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In 1965, E. Mark Gold and H. Putnam observed independently that recursive functional can be

viewed as mechanical scientists trying to investigate a given hypothesis in the limit [1], [11]. Gold

then essentially characterized the hypotheses that mechanical scientists can successfully decide

in the limit in terms of arithmetic complexity. These ideas were developed still further by Peter

Kugel [4]. In this paper I will extend this approach to obtain characterizations of identification in the

limit, identification with bounded mind-changes, and identification in the short run, both for

computers and for ideal agents with unbounded computational abilities. The characterization of

identification with n mind-changes entails, as a corollary, an exact arithmetic characterization of

Putnam's n-trial predicates, which closes a gap of a factor of two in Putnam's original

characterization [11].

It will be shown that solvability results concerning identification problems can be viewed as

estimations of complexity for second-order relations; arithmetic complexity when the scientist is

effective, and Borel complexity otherwise. This very general perspective illuminates the

relationships between the various learning-theoretic paradigms, since function identification,

language identification, and logical theory identification all drop out as special cases.

The hierarchy-theoretic approach of Gold and Putnam has an additional advantage. Traditional

negative arguments in learning theory have usually required that the learner succeed regardless

of the order in which observations are presented [1]. All of the standard characterization

theorems assume this requirement [7] [8] [9] [10]. One technical reason for the assumption is that

the negative sides of these characterization theorems are established using variants of a diagonal

argument known as the locking sequence lemma [10]. By relativizing the recursion-theoretic

approach of Gold and Putnam, we can obtain more general characterizations of identifiability that

apply no matter what the scientist knows a priori about data ordering. The operative notion of

relativization is not relativization to an oracle as is usual in recursion theory, but rather relativization

to background knowledge, as is more common in measure theory and statistics.



The learning-theoretic interpretation of the apparatus of the theory of recursive functional has

some pedagogical advantages. For example, it will be shown how the basis theorems of

mathematical logic answer questions about how the difficulty of empirical science relates to the

computational difficulty of the theory under investigation. The learning-theoretic interpretation of

recursion theory also raises questions about the invariance of classical results (such as the basis

theorems) under changes in background knowledge.

1. Data Presentations, Hypotheses, and Background Knowledge

I assume that evidence is expressible in a recursive language, so evidence sentences may be

encoded recursively by natural numbers. We view the data presentation received by an empirical

scientist as potentially infinite, so a data presentation will be viewed as an co-sequence of natural

numbers. Hypotheses will also be viewed as discrete objects encoded by natural numbers.

There are many features that scientists would like hypotheses to have, including simplicity, unity,

empirical adequacy, and so forth. To avoid interminable debates about the precise nature of

these requirements, we will simply assume that there is some well-defined notion of hypothesis

adequacy holding between data presentations and hypotheses. Since the aim of inquiry will be

to determine whether a hypothesis is adequate, we may simply identify a hypothesis with the set

H of all infinite data presentations for which it is adequate. So a hypothesis is just some arbitrary

subset of co10.

Background knowledge restricts the scientist's a priori uncertainty as to the data presentation he

will ultimately see in the limit. So we may also think of background knowledge K as some arbitrary

subset of (o®.

2. Paradigms of Hypothesis Assessment

A problem of hypothesis assessment is a situation in which a scientist is given a hypothesis and is

asked to assess its adequacy on the basis of increasing data fed from some infinite data

presentation. An assessment method is a function that takes a finite data segment to some

guess about the adequacy of the hypothesis in question. The guess 1 means that the

hypothesis in question is adequate, 0 means that it is not, and * represents unwillingness to

produce a clear guess.



Now we will consider a

methods. Let *H(t) be th<

sequence of notions of reliable success for hypothesis assessment

characteristic function of H.

<{> decides H over K with certainty <=>
Vt € K 3n s.t. <Nt|n) = xH(\) and Vm < n, <Kt|n)>

verifies H overK with certainty
Vts K, te H <

<l> refutes H over K_wlth certainty <=>
Vt € K, t e H « ( 3 n s.t. <Kt|n) = 1 [0] and Vm < n, <Mt|n) «*).

0 decides HoverK in n mind-changes starting with 1 [0, *] <=>
Vt € K 3n € co Vm > n, <|>(t|m) = ^ ( t ) and

<t>(t|0) = 1 [0 , * ]and
mc(^, t) < n.

where

mc(<t>, t|0) = 0 and
mc(<t), t|n+1) = mc(<J)(t|n)) if <|>(t|n) = <t>(t|n+1) and
mc((j), tjn+1) = mc(4>(t|n)) +1 otherwise.

<t> decides HoverK/nn mind-changes starting with 0 [1, *] «=>

Vt€K 3n€ (oVm>n,(t>(t|m)=XH(t)and
mc(<M)<n.

<{> decides H over K //> f/?e //m/f «=>
Vt e K 3n e (o Vm > n, <>(t|m) = XH(t).

<)> verifies H over K //i Me limits
Vt e K A(t, i) » ( 3 n Vm > n <>(t|n) = 1).

<|> refutes H over K /n f/7e ///n/f»
Vte K-TA(t,i)«(3nVm>n 0).

\decidable
H ls[effectively\ verifiable

Irefutable.
overK

with certainty
with n mind-changes

starting with 0[1,*]
//) the limit

[decides]
3[total recursive] $ s.t. 4> verifies H over K

(.refutes J

with certainty
with n mind-changes

starting with 0 [ V ]
Lin the limit



3. Characterizations of Reliable Assessment

Let K c co® represent background knowledge. For each a e ©*, let the K-fan K<j = {t e K: s.t. t

extends a}. R is a type <k, j> relation « R c (coo>)k X coi. Let R be a type <k, j> relation. R is K-

basicopene* 3K-fansFi FRCCO® 3 S I , .... Sj c co s.t. R= F^ X...XFkXS1 X...XSn. Ris

K-open « R is a union of basic open relations of type <k, j>. R is K-closed <=> R is K-open.

The finite Borel hierarchy relative to K is defined as follows1, where R is assumed to be of

type <k, j>.

R e s i « R is K-open.

B,K

R € n i »R is K-closed.

B, K

R 6 zn+ i <=> R = {<t, x> € {QP)* X o)i: 3n 6 co P(t, x, n)},
B K

where Pis type <k,j+i> and P 6 nn" .

B, K

where P is type <k f j+1 > and P e C .

_ AB.K _ «B,K n B , K

Now we proceed to the arithmetic hierarchy. Let R be a relation over (CD®)1* X col Turing machine

M is a positive test for R over K <=> Vt e Kk, Vx e cJ, R(t, x) <=> M halts with 1 after receiving x as

input and after scanning some finite segment of each t occurring in t. R is K-RE » R has some

positive test over K. R is K-Cfc-f?E<=> R has some positive test over K. The arithmetic hierarchy

relative to K is defined as follows:

R e s i <=> Ris K-RE

T-r°.K

Re n i <=>RisK-Co-RE

1This definition is a special case of [6], p. 20. We don't need the extra generality here. It is usual

to use bold-face sigmafs and pi's and to use the superscript 0. The unavailability of bold Greek

symbols has led to the use of superscript B in this paper.



R e Sn+i <* R = {<t, x> € (o^k X coi: 3n € a) P(t, x, n)},

where P istype<k,j+1>andPe nn
f .

R € n n l i <=> R = {<t, x> € (co^k X col: Vn e co P(t, x, n)},

where P is type <k, j+1> and P € In' .

0.K -0.K n 0.K

Theorem 1 (Gold and Putnam):

LetK, Heco®.

(a) H is [effectively] decidable over K with certainty « H n K e

(b) H is [effectively] verifiable over K with certainty <=> H n K e J

B.KT O.K]
(c) H is [effectively] refutable over K with certainty » H n K e n i Ln i J.

A B , K [ O,K]
(d) H is [effectively] decidable over K in the limit <=> H n K e A2 LA2 J

(e) H is [effectively] verifiable over K in the limit <=> H n K e V

^ B , K To . K]
(f) H is [effectively] refutable over K in the Smit <=> H n K e n2 Ln2 J

Proof: The effective parts of (c) and (d) are established in [1], and the effective part of (c) is shown

in [11]. The ineffective cases follow by the same arguments with references to computability

suppressed, (a) and (b) are trivial. '

4. Some Applications

4 . 1 : The Empirical Irony of Cognitive Science

Consider the hypothesis that a given system under observation has a computable input-output

behavior. This amounts to the hypothesis H r e c • {t: t is a recursive sequence}. Suppose we doni

know what to expect out the system, so K = o®. Each singleton {t} is closed and since H r e c is



countable, H r e c n K e En* , so a non-effective scientist can verify H r e c in the limit. But Hec is not

verifiable in the limit, by a simple diagonal argument (each finite segment of a non-computable
V B . K B,K

sequence can be extended by a computable sequence). So H r e c e ^2 " U 2 . A standard fact
-0,K 0,K

of recursion theory is that H r e c e ^3 ~n3 . Hence HrGC is not even verifiable in the limit by a

computer. The "irony" is this. If human nature is computable, human scientists cannot verify this

fact even in the limit because they are computable. But if human nature is not computable, human

scientists cannot verify the non-computability of human nature in the limit either, because no

system could, ideal or otherwise.

4. 2: Basis Theorems and Hypothesis Complexity

A complete hypothesis specifies everything that will ever be seen, in the correct order. Hence, a

complete hypothesis is a singleton {t}. In logic, the arithmetic complexity of {t} is known as the

implicit complexity of t and the arithmetic complexity of t (viewed as a set of ordered pairs) is known

as the explicit complexity of t. From a learning theoretic perspective, the implicit complexity of t is

just the complexity of investigating the complete hypothesis {t}, whereas the explicit complexity of

t is just the computational difficulty of generating the nth prediction specified by t.

A natural question is: how computationally complex can t be before empirical investigation of {t}

becomes hopeless for computable methods? It turns out that the basis theorems of mathematical

logic already provide surprising answers to this question in many cases. It is indeed striking that

the basis theorems were conceived of and proved with no applications to scientific methodology

in mind.

Theorem 2: If {t} is effectively refutable and rng(t) is finite then t is recursive.

Proof: [3, p. 79] and Theorem 1 (c) B

Theorem 3: If {t} is effectively verifiable in the limit and rng(t) £{1,0} then t is recursive.

Proof: Kreisel's basis theorem [3, p. 108] and Theorem 1 (e). B

The boundedness of the range of t turns out to be crucial. Effective scientists can decide some

extremely non-effective complete hypotheses with just one mind-change if the range of t is not

finite.

Theorem 4: There is a non-arithmetic t s.t. {t} is effectively refutable.



Proof: [3, p. 107] and Theorem 1 (c). •

The basis theorems are not relativized to background knowledge K, so the above results hold

only when K = co®. It would be interesting to know the status of the basis theorems when K is not

trivial.

5. Characterizations of Hypothesis Assessment with Bounded Mind-Changes

It remains to characterize empirical decidability with n mind-changes. Putnam [11] discusses a

closely related notion under the rubric of n-trial predicates, but his characterization leaves a gap

of a factor of two between its upper and lower bounds.2 I will provide an exact characterization in

terms of the following, finitary versions of the Borel and Arithmetic hierarchies. The topological

version will be indexed with C and the computational version will be indexed with c, for "mind-

changes11.

VC,K B.K

He2i «He si «HisK-open

Hen i ' «He n i ' »HisK-closed
H € sn+i <=> H is of form S n O , where S e n n ' and O is K-open.

C.K c K
He nn+i <=>H is of form S u C, where S e ^' and C is K-closed

The only difference between the c hierarchy and the C hierarchy is that we replace K-open sets

with K-RE sets. The inductive clauses are the same as before.

Tc,K O.K
H € S 1 <=>H € si <=>HisK-RE

^ C , K 0, K

H e n i « H e n i <=>HisK-Co-Re

2Putnam did not state the exact characterization as a question, and did not require an exact

characterization for the purposes of his paper.



Following Putnam, let S c Pow(o)(0) and let S'denote the result of closing S under finite unions

and intersections.

Straightforward calculations verify the following closure laws. Observe that laws operative at a

level in the hierarchy depend upon whether that level is even or odd.

Proposition 5: Let O be K-open [K-RE] and let C be K-closed [K-Co-RE]. If H is in the indicated

class, then H n C, H u C, H n O and H u O are in the indicated classes:

Now we may characterize limiting empirical deddabifity with at most n mind-changes.

Theorem 6:



(a) H is [effectively] decidabie over K in n mind-changes starting with

(b) H is [effectively] decidabie over K in n mind-changes starting with 1 <=> H n K e

(c) H is [effectively] decidabie over K in n mind-changes starting with * « H n K e

vc
(d) H is [effectively] decidabie over K in n mind-changes <=> H n K e **

r l n l \ 6 X1n L11n J.

.C.K -C fKLc.K
^1% |In

Proof: (b) => Suppose that [recursive] 4 decides H over K in n mind-changes starting with 0.

Define O(t, n) « mc(<t>, t) > n and define C(t, n) <=> mc(<t>, t) < n. O(t, n) is K-open [K-RE] and C(t, n)

is K-cIosed [K-Co-RE]. First, let's consider the case when n is even. Then since $ always starts

with conjecture 0 and never uses more than n mind-changes over K, we have:

Vt e K, 16 H <=>

<t> changes its mind some odd number of times < n-1 «=>

(O(t, 1) & C(t, 1)) v (O(t, 3) & C(t, 3)) v... v (O(t, n -1), O(t, n - 1 ) ) »

[O(t, 1) & C(t, 1)] v [Oft, 1) & O(t, 3) & C(t, 3)] v [O(t, 1) & Oft, 3) & O(t, 5) & C(t, 5)] v ...

v [Oft, 1) & Oft, 3) & Oft, 5) & ... & Oft, n-3) & O(t, n -1) & C(t, n -1)] <=>

O(t, 1) & [C(t, 1) v [O(t, 3) & [C(t, 3) v... v [O(t. n-1) & C(t, n-1)]]]] (by factoring).

C,K[ C,K]
which is a ^ L2^ J property of t.

Now for the case in which n is odd. Since 0 starts out with conjecture 0 and never uses more than

n mind-changes over K, we have

V t € K , t € H<=>

0 does not change its mind some even number of times < n <=>

-.C(t, 0) & -,(O(t, 2) & C(t, 2)) & ... & -,(O(t, n-1), C(t, n-1)) »

O(t, 1) & [C(t, 1) v O(t, 3)] & [C(t, 3) v O(t, 5)] & [C(t, 5) v O(t, 7)] & ...& [C(t, n-3) v O(t, n-1)] <=>

O(t, 1) & [C(t, 1) v O(t, 3)] & [Cft, 1) v C(t, 3) v O(t, 5)] & [Cft, 1) v Cft, 3) v C(t, 5) v O(t, 7)] & ...&

[Cft, 1) v Cft, 3) v... v Cft, n- 5) v ... v C(t, n-3) v O(tt n-1)] «

O(t, 1) & [C(t, 1) v [O(t, 3) & [C(t, 3) v... & [C(t, n-3) v O(t, n-1)]]]] (by factoring)

^ C . K L C K I
which is a ^ L2^ J property oft.



<= Suppose that H n K e ^ n ' U * J. Then H n K may be expressed in the form

Oi n [C2 u [O3 n [C4 u ...[Cn.1 u On] if n is odd, or of form

O1 n [C2 u [O3 n [C4 u ...[Cn-1 n On] if n is even.

In either case, define $ to conjecture 0 until 01 is verified by the data, after which $ says 1 until C2

is refuted by the data, after which 4 says 0 until 03 is verified by the data, after which $ says 1

until.... <}> will succeed with at most n mind-changes.

(a) follows from (b) by duality.

(c) =* Suppose that 4> decides H over K with n mind-changes starting with \ Define

\4>(a) otherwise \<Ka) otherwise

VO succeeds in n mind-changes starting with 0 and y1 succeeds in n mind-changes starting with
-C. K [_c. Kl —C. K [-.C ]

1. B y ^ H n K e ^ n L̂ n J andby (b), H n K e n n Lnn

AC,K[AC.K1

<= Suppose H n K € An L̂ n J. Then by (a) and (b), we have [effective] methods v i , vo that

succeed in n mind-changes starting with 1 and with 0, respectively. Define

*if ais empty

$(a-) otherwise

which [effectively] decides H with n mind-changes starting with \

(d) <= follows from (a) and (b).

=> Let [effective] $ decide H over K in n mind-changes. Let a be empty. If <|>(a) = 1 then H e
^ C K L T C K I - .C .KLCKI A C ' K L C ' K I
Hn Lnn J, by (a). If <Ka)« 0 then H e ^ L̂ n J, by (b). If <|>(a) - *, then H e An LAn J, by (c).

10



As an application of Theorem 6, we have

Proposition 7:

AB.K 0,K
(a)VK, C c A 2 and A

Let K be the set of all sequences that converge either to 0 or to 1. Then

VC,K VC,K C,K
(b) Vn2-n c^ + i and -̂n

Proof: (a) To show that inclusion is proper let K = {t: t converges to 1 or to 0} and let H = {t: t

converges to 1}. Consider the assessment method 4> that produces 1 if the current data entry is 1

and who produces 0 otherwise. 4> is clearly effective and $ decides H in the limit over K. S o H n K

e A2 , by Theorem 1. Let $ be an assessment method that starts with 0. We can fool $ more

than n times about H over K. Feed all 1's until <t> changes its mind to 1. Now feed all 0's until (]>

changes its mind to 0, etc, until n+1 mind-changes occur. (If the awaited mind-change does not

occur, then we produce a data presentation in K on which 4> converges to the wrong answer).

After the n+1 mind-changes occur, continue to output 1 forever, so the data presentation

constructed is in K. So, by Theorem 6 we have that V n . H n K g ^ . s o H n K ^ ^ ' . Hence, H

(b) To show that the inclusion is proper, define #0(t) = the number of 0fs occurring in t.

\
#0(t) = 2k if n is even

/rV2

V

V #0(t) = 2k 1 v #0(t) > n+11, if n is odd

Pn is readily seen to be effectively decidable in n mind-changes starting with 0. A simple diagonal

argument shows that Pn cannot be dedded with fewer mind-changes starting with 0. Now apply

Theorem 6.

11



(c) To show that inclusion is proper, define Hn(t)»[t|5 * 1 & Pn(t)] v [t]5 = 0 and -iPn(t)]. It is easy

to verify that no method that starts with 1 or with 0 can succeed in n mind-changes, but an

effective method that starts with * can succeed with n+1 mind-changes by stalling with * until t|5 is

observed. Now apply Theorem 6.

(d) Each Boolean combination of open sets may be rewritten in the form (Ci n Oi) u... u (Cn n

On). Now pad and factor as in the proof of Theorem 6(a). B

Theorems 1, and 6, together with proposition 7 yield the following, complete characterization of

the hypothesis assessment problems according to the standards of success introduced at the

beginning of this paper. In this diagram, each arc represents proper inclusion.

[effectively] refutable
in the limit

[effectively] verifiable
in the limit

[effectively] decidable
in the limit

[effectively] decidable
with 2 mind changes

starting with 1

[effectively] refutable
with certainty

[effectively] decidable
A 3 mind changes

starting with *

[effectively] decidable
with 2 mind changes
starting with 0

[effectively] decidablef *V [effectively] decidab
I CKI" cKI 1 with 2 mind changes
I A 2 LA2 J 1 starting with *

[effectively] verifiable
with certainty

[effectively] decidable
certainty

Theorem 7 also yields a characterization of Putnam's n-trial precficates [11].

12



S c co is an n-trial predicate <=>
there is some total recursive f such that for each n G co,

*s(n) with at most n mind-changes.

, k) converges to

Putnam's n-trial predicates can be viewed as a special kind of empirical hypothesis whose

adequacy depends only on the first datum observed. Define Hs = {t: t-j € S}

Proposition 9: S is an n-trial predicate » Hs e ^ u nS

Proof: Theorem 7. ™

6. Feathers and Demons

The "hard side" of Theorem 7 was to show that a scientist fails in n mind-changes if the C-

complexity of the hypothesis under examination is too high. I will now provide a complementary

characterization that makes negative arguments more transparent than positive arguments.

Suppose that hypothesis H is distributed in K in the following manner.

i
H

i

H

H

H
i

H

H

_ i
H

i

H

H

H
i

H

H

H

Given the depicted situation, a demon can easily fool an arbitrary scientist who starts with 0 three

times, and a scientist who starts with 1 can be fooled twice. The demon leads the scientist down

the bold path until <(> says 1 (which must happen, else the demon stays with the bold path and $

fails in the limit). As soon as $ says 1, the demon proceeds up the next available path for H. Now

<J> must eventually say 0, at which time the demon veers to the right down the next available path

forH.

K may be thought of as an infinite "feather whose "shaft" is the bold path, and whose alternating
Hbarbs" are the other paths. We may define feathers more generally as follows:

13



K Is a 1-feather forH with shaft\«t G K n H.

K is an n+1 -feather for H with shaft t «
teKnHand
Vn3t€Ks.t.

t|n = t'|nand _
K is an n-feather with shaft t for H

K is an n-f eather forH <=> 3t s.t. K is an n-feather for H with shaft t.

n-feathers for H

We may now define the feather dimension of K for H:

D//IIH(K) = n » K is an n-feather for H and K is not an n+1-feather for H.

Theorem 9:

(a) H is deddable over K in n mind-changes starting with 0 » K is not an n +1-feather for H.

(b) H is deddable over K in n mind-changes starting with 1»Kisnotann + 1 -feather for H.

(c) H is deddable over K in n mind-changes starting with * <=>

K is not an n +1 -feather for H and K is not an n +1 -feather for H

(d) H is deddable over K in n mind-changes <=>

14



K is not an n +1 -feather for H or K is not an n + 1-feather for H

Corollary:

H n K € n?f K « K is not an n +1 -feather for H

C K —

V <=> K is not an n + 1-feather for H.

C K —~

H n K € ^n' <=> K is not an n + 1-feather for H and K is not an n-feather for H

C K C K ~"~

H n K e nn* u ! „ ' « K is not an n + 1-feather for H or K is not an n-feather for H.

Proof: (a) & (b) => Prove the contrapositive by means of Theorem 6 and the usual demonic

argument.

<= Argument by induction on n. Base case for (a): Suppose that K is not a1-feather for H. Then

H = 0. Let t e K. Then t e H . So the trivial method <t>o(a) = 0 succeeds in 0 mind changes. The

base case for (b) is similar.

Now suppose (a) and (b) for each nf < n. Hence, if K is not an n'+1 feather for H then there is a

method V H , K that decides H over K in n' mind-changes starting with 1, and if K is not an n'+1
o

feather for H then there is a method VH,K that decides H over K in n1 mind-changes starting with 0.

Now define:

(the shortest XQG s.t. Dinrv̂ Ka) < n, if there is one
trunc(H, K, n, a) -

\a otherwise

0 if a is empty

0 ifDimH(Kc) > n and Dim^Ko) > n

otherwise (i.e. if Dim^Ka) < n)

Suppose that K is not an n+2-feather for H. Let t € K. Since dimension never increases on

evidence, there are two cases to consider.

15



(a) Vk DimH(Kt|k) = n+1 and DimH(Kt|k) £ n + 1 , or
(P)3k DimH(Kt|K)^nor Dirr£(Kt|i<) s n .

o
Lemma 1: if (a) then t e H and •n +1 converges correctly to 0 on t with no mind-changes.

For suppose that t e H. Then since Vk, Diny[(Kt|k') £ n + 1 , we have that Vk, 3V 3k1 > k s.t. Kt|k- is

an n + 1 feather for H with shaft f and f|k* « t|k\ Hence, K is an n + 2 feather for H with shaft t,
o

contrary to assumption. Finally, observe that Vk, the first clause of <t>n +1 is satisfied on t|k, so Vk,

o
Lemma 2: if (P) then 4>n • 1 converges to the truth in n mind-changes.

Let m be the least k such that DimH(Kt|k) £ n or DimH(Kt|k) £ n. Suppose that DimH(Kt|m) ^ n.

Then <t>° + i(t|m') = 0, for all m1 < m and V nY > m, $ + ^tjm1) = VH,Km«(KK.n.o)(t|mi). Since V K K W O W K ^

decides H over Kt|m in n-1 mind-changes starting with 1, $* + , succeeds in n mind-changes
o

starting with 0. In case DiniH(Kt|m) < n, we have a similar situation, except that ^H.Ktrunc<HKn.o starts

with 0, so <)>n • 1 succeeds in n -1 mind-changes.

The induction for (b) is similar, except that the method employed is:

1 if a is empty

1 ifDimH(Ka) > n and Dim^Kc) > n

) otherwise (i.e. if Dim^Ka) < n)

(c) and (d) may be obtained just as in Theorem 7. ™

By the corollary to Theorem 9, feather dimension and C-complexity coincide exactly. It is

interesting to see how the correspondence works by constructing feathers our of intersections

and unions of open and closed sets. To start, choose some data presentation t, and let

t does not
extend o
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t P1 "

— -C, K _
K is clearly a 2-feather for Pi and Pi e * i since Pi is open. Next, let P2 - Pi. Now we have a 2-

_C.K
feather for P2, and P2 e n i .

Ill

P2

We know from the Corollary of theorem 3.8 that to build a more complicated feather, we add some

open set to P. The following sort of set will suffice.

P3 I I I

P3

P3 - P2 is clearly K-open, since it is depicted as a union of fans. So P3 is of the form O u C , and is
C.K

therefore in n 2 . Let P4 be the complement of P3.

17



P4

Now we are again free to add a dimension to P4 by augmenting it with an open set. By successive

complementations and open set additions, we can build feathers of arbitrary finite dimension.

7. Paradigms of Discovery

in problems of hypothesis assessment, the scientist is assigned some hypothesis whose

adequacy is to be investigated on the basis of increasing data. In discovery problems, the

scientist is required to invent an adequate hypothesis on the basis of increasing data. Most

results in learning theory concern discovery rather than assessment. Interest has centered on

grammatical inference, recursive function identification, and the induction of first-order theories

from presentations of structure diagrams. Each of these applications is a special case of the

following setting.

Hypothesis assessment methods do not have to read or to produce hypotheses, so hypotheses

could be viewed abstractly as uncountable sets of infinite sequences. This will not do when

discovery procedures are computers. Instead, we will assume simply that hypotheses are stated

in a discrete, finitary language with a decidable syntax. Hence, hypotheses, like data sentences,

may encoded by natural numbers. As before, we will assume that the goal of inquiry is some

relation of adequacy A Q (O^XCO holding between infinite data presentations and hypotheses. A

may entail consistency with the total data, explanatory completeness over the total data, simplicity,

unity, or any other desideratum that depends only upon the hypothesis and the total data. We will

letAi = {t:A(t,i)}.

A discovery method will be a map from finite segments of data presentations to hypotheses, i.e.

0* -> co. We will consider the following concepts of successful discovery:

18



<j> Identifies A-adequate hypotheses overK with certainty
Vt e K 3n s.t. A(t, <Kt|n)) and Vm < n, <Kt|n) = \

Identifies A-adequate hypotheses In n mind-changes <=>
VteK 3n€coVm>n,<t)(t|m)*XH(t)and

0 Identifies A-adequate hypotheses over K In the limit«
Vt G K 3n Vm > n <Kt|m). <Nt|n) & A(t, <Mt|n).

A-adequate hypotheses are [effectively] Identifiable overK
[with certainty 1

with n mind changes <=»
. In the limit

3 [total recursive] $ s.t. 4> identifies A-adequate hypotheses over K
fwith certainty 1
with n mind changes

L in the limit J

8. Characterizations of Reliable Discovery

Each of these senses of success requires that an adequate hypotheses be found for each data

presentation in K. It is therefore trivial that A must cover K in the following sense if success is to be

possible.

K3 ie cos.t.A(U).

Now we may characterize identification and identification in the limit.

Theorem 10:

(a) A-adequate hypotheses are [effectively] identifiable over K with certainty

-B. K [ 0, K]
; K and Af € * i L^i J <

B.KF O.KI
3Af c A s.t. Af covers K and A* e A i I A J <=>

(b) A-adequate hypotheses are [effectively] identifiable over K in the Omit <=>

3 A ' c A s.t. A' covers K and A1 € V L:

19
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B.KT O.K]
'c As.tA'coversKandA'e A2 1* J

Proof: (a) => Let effective discovery method 4> identify A-adequate hypotheses over K. Define

A'(t, i) <=> 3n s.t. <Kt|n) = i and Vm < n, <Kt|n) = \

A* covers K and A ' c A since <t> identifies A-adequate hypotheses over K with certainty. By
B.KLO,K]

definition, Af e **i \H. J. But we also have

A B,K[ O,K]
S0A'eA1 LA1 J.

B,K[ O,K]
<= Suppose that A ' c A covers K and A1 e zi L̂ i J. Let VERIFY[t, i] be an [effective] positive

test for A*. Now we can define the following [effective] discovery method, which identifies A-

adequate hypotheses over K with certainty.

DISCOVER(a):
set n := length(a)
if Vi < n, VERIFY(ai, i), VERIFY(a2, i),..., VERIFY(an, i) all produce * or 0, [in
n computational steps], return *
else, return the first i such that the first non-* output of TEST on a is 1.

(b) => Let effective discovery method $ identify A-adequate hypotheses over K in the limit.

Define

A* covers K and A ' c A since 4> identifies A-adequate hypotheses over K. By definition, A' €
B,K[ O,K]

**z L2^ J. Since <j) converges to some i on each t € K, we also have that

Vt e K, -lA'lt, i) <=> 3n Vm 2: n <Mt|m) * i.

so A' e A2
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B , K L O,K]
=> Suppose that A ' c A covers K and A' € ^2 L2* J. Let REFUTEtf, n, i] be an [effective]

positive test for the relation Vm £ n 4>(t|m) « i. Now we can define the following [effective]

discovery method, which identifies A-adequate hypotheses over K in the limit. Let (<j>i, <j>2) be

the ordered pair encoded by j under some fixed, recursive bijection from co to co2.

LIM-DISCOVER(a):
Set n := length(a)
Produce <j>2 where j is the least k < n such that REFUTE[cx, <j>i, <j>2]
does not return 1 [within n computational steps] if there is such a j.
Else, produce \

LIM-DISCOVER identifies A-adequate hypotheses over K in the limit. '

8. Learning Theory Results as Relative Complexity Classifications

The following examples illustrate how the standard paradigms of language learnabiiity and

function identification drop out as special cases of the approach adopted here. From our

perspective, standard results in learning theory may be thought of as strong relative complexity

classifications for relations of type co*0 X co.

Function Identification:

The problem of identifying set Rec of total recursive functions:

Adequacy relation: Afun(t, i) <=> <fo = t

Background knowledge: K c Rec

One of the first negative results about function identification is that the collection of all recursive

functions is identifiable in the limit, but not effectively so. The positive result follows from the fact
B, Rec B, Rec

that Afun(t, i) <=> <}>j = t <=> Vn <fo(n) = tn. Since the relation <>i(n) = tn is
 Ai , Afun e

 ni . The

situation is different in the computable case: Afun(t, i) »<fr = t <=> Vn <t>i(n) = tn <=> Vn 3k <j>j(n) i =

tn. Gold's negative result together with Theorem 10 tells us that this characterization is optimal,
0. Rec 0, Rec

i.e. that Afun e
 n2 " ^ . Indeed, Gold's result tells us that there is no A c Afun covering Rec

0, Rec
such that A e ^2

Language Identification by RE Index:

The problem of identifying language class L c RE:
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Adequacy relation: ARE(t, i ) « Wj = mg(t)

Background knowledge: KL = {t: 3S e L s.t. rng(t) * S}.

Here, the basic theorem is that no collection of languages Lf containing all finite languages and

one infinite language is identifiable in the limit, even by an ineffective learner [10]. In our

generalized notation, this is the claim that A R E hypotheses are not identifiable over Kf , which
vB,Ku

together with Theorem 10 implies that there is no' c ARE covering K\j such that A1 e ** . A

general upper bound meeting Gold's tower bound is easy to calculate.

^ » 3k s.t. n =
- .O.KRE

VnVk3k'[...Jen2

_0,KRE B.KRE
Hence, ARE(t, i) e n 2 - ^ .

Another standard example is the collection Lf,n of all finite languages.

3k Vk' > k Vn [<Kn)l« n e rng(t|k')] e

^ <=> 3k s.t. n = t|J <=>

VnVk3k'[...]eS2 .

Language Identification by recursive index:

The problem of identifying language class L c RE:

Adequacy relation: AR(t, i) »<h = Xrng(t)

Background knowledge: KL = {t: 3S e L s.t. rng(t)» S}.

Let U be as in the last example. Gold showed that L1 is not identifiable by an effective learner even

when the data presentations are assumed to be primitive recursive Let Prim be the set of all

primitive recursive sequences. Let K1 = K^ n Prim. Then Gold's result shows that there is no A c
0. KL* r\ Prim

A R covering KL* n Prim such that A e h> . Once again it is easy to compute an upper

bound that matches Gold's lower bound:
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<t>i - Xrng( t ) <=>

Vn B(3m n = tm)=> 3k <fo(n)i «1] and [Vm' n * W =* (3k1 ti(n)H « 0)] <=>
- O . K R E -O.KunPrim

Vn Vm 3m13k 3C [...] e n 2 c n 2

9. Characterizations of Reliable Discovery with Bounded Mind-Changes

Given the results so far, it is natural to guess that A-adequate hypotheses are identifiable over K in

n mind-chi
mistaken.

C K

n mind-changes just in case 3A' c A s.t. A1 covers K and A* € An' . But this conjecture is quite

C,K

Proposition 11 : 3A, K s.t. A e n i but Vn A-adequate hypotheses are not identifiable over K in

n mind-changes and A-adequate hypotheses are effectively identifiable over K in one mind-

change.

Proof: Let K be the set of all recursive functions, and let A be A rec of the above example. •

The problem is that discovery depends not only on the topology of each hypothesis, but also on

how the data presentations of different hypotheses are interleaved together. This interleaved

structure of the adequacy relation can be captured exactly if we generalize the notion of n-

feathers slightly.

Kisa 1-feather fort mod A with shaft \ « t e K n A j .

K is an n+1 -feather for i mod A with shaft t «
te KnAjand
Vn3tf€ K3ke co s.t.

t|n = tf|n and

K is an n-feather with shaft t for K mod A with shaft t\ and V € A|<.

K is an n-feather fori mod A <=> 3t s.t. K is an n-feather for i mod A with shaft t.

K is an exact n-feather for i mod A «
K is an n-feather for i mod A and Vm > n, K is not an m-feather for i mod A.

Theorem 12:

A-adequate hypotheses are identifiable over K in n mind-changes starting with * »

Vi, K is not an n-feather for i.

Proof: Analogous to the proof of Theorem 6 . "
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Example: Recall the case of learning finite languages by RE index. It is easy to see that KUn is an

n-feather for A R E for each n, so the finite languages are not identifiable under any bounded

number of mind changes.

10. Conclusion

Complete characterizations have been presented for effective and ineffective hypothesis

assessment, in the short run, in the long run, and with bounded mind changes. Complete

characterizations have also been presented for effective and ineffective discovery in the limit, and

for non-effective discovery with bounded mind-changes. It remains to characterize effective

discovery with bounded mind changes.
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