic
theories to formal ones was motivated by epistemological concerns.
A central point was the requirement that the checking of proofs

99 [G6del 1972a], p. 306.



53

ought to be done in a radically intersubjective way: it should involve
only operations similar to those used by a computor when carrying
out an arithmetic calculation. Turing analyzed the processes
underlying such operations and formulated a notion of computability
by means of his machines; that was in 1936. In a paper written
about ten years later and entitled Intelligent Machinery, Turing
stated what really is the central problem of cognitive psychology:

If the untrained infant's mind is to become an intelligent one, it must acquire both
discipline and initiative. So far we have been considering only discipline [via the
universal machine, W.S.]. ... But discipline is certainly not enough in itself to produce
intelligence. That which is required in addition we call initiative. This statement will
have to serve as a definition. Our task is to discover the nature of this residue as it
occurs in man, and to try and copy it in machines.100

The task of copying is difficult, some would argue impossible, in the
case of mathematical thinking. But before we can start copying, we
have to discover - at least partially - "the nature of the residue".
As you may recall, Turing distinguished in his 1939 paper between
ingenuity and intuition, and he argued that in formal logics their
respective roles take on a greater definiteness: intuition is used for
"setting down formal rules for inferences which are always
intuitively valid", ingenuity to "determine which steps are the more
profitable for the purpose of proving a particular proposition". He
noted:

In pre-GSdel times it was thought by some that it would be possible to carry this
programme to such a point that all the intuitive judgements of mathematics could be
replaced by a finite number of these rules. The necessity for intuition would then be
entirely eliminated.101

Proofs in a formal logic can be obtained uniformly by a
(patient) search through an enumeration of all theorems, but
additional non-mechanical, intuitive steps remain necessary because
of the Incompleteness Theorems. Turing suggested particular kinds
of intuitive steps in his ordinal logics; his arguments are utterly
theoretical, but connect directly to the discussion of actual or

1 0 0 [Turing 1948], p. 21.
1 0 1 [Turing 1939], p. 209.
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projected computing devices in his Lecture to London Mathematical
Society and Intelligent Machinery: In these papers he calls for
"intellectual searches" (i.e., heuristically guided searches) and
"initiative" (that includes, in the context of mathematics, proposing
intuitive steps). However:

As regards mathematical philosophy, since the machines will be doing more and more
mathematics themselves, the centre of gravity of the human interest will be driven
further and further into philosophical questions of what can in principle be done etc.1 0 2

Thus we are straightforwardly led back to the questions: What are
essential aspects of mathematical experience? Are they
mechanizable?

I have tried to give a very tentative and partial answer to the
first question. As far as the second question is concerned, I don't
have even a conjecture on how it will be answered. Is Godel's search
for humanly effective, but non-mechanical procedures in
mathematics more than searching for a "pie in the sky" (as Kleene
thinks)? Or is Post, drawing on similar mathematical facts, right
when making the observation:

The creative germ ... can be stated as consisting in constructing ever higher types. These
are as transfinite ordinals and the creative process consists in continually transcending
them by seeing previously unseen laws which give a sequence of such numbers. Now it
seems that this complete seeing is a complicated process mostly subconscious. But it is
not given till it is made completely conscious. But then it ought to be constructable
[sic!] purely mechanically.103

Whatever the right answers may be, mathematical experience
represents an extremely important component of Turing's problem,
and we should investigate crucial aspects vigorously: by historical
case studies, theoretical analysis, psychological experimentation
and - quite in Turing's open spirit - by machine simulation.

1 0 2 [Turing 1947], p. 122.
1 0 3 Post 1941/65, p. 423 in [Davis 1965].
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APPENDIX. This appendix uses some new documents to further
elucidate significant conceptual issues and to support conjectural
remarks as to the impact of (the proof of) Godel's Incompleteness
Theorems on Herbrand and Church. Incidentally, both men got to
know Godel's results through Johan von Neumann; Herbrand in
November 1930 in Berlin, Church about a year later in Princeton!
With respect to Herbrand I want to emphasize, as I did in section
2.2, that he was concerned with the notion of provably recursive
function; as to Church, I want to stress that his belief in the
correctness of his thesis hardly rested on any particular
"motivation" for ^-definability, but rather on (general facts
concerning) the notion "calculability in a logic" and his Central
Thesis. In any event, there is still extremely interesting material to
be uncovered and to be evaluated; and there remains a great deal of
important analytic work to be done. - Godel's proof provided the
seminal idea of representing number-theoretic functions in a formal
system; his results provided the stimulus for investigations
concerning their proper applicability and the precise extension of
effectiveness. How surprising his results (for logicians) were, is
sometimes no longer appreciated; consider Herbrand's reaction
described in his letter (of December 3, 1930) to his friend Claude
Chevalley.

Les mathematiciens sont une bizarre chose; void une quinzaine de jours que chaque fois
que je vois [von] Neumann nous causons d'un travail d'un certain Gddel, qui a fabrique de
bien curieuses fonctions; et tout cela ctetruit quelques notions solidement ancrees.

This sentence opens the letter; after having sketched Godel's
arguments and reflected on the results Herbrand concludes it with:
"Excuse ce long debut; mais tout cela me poursuit, et de I'ecrire m'en
exorcise un peu."

1. If, as I described in sections 2.1 and 2.2, Godel took off in a
generalizing mood from Herbrand's schema for the introduction of
'recursive' functions, and if Herbrand was not attempting to
characterize a general notion of effectively calculable function,
what did motivate Herbrand to formulate the schema? First recall
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the widely shared assumptions; namely, (i) the general notion of
recursive function was captured by Herbrand's schema, and (ii) the
schema emerged from Herbrand's general reflections on
intuitionistic methods. These assumptions are formulated, for
example, in [van Heijenoort 1971], p. 283, but also in [Dawson 1991]:

The functions [characterized by the schema formulated in [Herbrand 1931c], W.S.] are,
in fact, (general) recursive functions, and here is the first appearance of the notion of
recursive (as opposed to primitive recursive) function. It is interesting to see how, a
few months earlier, Herbrand had been led to this notion by his conception of
'intuitionism'.

For the earlier discussion van Heijenoort refers to [Herbrand 1931a];
as to Herbrand's [1931c] he writes on page 284:

Herbrand's consistency proof for a fragment of arithmetic still belongs to the period that
preceded GOdel's famous result (1931). He probably started to write his paper before
Gddel's paper reached him. But he had ample opportunity to examine Godei's result and
he wrote a last section dealing with it.

This scenario is incorrect: the notes [1931a and b] and the
paper [1931c] were all written after Herbrand knew about the
Incompleteness Theorems quite well. This seems to be clear from
internal evidence, but Herbrand's letter to Chevalley puts it beyond
any doubt. In it Herbrand tells us (i) that it was von Neumann from
whom he learned of Godel's theorems, and (ii) that the encounters
with von Neumann took place in the second half of November 1930.
That new information also puts into sharper focus the remark in
[Herbrand 1931b], submitted, according to Goldfarbfs introduction, to
Hadamard "at the beginning of 1931".

Recent results (not mine) show that we can hardly go any further: it has been shown that
the problem of consistency of a theory containing all of arithmetic (for example,
classical analysis) is a problem whose solution is impossible. [[Herbrand is here
alluding to GOdel 1931.]] In fact, I am at the present time preparing an article in which
I will explain the relationships between these results and mine [[this article is

Thus, it is Herbrand's attempt to come to a thorough understanding
of the relationship between Godel's Incompleteness Theorems and

1 0 4 [Herbrand 1931b], p. 279. The remarks in double brackets are due to GokJfarb, the editor
of Herbrand's Logical Writings; i.e., [Herbrand 1971].
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his own work that seems to have prompted the specific details in
his letter to Godel and his paper [1931c]. Indeed, I think that
Herbrand's proposal for the introduction of functions is a natural
generalization of the definition schemata for effectively calculable
functions known to him and that it emerges quite directly from his
way of proving consistency of (weak) systems of arithmetic already
in his thesis. In the note to Bernays that accompanied the copy of
his letter to Godel, Herbrand contrasts his consistency proof with
that of Ackermann:

In meiner Arithmetik ist das Axiom der Vollstandigen Induktion beschrankt, aber man
dart alleriei andere Funktionen benutzen als diejenige die durch einfache Rekursion
definiert sind: in dieser Richtung, scheint es mir dass mein Theorem etwas weiter geht
als das Ihrige.105 - In my arithmetic the axiom of complete induction is restricted,
but one may use a variety of other functions than those that are defined by simple
recursion: in this direction, it seems to me, that my theorem goes a little farther than
yours.

This is hardly a description of a class of functions that is deemed to
be of fundamental significance! However, a detailed account of the
evolution of Herbrand's schema as well as the precise
characterization of the provably total functions of Herbrand's
system of arithmetic in [1931c] has to wait for another occasion.

2. Kleene emphasized in his [1987], p. 491, that the approach to
effective calculability through ^-definability had "quite independent
roots (motivations)" and would have led Church to his main results
"even if Godel's paper [1931] had not already appeared". Perhaps
Kleene is right, but I doubt it. The flurry of activity surrounding
Church's A set of postulates for the foundation of logic (published in
1932 and 1933) is hardly imaginable without knowledge of Godel's
work, in particular not without the central notion of represent-
ability and, as Kleene points out, the arithmetization of metamathe-
matics. The Princeton group of Church, Kleene, and Rosser knew
since the fall of 1931 of Godel's theorems through a lecture of von
Neumann: Kleene reports in [1987], p. 491, that through this lecture

1 0 5 This is a literal rendition of Herbrand's remark. • Bernays, in his letter to G5del of April
20, 1931, pointed out that Herbrand had misunderstood him in an earlier discussion: he,
Bernays, had not talked about a result of his, but rather about Ackermann's consistency proof.
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"Church and the rest of us first learned of Godel's results". The
centrality of representability for Church's considerations comes out
quite clearly in his lecture on Richard's paradox given in December
1933 and published as his [1934]. Since Church had formulated,
according to [Kleene 1981], p. 59, his thesis for X-definability
already in the fall of 1933, it is not difficult to read the following
statement as an extremely cautious statement of the thesis:

... it appears to be possible that there should be a system of symbolic logic containing a
formula to stand for every definable function of positive integers, and I fully believe that
such systems exist.106

One has only to realize -- from the context - (i) that 'definable'
means 'constructively definable', so that the value of the function
can be calculated, and (ii) that 'to stand for' means 'to represent'. In
a letter to Bernays, dated January 23, 1935, Church claims
explicitly that the X-calculus may be a system that allows the
representability of all constructively defined functions:

The most important results of Kleene's thesis concern the problem of finding a
formula to represent a given intuitively defined function of positive integers (it is
required that the formula shall contain no other symbols than X, variables, and
parentheses). The results of Kleene are so general and the possibilities of extending
them apparently so unlimited that one is led to conjecture that a formula can be found to
represent any particular constructively defined function of positive integers whatever.
It is difficult to prove this conjecture, however, or even to state it accurately, because
of the difficulty in saying precisely what is meant by "constructively defined". A vague
description can be given by saying that a function is constructively defined if a method
can be given by which its values could be actually calculated for any particular positive
integer whatever. Every recursive definition, of no matter how high an order, is
constructive, and as far as I know, every constructive definition is recursive.

One and a half years later, Church sent to Bernays a copy of a letter
he had written on June 8, 1937 to the Polish logician Jozef Pepis.
Pepis had informed Church earlier about his project of constructing
a numerical function that is effectively calculable, but not general
recursive. In his response, Church confessed himself to be
"extremely skeptical - although this attitude is of course subject to
the reservation that I may be induced to change my opinion after
seeing your work." Church stated his impression that Pepis may "not

106 [Church 1934], p. 358. Church assumed, clearly, the converse of this claim.
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fully appreciate the consequences which would follow from the
construction of an effectively calculable non-recursive function"
and went on to formulate such consequences - giving a most
sophisticated defense of Church's Thesis by an argument that makes
implicit use of a concept close to Godel's notion of absoluteness:

For instance, I think we may assume that we are agreed that if a numerical
function f is effectively calculable then for every positive integer a there must be a
positive integer b such that a valid proof can be given of the proposition f(a)«b (at least
if we are not agreed on this then our ideas of effective calcuiabiiity are so different as to
leave no common ground for discussion). But it is proved in my paper in the American
Journal of Mathematics107 that if the system of Principia Mathematica is omega-
consistent, and if the numerical function f is not general recursive, then, whatever
permissible choice is made of a formal definition of f within the system of Princtpia,
there must exist a positive integer a such that for no positive integer b is the
proposition f(a)=b provable within the system of Principia. Moreover this remains
true if instead of the system of Principia we substitute any one of the extensions of
Principia which have been proposed (e.g. allowing transfinite types), or any one of the
forms of the Zermelo set theory, or indeed any system of symbolic logic whatsoever
which to my knowledge has ever been proposed.

Because of the metamathematical facts and the assumed minimal
agreement on effective calcuiabiiity (italicized by me in the above
quotation), Church concludes that to discover an effectively
calculable non-recursive function "would imply discovery of an
utterly new principle of logic, not only never before formulated, but
never before actually used in a mathematical proof - since all extant
mathematics is formalizable within the system of Principia, or at
least within one of its known extensions." Yet the final line of
defense is, what I called, Church's Central Thesis:

Moreover this new principle of logic must be of so strange, and presumably
complicated, a kind that its metamathematical expression as a rule of inference was
[sic!] not general recursive (for this reason, if such a proposal of a new principle of
logic were ever actually made, I should be inclined to scrutinize the alleged effective
applicability of the principle with considerable care).

Substantiating my claim of the "dependent" development in Princeton
requires further detailed (historical) work I am not going to pursue
here; but I add that this is not an issue of settling priorities, but of
elucidating the role of central notions.

1 0 7 Church alludes to the last page of his 1936 paper, i.e., to page 107 in [Davis 1965].
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