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INTRODUCTION

The rules in Gentzen's Natural Deduction calculi were formulated to
reflect directly and, thus, in a natural way the reasoning used in
carrying out mathematical proofs. These rules, dependent only on
the syntactic form of assumptions and conclusion, are supposed to
capture the meaning of sentential connectives: for each connective
there is an introduction rule, which says how a formula with that
connective as its principal sign can be obtained, and an elimination
rule, which says how a formula which has that connective as its
principal sign can be used to obtain other formulas. The
"naturalness" of the rules makes the correctness of each step of a
proof in a Natural Deduction calculus immediate. And yet, Natural
Deduction calculi are generally considered not to be suitable for
automated proof search (see for example [Fil]), and have hardly
influenced the developments of automated theorem proving, which
have been based mostly on sequent calculi and resolution.

The idea of performing automated proof search in a more human-
oriented way, motivated partly by pedagogical concerns, that is by
the idea of using a computerized tutor to teach students how to do
proofs in Logic, has led to the development of the Intercalation
Calculus. This calculus was proposed in 1987 by Sieg, who also
established its basic properties [Sil] . From a derivation in the
Intercalation Calculus one can easily and in a unique way obtain a
Natural Deduction derivation with the same conclusion and
assumptions. Since the Intercalation Calculus is complete, it is
possible to use it as a tool for obtaining Natural Deduction
derivations, that is, one can search for a Natural Deduction derivation
in the framework of the Intercalation Calculus.

The reason for searching for Natural Deduction proofs via the
Intercalation Calculus is this: the latter calculus allows one to build
up a search space that "codes" all possible normal derivations from
given assumptions to a given conclusion. Derivations in the
Intercalation Calculus have the Subformula Property: this guarantees
(in the propositional case) the finiteness of the search space for a
proof of a given conclusion from given assumptions. The finiteness of
the search space allows to use the Intercalation Calculus as the basis
for defining and implementing an algorithm which performs
automated proof search. In the implementation certain heuristics are
used to limit the search space further: these are discussed in [SiSc].



The algorithm has been implemented in a program called the
Carnegie Mellon Proof Tutor, developed by J. Pressler, R. Schemes, W.
Sieg and C. Walton, which is used in Logic courses at Carnegie Mellon
University.
Of independent proof-theoretic interest are the following facts: the
Natural Deduction derivations that are associated with derivations in
the Intercalation Calculus are normal. Thus, the Completeness
Theorem for the Intercalation Calculus yields a novel semantic proof
of the Normal Form Theorem for the Natural Deduction Calculus.

The Intercalation Calculus has been proposed and analyzed for
classical logic, but it is possible to define versions of the calculus for
different logics (current research tries to extend both the theoretical
algorithm and the implementation to first order logic). In this report
we define a version of the Intercalation Calculus for intuitionistic
(propositional) logic, and prove its fundamental properties; in
particular, its completeness. We note that to obtain the completeness
it has been necessary to change one of the rules with respect to the
original formulation of the classical Intercalation Calculus, namely
the -»-elimination rule. The first chapter contains a review of the
Natural Deduction Calculus and the Intercalation Calculus for classical
propositional logic, with an outline of the proofs of the fundamental
results about the latter. For the presentation of the Intercalation
Calculus and its basic properties we follow [Sil].
In the second chapter we review Natural Deduction and Kripke
semantics for intuitionistic propositional logic, define the
intuitionistic Intercalation Calculus and prove its properties.
The third chapter is devoted to a discussion of the heuristics used in
the current implementation for the classical case, and possible
heuristics for the intuitionistic case.



CHAPTER 1

§1. Natural Deduction for classical propositional logic.

We assume that the reader has some familiarity with various logical
systems. However, we will briefly review the Natural Deduction (ND)
calculus for classical propositional logic.

We start with a language L containing a countable set of
propositional variables, the sentential connectives & , v , - » , the
constant 1 for falsehood and parentheses.
The set of formulas of L is defined inductively by:
i) -L is a formula;
ii) any propositional variable p is a formula;
iii) if cp,y are formulas, then so are (cp&y), (cpvy), (cp—>\jf).

In the sequel, Greek letters cp,y..., as well as capital Latin letters G,H...
will denote formulas of L, while Greek letters a,(3... will denote finite
sequences of formulas of L. The usual conventions about parentheses
will be adopted (for example, the outer parentheses around a
formula will often be dropped). We will write (pea to indicate that cp
is one of the formulas in the sequence a. We also indicate with a,cp
the extension of the sequence a by 9, and with a(5 the concatenation
of the two sequences a,(3.

Negation is defined by ~cpscp—»±.

The set of subformulas of a formula cp is defined inductively by:
i) cp is a subformula of cp;
ii) if V1&V2, Vi v V2, or \\f\-*\\f2 is a subformula of cp then so are \\t\ and

The inference rules of the ND-calculus for classical propositional logic
consist of an introduction rule (I-rule) and an elimination rule (E-
rule) for each sentential connective. These rules may be indicated
pictorially by the following figures:

cp \|/ cp&y cp&y
&I) &E)

cp&V cp \|/
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where in each rule the formula below the horizontal line is the
consequence and the formula(s) above it is (are) the premiss(es). We
use square brackets [ ] to indicate the discharging of a premiss.

Note that the ~ -introduction rule is a particular case of the —> -
introduction rule, and the --el imination rule implies the "ex falso
quodlibet" rule:

Given a tree of formulas built up according to the rules of the ND-
calculus, we say it is a derivation of cp from a if and only if cp is the
root of the tree and all non-discharged assumptions (leaves) are
elements of a.

We state without proofs two fundamental results about the ND-
calculus, namely the Normalization Theorem and the Subformula
Property.
The crucial idea behind normalization is to avoid unnecessary
detours in a derivation, that is to avoid introducing a connective by
an I-rule and then eliminating it by an E-rule. In [Pr] a normalization
theorem is proved for classical ND-calculus without the connective v
among the primitive symbols. The result we state is a consequence of
a stronger normalization theorem which holds for the full calculus
(see for example [St&]), and implies the subformula property.
The following definitions are taken from [Pr].



Defini t ion. A segment in a derivation is a sequence <pi9...,q>n of
consecutive formula occurrences such that:
1) cpi is not the consequence of an application of vE;
2) (pj, for each i<n, is a minor premiss of an application of vE;
3) (pn is not a minor premiss of an application of vE.

Definition. A maximum segment is a segment that begins with the
consequence of an application of an I-rule and ends with a major
premiss of an E-rule.

Definition. An application of vE is said to be redundant if it has a
minor premiss at which no assumption is discharged.
Redundant applications of vE can obviously be eliminated.

Definition. A derivation is normal if it does not contain a maximum
segment or a redundant application of vE.

Theorem (Normalization Theorem). Any ND-derivation D of (p from a
can be effectively transformed (via canonical reduction steps) into a
normal derivation of cp from a.

Theorem (Subformula Property). Every formula occurrence in a
normal derivation has the shape of either a subformula of a formula
in a,(p, or the negation of such a subformula, or 1.

§2. Intercalation Calculus for classical propositional logic.

The idea behind the Intercalation Calculus is to close the gap
between assumptions and conclusion by intercalating formulas using
the available rules of the ND-calculus. That is, to look for a normal
derivation by pursuing all possibilities of applying elimination rules
from above (that is, only to the assumptions, and the formulas that
have already been derived from them, to get closer to the
conclusion) and of applying inverted introduction rules from below
(that is, only to the current conclusion to get closer to the
assumptions), as well as using the indirect rules for negation.
The rules for the Intercalation Calculus are reformulations of those
for the ND-calculus; the distinctive character of the calculus is in the
restricted way in which the rules are used. Indeed, the fact that
elimination rules are applied only from above and introduction rules
only from below guarantees normality of the derivations. The rules
operate on triples of the form cc;p?G, where a is the sequence of the
available assumptions, G is the current conclusion (or goal), and p is a
sequence of formulas obtained by &-elimination and -»-elimination



from elements of a. We will write simply a;?G in case p is the empty
sequence A. We consider the questions a;p?G and a'jp^G' (and the
nodes these questions are associated with) identical just in case G=Gf

and the set of formulas in a p is equal to the set of formulas in a fp\

Here we list the rules for the (classical) Intercalation (prepositional)
Calculus. The rules corresponding to elimination rules are indicated
by i , those corresponding to inverted introduction rules by T, and
the indirect rules by -L (note that we take also the symbol ~ for
negation as primitive). The symbol "=*" shall be interpreted here as
follows: if one wants to answer the question on the left of the =*
positively, one can reduce the problem to the one of answering the
question(s) on the right of the =* positively.

i & i : a;p?G, q>i&(p2eap, cp^ap => a;p,<pi?G (i=l or 2)

i v : a;p?G, (pivcp2€ctp, 9i*aP, q>2*ap => CMpr,p?G AND a,cp2;P?G

4->: a;p?G, cpi-xp2€ ap, cp2eap => a;p,cp2?G AND a;p?q>i

t& : a;p?q>i&cp2 => a;p?q>i AND a;p?<p2

Tv : a;P?cpiv(p2 =* a;P?cpi OR a;p?q>2

a;P?(pi-xp2 =

a;p?cp, y*± =» a

> a,cp;P?l

a;P?cp AND

In the last rule, T is the finite set of all subformulas of formulas
occurring in the sequence a. It is, of course, the subformula property
that inspires the choice of this F, and the Completeness Theorem
stated in §3 justifies it. The finiteness of T is crucial for the finiteness
of the search space. We remark also that it is possible to discount
double negations: that is, if ~cpeF, we consider only <p and ~(p, not also
~cp and ~~(p, among the possible contradictory pairs.

We remark that in the original version of the Intercalation Calculus
the rule 4-> was formulated as a;p?G, cpi-*<p2€ ap , cpieap, cp2eaP =>
a;P,cp2?G. In the classical case, the calculus obtained with this version
is equivalent to the one we give. But the version turns out to be too



weak in the intuitionistic case: in fact, using it the resulting calculus
for intuitionistic logic is incomplete.

§3. The full intercalation tree.

Given a question a*=oc*;?G*, we want to define S, the full intercalation
tree for a*. This tree will constitute the search space for a derivation
of the goal G* from the assumptions in a*. Nodes in the tree will be of
two kinds. Those of the first kind (regular nodes) will be labeled, and
by abuse of notation identified, with questions of the form a;p?G.
Those of the second kind (special nodes) will be used to indicate the
application of a rule, and will be labeled (and identified) with a pair
(*, H), where * is the name of the rule and H is the formula to which
the rule applies. For example, a special node (T&,cpi&cp2) indicates the
step from a;p?cpi&cp2 to a;P?cpi AND a;p?(p2> while a special node
(lc,cp) indicates the step from a;(3?cp to a,-<p;p?±.

We define by induction on n the set Snof (regular) nodes of S of level
n. Branchings from a regular node to special nodes will always be
disjunctive, while branchings from a special node to regular nodes
may be disjunctive or conjunctive. In a branching, the order of the
branches (that is, which one is the leftmost, and so on) is arbitrary.
We also define a subset Sl

n of Sn; Sl
n will be the set of terminal nodes

(leaves) of level n. By convention, the special nodes are not counted
in determining the level of a node. Again by convention, we say that
no rule applies to a leaf. In the end, S may be defined as the union of
all the Sn, plus all the special nodes encountered during the
construction. We also define Sl as the union of all the Sl

n. The
ordering ^ of S will be evident from the construction itself.

Stage 0. Let So={a*} (a* is the root of S). If Ge a, or a=A and G=±, let
Sto={a*} . Otherwise let Sl

o=0.
Stage n+7: Assume Sn and Sl

n have been defined. If Sn-Sln=0, then let
Sn+i=Sl

n+i=0. Otherwise, assume Sn-St
n={ai,...,ak}. We define a set Sn+i

as follows.
Consider the node aj=a;P?G and assume that there are n\[ different
possible applications of the rules to c\. Extend the branch ending
with Oj by a disjunctive branching with mj branches, each of which
leads to a special node xjj, je {l , . . . ,mi}, labeled with one of the
applicable rules. In the following example, there are four different
possibilities of applying the rules.



(disjunctive
branching)

Now, fori€{l,...Jc}, je {l,...,mi}:

1) if xij=(i&h,9i&92), h=l or 2, then extend the branch ending with x*j
by a branch leading to p=a;P,9h?G, and let p€Sn+i.
2) if xij=(iv,cpivcp2)» then extend the branch ending with x*j by a
conjunctive branching leading to pi=a,<pi;p?G and p2=ot,(p2;P?G, and let
Pi.P2eSn+i.
3) if xij=(i-^,(pi->(p2)» then extend the branch ending with xjj by a
conjunctive branching leading to pi=a;p,92?G and p2=a;|3?(pi, and let

4) if xij=(T&,cpi&cp2), that is, G=9i&92, then extend the branch ending
with x[j by a conjunctive branching leading to pi = a ;p?cpiand
P2=a;P?cp2, and let pi,p2^ Sn+i.
5) if xij=(Tv,cp1vcp2X that is, G=9iv92» then extend the branch ending
with x*j by a disjunctive branching leading to pi = a ;p?cp iand
P2=a;(3?92, and let pi,p2^ Sn+i.
6) if xij=(T->,<pi-xp2)» that is, G=cp 1-^92. then extend the branch ending
with x*j by a branch leading to p=a,<pi;f)?q>2> and let peSn+i.
7) if x ^ l l c G ) , then extend the branch ending with x»j by a branch
leading to p=a,-G;P?l, and let peSn+i.
8) if x ij=(li,^9), that is, G=-cp, then extend the branch ending with x*j
by a branch leading to p=a,G;p?±, and let pe Sn+i-
9) if Tij=(lFf<p)f that is, G=l , then extend the branch ending with x*j by
a conjunctive branching leading to pi=a;{3?9 and p2=<*;P?~9,

Assume Sn+i={pi,...,pr}. The set Sl
n+i of leaves of level n+1 consists of

those nodes pi=a;(3?G such that either GGap, or a=A and G=±, or if pi is
identical to a (regular) node occurring below it.

Thus the induction is complete.

So, in the example previously considered, after the first step we get
(setting Y=9i-*92>93&94 and 6=7:93) the following figure.



(conjunctive
branching)

(disjunctive
branching)

Due to the definition of the full intercalation tree, only finitely many
different formulas can occur in it. Thus, we can formulate only
finitely many different questions. Hence, the full intercalation tree is
finite.

Define the height of S to be h(S)=max{n: S n *0} .

Now we define an evaluation of the leaves of S, that is we assign T
(true) or F (false) to each terminal node p=a;p?G, as follows.
If p is terminal on account of condition (i), that is, Geap , the value of
p is T (we have closed the gap between assumptions and conclusion).
If p is terminal on account of condition (ii) (we are trying to prove an
inconsistency from no assumptions) or (iii) (it is useless to continue
the search, since whatever we can find above p is also above the
identical node occurring below it), the value of p is F.
The evaluation of the leaves with T or F can be canonically extended
to every node a in S as follows:
(i) if a has exactly one successor x, the value of a is that of x;
(ii) if a has exactly two successors and the branching is conjunctive,
the value of a is T if both successors have T, otherwise it is F;
(iii) if a has two or more successors and the branching is disjunctive,
the value of a is F if all successors have F, otherwise it is T.
The idea behind this evaluation is that we have succeeded in closing
the gap between assumptions and conclusion if the root node
evaluates as T, while the search has failed if the root node evaluates
as F.
We say that a full intercalation tree evaluates as T (respectively F) if
its root node evaluates as T (respectively F).



§4 . Completeness Theorem for the classical Intercalation
Calculus.

Two important facts were shown about the (classical) Intercalation
Calculus [Sil]. Assume S is the full intercalation tree for a=a;?G. Then:

Lemma 1. If a evaluates as T, one can extract from S a ND-derivation
of G from a.
Lemma 2. If a evaluates as F, one can determine from S a
countermodel for the question a;?G, that is, an assignment of truth
values to the propositional variables occurring in a,G which makes all
formulas in a true and G false.

It should be noted that the ND-derivations extracted from S are
normal and have the Subformula Property. Therefore, Lemma 1 and
2 together give a new, semantic proof of the Normal Form Theorem,
that is, if there exist a ND-derivation of q> from a, then there is a
normal derivation of (p from a.

In the next chapter we give a detailed proof of Lemma 1 for the
intuitionistic case that is essentially identical with that for the
classical case, the only difference being the rules for negation. Thus
we give here just a brief outline. Given S and a, we say that \ is an
intercalation derivation (I-derivation) for a if and only if \ is a
subtree of S with root a such that:
(i) the top nodes of 1 evaluate as T;
(ii) to each regular node in \ (except leaves of S), exactly one rule is
applied to obtain its successor(s).
Assuming that a evaluates as T, the existence of an I-derivation for a_
in S follows immediately. Then we associate to each I-derivation 1 a
ND-derivation with the same assumptions and conclusion, by
induction on the height of 1.

We also sketch the proof of Lemma 2. The idea is, assuming a
evaluates as F, to extract a special branch from S (the canonical
refutation branch).1 Now, let T be the set of formulas occurring on
the left side of the question mark in the last node of that branch.
Define a valuation v on atomic formulas occurring in T by v(p)=T if
p e T , v(p)=F otherwise, and let v1 be the unique extension of v to all
formulas. We state the following facts without proofs.

construction is presented in details in [Si2].

10



Fact 1 (closure lemma). For any

(i) Either cpieF or ~cpie F, but not both.
(ii) —(pi€F=>q>i€F
(iii) (pi&q>2̂ 1"=̂  9i^F AND 92^ F

-((pl&92)€F => -(pieF OR -q
(iv) (pivq>2€F =* cpieF OR cp2€ F

^(9lvq>2)€F => -cpieF AND ~(
(v) (pi-»<p2eF=> -cpieF OR (p2

AND ~c

Fact 2. For every cpe F, v'(cp)=T.

From these two facts Lemma 2 follows immediately.

Putting together Lemma 1 and 2, we get the Completeness Theorem
for the classical Intercalation Calculus, and the consequences
mentioned above (cf. [Sil]):

Theorem. The full intercalation tree for a;?G either contains an I-
derivation for a;?G or a branch that determines a counterexample to
the inference from a to G.

Corollary 1. The ND-calculus with just normal derivations is
complete.

Corollary 2 (Normal Form Theorem). For any ND-derivation there is a
normal ND-derivation with the same assumptions and conclusion.

It should be mentioned that this semantic argument for
normalization in the Natural Deduction calculus is parallel to the
argument used by Schutte [Sch] to prove cut-elimination for the
Sequent Calculus. In [Sch] a completeness proof for the Sequent
Calculus without cut rule is given, and this yields the cut-elimination
theorem for the Sequent Calculus.

It is easy to see that the rules of the Intercalation Calculus are such
that the ND-derivations extracted from I-derivations satisfy a
stricter subformula property. Namely, in an I-derivation for oc;?G
every formula is either a positive subformula of an assumption, or a
subformula of the conclusion, or (the negation of) a negative
subformula of a,~G, or ±, where the concept of positive (negative)
subformula is defined as follows:
1) cp is a positive subformula of 9;

1 1



2) if yi&\|/2 oryiv\|/2 are positive (negative) subformulas of 9, so are
Vi and \j/2 ;
3) if Yi—>Y2 or ~yi is a positive (negative) subformula of cp, then \\f\ is
a negative (positive) and \|/2 is a positive (negative) subformula of cp.
This leads to a further restriction of the set T in the rule JLf : we can
take T to be the set of formulas 9 such that ~ <p is a positive
subformula of an available assumption. This observation plays a
significant role in further restricting the search space, and will be
explored in chapter 3.

12



CHAPTER 2

§ 1 . Natural Deduction and Kripke semantics for
intuitionistic propositional logic*

The intuitionistic (propositional) ND-calculus is obtained from the
classical one by replacing the ~E-rule with the weaker "ex falso
quodlibet" rule. The Normalization Theorem and the Subformula
Property holds also for the intuitionistic ND-calculus [Pr].

Here we want to review briefly the Kripke semantics for
intuitionistic propositional logic.

Definition. A Kripke model (for intuitionistic propositional logic) is a
triple <W,R,£>, where W is a non-empty set (whose elements are
usually called worlds), R is a reflexive and transitive relation on W,
and £ is a function which takes elements of W to sets of propositional
variables, such that, for any u,veW, uRv => Z(V)DI(U).

Given a Kripke model <W,R,£>, Z can be canonically extended to a
function I1 which takes elements of W to sets of formulas and
satisfying the following for any U€W:
(i) <piv<p2e2f(u) <=* 9i€lf(u) or q
(ii) (pi&cpieS'Cu) <=* q>i€Zf(u) and
(iii) (pi-xpieE'Oi) « for all v€ W such that uRv, (cpi€Sf(v) => <p2€Lf(v));

This is accomplished by defining q>€ L\u) for all u€ W simultaneously
by induction on the length of (p. The statement "(pe £f(ii)" is
interpreted as "u verifies cp" or "cp is true in world u".

Kripke [Kr] proved for intuitionistic logic the completeness theorem
with respect to this semantics. That is, either there is an intuitionistic
ND-derivation of 9 from a, or there exist a Kripke model <W,R,X> and
a world ueW such that \|/elf(u) for all y e a , but (Delf(ii).

§ 2 . The Intercalation Calculus for intuit ionistic
propositional logic and its properties.

The intuitionistic Intercalation Calculus is obtained from the classical
one by replacing the JLC rule with the following "ex falso quodlibet"
rule:

ct;p?cp =

13



We consider ~ now as a defined symbol in the Intercalation Calculus.
Thus -L| becomes a special case of T-* ; moreover, ±f becomes
superfluous, since it is a derived rule in the calculus obtained by
dropping it (this will be a consequence of the Completeness Theorem,
since in that proof ±r is never used).

The full intercalation tree is defined as in the classical case, with the
obvious modifications (note that ± q applies to each non-leaf). The
evaluation of the nodes is defined just as in the classical case.

The rest of this chapter is devoted to the proofs of the fundamental
properties of the intuitionistic Intercalation Calculus. As mentioned
earlier, the proof of the first property is essentially identical with
that in the classical case. It is, not surprisingly, the construction of a
counterexample that requires novel considerations.

Theorem 1. Assume S is the intuitionistic full intercalation tree for
G* = OC*;?G*. If a* evaluates as T , one can extract from S an
intuitionistic ND-derivation of G* from a*.

Proof. It is clear from the definition of I-derivation that S contains an
I-derivation for a*. In fact, since a* evaluates as T, at least one of its
successors evaluates as T. One chooses the branch leading to such a
node and then repeats the process, being careful to select just one
branch in the case of a disjunctive branching and both branches in
the case of a conjunctive branching, until leaves of S are reached.
Obviously the result is an I-derivation for a*. The theorem follows
immediately from the next Lemma, which asserts that to any I-
derivation it is possible to associate an ND-derivation with the same
assumptions and conclusion. QED

Main Lemma. To any intuitionistic I-derivation X for a node a=a;P?G,
one can associate canonically an intuitionistic ND-derivation of G
from a(3.

Proof, By induction on the height of X.

h(X)=l : then X consists of just one node a=a;(5?G and Geaji. The
associated ND-derivation is just the formula G.

h(X)>l : we distinguish cases according to the rule applied to a;($?G in
1, and assume that to any I-derivation V of height less than h(1) we
have associated a ND-derivation with the appropriate assumptions
and conclusion.

14



: then there is a formula (pi&92€<xp\ and (pi«ap\ The immediate
subtree V of X has root a;p,(pj?G. By induction hypothesis we have a
ND-derivation D of G from ap,<pj. We express this fact with the
following picture:

(D)
I
I
G

The ND-derivation associated with 1 is:"

<Pi&<P2
&E)

(D)
I

I
G

which means the derivation obtained from D by substituting each
occurrence of <pi as a non-discharged assumption with its
immediate derivation from 91&92 via &£.

i v : then there is a formula (piv<p2e a p \ <pi« a(3 and q>2«ap. The
immediate subtrees V and 1" of 1 have roots a,(pi;(3?G and a,q>2;P?G.
By induction hypothesis we have ND-derivations Di and D2 of G
from aP,<pi and a(3,(p2 respectively:

(DO (D2)
I I
I I

G G

The ND-derivation associated with 1 is:

(Di) (D2)
I I
I I

<pivcp2 G G
vE)

15



which means the derivation obtained by discharging in Di (i=l,2)
each occurrence of (pi as a non-discharged assumption with the
application of vE to cpivcp2 .

: then there is a formula (pi-»<p2eaj3 and 926 a(3. The immediate
subtrees V and V of X have roots a;P,q>2?G and a;j3?cpi. By induction
hypothesis we have ND-derivations Di and D2 of G from aj3,q>2and
of (pi from a|J:

(Di)
1
1
G

ed with

<P2
(DO

1
i

1
G

\ is:

(D2)
1
1

(D2)
1
1

i

f
Iwhich means the derivation obtained from Di by substituting each

occurrence of 92 as a non-discharged assumption with its
immediate derivation from cpi-»<p2 and <pi (the latter is derived via
D2) via->E.

T& : then G has the shape cpi&cp2- The immediate subtrees V and V%

of \ have roots a;P?cpi and a;P?cp2. By induction hypothesis we have
ND-derivations Di and D2 of 91 and 92 respectively from a|3:

(DO
1
1

91

(D2)
1
1

<P2

The ND-derivation associated with \ is:
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(Di)
1
1

(D2)
1
1

92
&I)

<Pl&<P2

tv : then G has the shape (piv(p2. The immediate subtrees V and X"
of 1 have roots a;p*?q>i and a;(3?<p2- By induction hypothesis we have
at least one ND-derivations D of <p; from a|i (i=l or 2):

(D)
I

The ND-derivation associated with X is:

(D)

vl)
<Plv92

: then G has the shape cpi-><p2. The immediate subtree V of \ has
root <x,cpi;|3?q>2- By induction hypothesis we have a ND-derivation D
of cp2 from <x(i,<pi:

(D)

<P2

The ND-derivation associated with X is:

(D)

<P2

<Pl-><P2
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which means the derivation obtained from D by discharging each
occurrence of cp i as a non-discharged assumption with the
application of -»I used to get (pi—»92-

Xq : then the immediate subtree V of 1 has root a;(5?-L. By induction
hypothesis we have a ND-derivations D of 1 from a(3:

(D)
I
I

The ND-derivation associated with \ is:

(D)
I
I
1

"ex falso quodlibet"

Thus the Lemma is proved.

Now we approach the second result needed for proving the
Completeness Theorem, namely our construction of a countermodel
for a root node a*=a*;?G* which evaluates as F. For this construction
novel considerations come in, as the selection of the canonical
refutation branch in Sieg's proof for classical logic depends crucially
on the classical rules for negation. Our construction parallels the_
construction of a countermodel in the completeness proof for Beth
semantic tableaux [Be], as presented in [Fi2]. The argument proceeds
in three steps. Let S be the full intercalation tree for a*. First, we
construct inductively Vne (O,l,...,h(S)} two sets S'n, S*n of regular
nodes of S of level n, proving simultaneously that S f

n 2 S * n and all
nodes in Sf

n evaluate as F . Then we will set Sf=Ui<n<h(S)Sfn>
S*=Ui<n<h(S)S*n. S* is a set of particular nodes, that are roots of
subtrees with some good closure properties, and will constitute the
universe of a Kripke model. Finally, we will show that this Kripke
model is a countermodel to cc*;?G*.

Stage 0. Let Sf
o=S*o= {<?*}.

Stage n+7: (n+l<h(S)). Assume S'n and S*n have been defined, Sf
n2S*n,

and all nodes in Sf
n evaluate as F. Assume S f

n=(ai , . . . ,ak}. For each
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ie{l, . . . ,k) define two sets SVn., S*n+i. in the following way (note: the
particular ordering of the cases is not important, except for cases 6
and 7; the reasons for which these cases must be the last ones will
become clearer in the proof of claim 1; note that cases 6 and 7 are
the only ones that determine a branching in Sf).

Case 1: T& applies to c\. Then G[ has the form cc;p?<pi&q>2 and above
it there is a special node (T&,(pi&q>2) from which a conjunctive
branching leads to nodes oc;p?cpi and a;p?q>2at least one of which
evaluates as F. Ifa;P?cpi evaluates as F, let S ' n + i ^ t a ^ c p i } and
S V i j = 0 . Otherwise let S'n+ii={a;p?(p2} and S*n+ii=0-

Case 2: the previous case does not apply, but iv applies to a;. Then
c\ has the form a;P?G, with at least a formula of the form cpivcp2in
ap, cpieap, q>2* <*P- Pick the first such formula in the sequence. Above
G\ there is a special node (iv,cp1vcp2) from which a conjunctive
branching leads to nodes a,cpi;p?G and a,q>2;P?G, at least one of
which evaluates as F. If a,cpi;p?G evaluates as F, let S'n+i.= {a,q>i;p?G}
and S*n+ii=0. Otherwise let Sl

n+ii={a,cp2;P?G} and S* n + ir0 .

Case 3: the previous cases do not apply, but i & i applies to c\. Then
G\ has the form a;p?G with at least a formula of the form (pi&cp2 in
a;P, cpi^ap. Pick the first such formula in the sequence. Above GX

there is a branch leading, through a special node (i&i,<pi&q>2), to
a;p,cpi?G, which evaluates as F. Let Sf

n+ij={a;p,(pi?G} and S*n+ij=0.

Case 4: the previous cases do not apply, but i& 2 applies to G\. Then
the situation is exactly as in case 3 with cc;p,cp2?G in place of
a;p,cpi?G. So let Sf

n+ii={a;P,cp2?G} and S*n+ii=0.

Case 5: the previous cases do not apply, but i - » applies to (Ji=a;p?G
with a formula (pi->cp2eap, where 92* <*p, and it leads, through a
special node ( i - » ,cp 1-^92) and a conjunctive branching, to nodes
<x;P,92?G and a;P?cpi such that a;p,q>2?G evaluates as F. (Note that the
other possibility will be treated in case 7a below.) Then pick the
first such formula in the sequence ap , let Sf

n+ii={a;p,cp2?G}, and

Case 6: the previous cases do not apply, but Tv applies to aj. Then
Gihas the form a;p?(pivcp2, and above it there is a special node
(Tv,(pivq>2) from which a disjunctive branching leads to nodes
a;P?cp!and a;p?cp2, both of which evaluate as F. Let Sf

n+ii={a;P?cpi,
a;P?cp2} and S*n+ij=0.
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Case 7: the previous cases do not apply to Gi=a;(3?G. We consider
two subcases.

a) Let (pi—»\|M,...,(Pp-»Yp be the list of all formulas of the form cpj—>\(fj
in ap (note that p may be 0, in which case the sets {l,..,p} and the
corresponding list are considered empty). For all j€{ l , . . ,p} , above
ai there is a special node (i-»,q>j-»\|fj), from which a conjunctive
branching leads to nodes oc;P,\|/j?G and a;p?cpj, at least one of which
evaluates as F. Indeed, a;p?cpj evaluates as F, as a;p,\|/j?G evaluates
as T; otherwise case 5 would have applied. Let X={a;P?cpi,...,
a;P?q>p}.
b) If G has the form cp-»\|/, above aj there is a special node
(T-»,cp-»\|f) from which a branch leads to a,cp;P?\y, which evaluates
as F . In this case, let S*n+ij={<M>;P?V}. Otherwise let S*n+ij=0.

Finally, let Sn+ir

Now, to complete the inductive step, define

Our second step is to define, for nodes G€ S*, certain subtrees R(a),
and prove that these subtrees have good closure properties.
For each G G S * , let R(a)={ieS': a<%, and for all o e S * such that c<o\
not a ' ^ x } . Note that this definition implies that if a,afe S* and a*o\
then R(a) and R(af) are disjoint.

Definition. If a is a regular node a;p?G, then T(a) is the set of
formulas occurring in ap and F(a) is the set {G}. If Q is a set of
regular nodes, then T(Q) is the union of the sets T(a) for a in Q, and
F(a) is the union of the sets F(a) for a in Q.

Remark 1. If a,af are nodes in S and G<C\ then T(a')2T(o), since no
rule takes away a formula on the left of the question mark.

Claim 1. If a,a'eS* and c<c\ then T(R(a'));2T(R(a)).

Proof of claim 1. It is enough to show that for any node a;P?GeR(a)
and any formula cpeaP we have cpeT(R(af)). If a;p?G^a\ this follows
immediately from remark 1. If a;p?G and a1 are on different
branches, then there must be a branching below these two nodes due
to cases 6 or 7 of the construction of Sf. Let a"=a";pn?G" be that
branching point and assume cpea"p".
The only cases through which cp can have been added to aMpn are
cases 2-5 or 7b (note that 1, 6 and 7a do not change the sequence of
formulas on the left side of the question mark). Thus, in the branch
leading from a" to a;p?G, the (regular) node immediately above a11
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has the form a";p"?G"\ Now, if cases 2-5 would have been applied
above a";p"?G"\ then they could have been applied also to a". But
this is impossible, since we know that case 6 or 7 has been applied to
a", and the ordering we chose would have forced us to apply cases 2-
5 before case 6 or 7. So case 7b must have been used to get cp, and a
new node % has been put in S* before the first occurrence of 9 on the
left side of the question mark. So a;P?G«R(a), contradiction.
Therefore q>eaMp", and the result follows immediately from remark 1.
Thus claim 1 is proved.

The next claim is the intuitionistic analogue of the closure lemma
stated for the classical case.

Claim 2 (closure lemma). For any aeS*, the following holds:
a) <pi&<p2eT(R(a)) => <pieT(R(a))and q>2€T(R(a))
b) cpiv<p2€F(R(a)) =* cpi€F(R(a)) and cp2€F(R(a))
c) cpiv(p2€T(R(a)) => cpieT(R(a)) or q>2eT(R(a))
d) cpi&(p2€F(R(a))=> <pieF(R(a))or (p2eF(R(a))
e) (pi-xp2eT(R(a)) => cpieF(R(a)) or q>2€T(R(a))
f) <p1-»<p2eF(R(a)) => 3a'e S* such that a<a\ cpi€T(R(a f)) and
q>2€F(R(a'))

Proof of claim 2. For a)-e), the key element in the proof is that
negations and implications on the left of the question mark, all
conjunctions, and all disjunctions are always dealt with before a new
node is put in S*, or at the same time but on a different branch.
Consider for example a): if there is a node a;(3?GeR(a) with <pi&(p2ea(3,
then this formula is dealt with in case 3 and 4 before any node could
be added to S* in case 7b, hence cpi€T(R(a)) and q>2€ T ( R ( a ) ) .
Similarly, b) follows from case 6, c) from case 2, d) from case 1, e)
from cases 5 and 7a. For f), if there is a node a;p?cpi-»cp2€R(a), then in
case 7b a new node a'eS* is defined, such that c<o\ cpieT(R(af)) and
cp2€F(R(a')).
Thus claim 2 is proved.

Finally, our third step is to define a Kripke model K=<W,<,2> with the
required properties. Let W=S*, and £ be the partial ordering relation
^ of the tree restricted to W. For any a e W , let Z(a)={p: p is a
prepositional variable and there exists a node a;(3?G€R(a) such that
p e a p } . That K is a Kripke model follows immediately from claim 1.

Claim 3. Let Zf be the canonical extension of I. For any ae W:
l)q>€T(R(a)) => ye r (a )
2)cp€F(R(a))=» cper(a)
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Proof of claim 3. The proof is by induction on the complexity of cp.
Case 0 : cp is atomic.
Consider first the case cp*±. Then 1) follows directly from the
definition of Z. For 2), suppose there is a node x=a;(i?cp€ R(a) and
9 € l f ( a ) . Then by definition of L,If there is a node x'=af;Pf?G€ R(a)
such that cpea'p1. If x'^x, then by remark 1 cpeap. But this means
that x evaluates as T, contrary to the fact that all nodes in Sf

evaluate as F. If x=^x\ it cannot be that G=<p since otherwise xf would
evaluate as T. This means that the formula on the right side of the
question mark has been modified in the construction, and since cp is
atomic this may have happened only through case 7a with an
application of i - » where the rightmost branch was chosen. Let
x"=a";p"?cp be the node to which i - » has applied. Since i - > does not
change the sequence on the left side of the question mark, we can
reason as in the proof of claim 1 and conclude cp€a"(3", which
implies that x" evaluates as T, contradiction. If x and x* are on
different branches, then the branching may have happened only
through case 6 or 7a. Let x"=a";P"?G" be the branching point. Since
tv and i - » do not change the sequence on the left side of the
question mark, we can reason as in the proof of claim 1 and
conclude that cp€a"P". But this implies that cpea|3, since x"^x. It
follows that x evaluates as T, contradiction.
Now consider the case cp = l. Then 2) follows trivially from the
definition of L\ For 1), suppose there is a node x=a;p?\|/eR(a) such
that ±ea(3. We may always apply ± q , leading to the node a;(3?-L This
node clearly evaluates as T, and thus x evaluates as T, contradicting
the fact that all nodes of S1 evaluate as F, So ±eT(R(a)) , from which
1) follows trivially.
Case 1 : cp is cpi&cp2. Then, for 1), cpi&cp2€=T(R(a)) => cpieT(R(a)) and
cp2eT(R(a)) (by claim 2.a) => cpiel f(a) and cp2e !'(<*) (by induction
hypothesis) => cpi&cp2e Zf(ci) (by definition of Kripke model). For 2),
cpi&cp2eF(R(a))=» cpieF(R(o))or cp2eF(R(a)) (by claim 2.d) => cpi*£'(<*)
orcp2fclf(a) (by induction hypothesis) => cpi&cp2e2;f(a) (by definition
of Kripke model).
Case 2 : cp is cpivcp2. Then, for 1), cpivcp2e T(R(a)) => cpieT(R(a)) or
cp2eT(R(a)) (by claim 2.c) => cpieLf(a) or cp2e I f (a ) (by induction
hypothesis) =* cpivcp2e I'(<J) (by definition of Kripke model). For 2),
cpivcp2eF(R(a)) =* cpie F(R(a)) and cp2e F(R(c) ) (by claim 2.b) =>
cpi*£'(<*) and cp2el f(a) (by induction hypothesis) => cpivcp2e £ f(o) (by
definition of Kripke model).
Case 3 : cp is cpi-»cp2. Then, for 1), cpi->cp2eT(R(a)) =» Va'^W [a<o' =>
cp1->cp2€T(R(a1))] (by claim 1) => Vafe W [o<o' =» cpi€F(R(af)) or
cp2€ T(R(af))] (by claim 2.e) => Va'e W [o<& => cpi^EXa1) or <p2€r(a')]
(by induction hypothesis) => 9i-»cp2€Lf(cr) (by definition of Kripke
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model). For 2), q>i-><p2€F(R(a)) => 3a feW [c<& and cpieT(R(a*)) and
(p2€F(R(a f))] (by claim 2.h) => 3o'e W [o<o' and q>ie r ( a ' ) and
cp2* SXcr1)] (by induction hypothesis) => q>i->92e £'(<*) (by definition of
Kripke model).

Thus the induction is complete, and so is the proof of claim 3.

At this point we can state the result about the existence of a
countermodel.

Theorem 2. Suppose the full intercalation tree S for a * = a * ; ? G *
evaluates as F. Then it is possible to define from S a countermodel
for a*, that is, a Kripke model one of whose worlds verifies all the
formulas in the sequence a* and does not verify G*.

Proof. Construct K as before. Apply claim 3 to the root node
a*=a*;?G*. It follows that, for each (pea*, cpeZf(<J*), and Ge £'(<**).
Therefore K is a countermodel for a*. QED.

Theorem 1 and 2 immediately yield the Completeness Theorem for
the intuitionistic Intercalation Calculus:

Theorem, The full intuitionistic intercalation tree for a;?G either
contains an I-derivation for a;?G or allows the definition of a
counterexample to the intuitionistic inference from a to G.

Again we remark that ND-derivations extracted from I-derivations
are normal and have the Subformula Property: as remarked for the
classical case, this depends crucially on the fact that i -rules are only
applied from above and T -rules only from below. Thus the_
Completeness Theorem yields the following corollaries, exactly as in
the classical case:

Corollary 1. The intuitionistic ND-calculus with just normal
derivations is complete.

Corollary 2 (Normal Form Theorem). For any ND-derivation there is a
normal ND-derivation with the same assumptions and conclusion.
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CHAPTER 3

§1. Heuristics for search in the classical case.

For a good, efficient implementation of an algorithm for proof search
based on the Intercalation Calculus one has to try to reduce the
search space further, and to decide in an intelligent way which of the
various possibilities should be pursued first.
In the current implementation (for the classical case) various
heuristics, based on logical considerations, are used to achieve these
goals.

First of all, as we remarked at the end of Chapter 1, we may look for
a proof in which only subformulas of the conclusion or positive
subformulas of one of the assumptions (or negations of such
formulas, or ±) occur. Thus, in looking for a contradictory pair, we
have to look only for formulas of the second kind.

Another important point is this: during the construction of the search
tree, certain information can be stored in order to avoid answering
the same question twice. That is, one keeps track of all the questions
of the form a;p?G that have been answered negatively. Then, if on
another branch a question a*;(5*?G such that the set of formulas in
a*|3* is a subset of those in a3 is met, one stops pursuing it, since it
cannot be answered positively. In fact, though a failure in solving a
question a;p?G is always caused by the fact that a repeated node has
been met, and thus it may depend on nodes that are below a;(3?G in
the intercalation tree, the completeness proof for the Intercalation
Calculus ensures us that if all strategies for a;ji?G fail, then G is
indeed not provable from ap.
Furthermore, it is possible to keep track of all the questions of the
form a;p?G that have been answered positively. Then, if on another
branch a question a*;p*?G such that the set of formulas in a(5 is a
subset of those in a*(3* is met, one stops pursuing it, since a fortiori G
is derivable from a*(3*: so one can just copy the derivation previously
obtained without duplicating the steps leading to it.

There are essentially three different strategies to close the gap
between assumptions and conclusion. One is trying to break the
conclusion apart, in case it is a complex formula, making use of the T-
rules, thus trying to get closer to the assumptions from below
(inversion strategy). Another possibility is trying to extract the
conclusion by breaking the assumptions apart using the i -rules, thus
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trying to get closer to the conclusion from above (extraction
strategy): this strategy, however, may succeed only when the
conclusion is a positive subformula of some assumption. The third
possibility is using the indirect rules (indirect strategy).

Here is a very rough description of what the currently implemented
algorithm does when it faces a question a;p?G.

a) First of all, it looks for the formula G in the sequence a|3; if it is
there, the question is answered positively. If it is not, it looks if G can
be obtained from formulas in a (3 in just one step: if it can, then it
applies the corresponding rule. Otherwise it forms strategies to
obtain G, as follows.
b) It looks whether G is a positive subformula of some formula in a{5;
if it is, it forms extraction strategies for G. In doing this, a certain
number of open questions, that is other formulas that must be
proved to obtain G, will be met (for example, if there is a formula
H-»G in <x(5, H will be an open question).
c) Then it forms the inversion strategy for G. That is, it tries to break
G into simpler formulas, and continues to break these formulas apart
until either an atom, a negation or a disjunction is found, or one of
the above cases a), b) applies. The figure below illustrates an
example of the building of the inversion strategy: in this example,
the goal is (pvq)&(r-»s).

M
I
I
I
s

pvq r-»s

(conjunctive
branching)

(pvq)&(r->s)

The leftmost branch stops when the disjunction pvq is hit, the
rightmost branch when the atom s is hit (with a new assumption r).
d) Then it ranks the possible extraction and inversion strategies,
according to the context (that is, the shape of the conclusion and the
assumptions, the number of open questions, how deep G is
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embedded as a subformula in one of the assumptions, and so on),
and it pursues the first strategy in this ranking. If the first strategy
fails, the second is pursued and so on.
e) Finally, if everything else has failed, it forms the indirect
strategies, using all possible contradictory pairs: then it ranks these
strategies, too, and proceeds as before. If one of the indirect
strategies eventually succeeds, it is always possible to check,
whether the new introduced assumption was in fact used in the
proof: if not, the refutation may be turned into a direct argument.

Certain heuristics provide exceptions to the algorithm described
above. The most relevant is that, when for the first time on a branch
the goal is an atom, a negation, or a disjunction, the indirect strategy
is tried first, using the goal itself and its negation (or unnegated part)
as the contradictory pair. This is motivated by the fact that in many
common problems the indirect rules must indeed be used to prove
an atom, negation, or disjunction: it will lead to non-optimal proofs in
certain cases, but often it saves a lot of time, as for example in
proving the law of the excluded middle cpv-cp. In fact (and this is also
the reason to stop the building of the inversion strategy when a
disjunction is met), while a conjunction can be proved from some
assumptions if and only if both conjuncts can be proved from those
assumptions, and an implication can be proved from some
assumptions if and only if the consequent is provable from those
assumptions plus the antecedent, it is not the case that to prove a
disjunction from some assumptions one must necessarily prove one
of the disjuncts from those assumptions.

Thus, in the currently implemented algorithm, the choice of the next
question (when it has been determined that the branch with
question a;?G has to be expanded) may be described with the flow
diagram on next page (the diagram is taken from [SiSc]).
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current question

no

form extraction
strategies

i

no

form inversion
strategies

/ \ n o

T
form refutation
strategies

order strategies

I
new question(s),
depending on
strategy

At 1 the algorithm determines whether it is in an indirect argument
with respect to G. If not, at 2 it asks whether G is a negation, a
disjunction or an atom. If it is, then it tries the indirect strategy (G*
is ~G in the latter two cases, the unnegated part of G in the first
case). At 3 it determines whether the set of extraction and inversion
strategies is empty or not.
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Remark. A good implementation of the v-elimination rule is not easy
to achieve. Hence in the current implementation a different v-
elimination rule is considered, namely the following:

cpv\|/ ~cp cpvy ~y
vEf)

In the classical case the system resulting from this rule is equivalent
to the one formulated before, but unfortunately in the intuitionistic
case this rule turns out to be too weak.

§2 . Possible heuristics for the intuitionistic case.

The treatment of the intuitionistic case is absolutely parallel to that
for the classical case, but for proving atoms or disjunctions. Indeed, it
is possible to form the extraction and inversion strategies just as in
the classical case; of course, the indirect strategy is not available, and
it shall be replaced by something else. The changes to be made to the
algorithm concern essentially JL and v.

The only rule for ± we have now is the ex falso quodlibet. This rule
has nothing to do with the shape of the goal (provided it is not X)
and is needed to make sure that we can prove anything from an
inconsistent set of assumptions. For these reasons it would probably
be better to use the ex falso quodlibet only as a last resort, that is if
all other strategies have failed. This could be the case, for example, if
the goal G is an atom which is not a positive subformula of one of the
assumptions: in fact then we cannot use the extraction nor the
inversion strategy, and thus our only hope to get G is finding an
inconsistency in the assumptions.

The issue about disjunction is more complex. First of all, the remark
at the end of the last paragraph must be taken into account: in the
intuitionistic case, we must implement the "traditional" v-elimination
rule. The question now becomes, how should we use it ?

One thing to observe is that, though considerations similar to those
made for the classical case apply, that is, for conjunctions and
implications the inversion strategy shall be pursued as far as
possible, in the intuitionistic case this is also true for disjunctions if
all the assumptions are Harrop formulas.
For defining the concept of Harrop formula we need first to define
inductively the concept of strictly positive part of a formula (cf. [Tr]):

28



1) cp is a strictly positive part of cp;
2) if V1&V2 or viv\f2 are strictly positive parts of cp, so are y 1 and
3) if Vi->V2 is a strictly positive part of cp, then so is \|/2-
A Harrop formula is a formula which does not contain a disjunction
as a strictly positive part.
The reason why the inversion strategy shall be pursued as far as
possible also in the case of a disjunction, if all the assumptions are
Harrop formulas, is a theorem of Harrop [Ha], which states that, if cp is
a Harrop formula, then a formula cp-»(yiv\ |f2) is provable in
intuitionistic logic if and only if either cp-»yi or cp—>\p2is provable in
intuitionistic logic.

If at least one of the assumptions is not a Harrop formula, then there
are other strategies to consider in the case of a disjunction: here, of
course, the indirect strategy is not available, but it is possible to try
the v-elimination rule. In this case, using it as first strategy makes
sense because of considerations similar to those made for the
indirect strategy in the classical case: many common problems
actually have to use of the v-elimination rule (a typical example is
the commutative law for v, that is cpvy;?\|/vcp), so this may be
preferred to the v-introduction rule. In this case, too, it is always
possible to check, whether the new assumptions introduced by vE
have in fact been used in the proof, and if not, eliminate the
redundant application of vE.
The problem with this is that, while it seems not to cost too much
time to try the indirect strategy in the classical case (one just has to
examine a few contradictory pairs), the amount of computation here
could become difficult to deal with, especially if we have several
disjunctions. Therefore it may be advisable to try the v-elimination
strategy first only in certain special cases and with care.
The situation is further complicated by the fact that, in certain cases,
trying the v-elimination strategy first would be better even if the
goal is a conjunction or an implication, as for example if one wants to
prove (cp&y)v(cp&v);?cp&\|/.

Thus, in order to decide whether to use v-elimination first or not,
one should try to look for some connections between the goal and the
disjunction in the assumptions (that is, look if one of the two is a
positive subformula of the other, if they have prepositional variables
or even a disjunct in common, and so on). The problem is that vE
may be necessary also in some cases in which the shape of the goal
has really nothing to do with the shape of the disjunction in the
assumptions, as for example in the question cpv\|/,cp-»x,\|f-»x;?x. So, if
one has, for example, a question like cpiv\|/i,cp2vV2»<Pi-*X»Vi~>X>1x> o n e

29



should find a way to express in the algorithm the fact that the
disjunction cpivxjfi is helpful, while 92VV2 is not.
A step towards a solution may be to see, while forming extraction
strategies for the goal, whether the open questions met have some
relationships with a disjunction that occurs as a positive subformula
of one of the assumptions. The ideal would be, of course, to find as an
open question one of the disjuncts, since using vE this formula would
become a new available assumption. Then one might take these
considerations into account in ranking the strategies. Probably this
would require a more sophisticated way of assigning scores to the
strategies, since - as remarked before - taking a non-optimal
direction might cause a big waste of time, apparently much worse
than in the classical case. For example, consider the question
cp&\|f,cp-»X,\|/-»X,(pv8,\|/v0;?x. Here the goal is a positive subformula of
some of the assumptions. If one builds the extraction strategy, one
meets the open question cp (or y ) , which is indeed a positive
subformula of a disjunction in the assumptions. But trying to use vE
would not be a good idea, because 9 cannot be of any help in proving
X. It is clear that in such a case one should prefer the extraction
strategy for <p (or \jr), using the assumption 9&\y. This would lead to a
proof almost immediately, as the following figure shows:

(conjunctive
branching)

The open question cp is obtained from cp&\|/ by &E, and x fr°m <P->X
and cp by —»E.

Here we try to describe the algorithm for the intuionistic case with a
flow diagram, too; anyway, since the way of ordering strategies is
still quite vague, such a diagram is probably less significant than that
for the classical case:
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current question

form extraction
strategies

i
form inversion
strategies

no

T
formv -elim.
strategies

order strategies
(somehow)

new question(s),
depending on
strategy

At 1 the algorithm determines whether there are non-Harrop
formulas among the assumptions.

§3. Complexity considerations.

In this last paragraph we want to consider the computational
complexity of the set of classically and intuitionistically provable
formulas. Statman [Sta] has shown that the set of intuitionistically
provable formulas is PSPACE-complete, while the set of classically
provable formulas is known to be in Co-NP. Thus it looks likely that
the intuitionistic theorem predicate is by its nature more complex
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than that for classical logic: if not, in fact, Statman's result would
yield NP=PSPACE.

The discussion in §2 of this chapter provides a heuristic explanation
of this higher complexity, and shows where the difference between
classical and intuitionistic proofs lie.
We have seen that conjunctions and implications are dealt with in
the same way in both cases. Thus the differences appear when one
has to prove a disjunction or an atom (remember that we considered
negation as a special case of implication). In these cases, classical
logic allows one to use the indirect strategy, which provides a new
piece of information (the negation of the goal, which is taken as a
new assumption) immediately available for trying to prove a
contradiction. The syntactic form of the contradictory formulas one
has to prove is always strongly related to that of the assumptions; in
fact, as said before, the choice can be restricted to those
contradictory pairs in which the negated formula is a positive
subformula of one of the assumptions.
In intuitionistic logic this strategy is not available, and must be
replaced by the use of the v-elimination rule (when there is a non-
Harrop formula among the assumptions). This rule implies building
up two subproofs: the goal itself must be proved separately from
each of the two disjuncts, taken as new assumptions. These
subproofs may still be very complex, since the syntactic form of the
goal may still not be related (or, at least, not so strongly as in the
classical case) to that of the assumptions.
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