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1. Introduction

Consider the problem of an investigator who knows some things, who receives a stream

of data, and who would like to be on the path to the truth about some matter. This is a

familiar philosophical picture of the scientist's predicament; an image to be found in the

work of such philosophers as Plato, Aristotle, Bacon, Mill, Peirce, Popper, and

Reichenbach. In the 1960's, Hilary Putnam [17] and E. Mark Gold [6], [7]

independently combined this model of the problem of inquiry with recursion theory to

found a new subject, now known as formal learning theory or computational learning

theory. The marriage of inductive methodology with recursion theory has proved to be

very fruitful (for reviews c.f. [2], [3], and [15]). Formal learning theorists routinely

separate solvable inductive problems from unsolvable problems, assess traditional

methodological rules in terms of their implications for reliability, prove various

inductive frameworks to be equivalent or inequrvalent, and assess the effects on the

intrinsic difficulty of induction of such factors as noisy data, hypothesis language

syntax, and weaker and stronger notions of success . Lately, the theory has been adapted

to the topic of inferring theories expressed in logical languages from data of various

kinds [11], [12], [15].

Learning theoretic analysis assumes that there is a fixed language of inquiry and that

there is fixed, true data to help us get to the truth in this language. Both of these

assumptions are firmly rejected by many prominent philosophers of science [8] [10]

[13] [19] [20] [21]. According to these philosophers, truth, syntax, and observability



change during "scientific revolutions" or major breaks in scientific traditions. For

example, in the move from Newtonian mechanics to the special theory of relativity, the

meaning and even the syntactic valence of the relation "simultaneous with" changed. This

* change forced subtle changes in the meanings of many other Newtonian terms, including

"mass" and "energy". So evidence phrased in these terms has a different meaning for

scientists who hold different theories. Thus, philosophers often say that evidence is

ineluctably "theory laden", and truth is relative to a "conceptual framework" or to a

"system of beliefs".

More generally, the issue is relativism, the thesis that truth, meaning, and

observability can shift as a function of what the process of inquiry does, or of what the

inquirer believes. There are many stories in the annals of mataphysics about what

truth depends upon (e.g. concepts, conventions, networks of inferential dispositions,

scientific social units, history, community norms, experimental regimens, the

scientist's behavior) and about how the dependence actually works.

Philosophical speculation about meaning change is not the only source of relativistic

concerns. The Copenhagen interpretation of quantum mechanics teaches that the classical

nature of a system (e.g. wave vs. billiard ball) is determined by the application of an

observational procedure which "collapses" the wave system into a particle system, and

that there is no unique truth to the matter. Relativity theory, of course, asserts that

the truth about simultaneity is relative to the reference frame of the observer.

Relativity is straightforwardly rampant in the social sciences. For example, the dire

predictions of a panel of expert economists can precipitate "self-fulfilling prophecies"

in light of the effect of these predictions on individual investors. Herds of

anthropologists can alter the social relations of a small tribe by their mere presence. In

these cases, the truth dependency is a straightforward causal relation between the deeds

and statements of the scientist and the nature of the system under study.1

1From the examples, it is clear that whether or not inquiry is relativistic is itself

relative to the aspirations of inquiry. For example, Einstein did not aspire merely to

provide a kinematics true of some reference frame or other. He aspired, rather, to

provide a full theory of the dependency itself. One way to dodge the issue of relativistic

inquiry is to insist that science always aim for a complete theory of the dependency.

Thus, the anthropologists would be enjoined to aim at a theory of how tribal societies

respond to Western anthropologists, rather than merely at descriptions of lineage, social



Whether relativism looms due to metaphysical or semantic considerations or merely to

concrete worries about uncontrollable interference between the investigator's states and

those of the subject matter under study, the basic issue posed to inductive methodology

remains the same. What sense does it make for science to pursue the truth when the

truth feints as science lunges?

Philosophers today tend to stress short-run, rational agreement among investigator.

For realists, who deny any significant relativism, convergence to the truth is a way of

eventually arriving at rational agreement, since there is one truth and those who find it

will agree. But relativism severs this connection, since two investigators could both

arrive at their own, distinct truths without ending up in agreement. The pessimists

conclude that science is an irrational process because individual theory choices cannot be

agreed upon by all participants. The optimists attempt to show that there is still

sufficient basis for agreement in actual case studies.

We propose a different approach. Unlike the optimists, we concede that relativism may

be rampant, for all we know. And unlike both the optimists and the pessimists, we focus

squarely on reliable convergence to the truth, rather than on rational agreement based

on shared data in the short run. Even though truth is not unique, and even though it may

depend upon us in subtle ways we do not understand a priori, it may still be possible for

a scientist to converge to his own truth.

There are perhaps two main reasons why getting to the relative truth has not captured

the imagination of relativists. First, the goal seems too hard. It is one thing, so the

story goes, to find the truth in a fixed, spoon-fed framework of concepts, but it is quite

another to search among different frameworks to find one that is suitable. But this

observation is flawed. The assumption that truth is fixed does not make convergence to

the truth easy, as the many negative results in formal learning theory already attest.

And finding the truth in the system of one's choice can make the problem of finding the

truth easier, for the scientist may sidestep inductive difficulties by altering auxiliary

assumptions, concepts, and so forth.

organization and so forth. And if the philosophers are right about meaning change, then

all scientists would have to append comprehensive theories of reference to their current

hypotheses in physics, chemistry, and biology.



Thus we are led to the second reason for concern, namely, that getting to the relative

truth may be too easy, and thus unworthy as a proposed aim for science. If truth depends

upon you, then what is the point of careful inquiry? Just make your favorite theory

true, and be done with itl Admittedly, if the scientist has absolute control over truth,

then inductive inquiry is trivial. But radical subjectivism, the view that the scientist

knows how to make any given theory true, is just one, trivial form of relativism. If we

drop the assumption that the scientist knows how to make any theory he pleases true, the

situation becomes interesting, even when he has the power to make any theory true by

doing something (he knows not what). If there are constraints on his powers as well as

on his knowledge, then the situation becomes still more interesting. It is not hard to

imagine that in such circumstances, relativism could be rampant, and yet convergence to

the relative truth might be highly non-trivial.2 The project of this paper is to extend

learning-theoretic analysis to such problems.

In this paper, we examine three precise notions of getting to the relative truth. The

first requires that the scientist converge to a conceptual framework and to the correct

truth value of a given hypothesis in this framework. We call this notion of success

scheme-stable truth detection, since the scientist must eventually settle down to a

particular conceptual scheme, and then must converge to the correct truth value of a

given hypothesis. More leniently, we may permit the scientist to have conceptual

revolutions forever, just so long as there is a time after which the truth value of the

hypothesis under investigation is fixed. Then the scientist must discover this fixed truth

value. We refer to this sense of success as truth-stable truth detection. Finally, we

may be so liberal as not even to require that the scientist eventually stabilize the truth

value of the hypothesis under investigation. Instead, we require only that after some

time, he always gets the correct truth value of the hypothesis for the conceptual scheme

he currently adopts. This notion of success we refer to as truth detection simpliciter.

The ontology of our setting for relativism is simple. There is some set C of things we

call conceptual schemes. In applying our framework, these may actually stand for

conceptual schemes, or for anything else that syntax, truth, and observability are

2The fashionable doctrines of holism and incommensurability fit nicely with the view

that the scientist does not know a priori how his acts will affect meaning, truth and

observability.



alleged to depend upon. No mathematical structure is imposed upon this set. We also

assume a fixed alphabet I. This is innocuous* since £ can contain every typographical

symbol ever used and ever to be used. The set £* of all finite strings of characters in £

provides the raw material for evidence sentences and hypotheses. We may think of well-

formedness, truth, and observability as determining subsets of £\ Each such division

of £* according to syntax, truth, and observability is referred to as a world of inquiry.

Since syntax, truth, and observability depend upon conceptual scheme, we represent the

possible such dependencies as functions from conceptual schemes to worlds of inquiry.

Such functions are referred to as worlds-in-themselves.

A scientist does empirical research because he is uncertain about something. In our

framework, his uncertainty is represented as a set of possible worlds-in-themselves,

one of which is actual. We refer to a set of possible worlds-in-themselves as a

relativistic system. The "conceptual scheme" represents everything about the world of

inquiry that depends upon the scientist and the world-in-itself represents everything

about the world of inquiry over which the scientist has no control.3

The notion of a relativistic data stream may seem problematic. The data received

depends upon the conceptual scheme of the scientist, but the conceptual scheme of the

scientist depends upon the data he receives. But there is no difficulty if we stretch the

circle into a spiral through time. The datum received toy the scientist at stage n of

inquiry is true and observable in the world-of-inquiry determined by his choice of

conceptual scheme at stage n-1. Since the data received at different times may come

from different worlds of inquiry, the data received at one time may be false, nonsensical,

or "metaphysical" (empirically indeterminable) at another time. But the scientist can

remember what sort of strings he took to be observable and true when his conceptual

schemes were different.

traditionally, the conceptual scheme has been the "subjective" component of truth and

the world-in-itself has been the "objective" or "mind-independent" component. But

when the subjective component of truth cannot be manipulated at will (by a scientist

following a method) then from a methodological perspective this subjective component

raises no new questions for learning theory. Thus, a philosopher like Kant, who held

that the mind's contribution to truth is invariant for our species is a naive realist so far

as the logic of inquiry is concerned, since truth is fixed once for all for any given

scientist.



The main result of this paper is a demonstration of necessary and sufficient conditions

for the existence of a method that can detect the semantic status of a given string over a

given relativistic system. This theorem may be thought of as a generalization of

Angluin's necessary and sufficient conditions for language acquisition from positive data

[1]. The positive side of the proof, together with establishing completeness of our

technique for proving relativistic problems unsolvable, involves the construction of a

relativistic inductive method. The negative side of the proof may be viewed as a

completeness theorem for this method, in the following sense: given a specification of

how truth, syntax, and observability can possibly depend upon conceptual scheme (i.e.

given a relativistic system) and given a string in I\ the method will detect the semantic

status of the string if and only if it is possible to do so. Similar results are given for

truth-stable and scheme-stable truth detection.

Section 2 presents the concepts that make precise our three notions of convergence to the

relative truth. In Section 3, we prove a locking sequence lemma for each of these notions

of success. The locking sequence lemmas are useful in proving certain relativistic

inductive inference problems to be unsolvable. In Section 4, we apply the locking

sequence lemmas to prove a characterization theorem for each of our three notions of

convergence to the relative truth. The characterization theorems provide necessary and

sufficient conditions for convergence to the relative truth, stated as structural

properties of the set of objects under study. The proofs of the characterization theorems

involve the construction of universal inductive methods that get to the relative truth if

any method can. In Section 5, we apply these characterization theorems to prove that

our three notions of success are distinct in terms of the difficulties of the problems they

pose to the scientist. Finally, Section 6 draws some philosophical morals from the

results, and suggests some open paths for research in the area.

2. Notation and Definitions

2.1 Sequence Operations

Unless it is stated otherwise, the following operations are defined both for finite

sequences and for co-sequences.

last(x) = the object occurring at the end of finite sequence x.



tn - the item occurring in position n of sequence t.

decr(x) » the result of deleting the last item in finite sequence x.

I : Vx is the concatenation of sequence x and finite sequence a. _

rng(x) « the set of all objects occurring in x.

x[n] « the initial segment of sequence x of length n.

2.2 Metaphysics

Let £ be a countable alphabet.

Let £* - the set of all finite strings on Z (including the empty string).

A hypothesis is some string s € I* .

A world-of-investigation W is a triple of sets <H, E, T> such that
Tf E c H c r .

H represents the well-formed hypotheses in H>. Note that according to our usage, a

hypothesis need not be well-formed. Whether or not a given hypothesis is well-formed

is one of the things the scientist must figure out for himself. E represents the "evidence

language" subset of H in W. T represents the subset of H that is true in W.

H

true
evidence

false
evidence

true
hypotheses

false
hypotheses

gibberish

A relatMstic system is just some triple <Ft C, W> where

C is an arbitrary set.
W is some set of worlds-of-investigation.



p j s s o m e g ^ o f t Q t a j m a p s f: C -> W.

Let a relativistic system <F, C, W> be given.

A conceptual scheme is a member of C.

A world-in-itself is a member of F.

A world-in-itself is a specification of a particular way in which truth, observability,

and syntax depend upon conceptual scheme. A relativistic system specifies the set of

such dependencies that may, for all we know, be the case.

For example, let I = the standard keyboard symbols, let C « {a, b}, let W = {W1, W 2}

where Hh = <Hi, E1, Ti>, and 182 « <H2, E2, T2>, and where Hi = the well-formed

first-order sentences on a non-logical vocabulary consisting of unary predicate P, H2 =

the well-formed first-order sentences on a non-logical vocabulary consisting of binary

predicate Q, E1 = the atomic sentences of H-|, E2 * the literal sentences of H2, T1 « the

truths in Hi according to some chosen relational structure for H<|, and T2 = the truths in

H2 according to some chosen relational structure for H2, except that the truth conditions

are all reversed so that negations count as assertions and assertions as negations. Let fi

= {<a, HH>, <b, W<[>} and let f2 « {<a, t02>, <b, Wi>}, and let F = { f i , f2>- In f i , truth,

syntax and observability do not depend upon conceptual scheme, since f1 is a constant

function. In f2, vocabulary, observability, and the meaning of negation all depend in a

radical way upon conceptual scheme. The triple <F, C, W> is a relativistic system.

In subsequent discussions, F, C, and W are all to be understood as constituents of some

fixed, arbitrary, relativistic system.

The truth values are {T, F, U}.

Define W : r X W - > { T , F, U} as follows, where HI * <H, E, T>:

tv(s, H)) = T i f S€ T
tv(s, U ) « F i f S 6 H - T .
tv(s, t») = U if s ^ H.

Intuitively, T means "true", F means "false" and U means "no truth value"

2.3 Data Presentations

8
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vf| : . a data presentation is an co-sequence of strings in l \

l l f SEQ «the set of all finite segments of data presentations.

2.4 Truth Detectors -

A truth detector is a function 6: r X SEQ -> C X {T, F, U}.

A truth detector is given a hypothesis to investigate and is given some finite sequence of

data. On the basis of this data, the truth detector is required to produce a choice of

conceptual scheme and a guess as to the truth value of the given hypothesis. Think of the

truth detector as investigating a single hypothesis as the data sequences get ever larger

through the course of inquiry. Since we will not examine questions of computability in

this paper, we may assume without loss of generality that truth detectors are total

functions.

Suppose 5(s, o) » <c, b>, where s is a hypothesis, a € SEQ, c e C and b e {T, F, U}.

Then

6(s, c ) i = c

5(s, 0)2 « b.

2.5 Data Presentations for Worlds and Detectors

Let t be a data presentation. Then define:

t[8, c, s]n = tk where k is the nth position in t such that 5(s, t[k-1])i = c.

t[5, c, s] = the sequence <t[5, c, s ] i , t[5, c, sfe,.... t[6, c, s]n, ...>

t[6, c, s] may be thought of as the result of deleting each position in t such that 5 does not

choose conceptual scheme c at the previous position in t. Hence, t[S, c, s] is the total

data presented in t for conceptual scheme c when the truth detector choosing conceptual

schemes is 5.

ev(HJ) » T n E, where W « <H, E, T>.

ev(HJ) should be thought of as the total evidence true of world-of-investigation H).



Let 8 be a truth detector, s be a hypothesis, f be a world-in-itself, and c be a conceptual

scheme.

a € SEQ is sound for 8, f, s <=> Vc, rng(c[8, c, s]) c ev(f(c)).

data presentation t is sound for 5, ft s <* Vc e C rng(t[5f c, sj) c ev(f(c)).

Soundness requires that the data read at stage n+1 be true with respect to the conceptual

scheme produced by 5 at stage n. This relationship is clarified in the following figure.

Relativisttc Data Presentations

new evidence at stage n+1
is drawn from world f(c)

Data at stage n

t
Conjecture at stage n

We require not only that data presentations be sound, but also that they be complete.

Completeness demands that all the data in world-of-inquiry f(c) be presented to 5 only

when 8 selects c infinitely often. Otherwise, an infinite data set for f(c) could not

possibly be presented to 5.

data presentation t is complete /or 5, f, s <=>
Vc € C, t[8, c] is infinite =» rng(t[8, c, s]) * ev(f(c)).

data presentation t is for 8, f, s <=>
t is complete for 8, f, s and t is sound for 8, f, s.

PRES(f, 8, s) = {t: t is for 8, f, s}.

10



2.6 Reliable Detection

Let <F, C, W> be a relativistic system.

Now we define various notions of oonvergence to a truth value on a data presentation.

S converges to c, b on t, s <=>
3n Vm > n 8(st t[m])i « c and 8(s, t[m])2 « b

S converges to b on t, s <=>
3n Vm > n 8(s, t[m])2 * b.

5 detects s on t <=>
3n Vm > n 5(s, t[m])2 = tv(s, f(8(s,

Let <F, Cf W> be a relativistic system. Let f e F, and let s be a hypothesis. Let t e

PRES(f, 5, s). Let 5 be a truth detector.

S scheme-stably detects s on t <=>
5 detects s on t and
3c, b such that 5 converges to c, b on t, s.

8 truth-stably detects s on t <=>
5 detects s on t and
3b such that 5 converges to b on t, s.

5 [scheme-stably, truth-stably] detects s in f «
Vt e PRES(6f f, s), 6 [scheme-stably, truth-stably] detects s on t.

5 [scheme-stably, truth-stably] detects s over F <=>
Vf e F, 8 [scheme-stably, truth-stably] detects s in f.

Detection requires that after some time, 8 always produces a truth value that is correct

for the conceptual scheme produced at the same moment as this truth value. Truth-

stable detection requires, in addition, that after some time the truth value of s is

stabilized by S's choices of conceptual scheme. Scheme-stable detection requires, in

addition, that 8 stabilizes to a unique conceptual scheme.

3. Locking Sequence Lemmas

11



The basic notion of locking sequences is familiar to learning theorists working with non-

relatrvistic systems [15], [16]. In the present section, we generalize the notion to the

relativistic case.

Loosely speaking, a data sequence a locks a scientist onto a world-in-itself f if the

scientist produces only conjectures correct for f upon seeing a and he continues to

produce conjectures correct for f until he sees data unsound for f. That is, a locking

sequence is data that the scientist finds absolutely compelling for f until further data

proves that he is wrong.

A locking sequence lemma tells us that whenever a scientist succeeds in a world-in-

itself, there is a finite data sequence that locks the scientist onto this world. For each of

our three senses of getting to the relative truth we isolate a respective notion of locking

sequence and we prove a corresponding locking sequence lemma. The locking sequence

lemmas are useful in proving that no reliable scientist exists for a given relativistic

system. They will also serve as lemmas in the proofs of our respective

characterizations of truth detectability, truth-stable detecability, and scheme-stable

detectability.

3.1 Locking Sequence Lemma for Detection Simpliciter.

a e SEQ is locking for 8, f, s <=>
a is sound for 6, f, s and
tv(s, f(6(s, c ) i ) ) « 6(s, 0)2 and
Vx e SEQ if

(a) a Q x and
(b) x is sound for 8, f, s

then 8(s, x ) 2 = tv(s, f(8(s, x ) i ) ) .

Lemma 3.1: If 8 detects s in f then
Vy sound for f, 8,

3a e SEQ such that
Y c a and
a is locking for 8, f, s .

Proof: see Appendix.

12



^ 3 ^ Locking Sequence Lemma for Truth-Stable Detection

is truth-locking for 8, f, s, b ~
r a iS sound for 5, ff s and
? 6(st a) « <cf b> and

tv(s, f(c)) « b and
Vx e SEQ if

(a) a c x and
(b) x is sound for 5, f, s

then 5(sf x)2 « b - tv(s, f(5(sf x ) i ) .

Lemma 3.2: If 5 truth-stably detects s in f, then
VY sound for f, 8,

3a e SEQ, 3b € {T, F, U} such that
Yc a and
a is truth-locking for 8, f, s, b.

Proof: Similar to the proof of Lemma 3.2 except that during each fooling stage 2n, we

search for a x such that either 8(sf x)2 * 8(s, t{2n-1})2 or 8(s, 1)2 ^ tv(sf f(8(sf

•

3.3 Locking Sequence Lemma for Scheme-Stable Detection

a e SEQ is scheme-locking for 8, f, s, c <=>
a is sound for 8, f, s and
8(s, a) = <c, tv(s, f(c))> and
Vx € SEQ if

(a) a Q x and
(b) x is sound for 8, f, s

then 8(sf x)2 = 8(s, 0)2 and 8(st x)i « c.

Lemma 3.3: If 8 scheme-stably detects s in f then
VY sound for f, 8,

3a e SEQ, 3c e C such that
Yc a and
a is scheme-locking for 8, f, s .

Proof: Similar to the proof of Lemma 3.2, except that during each fooling stage 2n, we

search for a x such that 8(s, x)2 * 8(s, t{2n-1})2 or 8(s, x)i * 8(s, t{2n-1})i. I

4. Characterization Theorems

13



For each string and relativistic system, either the string is reliably detectable over the

system or not A characterization theorem provides necessary and sufficient conditions

for deiectability entirely in terms of the structure of relativistic systems. In this

section, we present characterization theorems for truth detectability, for truth-stable

detectability, and for scheme-stable detectability. The characterizations do not hold for

arbitrary relativistic systems. The result for scheme-stable detectability is valid only

for systems in which C and F are countable. The characterizations for truth detectability

and truth-stable detectability are valid only when C is finite and F is countable. The

issues that arise when we relax the fmitude of C are discussed in Section 6.

There is a useful, alternative perspective on the characterization theorems. Think of an

adaptive detector as a map $(F, s, a), such that the result of fixing argument F is a truth

detector. An adaptive detector may be thought of as using "background knowledge" F to

try to detect s. For each adaptive detector, there is some range of pairs <F, s> such that

$(F, _, J detects s over F. We may then speak of an adaptive detector as being complete

if for each pair <F, s>, it detects s over F if some truth detector can. From this point of

view, each of our characterization theorems involves the construction of a complete

adaptive detector. Accordingly, the proofs of the characterization theorems may be

viewed as completeness theorems for the adaptive detection systems so constructed.

4.1 Truth Detectability Characterized

4.1.1 Definitions

The following sequence of definitions is necessary in order to state the characterization

theorem.

A clue is a finite subset of C X I * .

clue D is sound fort <=> V<c, e> € D, e e ev(f(c)).

clue D involves c e C « 3 e e f such that <c, e> e D.

cs(D) « {c € C: D involves c}.

cluezio) m {<c, e>: 3n 1 £ n £ length(a) and an * e and c = 5(s, a[n-1])i}.

D is contained in a mod 5, s <=> D c clue$(a).

Let <F, C, W> be a relativistic system and let P c F .

14
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azs(F) «
the agreement zone of P mod s *
{c: Vf, g € F tv(sf f(c)) « tv(s.

azs(F)«the agreement zone of F mod s. r~ %

a path is an element of (F X Clue)*.

Let p * « f i , Di>, ...t <fn» Dn» be a path.

ctues(«U, Di>, ...f <fn, D n ») « {Di,.. . . Dn}.

worlds(«U, Di>, .... <fn, D n ») « {fi, ...f fn}-

lastclue{«Ut D-|>,.... <fn, D n ») = Dn.

lastworld(«i 1, D«i>f ...f <fn, D n ») « fn-

When p is empty, lastclue(p) and lastworld(p) are undefined.

f may extend p mod F, s <=>
(1) clues(p) is sound for f and
(2) if p is non-empty then

Vc e azs(worlds(p))f ev(f(c)) c ev(lastworld(p)(c)) and
(3) if p is non-empty then

azs(worlds(p)) - azs(worlds(p), f) * 0 and
(4) azs(worlds(p), f) * 0.

A tree is a subset of (F X Clue)*.

Let *C be a tree. We now define the notion of revolution tree. Revolution trees are so

named because they will instruct our truth detector when to have conceptual revolutions

(i.e. when to change his conceptual scheme).

tt is a revolution tree mod F, s <=>
Vp*<ff D> € «,

(1) f may extend p mod F, s and
(2) cs(D) £ azs(worlds(p)) and
(3) D is sound for f.

V is complete mod F, s »
(1) <> e *C and
(2) Vp € It Vf € F, if f may extend p mod F, s then 3D p*<f, D> e «.

V is safe mod F, s <=>
V non-empty p e It Vf € F
if
(1) clues(p) is sound for f and

15



(2) azs(worlds(p)f f) » 0
then 3c e azs such that
(worlds(p)) ev(f(c)) - ev(lastworld(p)(c))

4.1.2 Example: A Complete, Safe, Revolution Tree

0 .

We now provide an example of a complete, safe revolution tree for a finite relatrvistic

system. It should be understood, however, that the concept is in no way limited in

application to finite systems. Let relatrvistic system <F, C, W> be presented by the

following matrix, in which each row represents a world-in-itself in F and each column

represents a conceptual scheme.

f1

12

f3

f4

1

N-{0]

r
N-{0)XI

2

N-{0

3

N-{O;

N-{0}

4

N-{0

VJT /
There are four worlds-in-themselves in F, called f i , f2, f3, and U. Each world-in-

itself is defined over four conceptual schemes, 1, 2, 3, and 4. Cell i,k corresponds to

world-of-inquiry fk(i). Let s be the string whose truth value is to be detected over F.

We assume that in system F, the string s is never observable. The truth value in the

upper left corner of cell fk(i) corresponds to the truth value assigned to s in fk(i). We

put I * - {s} into 1-1 correspondence with the natural numbers. The set of natural

numbers in the lower right of cell fk(i) is the set of all code numbers of strings in

ev(fk(i)) (i.e. the well-formed, true, observable strings in world of inquiry fk(i)).

This will be our standard representation of relatrvistic systems in the balance of the

paper.

There is a complete, safe revolution tree for F, s. To find it, we apply the following

procedure. We start constructing tc by putting the empty path o into t l . Thereafter,

for each path p in *£, we extend the path by each f e F that may extend p mod F, s. No
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path in « can have a length greater than 4 by the definition of "may extend" and the fact

that |C| - 4, so our process of additions terminates at least by then. Next, beginning at

the root, we examine each path p in C in order to verify safety, under the assumption

that each clue in the path is empty. If safety is violated, we add data to some clue along

the path until safety is no longer violated by this path. Then we eliminate all paths in ^

that extend p and that involve worlds-in-themselves for which some clue in p is not

sound.

Let us proceed: ^[0] »{<>}. By the definition of "may extend", each f e F may extend <>

mod F, s. So, if we omit initial segments of paths to avoid clutter, we have ^ [1 ] =

{<f<i>, <f2>, <f3>, <f4>}. Now it gets a bit more challenging to figure out who may extend

whom. Recall that the agreement zone of a singleton path is the set C of all conceptual

schemes. By exhaustively considering all pairs of distinct worlds (twelve in all) to see

which may extend which, we conclude that ^£[2] * {<f«|f f3>f <f2, f4>, <f3>, <f4, f2>, <f4,

f3>}. At the next level, we must pay attention to the agreement zone of each path in t£[2].

Again, checking to see who may extend whom, we have 3C[3] = ^ [2 ] . Since we have

arrived at a fixed point in our construction, 3E - 3E[2]. Now we assume that each world

in *t is paired with the empty clue.

, 0> <f2, 0> <f3, 0> <f4,0>

<f3.0> <f4,0> < f 2 , 0 x f 3 , 0 >

Now we must add clues to make ^ safe. For each path p in 'C, we must check whether

there is an f e F such that azs(worlds(p), f) - 0 and such that Vc e azs(worlds(p))

ev(f(c)) c ev(lastworld(p)). No pair of worlds in F has an empty agreement zone, so

it suffices if we examine paths of length 2 for possible violations of safety. Checking

each path of length 2 in order against every other world in F, we find that f i violates

safety on paths <f2, f4>,<f4. f2>t and <f4, f3>, and that there are no other violations of

safety in *C. Seeing a 0 in the data under conceptual scheme 1 can eliminate f<i from

consideration. So if we add the pair <1, 0> to the clue for f4 in path <f2, f4>, then safety

is no longer violated by this path. Next consider the path <f4, f3>. We can't see a 0

under scheme 1 in f3. Hence, we go up to f4, where we can see a 0 under 1 and we add

<1, 0> to the clue for f4. This forces us to cut away path <f4, f3>, and at the same time
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eliminates the violation of safety in path <U, f2>. The resulting complete, safe

revolution tree « is

<f2,0> <f3,0> <f4. {

<f4f {<1,0>}> <f2,0>

That having this tree is tantamount to having a method that detects s over <F, C, W> will

be proved in the next section.

4.1.3 Characterization Theorem for Relativistic Truth Detectability

Theorem 4.1: If C is finite and F is countable then

s is detectable over F <=>
there is a complete, safe, revolution tree mod' F, s.

Proof: => Suppose that C is finite, F is countable and that some 5 detects s
over F. Using 5, we will construct a complete, safe, revolution tree for F,
s.

Stage 0: ^[0] = {<>}.

Stage n+1: Vp € t£[n] of length n, Vf that may extend p mod F, s, define
lock(p, f) inductively as follows: lock(<>, f) is some locking sequence for
f. Lock(p*f, g) is some locking sequence for g that extends lock(p, f), if
such a sequence exists. If f may extend p mod F, s, then lock(p, f) exists,
by the locking sequence lemma and the fact that lock(decr(p), lastworld(p)
is sound for f, 5 by the definition of "may extend". For each p e 1L[n] of
length n, define

ext(p) « {p*<f, clues(lock(pf f))>: f may extend p mod F, s}.

Now define

H[n+1] * ^I[n] u ext(p)

length(p) « n

We need to know that Vn tT[n] is a revolution tree. By construction,
condition (1) of the definition of revolution tree is satisfied by each added
path. Since D = clues(lock(p, f)), we have that (3) D is sound for f, S. So
it suffices to show that (2) for each p*<f, D> € « [ n ] , cs(D) c
azs(worlds(p)). This is done in the following lemma, which proves a bit
more.

Lemma A: Let p*<f, D> € *C[n]. Then
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(1) cs(D) c azs(worlds(p)) and
(2) D is sound for each f e worlds(p).

Proof: see Appendix. •

Suppose there is a stage n at which *C[n] is not safe for F mod s. Then by the
definition of safety, 3p € ^[n] 3f e F such that (1) dues(p) is sound for f
and (2) azs(worlds(p)f f) - 0 and (3) Vc e azs(worlds(p)) ev(f(c)) c
ev(lastworld(p)(c)). Pick a locking sequence a for f, 5 that extends
Iock(decr(p), lastworld(p)). There is one by (1), and by the locking
sequence lemma. By Lemma A, we know that for each g € worlds(p),
lock(p, lastworld(p)) is sound for g with respect to 5. Hence, until 5 sees
evidence unsound for some g e worlds(p), S produces conjectures only in
azs(worlds(p)). But by (3), no data unsound for some g e worlds(p) is
sound for f if it involves only schemes in azs(worlds(p)). So a is sound
for f and for each g e worlds(p). Hence, by the definition of locking
sequence, once a is read, 8 must produce conjectures correct for each g e
worlds(p). But this is impossible, since by (2) we have that
azs(worlds(p), f) - 0.

So there is no stage n at which *£[n] is not safe for F mod s. Define

«« U ^[i]
i€ N

% is safe mod F, s, because each Up] is. And K is complete mod F, s,
because every f that may extend a path in *T is added by some stage tip].
So tc is a complete, safe revolution tree.

<= Suppose that there is a complete, safe, revolution tree HL mod F, s. We
construct a 5 that uses ^ to detect s over F.

Let p be a path in 3E. Define the conjecture range of p, (denoted by cr(p)),
as follows:

{<c, 1>: c e C} if p is empty.

c r ( p ) * {<c, b>: c e azs(p) & b « tv(s, lastworld(p)(c))},
otherwise.

Now, for each path p in ^C, associate an enumeration ji(p) of cr(p) in which
each element of cr(p) occurs infinitely often. For each such enumeration
we supply a pointer whose position in the enumeration at stage n in the
operation of our soon to be defined scientist is denoted by 7cp[n].

19



The Structure of a Node in

Given t£y together with the associated enumerations )i(p) we define the
following method 8, where z[n] is an inductively maintained sequence of
clues and Q[n] is an inductively maintained sequence of worlds-in-
themselves maintained so that <Q[n] i , H[n] i>, <&[n]2, z[n)2>, ....
<Q[n]k, H[n]k> is always a path in 1C. 8 may be thought of as maintaining
Q[n] and Z[n] as stacks, so as to perform a depth-first search of t t .
Accordingly, define

path[n] = <Q[n]1,E[n]1>, <£i[n]2, H[n]2>, .... <Q[n]k, E[n]k>, where k =
length(Z[n]).

We may think of 8 as always "visiting" the end-point of path[n] at stage n.
The conjecture of 8 at stage n is defined to be the conjecture at position
ftpath[n][n] of enumeration n(path[n]) of cr(path[n]). So 5 produces
conjectures from the conjecture tape associated with a node in « until
either data unsound for the world in its current node is read (in which case
S "pops" up to an ancestor of its current node) or until a clue deeper in H is
read, (in which case 8 "pushes" down below its current node). Each time 8
"pops" a node in H£,.it produces conjectures according to the parent node it
pops to, picking up at the position where the pointer was left when
conjectures were last made from the parent node. It is very important that
5 start producing conjectures at a parent node from the point where it left
off in }i(p) when it was last producing conjectures from that node. This is
because we will need to argue that if infinitely many daughters of a parent
<f, D> are considered and rejected, then complete data for f is eventually
received. If S always starts at the beginning of ji(p) each time <f, D> is
visited, then 5 might never see any data past the first few entries on |i(p).
The pointers are required to mark the place in ii(p) last visited by 8, so
that 8 can remember where he was last time the node was visited.

8 may be thought of as trying to balance two different and somewhat opposed
strategies for success. The first strategy is to throw out of contention any
world-in-itself that makes the currently observed data false. The second
strategy is to find a restricted range of conceptual schemes over which
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many worlds-in-themselves agree about the semantic status of s.
Unfortunately, the former strategy suggests looking at lots of different
conceptual schemes to find possible data unsound for a given world-in-
itself, and the latter strategy suggests looking at as narrow a range of
conceptual schemes as possible to maintain as much agreement among
worlds-in-themselves as possible. S implements the "refutation" strategy
by producing conjectures over all conceptual schemes in cr(path[n]) while
considering path[n). If there is data unsound for f that can be read over this
range of conceptual schemes, 5 will find it. 5 implements the "agreement
maintenance" strategy by producing conjectures only in cr(path[n]) while
considering path[n] (recall that each world-in-itself in path[n] agrees
about the semantic status of s over the conceptual schemes occurring in
conjectures in cr(path[n])). Perhaps the most striking result of this
paper is that this curious mixture of the two strategies yields an optimally
reliable, universal method for inductive inference through conceptual
revolutions.

These considerations, together with the following diagram, should help to
provide a basic understanding of the method before the details of the formal
definition are consulted.
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Operation of method 5

Conjecture drawn from this pointer
each time this node is visited
(e.g. when daughter was refuted)

Conjectures drawn from
agreement zone of this path
until node is refuted or lower
clue is found

yt

Definition of method 8:

Stage 0:
set Z[0] « o ;
set Q[0] * <>;
for each path p in ^ 9 set 7tp[0] = 0;
set DATA « o .

Stage n+1:

define path(Q[nj, z[n]) * « f l [ n ] i , 5[n] i>, ...t <n[n]k, S[n]k>, w h e r e k =

length(Q[n])

Consider the following two situations:

(a) DATA[n] is not sound for last(n[n]) with respect to 8.

(b) 3 pair <f, D'> in V such that
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: •• '• (i) D' is contained in DATA[n] with respect to 5 and
(ii) path(Q[n], H[n])*<f, D'> is a path in « .
(Hi) DATA[n] is sound for f with respect to 5.

If (a) is satisfied, then
set Q[n+1J - decr(il[n]);
set E[n+1] - decr(E[n]);
for each path p in I t , set «p[n+1] - np[n];
set DATA[n + 1] - DATA[nJ;
go to stage n+2.

If (b) is satisfied, but (a) is not satisfied, then
let <f, D'> be the least pair (in a fixed enumeration) whose

existence is guaranteed by (b);
set Q[n+1] - Q[n]T;
set E[n+1] - E[n]*D*;
for each path p in *C, set rcp[n+1] » «p[n];
set DATA[n + 1] - DATA[n];
go to stage n+2.

If neither (a) nor (b) is satisfied, then
set n[n+1] « Q[n];
set E[n+1] - E(n];
set k = length(Q[n])
set p = path(Q[n], E[n]);
conjecture the pair <c, b> at position 7cp[n] of u,(p);
set KP[n+1] » 7tp[n] + 1;
Vp' * p, set jcp'[n+1] = Jtp'[n];
set DATA[n + 1] = DATA[n]*(read next datum);
go to stage n+2.

Let us consider what S does in a particular example. Recall the following system <F, C,

f1

f2

f3

f4

d

N-{0

N-{0}

X

c2

N-{0

F /
N-(1)

- = /

N-{0,1

T /
N-{1

c3

T/
N-{0

Xi
•< /

N-(0}

X

c4

N-{0

N-(i;
• = /

N-{O.I;TX
N-{1

We have seen that the following tree % is a complete, safe, revolution tree for F, s.
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< f 2 , 0 >

Now, let us examine how 5 behaves when we hand it ^ and turn it loose in an arbitrary

world-in-itself f e F.

Suppose fi is actual: Then on no evidence, 5 sinks to the bottom of the first path in ^ and

sits there producing conjectures that agree for fi and f3 until f3 is refuted by new data.

In fact, the only such conjecture is <3, T>. Since no data refuting f3 will ever be seen

under scheme 3, 5 converges to a correct conjecture for f 1.

Suppose f2 is actual: As before, 5 sinks to the bottom of the first path in ^ on no

evidence. But since f2 is actual, and since f2 has total data N under scheme 3, eventually

f3 is refuted by a 0 under scheme 3. At this point, S pops to the root of the tree and

sinks to world f2 in the second path on no evidence, producing conjectures over all four

conceptual schemes according to f2- Since f2 is the actual world-in-itself, f2 will never

be refuted. So datum 0 will eventually be read under scheme 1, and 5 will then drop to

U in the second path, since {<1, 0>} is the clue for doing so. The agreement zone of f2, U

is just {1}. Since f2 and U have exactly the same data under scheme 1, f4 is never

refuted as 5 produces conjecture {<1, T>} forever after. So 6 succeeds.

Suppose f3 is actual: As usual, 5 plunges blindly to the bottom of path <f i , f3> on no

evidence, and conjectures <3, T> until data refuting f3 is seen. But no such data is ever

seen, so 5 succeeds.

Suppose U is actual: Again, 8 plunges to the bottom of path <f i , f3> on no evidence and

conjectures <3, T> until data refuting fa is seen. But f4 eventually yields such data, at

which point S pops to the tree root and plunges down to f2 on the second path on the basis

of no data. Here, 8 produces conjectures agreeing with f2 over all conceptual schemes

until either 0 is read under scheme 1 (causing 5 to plunge to f4), or data unsound for f2

is read (causing 8 to pop to the tree root and plunge to f3 on no data). The latter will

never occur, since U has data everywhere identical to f2- But eventually, a 0 is read

under scheme 1 and S plunges to U- Since no data unsound for U can be read, S converges

to conjectures correct for U at this point.
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So by exhaustion, we see that 5 succeeds.

Some observations are in order, that will be useful in following the general proof that 5

succeeds. First, 5 sometimes succeeds by overshooting the actual world-in-itself along a

path (e.g. when fi or iz is actual). This causes no harm, since all subsequent

conjectures along a path must still agree with earlier worlds along the path (c.f. Lemma

3 ) .

Second, the tree serves as a sort of computer program branch instruction that tells 5

what to conjecture, when to wait for refuting data, and when to wait for a sign that 5

should narrow the range of conceptual schemes to be visited infinitely often. Together,

the first two paths of ft amount to the following instruction:

S's procedure:

Until data unsound for f3 is read, do repeat conjecture <3, T>.
Until clue {<1, 0>} is read do repeat conjectures agreeing with f2-
Repeat conjecture <1, T>.

This is a sensible way to handle problem F, and it emerges effectively from our

procedure for constructing %.

The order in which 5 considers paths in *& is irrelevant to the correctness of S's

performance. But the program read off of V may be very different under a different

ordering of paths. In our example, 5 only has to examine the first two branches of ^ to

succeed. But the unused branches may be necessary to ensure S's success under some

other ordering.

To complete the proof of the theorem, it suffices to show:

Lemma B: if 1 is a complete, safe revolution tree mod F, s then 5 detects s
over F.

Proof: see Appendix. •

4.1.4 An Infinite Example
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In this section we prove a negative result about an infinite relativistic system by

applying Theorem 4.1. Consider problem G depicted in the following figure4. G is

presented as a tree, because its infinite structure would be obscured if depicted in a

finite fragment of a matrix. G involves three conceptual schemes. Each daughter world-

in-itself has its total data sets included in the total data sets of its parent. Finally, each

daughter differs in its truth assignment for s in exactly one place where all its parents

agree.

Fact 4.1.4: s is not detectable over G.

Proof: Call the root of the tree g. Let ft[1] « {<>, <g, D>}, where D is
sound for g. ft is not yet complete, for whatever data occurs in D, we can
choose a daughter f of g that may extend <g, D> mod G, s. Choose Df sound for
f and set ft [2] « {<>, « g , D » , « g t D>, <f, D f »} . No matter what data
occurs in D, D\ some daughter of f is a witness of the fact that ft[2] is not
safe. So there is no complete, safe revolution tree mod G, s. Now apply

Theorem 4.1. I

It is often easier to give a proof by nested locking sequences directly, without invoking

Theorem 4 .1 . Such proofs also help to illustrate what is going on in the negative side of

the proof of Theorem 4.1.

4System F may be thought of as a relativized, 3-dimensional generalization of problem

(b) of Exercise 2.C in [15]. F was instrumental in our isolation of the characterization

conditon for truth detectability.
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Alternate proof of Fact 4.1.4: Suppose 8 succeeds. Choose a i to be locking
for 6, f| 9 s, where f| is the root of the tree. Now choose some daughter f2 of
fi such that CM is sound for f2,8, s. Choose 02 to be locking for 5f f2, s so
that a i c G2- Choose some daughter f3 of f2 so that 02 is sound for f3,5, s.

"f: - - Choose 03 to be locking for f3,8, s so that 02 c 03. a3 is sound for ^ , f2,8,
s. Hence, 8(s, a3) must be correct for f1 , f2, f3. But this is impossible,

since azs({fi, f2. f3)) « 0 . •

4.1.5 When C Is Infinite

The characterization given in Theorem 4.1 covers only relativistic systems in which C

is finite. The results of this section establish that the characterization condition is

necessary for arbitrary relativistic systems, but is not sufficient when F and C are

countably infinite.

Corollary to Theorem 4.1: Let <F, C, W> be an arbitrary relativistic
system, and let s e i \ Then

if s is truth detctable over F then there is a complete, safe, revolution tree
mod F, s.

Proof: Nothing in the necessity side of the proof of Theorem 4.1 made use of
the cardinality of F or of C. As the cardinalities of F and C increase, the
branch factor of the tree increases, but its depth is still bounded by co. I

The following example shows that our characterization condition is not sufficient for

truth detectability when C is infinite.

Let K = N - {0}. Define F to be the following problem, consisting of a tree of worlds-in-

themselves together with an additional set of worlds-in-themselves.
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1(1,2}

{1,3}

{1.2}

T/K-
{1.3}

F

{1.2}

F

{1.

{2.1}

{2,3}

(2.1)

(2.3)

(2.1)

(2.3)

>

>

/^-{2l /N{2

/M1

F /

/i-{2]

/N-{3

F /

All worlds-in-themselves are infinite matrix rows, so only initial segments can be

shown. Each world-in-itself in the additional sequence has T in the first place and has F

everywhere else. Moreover, for each world in the sequence, the total data is N-{i}, for

some i € N. In the tree, each world occurring at level n of the tree has F only under

conceptual scheme n and has total data K - D where 0 € D and K = N - {0} and |D| = n.

Now we proceed to show that there is a complete, safe revolution tree mod F, s but s is

not truth detectable over F.

Fact 4.1.5.a: There is a complete, safe revolution tree mod F, s.

Proof: We will construct a tree *t in which all clues are empty. For each
path < f i , f2, ..., fn> in the "tree part" of F, let « f i , 0 > , .... <fn> 0 » be a
path in tt. Each f in the "table part" of F is extended as follows: for each f
in the "tree-part" of F whose data is included in the data of f, add the path
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« f , 0> , <f, 0 » to t t . It is straightforward to verify that the resulting *£ is

a complete, safe revolution tree. • .*

Fact 4.1.5.b: s is not truth-detectable over F.

Proof: Suppose 5 can detect s over F. Pick ai to be locking for 5 and for the
root f i of the tree. Now, choose a daughter f2 of the root of the tree for
which a i is sound. There is one, by construction. Pick cz to extend o1 and
to be locking for f2,5. Pick f3 so that a2 is sound for f, etc. Observe that
a; will be sound for each fj, for j ^ i, by construction of the tree. Since
each a; is locking for fj, and is sound for each fj for j £ i, we know that the
conceptual schemes occurring in c n are in azs(fi,.... fn-i)> else 5 makes an
incorrect conjecture for one of f i , ..., fn-i after seeing locking sequences
for f i , . . . . fn-i and after seeing no data unsound for f i , . . . , f n - i . Notice that
azs(fi,...» fn) • {«• i > n}. Hence, for each conceptual scheme i, there is a
time k in reading c i , 02 <jn. — after which i is no longer in azs(f«i, ...,
fk) or in any further agreement zone. Hence, the data presentation t such
that each c\ is an initial segment of t is for any world-in-itself for which it
is sound (recall that completeness of data demands only that all true data be
presented when 5 stops at a conceptual scheme infinitely often).

Now we will show that t is sound and hence complete for some world in the
sequence below the tree. Suppose t is sound for no world in that sequence.
Then for each n > 0, n occurs under some conceptual scheme in t. But then t
is sound only for f i , which contradicts the fact that c\ is sound for each fj
such that j < i. So we have that t is sound for some f in the list following
the tree. But observe that f disagrees with f2, ..., fn, ... over azs(fi> f2)«
Hence on some data presentation t for f, 5 makes infinitely many mistakes
about f, for we have seen that once 6 sees 02, 5 must produce conjectures
correct for f2 forever after, and that these conjectures must occur over
schemes in az s ( f i , f2). but f2 disagrees with f everywhere over this

region. I

Let us refer to the "tree part" of F as P. F is an infinite-dimensional generalization of

the three dimensional problem G examined in the previous section. It is interesting that

F is solvable, while G is not. To solve F, one may simply conjecture <1, T>, <2, T>, ...,

<n, T>, ... without ever looking at the data. The trouble in the finite problem G is that

eventually, one must stop choosing new conceptual schemes, because there are only

finitely many to choose from.

Problem F is unsolvable for a reason that is not captured in our characterization

theorem. It forces a conflict between two strategies for relativistic induction. The first

is to visit each conceptual scheme at most finitely often, saying T each time. In the tree

this works fine, for after some time you walk to the right of the one scheme in which you
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should have said F, and you are correct thereafter. But if you are in the sequence, this

strategy fails. In the sequence, you can get by if you always say "F" and stay away from

conceptual scheme 1. So we know what to do if we know whether we are in the tree or in

the sequence. How could we tell which we are in? If we are in the sequence, then if we

wait long enough in one place, we will see a zero; something that we would never see in

the tree. So it would make sense to assume we are in the tree until we see a zero. But we

are only guaranteed to see a zero if we visit some conceptual scheme infinitely often and

wait for the zero there. And if the actual world-in-itself is in the tree, and in fact is the

one that has "F" under the scheme where we search for a zero, then we are wrong

infinitely often. So if we don't stay in one place we can't tell if we are in the tree or in

the sequence and if we do wait for data, then we may be wrong in the tree. In more

popular language, the example shows a fundamental dilemma between "revolutionary"

and "normal science".

The failure of our characterization condition to be sufficient for success when C is

infinite is tied to the possibility that two worlds of inquiry under the same conceptual

scheme can assign distinct truth values to s, while the complete data for one is included

in the complete data for the other. This may happen because s involves unobservable

vocabulary under some conceptual scheme, because the evidence language lacks a

negation operator under some conceptual scheme, or because the negations of some

observable strings are not observable. The following simple result shows that when

these circumstances do not obtain under some conceptual scheme, no conceptual

revolutions are necessary for truth detection, regardless of the cardinality of C. So

under these circumstances, virtually all of the structure discussed in this paper

collapses. This is the circumstance assumed, for example, in Gaifman and Snir's

Theorem 2.1 concerning the convergence to the truth of conditional measures [5].

Say that s is data-determined mod F, c <=>
Vf, g e F, if tv(s, f(c» = tv(s, Q(c)) then

ev(f(c)) is not a subset of ev(g(c))

Fact 4.1.5.c: Suppose that F is countable and there is a c e C such that s
is data-determined mod F. Then s is detectable over F by a method that
never switches conceptual scheme.

Proof: For let f i , ..., fn, ... be an enumeration of F. Define 5(s, a) to
conjecture <c, tv(s, fj(c))>, where fj is the first world-in-itself in F for
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which a is sound with respect to 6. It is easily verified that 6 succeeds in

,~ the required sense. I

The triviality of data-determined truth detection disappears when F is uncountable (c.f.

[11], Proposition 12). "

4.1.6 Why Simpler Conditions Don't Work

The characterization conditions provided in Theorem 4.1 may seem unduly complex. In

this section, we consider two plausible alternatives, and show how they fail.

Fact 4.1.6.a: The following condition is necessary for truth detectability
over arbitrary relativistic systems, but is not sufficient even when C and F
are both finite:

Vf 3 clue D sound for f s.t.
Vf if D is also sound for f then
Be e C s.t. either

tv(s, f(c)) = tv(s, f(c)) or
ev(f(c)) - ev(f(c)) * 0.

Proof: To show necessity, deny the condition and suppose that 8 succeeds,
pick a locking sequence a for f, 5, s, and then choose f so that a is sound for
f, 5, s. Extend a to a presentation t for f, 5. 5 fails on t. Contradiction.

To see that sufficiency fails for finite relativistic systems, consider the
following problem F:

g

f2

T

/

F

T

/

1

/
N

/
N

N

2

T

/

T

/
F

/
N

/
N

N 1

F satisfies the condition (each pair of worlds-in-themselves agrees about
the truth value of s in some place), but s is not truth-detectable in F. The
evidence is the same no matter what. So suppose that 5 succeeds in g. Then
he fails to detect s either in f1 or in f2, since 5 must make infinitely many

conjectures either under scheme 1 or under scheme 2. •

Fact 4.1.6.b: The following condition is sufficient when C is countable
and F is countable but is not necessary for truth-detectability even when C
is finite:

Vf 3clue D sound for f s.t.
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Vf if D is also sound for f then
Vc e C either

tv(s, f(c)) - tv(s, f(c))
ev(f(c)) - ev(f(c)) * 0

or

The method S simply produces conjectures from an infinitely repetitive
enumeration |i of cr = {<c, T>: c e C} until it finds a clue D for some
unrefuted f € F, and when it finds one, it moves to the last position visited
on another infinitely repetitive enumeration ji(f) of cr(f) * {<c, b>: c e C
& tv(s, f(c)) « b}.

To see that the condition is not necessary, consider again the problem G* in
the proof of Lemma 6.2.

g /N-{0

'/

/N-{0

F /

/
f2

Let D be any clue sound for g. This clue is also sound for f i . But under
scheme 2, the total data is the same for f| and for g, but the truth values
assigned to s by these two worlds differ. Hence the condition fails to hold.

But s is truth-stably detectable over G\ I

4.2 Truth-Stable Truth Detectability Characterized

4.2.1 Definitions

Our characterization of truth-stable detectability differs from the one given for truth

detection simpliciter primarily in that the latter notion of success requires a stricter

notion of agreement zone. In the case of truth detection simpliciter, the agreement zone

of a collection of worlds-in-themselves is just the set of all conceptual schemes under

which no two worlds in the collection assign distict truth values to s. For truth-stable

truth detection, we insist, in addition, that no world-in-itself in the collection assign

different truth values to s on different conceptual schemes in the agreement zone. Let b

e {T, F, U}.

azSfb({fi W) « {c e C: Vi s.t. 1 s i s n, tv(s, fj(c)) « b}
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The concepts of may extend, revolution tree, and safe are just as before, except for the

substitution of the new notion of agreement zone and for their inheritance of the

agreement zone's relativization to b. It also turns out to be useful to make completeness

relative to worlds-in-themselves, as follows.

« is complete for f e F mod F, s , b *=>
3D <ff D> e *C and
Vp e « Vf € F

if p extends <f, D> in tC and
f may extend p mod F, s, b
then 3D' p*<f, D'> e «.

4.2.2 Characterization Theorem for Truth-Stable Detectability

Theorem 4.2: Suppose F is countable and C is finite. Then

s is truth-stably detectable over F <=>
Vfe F3^3bs. t .
H is a safe, revolution tree complete for f mod F, s, b.

Proof: Parallel to the proof of Theorem 4.1. I

Corollary to Theorem 4.2: The left-to-right direction of Theorem 4.2
holds for arbitrary relativistic systems.

4.3 Scheme-Stable Truth Detectability Characterized

4.3.1 Definitions

This time we make the notion of agreement zone relative to conceptual scheme. Hence,

the appropriate agreement zone for scheme-stable detectability is either empty, or

contains exactly one conceptual scheme.

„ uu f * j { c } i f 3 b V i 1 s i s n = * tv(s, fi(c)) « b
azs,cv<n, ...»Tn>)={

|0 otherwise

The notion of safe revolution tree is modified in light of this change just as in the case of

truth-stable ktentifiability. Just as before, we make completeness relative to f.

4.3.2 Characterization Theorem for Scheme-Stable Detectability

33



Theorem 4.3: Suppose F, C are countable. Then

s is truth-stably detectable over F <=>
Vf € F 31C 3c s . t .« is a safe, revolution tree complete for f mod F, s,

Proof: Parallel to the proof of Theorem 4.1. •

The restrictive notion of agreement zone for scheme-stable detectability means that the

paths in a revolution trees may have length no greater than 1. Because of this

restriction, much of the apparatus required for the characterization of detectability

simpliciter and truth-stable detectability collapses. This collapse is reflected in the

following corollary.

Corollary 4.3.1: If F, C, are both countable then

s is scheme-stably detectable over F <=>

(A) Vf e F 3c e C 3 clue D s.t.
{<>, « f , D» } is a safe revolution tree mod F, s, c. <=>

(B) Vf € F 3c € C 3 clue D s.t.
D is sound for f and
Vf e F if

tv(s, f(c)) * tv(s, f(c)) and
D is sound for f
then ev(f(c)) - ev(f(c))) * 0

Proof: The equivalence of (A) with the characterization condition of
Theorem 3 is immediate from the fact that {<>, « f f D » } is complete for f
mod F, s, c because no path can have length greater than 1. The equivalence
of (A) and (B) is straightforward, by the definitions of completeness and

safety. I

5. Separation Results

In this section, we show that the apparently weaker notions of truth-detection really are

weaker. In more contentious language, we show that conceptual revolutions can make a

method more reliable at getting to the truth. We take the opportunity to illustrate our

characterization theorems in the following proofs, although direct proofs are often

easier to provide.

Theorem 5:
scheme-stable detectability =>
truth-stable detectability =*
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detectability simpliciter

and none of the converses is true.

Lemma 5.1 Truth-stable detectability => detectability
but not conversely.

Proof: The implication is trivial. To see that the converse fails, consider
the following problem.

1 2

9

f1

f2

s is not truth-stably detectable over G, as we will show by an application of
Theorem 2. Suppose 3*£, b such that ^ is a safe revolution tree that is
complete for g mod F, s, b. Since tC is complete for g, 3D <g, D> € « . So
long as D is sound for g, D is also sound for fi and for f2- So if b = T then f2
witnesses the violation of safety for %% G, st b. And if b = F then fi
witnesses the violation of safety for C , G, s, b. Rnally, if b = U then either
fi or f2 witnesses the violation of safety for ^ , G, s, b, since azs,u(g) = 0 -

It is possible to truth-detect s in G, however. We apply Theorem 1. Set ^

= {<>, <g, 0 > . <f i , (<1» 0 >}>. <f2» (<2, 0>}>}. It is easy to verify by cases

that ^ is a complete, safe revolution tree mod G, s. •

/N-{0

'/.

/N-{0

/

An obvious solution to the above problem is to waffle back and forth over schemes 1 and

2 making guesses correct for g until a 0 is seen in the data. If 0 occurs under 1 then you

know you are in f i , and you start producing arbitrary conjectures sound for f i . If the 0

occurs under f2, then you know you are in f2 and you start making guesses sound for f2-

Now consider what method S in the proof of theorem 1 would do when given tree ^ . In

this tree, g is paired at the root level with the empty clue, which is always found in all

data. Hence, 5 goes down branch <g, 0> immediately, and stays on this branch, switching

back and forth between schemes 1 and 2 until a 0 is seen. In that case, the path <g, 0> is

dropped and the next path taken depends upon where the 0 is seen. So 6 duplicates the

performance of the obvious method in this case.
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Lemma 5.2: Scheme-stable detectability
but not conversely.

truth-stable detectability

Define problem G' as follows:

1 2

g

f1

f2

'A
/N-{0

F /

/N-{0

V
S is not scheme-stably detectable over G\ as we shall show by Corollary
3.1 .B. For let D be any clue sound for g, and let c = 1. Then \z disagrees
with g about s under scheme 1, but there is no data true in f<i(1) but false
in g(1). Let c » 2. Then the same can be said of f i . So by Corollary 3.1 .B,
s is not scheme-stable detectable over G\

By Theorem 2, we show that s is truth-stably detectable over G\ Define
Set « g «{<>, <g, 0>} Set *Ef 1 « {<>, <f1 , {<1, 0>}>}. Set fcf2 = {<>, <f 1 f

{<2, 0>}>}. It is readily verified that ^ g is complete for g mod G\ s, T, and
^ f i is complete for f-| mod G\ st F, and tlf2 is complete for \% mod G\ s, F.

The result follows by Theorem 2. •

It is useful to consider what the truth-stable version of S does on this example. Suppose

g is actual. Then 5 succeeds immediately, since 5 considers path <g, 0> on the basis of the

empty clue. No data unsound for g will ever be read, and 5 produces only conjectures

correct for g forever after.. Suppose f i is actual. Then 6 again considers <g, 0> and

produces conjectures out of an infinitely repetitive enumeration of {<1, T>, <2, T>} until

a 0 is read somewhere. The crucial point here is that g assigns the same truth value to s

under both conceptual schemes, so that both schemes are in the agreement zone for path

<g, 0>. When the 0 is seen, 8 drops path <g, 0>. If the 0 is read under scheme 1, then

the clue {<1, 0>} has been seen for path <f1, {<1, 0>}>, and 5 converges to conjectures

correct for f i . The case when f2 is actual is parallel.

6. Conclusion
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^£
/- In this paper we have presented a precise framework for thinking about convergence to

the truth when truth, syntax and observability may depend upon what the investigator

Within this framework, we characterized solvability according to three distinct

of convergence to the relative truth. To prove these results, we constructed

methods that get to the relative truth by directing conceptual revolutions in which truth,

syntax and observability may change. Our techniques for constructing such methods

were shown to be complete, in the following sense: if a problem is solvable, then the

technique generates a method that solves it. We illustrated the limitations of these

results, and proved that the three notions of convergence to the relative truth are indeed

distinct. ^ - - — .-.. .. ; -•- -•-• " \t ^ - J ~ '

Several philosophical morals may be drawn from this work. First, we have seen that

relativistic systems can model both experimenter effects and conceptual change through

"scientific revolutions". In the first case, the dependency is causal, while in the second

it is linguistic. Whether or not a system is relativistic depends upon what we aspire to

say about it. If we want to discover all the ways in which the system responds to our

acts, then we are not involved in a relativistic inquiry, for what we are trying to

discover (i.e. the dependency itself) does not depend upon what we do. If, on the other

hand, we intend to discover only the laws of a particular state of a system that responds

to our actions, then our study is relativistic, for the laws we seek will change as the

state of the system changes. So for example, a conceptual historian, who looks at past

scientific episodes and tells us when and how conceptual changes occurred is not involved

in a relativistic inquiry (at least insofar as these conceptual changes are concerned). On

the other hand, scientists at the time of the conceptual change who were using the

concepts that changed were, indeed, involved in a relativistic inquiry.

Second, we have seen that relativism is a more general thesis than is radical

subjectivism. Relativism says only that truth depends in some way or other on the acts

of the scientist; perhaps in a way that the scientist does not know a priori. Radical

subjectivism says that whatever the scientist chooses to believe is true. Inductive

inquiry is trivial in subjectivist systems, but it need not be trivial (and may, indeed, be

impossible) in highly relativistic systems.

Third, Rorty, Kuhn, Feyerabend, and myriad others are in error when they argue from

relativism to the impossibility of general methodological norms that hold across
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conceptual revolutions. The methods constructed in the proofs of our characterization

theorems are demonstrably complete, and as in deductive logic, this property would

seem to carry at least some normative weight.

Fourth, our analysis refutes the popular assumption that mathematical work in

methodology must somehow fail to take relativism into account. Some philosophers and

anti-philosophers identify all precise methodological work with logical positivism, and

reject it for the same reasons. But logical positivism involves semantic theses that our

framework is in no way committed to. These include the existence of meaning postulates,

analytic truth, and analytic reduction relations between theory and evidence. The

positrvists did not propose scientific methods that work across conceptual revolutions,

and we do. In short, we hope to have shown that relativism is no excuse for

obscurantism in matters methodological. In fact, our results show that getting to the

truth takes on a much richer mathematical structure when truth is relative.

This paper is just a small first step into the logic of relativistic inquiry. Many

important questions remain open about the present system. For example, we would like

to obtain a characterization theorem for truth detectability when C is countably infinite

and F is uncountable. We would also like to obtain some general results concerning the

scope of computationally bounded, relativistic truth detectors. Results in standard

learning theory provide a blue-print for such a project.

Imagine the process of building up a complete, true theory of the world by adding new

truths and deleting falsehoods, so that each truth is eventually added and each falsehood is

eventually withdrawn forever. In realist settings, the existence of a truth detector for

each hypothesis is equivalent to the existence of a theory discovery device in the sense

just given [15, Proposition 80]. But in relativistic systems, this equivalence fails,

because the truth detectors need not agree about conceptual scheme, so the truth values

they return cannot be relied upon jointly. The situation becomes still more complicated

when truth depends upon the theory currently conjectured.

There are many sorts of relativism that the framework of this paper does not address.

For example the world of inquiry may depend upon the conjectured truth value as well as

the chosen conceptual scheme. This kind of relativism can be handled by a slight

modification of our techniques.
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It is more difficult to handle cases in which the world of inquiry depends upon the whole

history of inquiry, rather than simply upon some contemporary choice of conceptual

scheme on the part of the scientist. This is the sort of view suggested by Marxists who

insist upon "taking history seriously". The formal effect of this proposal is to make it

structurally difficult for a scientist to visit a world of inquiry at will, since his past

history may prevent him from returning to it.

A third possibility is to relatrvize the history of inquiry as well as the subject matter

under investigation. In our results, this history is held to be objective. No matter what

conceptual scheme a scientist chooses, the truth about the conceptual schemes visited and

data strings received in the past remains fixed. But if this history also changes with

changes in conceptual scheme, the scientist's convergence to the relative truth is itself

relative. A philosophically interesting proposal is to combine relativity of history with

truth dependence on history. In this system, the current history determines the world

of inquiry from which the next datum is received. The conceptual scheme chosen on the

basis of adding the next datum to the current history may then radically alter the

current history. The subsequent datum is chosen with respect to the altered history.

Hence, there is no vicious circularity, but there is a much more free-wheeling form of

relativism than the sort studied in this paper.

It would be a mistake to infer that these added sources of relativism re-open a Pandora's

box of obscurity in methodology. Now that it has been shown how to study convergence to

the truth in a simple sort of reiativistic framework, it becomes clear that similar,

albeit more sophisticated techniques will suffice in the study of additional sources of

relativism.
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Appendix

Proof of Lemma 3.2: Let 5 detect s in f. Now let y be sound for f.
Suppose that no a such that y c o is locking for 8, f, s. So we have

n
if y e a and
a is sound for 8, f, s and
tv(s, f(6(sf o ) i ) ) « 8 ( s , a ) 2 then
3x6 SEQ

(a) a c x and
(b) x is sound for 5, f, s and
(c) 8(s, x)2 « tv(s, f(8(sf

We construct a data presentation t complete and sound for f, 8, on which S
makes infinitely many mistakes, which is a contradiction. We construct t
in alternating stages. In even-numbered, or "fooling" stages, we add a x of
the sort guaranteed by (*) above to force 8 to make a mistake. In odd-
numbered, or "data completion" stages, we add a new datum, if possible, to
each conceptual scheme visited by 8 when we added the previous x and in the
previous odd stage. We ensure soundness for f, 6 by adding only chunks of
data that are sound for f, 5. We ensure completeness for f, S because any
conceptual scheme visited infinitely often by 5 will have complete data
presented during odd-numbered stages. Now we make the construction
precise:

Stage 1: t{1}« C where

(i) £ is sound for 5, f, s and
(ii) y c C and
(HI) 5(8. C)2 - Ms , f(5(s, C)1)).

There is such a £. for let t be a data presentation sound and complete for S, f
such that y e t . If 5 never produces a correct response on t after seeing y,
then 5 fails to detect s in f, which is a contradiction. So eventually, 3 m
5(s, t{m})2 « tv(s, f(8(s, t{m})2)) and y c t{m}. Let C = t{m}.

Stage 2n (fooling stage):
If

(1) t{2n-1} is sound for 8, f and
(2) yc t{2n-1} and
(3) 8(s, a)2 « tv(s. f(5(s,

then we are free to choose x according to (*) with the following properties:

(a) t{2n-1} Cx and
(b) x is sound for 8, f, s and
(c) 8(s, x ) 2 * tv(s, f(8(s,

Otherwise let x * some arbitrary default.
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-5 _ ~^r Z. --•••- Define t{2n} = x.

Stage 2n+1 (data completion stage). Define

: / ? J2n+1 * {c c C: 3K such thatt{2n-2} C K C t{2n} and 8(s, K ) I « c}.

Think of J2n+1 as the set of all conceptual schemes visited by 8 during the
previous cycle of fooling and completion. J2n+1 is finite. Let m = |J2n+il-
Choose some fixed enumeration c<i, C2, C3,.... Cm of J2n+1» and some fixed
enumeration e«i, e2, ..., en , ... of ev(f(q)), for each q. Set X{0} * t{2n}.
Vi s.t. 0 < i < m, Define X{i+1} to be some choice of e such that

(i) Mi} c e and
(ii) e is sound for 8 and f and
(iii) 8(s, decr(e)) = q, and
(iv) the last entry in e is the first e € ev(f(q)) - rng(decr(e)[8,
Cj, s]) if there is one, and is some arbitrary e e ev(f(c,))
otherwise.

if there is such an e, and Mi+1} = X{\) otherwise.

Now find some finite data £ sound for 8, f, s, such that X{m} c k and 8(s, %)z
m tv(s, 8(s, ^)i) . There must be one. For extend X{m} to a presentation t1

for 8, f, s. There is a first time r at which 8(s, f[r])2 - tv(s,
§(s,t'[r])<i), else 8 fails to detect s on some presentation t for f, which
contradicts the Lemma's assumption. Let £ = t[r].

Define t{2n+1} = §.

all schemes
visited in past two
stages are visited again
and a new datum is seen

each, if there is one.y/

t {2n+3}

By a straightforward inductive argument, we have that

(A) Vn £ 0 , t{2n +1} satisfies conditions
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(1) t{2n+1} is sound for 5, f and
(2) ye t{2n+1} and
(3) tv(sf f(8(s f t{2n+1})i)) » S ( s f t{2n+1})2 .

It follows from (A) and from the construction that

(B) Vn * 1, t{2n} satisfies conditions

(b) t{2n} is sound for 5, f, s and
(c) 8(s, t { 2 n } ) 2 * tv(s, 6(s, t{2n})i)

Now define t • the unique data presentation such that for each n, t{n} c t.
(A) and (B) show that t is sound for 8, ff s and 5 makes infinitely many
errors on t (because 8 makes an error after reading each even stage of t).

It remains only to show that t is complete for 5, f, s. That is, we need to
show that if there are infinitely many ] such that 8(s, t[j])i « c, then
ev(f(c)) c rng(t[8, ct s]).

Accordingly, suppose that there are infinitely many j such that 5(s, t[j])i
= c. Suppose further that e e ev(f(c)). Choose k so that 5(s, t[k])i = c.
There is an n such that t{n-1} c t[k] Q t{n}. Let t{m} be the first odd
("data completion") stage extending t{n}. Let c * q in the enumeration of
J m . Now consider the formation of X[i] during stage m. Recall, there are
infinitely many j such that 8(s, t[j])i « q. So 3f 3ef e ev(f(c)) such that
6(s, t[T])1 « q and tDTe1 * X[\] c t{m}, by the definition of X[i]. If e e
t[J1[S, c, s] then we are done. So assume that e e t[f][5, c, s]. Then e( e
tU'][5, c, sj, by the definition of X[i].

We can repeat this argument until we reach an odd stage m* such that each
e" prior to e in ev(f(c)) is in rng(t{m'}[5, c, s]). Either e e rng(t{ml}[5,

c, s]) already or e e rng(t{ml+2}[6, c, s]). • ""

Proof of Lemma A: By induction on length of p.

Suppose the length of p is 0. Then (1) azs(worlds(p)) * C so cs(D) c C
and (2) D = lock(o, f) is sound for f.

Suppose the lemma for each path of length m or shorter. Suppose p * « f i ,
D<|>, ..., < f m + i . D m + 1 » is a path of length m+1 and p*<f, D> e ^[n] . For
each position i in p, D; « clues(lock(p[i-1], fj)). Let c\ = lock(p[i-1],
fi). Applying the induction hypothesis, c m + i is sound for each fj e
worlds(p), since D m + i « clues(am+i). Hence, 8(s, a m + i ) is a conjecture
correct for each fj in p, by the definition of locking sequence and the fact
that for each position i in p, c\ is locking for fj. But S(s, a m + i ) can be
correct for each fj € worlds(p) only if 6(st a m + i ) i e azs (p) , by the
definition of agreement zone. Hence, (*) until 6 sees data unsound for some
fj e worlds(p), 5 produces conjectures involving only conceptual schemes
in azs(worlds(p)).
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Since p*<f, D> € t l [n j f f may extend p mod F, s (by the definition of *£[n]).
By clause (2) of the definition of "may extend", V c e azs(worlds(p)),
ev(f(c)) £ ev(lastworld(p)(c)). Indeed, since this relation is maintained
throughout the construction of p, we have by transitivity of set inclusion
that (••) for each fj e worlds(p), V c e azs(worlds(p)), ev(f(c)) c
ev(fj(c)). Hence, data unsound for some fj e worlds(p) cannot be read
from f under schemes in azs(worlds(p)). So by (*), 8 never examines
conceptual schemes outside of azs(worlds(p)) after reading <rm+i- Since
lock(p, f) exists by the locking sequence lemma and the fact that 5 detects s
over F, and since 5 can only examine schemes in azs(worlds(p)) after
reading cm+i» we have that (1) cs(clue$(lock(p, f))) c azs(worlds(p)).
By (1) and (**) we have (2) clues(lock(p, f)) is sound for each f €

worlds(p). I

Proof of lemma B: Let f e F. Let t be a complete, sound data
presentation for 5, f.

Say that path <fi, Di>,.... <fn, Dn> extends path <gi, Hi>,.... <gm, Hm> in ^
c=> n £ m and V 1 < i < m, fj « g\ and Dj - Hj.

Lemma 1: V path p e « f Vf e F,
if

(1) clues(p) is sound for f and
(2) VD e Clue, p*<f, D> € « ,

then either
(a) 3c e azs(worlds(p)) s.t. ev(f(c)) - ev(lastworld(p)(c)) * 0
or
(b) azs(worlds(p)) - azs(worlds(p), 0 = 0 -

Proof: Let p e « . Suppose VD € Clue, p*<f, D> € « . Then since « is
complete, we have that f may not extend p mod F, s. So we have that either

(i) clues(p) is not sound for f or
(ii) 3c € azs(worlds(p)) s.t. ev(f(c)) - ev(lastworld(p)(c)) * 0 or
(iii) azs(worlds(p)) - azs(worlds(p), f) = 0 or
(iv) azs(worlds(p), f) « 0

(i) contradicts assumption (1). (ii) is just (a), (iii) is just (b).
Suppose for reductio that (ii) and (iii) are false. Then since (i) is false by
assumption, we may deduce (iv). But by -»(i), -i(ii), -i(iii) and (iv)t f
bears witness that t£ is not safe, which contradicts the theorem's

hypothesis. I

Lemma 2: V path p € « , Vf e F, either

(a) V path p' extending p in C either
(1) clues(p') is not sound for f or
(2) 3k length(p) < k z length(p')

3c € azs(worlds(p'[k]))
ev(f(c)) - evOastworldtp'lkKc)) ^ 0 .
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or
(P) 3 path p' extending p in V such that

(1) clues(p') is sound for f and
(2) Vk s.t. length(p) < k ^ length(p'),

V C € azs(p'[k]),

ev(f(c)) - ev(lastworld(p'[k](c)) « 0 and
(3) Vc e azs(worlds(pf))f tv(sf f(c)) » tv(sf lastworld(p')(c)) .

Proof: Suppose -.(a). So 3 path p' extending p in V such that clues(p') is
sound for f and V k s.t. length(p) s k s length(p l), V c e
azs(worlds(p'[k])), ev(f(c)) - ev(lastworld(p')(c)) = 0 .

Case (i): Suppose that 3D 3k s.t. length(p) * k £ length(p') s.t. p'[k]*<f,
D> is a path in « . Path p'[k]*<f, D> witnesses the truth of condition (p.1),
since clues(p'[k])is sound for f, and since D is sound for f by condition (3)
of the definition of revolution tree, together with the fact that pf[k]*<f, D>
€ *t and H is a revolution tree. Path p'[k]Mf D> also witnesses the truth
of condition (p. 2), since p'[k] has property (p. 2) and adding <ff D> to this
path cannot violate property (j$. 2). Finally, the path p'[k]*<f, D>
trivially witnesses the truth of (p. 3).

Case (ii): Suppose that VD Vk if length(p) < k s length(pf) then p'[k]*<f,
D> is not a path in HL. Then in particular, (*) VD p'*<f, D> is not a path in
t l . So by Lemma 1 and the fact that clues(p') is sound for f, we may
conclude that (a) 3 c e azs (worlds(p')) s.t. ev(f(c))
ev(Iastworld(pl)(c)) * 0 or (b) Vc e azs(worlds(p')) tv(s, f(c)) = tv(s,
lastworld(pl)(c)). But by -»(a), (a) is false. Hence (b) obtains, which
establishes (p. 3) for path p'. Path p1 satisfies (p. 2) by the assumption of

-i(a). And p' satisfies (p. 1) because clues(p') are sound for f. I

Lemma 3: Let path p e t l , and let f € F.

I f V c e azs(worlds(p)), tv(s, f(c)) = tv(s, lastworld(p)(c))
then for any extension p1 of p in H , Vc € azs(worlds(p1)),

tv(s, f(c)) = tv(s, lastworld(pi)(c)).

(I.e. the property of agreement with f over the agreement zone of one's
ancestors is closed downward in tiT).

Proof: Let p1 extend p in « . Then azs(worlds(p')) c azs(worlds(p)) and
Vc € azs(worlds(p'))t tv(st lastworld(p)(c)) « tv(s, lastworld(pl)(c)),
by the definition of agreement zone. So by the lemma's hypothesis, Vc e

azs(worlds(p1)), tv(s, f(c)) = tv(s, lastworld(pf)(c)). •

Say that 8 considers path <fi , Di>, ...f <fn, Dn> at stage m <=> <f i , . . . , fn> is
an initial segment of Q[m] and <Di , . . . , Dn> is an initial segment of Z[m].

Say that S considers exactly path <fi , Di>,. . . . <fn, Dn> at stage m <* <f i , . . . .
fn> « Q[m] and <D^t .... Dn> * Z[m].
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Lemma 4: If data unsound for lastworld(p) is read in t, then p is never
again considered by 5 on presentation t.

Proof: Suppose that data unsound for lastworid(p) is read by 5. Then by
clause (b. iii) of the definition of 5, 8 never again considers any path p'

such that lastworld(p') = lastworld(p). •

Lemma 5: Let t € PRES(f, 5, s). Then

V path p e H£,
if
(a) V path p' extending p in ^

(1) clues(p') is not sound for f or
(2) 3k s.t.length(p) s k s length(p')

3c e azs(p'[k])
ev(f(c)) - ev(lastworld(p)(c)) * 0 and

(Y) 3m s.t. 8 considers p at some stage m
then
(1) there is data unsound for lastworld(p) in data presentation t
with respect to 8 and
(2) after this data is read by 8, 5 never again considers p on
presentation t.

Proof: Assume the Lemma's antecedent. By Lemma 4, it suffices to
establish (1). Define the extension difference of a path q in H to be the
difference in length between q and the longest extension of q in HE. The
extension difference is well-defined, since no path in H is longer than |C|.
We establish (1) by induction on the extension difference of p .

Base case: If the extension difference of p in ^ is 0, then there is no
extension of p in 1C. So once 8 considers path p, condition (b) of the
definition of 5 will never again be satisfied until data unsound for
lastworld(p) w.r.t. 8 is read from t (i.e. until condition (a) of the
definition of S occurs). So once 8 considers p then S sticks with conjectures
in cr(p) = {<cf b>: c € azs(worlds(p)) and b = tv(s, lastworld(p)(c))}
until data unsound for lastworld(p) is read. Since p is considered by 5 at
some stage (by (y) of the Lemma's antecedent), we know that clues(p) is
sound for f, else condition (b) of the definition of 8 would never be satisfied
as 8 reads t, and p would never be considered, contrary to assumption.
Since p is an extension of itself, we may use the fact that clues(p) is sound
for f, together with condition (a) of the lemma's antecedent, to infer that 3c
e azs(worlds(p)) s.t. ev(f(c)) - ev(lastworld(p)(c)) * 0 . This data will
be found by 8 as pointer 7tp[n] is incremented forever in \i{p) of cr(p).

Induction: Now suppose the lemma for each path p in 3C whose extension
difference is £ n. Suppose also that the extension difference of path q in H is
n+1, and q satisfies conditions (a) and (y) of the lemma's antecedent.
Consider an arbitrary unit extension q1 = q*<g, H>, of q in H. Path q' has
extension difference n in ^ . Condition (a) of the antecedent of the
induction hypothesis is satisfied by q \ because the paths extending q' in ft
are a subset of the paths extending q in 'ft. So the antecedent of the induction
hypothesis applies to each unit extension q1 of q that is eventually
considered by 8 (and hence that also satisfies condition (y)). So we may
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apply the induction hypothesis to conclude that for each such extension q'«
q*<g. H> of q considered by 5,5 eventually sees data unsound for g.

Suppose for reductio that infinitely many distinct unit extensions q* * q*<g,
H> of q are eventually considered by 5. Then all the data for lastworld(q)
over the schemes azs(worlds(q)) is seen because by the definition of S,
each time n a unit extension q1 of q is refuted, pointer Kq[n] is incremented
by one and 5 conjectures the pair in position *q[n] of fixed, infinitely
repetitive enumeration n(q) of cr(q) « {<ct b>: c e azs(worlds(q))f b «
tv(s, lastworld(q)(c))} (see the diagram).

pathq

unit extension
ofq

extension
difference
n + 1

each of
these points
is considered
and rejected

J

extension
difference
n

as each point is rejected, more data
from the agreement zone of q is read.

The complete data for f over schemes in azs(worlds(q)) includes data
unsound for lastworld(q), by the same argument given in the base case. But
once data refuting lastworld(q) is read, we have by Lemma 4 that no path
involving lastworld(q) is ever again considered. Hence, only finitely many
distinct unit extensions q' of q are considered by 5, which is a contradiction.
So we may conclude that only finitely many distinct unit extensions q1 of q
are considered by 5 in reading t. Eventually all these finitely many
considered extensions are refuted and 5 considers exactly path q thereafter,
until data unsound for lastworld(q) is seen. That data unsound for
lastworld(q) will appear in t under conceptual schemes in azs(q) is
guaranteed by condition (1) of the lemma's antecedent and the fact that each
path is an extension of itself. So data unsound for lastworld(q) is
eventually seen, and q is never again considered after this point, in

accordance with the definition of 5. •

Lemma 6: Let t € PRES(8, f, s).

if B a path p in « such that,

(a) 5 considers p all but finitely often on presentation t for f and
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(b) p satisfies condition (p) of Lemma 2

then either
(1) Vc e azs(worlds(p))t tv(st f(c)) « tv(sf lastworld(p)(c)) or
(2) 3 unit extension p*<g, H> of p in « that satisfies property (P)
of Lemma 2 and that is considered all but finitely often by 6 on t.

Proof: First we must show

Lemma 6.1: If p satisfies (a), (b) and -i(1), then 3D such that p*<f, D>
extends p in %.

Suppose p satisfies (a), (b) and -i(1). Since ^ is complete mod F, s, if f
may extend p mod F, s, then 3D p*<f, D> e *E. So it suffices to show that f
may extend p mod F, s. First, (1) clues(p) is sound for f, else p is never
considered by 5 on t for f (by clause (b) in the definition of 5). Second, we
have that Vc e azs(worlds(p)), ev(f(c)) c ev(lastworld(p)(c)) by
condition (p.2) of Lemma 2 and by the fact that p is an extension of itself.
Finally, we have by assumption - i (1) that (3) azs(worlds(p)) -

azs(worlds(p), f) * 0 . •

Lemma 6.2: S considers path p infinitely often on t »
8 considers p all but finitely often

Proof: <= Trivial. =* In the definition of 8, a path p is dropped from
consideration by 5 only if data unsound for lastworld(p), 5, is read
(condition (a)). But a path p is considered only if no data unsound for
lastworld(p) has been read (condition (b)). So once p is considered and

dropped from consideration, it is never considered again. •

Proof of Lemma 6 continued: Suppose there is a path p in ̂  such that (a) 5
considers p all but finitely often on presentation t for f, 8, s, and (b) p
satisfies (p). Suppose further that p does not satisfy condition (1). We
will establish that p satisfies (2).

Suppose for reductio that no unit extension p*<g, H> of p is considered
infinitely often on t. Then either at most finitely unit extensions of p are
considered and rejected by 8 on t, s, or infinitely many unit extensions of p
are eventually considered and rejected by p on t, s. In the first case, path p
(and no proper extension of p) is visited each time one of the infinitely
many considered unit extensions is dropped from consideration. In the
second case, path p (and no proper extension of p) is considered all but
finitely often since after some time no more extensions are considered.
Either way, exactly path p is considered infinitely often by 5 on t, s. So 5
produces conjectures that visit each conceptual scheme in azs(worlds(p))
infinitely often (by the definition of S, 5 produces the next conjecture in an
infinitely repetitive enumeration ji(p) of the conjectures correct for
lastworld(p) involving conceptual schemes in azs(worlds(p)) each time
exactly path p is considered).
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But by Lemma 6.1, 3D such that p*<f, D> extends p in *C. Hence, cs(D) c
az8(worlds(p))9 by condition (2) in the definition of revolution tree.
Hence, by some time n, D is contained in t[n] mod S, s. Since there are at
most finitely many unit extensions of p preceding p*<f, D> in «, and since
all of these are eventually rejected by S according to our case hypothesis, it
follows that eventually p*<f, D> is considered by 8 on t, s. But p*<f, D>
cannot be rejected by 5 on f, s, for p is never rejected (by hypothesis) and
no data unsound for f can occur in t with respect to 5, s, because t € PRES(f,
S, s). Contradiction.

So some unit extension p*<g, H> of p is considered infinitely often by 5 on t,
s. Then p*<g, H> does not satisfy (a) of Lemma 2, by Lemma 5. Hence, by
Lemma 2, p*<g, H> satisfies (P) of Lemma 2. By Lemma 6.2, p*<g, H> is

considered all but finitely often by 8 on t, s. •

Note that the unit extension p*<g, H> of p considered all but finitely often does not have

to be p*<f, D>. It may be some unit extension p*<g, H>, where g differs from f both in

evidence and in its truth assignments to s. Indeed, S may make many errors with respect

to f while considering p*<g, H>. But since p*<g, H> satisfies condition (P) of Lemma 2,

we know that 5 can continue to extend p*<g, H>, and thus to narrow the agreement zone

until conjectures correct for g are also correct for f. That this in fact happens is the

point of the next lemma.

Lemma 7 : 3 a path p e l such that

(a) 8 considers p all but finitely often on presentation t for f and

(b) Vc € azs(worlds(p)), tv(s, f(c)) « tv(s, lastworld(p)(c))

Proof: We construct p inductively, in stages.

Stage 0: First <> satisfies property (P) of Lemma 2, since <> is extended by
some path <f, D> (by completeness of t£ and the fact that f may extend <> mod
F, s). Second, <> is always considered by 6. Set p[0] = <>.

Stage n+1: Now suppose that p[n] that has property (P) and is considered
all but finitely often by 8. By Lemma 6, either (1) Vc e azs(p[n]) tv(s,
f(c)) = tv(s, lastworld(p[n]) or (2) 3 extension p[n]*<g, H> of p[n] in &
that satisfies property (P) and that is considered all but finitely often by 8
on t. In case (1), we are done and p[n] is the desired path. In case 2, set
p[n+1] = p[n]*<g, H>, which satisfies (p) and is considered all but finitely
often by 5 on t, as promised by case (2).

We continue to build up p until at some stage n, case (2) is no longer
satisfied. There is such an n, for « is uniformly bounded in depth by |C|.
By Lemma 6, we know that (1) must be satisfied by stage n. Then p[n] is
the desired path. I
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Lemma B is an immediate consequence of Lemma 7 and Lemma 3. Lemma 7
says that 8 considers a path p leading to conjectures correct for f all but
finitely often on t, s. Lemma 3 says that it doesn't matter what extensions
of p are considered by 5, since they also lead to conjectures correct for f.
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