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The focus of this brief report is a facet of current logical
investigations that exhibits the subtle irony of much foundational
work: On the one hand it is directly tied to philosophical concerns in
mathematics, and on the other hand it is directly relevant to
practical, yet fundamental issues in other sciences. The notions of
"effectiveness" and "provability" were considered as being properly
understood in the late 19th century. In the meantime, they have
received precise mathematical definitions — but only when
attention is restricted in specific ways: As to effectiveness, we
must focus on "mechanical procedures"; as to provability, we must
focus on "formal theories". Godel pointed to the connection between
the broad informal notions when he asked, whether there are
effective but non-mechanical procedures that can systematically
provide us with new mathematical principles. Gbdel was thinking
very speculatively of a procedure that yields stronger and stronger
axioms of infinity and thus extends larger and larger segments of
the cumulative hierarchy of sets. But | want to turn attention to the
concrete, painstaking work that has been done to clarify and to
relate the notions of “effectiveness” and “"provability" --
effectiveness understood in a mechanical sense, and provability
restricted to second order arithmetic for the development of
classical analysis.

1. From Kronecker to Hilbert (and back). The foundational
concerns of mathematicians | alluded to appear most clearly during
the second half of the 19th century in the opposing views on the
"arithmetization of analysis" entertained by Leopold Kronecker and
Richard Dedekind. The opposing views were expressed openly, but
with rhetorical restraint, in Kronecker's paper "Uber den Zahlbegriff"
and in Dedekind's almost contemporaneous essay Was sind und was
sollen die Zahlen. At issue were methodological restrictions on
mathematical arguments and concepts. As to concepts, Kronecker
insisted that mathematical notions must be decidable in finitely
many steps; as to arguments, he considered proofs of existential
statements to be complete only when they exhibit objects satisfying
the claim expressed by the statement. The almost immediate




consequence of this restrictive methodology for analysis was
Kronecker's rejection of the general concept of irrational number.
Dedekind had given a precise extension to this concept in his earlier
essay Stetigkeit und irrationale Zahlen. Indeed, he had given an
axiomatic characterization of real numbers (as elements of a
complete ordered field), had provided what we would call a set-
theoretical model for the axiom system, and had established the
system's categoricity.

The set-theoretic methods used so freely by Dedekind in both
of his foundational essays turned out to be in need of restrictions.
It was clear to Georg Cantor that the unrestrained principles
employed by Dedekind in his second booklet led to contradictions.
Hilbert was informed about these difficulties by Cantor as early as
1897, and he tried to secure the "classical" basis for analysis in his
paper "Uber den Zahlbegriff'. The title, without any doubt, was
chosen to allude polemically to Kronecker's earlier paper; Hilbert
intended to prove the existence of the set of real numbers and thus

to refute Kronecker — by establishing in a sort of model theoretic
way the consistency of (essentially) Dedekind's axiomatization for
the real numbers. | formulate matters vaguely, since Hilbert's

proposal is quite tentative and vague.

The more elementary contradictions in set theory found in
1901/1902 by Russell and Zermelo made Hilbert rethink matters.
Taking into account the formalizability of mathematical proofs
(discovered by Frege and Peano) and the radicalization of the
axiomatic method (exhibited so masterfully in his own "Grundlagen
der Geometrie"), Hilbert looked in a completely new way at the
consistency problem. In his address to the Second International
Congress of Mathematicians in Heidelberg (1904) he proposed first
to formalize logic and mathematics simultaneously and then to
prove that none of the finite syntactic configurations constituting
proofs has a contradiction as its conclusion! Note that this novel
understanding of consistency as a syntactic property allowed him to




adopt a Kroneckerian point of view with respect to "meta-mathe-
matics". Bernays described the change of perspective in this way:

Under the influence of the discovery of the antinomies in set theory, Hilbert temporarily
thought that Kronecker had probably been right there [i.e., right in insisting on
restricted methods]. But soon he changed his mind. Now it became his goal, one might

say, to do battle with Kronecker with his own weapons of finiteness by means of a
modified conception of mathematics.

The 1904 proposal, ambitious in goals, but still vague in details,
was elaborated slowly during the next decade and was pursued
vigorously in the twenties with the aid of Bernays, Ackermann, von
Neumann, and Herbrand. The finitist standpoint Hilbert took at that
time was seen by Hilbert himself as essentially coinciding with
Kronecker's position and, incidentally, also with Brouwer's. It
remained the goal of Hilbert's Program to establish the consistency
of classical theories T like Zermelo-Frankel set theory or the
system of Principia Mathematica. However, such a proof was no
longer seen as guaranteeing the existence of a model, but rather as
ensuring the instrumental usefulness of T. After all, one can
finitistically prove the equivalence of the consistency statement
and the reflection principle for statements in the language of
finitist mathematics F: F proves consrt iff F proves Prg(a,'y') -> v,
for any y in the language of F. (Here consy expresses the consistency
of T, and Prr(a,'y') says that a is a T-proof of the T-formula that
expresses vy.)

Hilbert hoped that the strict formalization of mathematics
would allow an algorithmic treatment of many other problems. One
problem whose consideration he urged most strongly was the
Entscheidungsproblem or decision problem for predicate logic. Its
classical formulation is found in his 1928 book with Ackermann,
called Grundziige der Logik.

The Entscheidungsproblem is solved, if one knows a procedure that permits the decision
concerning the validity, respectively satisfiability of a given logical expression by a
finite number of operations.




The decision problem was viewed as a problem of fundamental
importance and was pursued by some, e.g., Herbrand, because its
solution would also provide a solution to the consistency problem.l

2. Mechanical Effectiveness. As is well-known, Goddel's First
Incompleteness Theorem refuted Hilbert's fundamental assumption
of complete formalizability; the Second Incompleteness Theorem
refuted the consistency program when allowing only finitist means.
After all, the latter were supposed to be elementary mathematical
means and as such should be captured by sufficiently strong
theories, certainly by theories like ZF or PM. Yet such theories
cannot be shown to be consistent, according to the second of Gddel's
results, by arguments that are formalizable within these very
theories. Godel's paper appeared in 1931; only a few years later the
unsolvability of the decision problem was established by Church and
Turing.

These sweeping general claims rest on, what is usually called,
Church’'s Thesis; the thesis says that the informal notion of
effectiveness or calculability is captured by a precise mathematical
concept, e.g., recursiveness or, equivalently, by A-definability and
Turing-computability. Only such a mathematical notion allowed the
general characterization of "formal" theories and the proof of the
Incompleteness Theorems for all formal theories satisfying some
minimal representability and derivability conditions. Similarly,
only with respect to a well-determined class of procedures could a
negative solution of the decision problem be obtained.

Remark. The thesis of Church is fundamental also in cognitive
science and artificial intelligence; one should, however, be very
conscious of the fact that only mechanical procedures were
analyzed, not arbitrary mental procedures. The most convincing
analysis of the informal notion was given by Turing and ultimately
rests on the claim that human memory is necessarily limited; see
my paper "Mechanical procedures and mathematical experience”.

1 The possibility of finitely axiomatizing theories in predicate logic was taken for granted.




The search for a precise and adequate concept of effective
calculability was sparked by Gddel's discoveries. In April 1931,
Herbrand suggested in a letter to Godel the class of primitive
recursive functions be extended and that "recursive functions" be
defined as solutions of simple functional equations. In contrast to
Godel, who built in his 1934 Princeton Lectures on Herbrand's
suggestion, and who gave the modern definition of general recursive
functions, Herbrand insisted that the termination of computing
function values (in finitely many steps) should be finitistically
provable. If the informal concept of finitist provability is replaced
here by provability in a formal theory T, then we can establish
direct connections between the class of functions whose
termination (or totality) can be proved in T and a possibly natural
class K of recursive functions. The first significant result along
these lines was established by Kreisel in 1951: The provably total
functions of Peano arithmetic are exactly the <eo-recursive
functions.

Such results have been refined recently to establish proof
theoretic characterizations of important complexity classes, e.g.,
Buss's characterization of the polynomial-time computable
functions.  The hope here is that relations between the formal
theories might reveal relations between their associated function
classes. The fact that a theory T has a particular class of provably
total functions can actually be used to prove independence results
for rifstatements, i.e., for statements of the form (Vx)(3y)Rxy with
guantifier-free R. If one knows that any Skolem-function for such a
statement must grow faster than all elements in a class C of
recursive functions, then the statement cannot be proved in a theory
T whose class of provably total functions coincides with C. This
methodology has been used for a number of theories and a variety of
combinatorial theorems; Simpson (1987) gives a very nice expo-
sition of such results.

3. Formal Provability. But how is it possible to extract from
formal derivations information concerning provably total functions,




that is, the class of Skolem-functions for M3-theorems?  The
fundamental tools are versions of Herbrand's Theorem, which states
in its simplest form for Z?-statements: If (3x)yx is provable (in
logic) and y is quantifier-free, then there is a sequence of terms to,
... ,tn and a proof of ytg v ... v yt,. This theorem and its extensions
are only starting-points for the detailed mathematical refinement
of proofs concerned with obtaining good bounds for particular
theorems; Luckhardt's work concerning Roth's Theorem on rational
approximations of algebraic-irrational -numbers exemplifies this
kind of mathematical work.

But | want to pursue here the aim of characterizing the
provably total functions of a theory and not the aim of determining
good bounds for particular theorems. The use of sequent calculi to
describe formal provability is technically most convenient for this
purpose. The language underlying the logical calculi is that of
second-order logic with variables and parameters for individuals
(numbers) and for unary functions (from numbers to numbers); after
all, we want to develop analysis. Sequent calculi were introduced by
Gentzen and are given here in a form due to Tait: One proves finite
sets of formulas I', A, ... ; formulas are built up from (negated)
atomic formulas by A, v, 3, V; negations (of complex formulas), con-
ditionals, and biconditionals are considered to be defined. We have
logical axioms (LA), simple rules for the introduction of logically
complex formulas, and the so-called cut-rule (C) that generalizes
the rule of modus ponens. The rules of the calculi are (among) the
following ones, where T',¢ stands for the union of I' and singleton ¢:

LA: o, -0, ¢ atomic
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The rules for number quantifiers are:

y: L2 ae P()
I, (Vx)ox

3. I ot
I, (3x)ex

(The expression ae P(I) means that the parameter a occurs in one of
the formulas in I'.) The rules for function quantifiers are analogous.
Derivations are built up in tree form; let me use D,E,... as syntactic
variables ranging over derivations. Gentzen's Hauptsatz, the
fundamental fact concerning these calculi, states: Every derivation
of a sequent I' can be transformed into a cut-free (or normal)
derivation of I'. By inspecting the rules one can see immediately
that all formulas occurring in a normal derivation of I' are
subformulas of elements of I'. Thus, whenever T is provable at all, it
is provable by means of a derivation that contains only formulas
whose complexity is bounded by the complexity of the formulas
occurring in the endsequent.

These proof theoretic considerations can be extended to
theories with purely universal axioms and additional rules, e.g., for
identity and induction. Identity can be axiomatized by the rules:

It It

szt ,[°, @s t#s I, @s

and the axiom T, a=a. The induction principle can be formulated as a
rule for formulas in a class @, and this @-1A is given in the form:

I,e0 I',—pa, ga’

T, ot




Here the parameter ais not in P(ru{cpt}); t is any term; gum is in 6; and
0 is a class of formulas like QF, A,, zj, ifi. In this broadened context
one has to give up complete cut-elimination in favor of cut-
reduction; that is, cuts are allowed, but the cut-formulas must be in
a given class 0 of formulas. Such derivations are called &-normal.

O-normalization. Let T be a theory (of arithmetic) all of whose
axioms are in 0 and whose induction principle is 0-lA; if there is a
T-derivation of r, then there is a 0-normal T-derivation of r.

Assume now that the theory? provably satisfies some basic closure
conditions, namely, closure under explicit definition, definition by
cases, and bounded search; then one can establish the following
lemma:

i-inversion. Let T be an Herbrand theory, let r contain only purely
existential formulas, and let y be quantifier-free; if D is a T-
derivation of r,(3x)\j/x, then there is a term t* and a (QF-normal) T-
derivation D* ofr,yt*.

For the basic theory (BT), consisting of universal axioms for zero,
successor, the defining equations for all primitive recursive
function(al)s, QF-comprehension (~-abstraction), and QF-induction,
one can use the 3-inversion lemma to prove:

Theorem. The provably total functions of (BT) are exactly the
primitive recursive functions.

This is not surprising, since (BT) is a rather simple conservative
extension of primitive recursive arithmetic. What is surprising is
that (BT)'s extension (F), obtained from (BT) by adding the induction
principle for Z?-formulas, the axiom of choice for the same class of
formulas, and Kénig's Lemma WKL for trees of 0-l-sequences has
two features: (1) The theory is still conservative over primitive
recursive arithmetic and thus has as its provably total functions

2 If induction is restricted to formulas in QF and the axioms are purely universal, | call such a
theory an Herbrand theory.




exactly the primitive recursive ones; and (2) The theory allows the
development of significant parts of analysis. The axiom of choice
AC, is taken in the form:

(VX)EBy)4>xy -» Of)(VX)<|>xf(x)

Kbnig's infinity lemma for trees of 0-1-sequences is formulated in
our framework by

(VAIT(®) A (VX)@By)(Ih(y)-x A f(y)-1) ->(39)(Vx) f(g(x))=1];

where T(f) expresses that f is (the characteristic function of) a tree
of 0-1-sequences; |h is the length-function for sequences of
numbers. Note that T(f) is a purely universal formula:

(VX)(Vy) [(f(x*y)=1 -» (x)-1) A (f(x*<y>)-1 ->y<1)]

The proof of fact (1) is sketched in Section 4; regarding fact (2) |
simply mention results that were established by Friedman and
Simpson. Their work is in a long tradition of developing analysis in
second-order arithmetic reaching back to Weyl's Das Kontinuum
(1918) and to lectures of Hilbert in the early twenties.

Theorem. Over (BT+Z?-IA+S?-ACo) one can establish the equivalence
of the following statements:

(i) WKL;

(i) the Heine-Borel Theorem (Every covering of the unit interval by a
countable sequence of open intervals has a finite subcovering);

(i) every continuous function on the unit interval is uniformly
continuous;

(iv) every continuous function on the unit interval is bounded [has a
supremum and attains it];

(v) the Cauchy-Peano Theorem on the existence of solutions for
ordinary differential equations.

4. Eliminating WKL. As an indication of the metamathematical
work involved in the reductive considerations, | will show
(following [Sieg 1991]) how the weak version of Konig's Lemma can
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be removed from BT-derivations of sequents A containing only Z?-
formulas. In the formulation of the WKL-elimination lemma | call D
a BT-derivation of A[--WKL], if D is a derivation of A together with
negations of (instantiations of) WKL and negations of BT-axioms.

WKL-elimination Ilemma. |If D is a QF-normal BT-derivation of
AHWKL], then there is a QF-normal BT-derivation of A.

Proof (by induction on the length of D). | concentrate on the central
case when the last rule in D introduces an instance of -iIWKL; that is,

T(M) A (V)EBY)(Ih(y)«x Af(y)-1) A -(3g)(Vx) f(g(x))-1.

(Recall that T(f) is a purely universal statement and expresses that
f is the characteristic function of a tree of 0-1-sequences.) There
are QF-normal BT-derivations Dj, i<2 and all shorter than D, of

A [--WKL], T(f)
A [ WKL], (VX)(3y)(Ih(y)-x A f(y)=1), and
ARWKL],(Vg)(3X)f(G(x))*1.

Using ¥Y.-inversion and the induction-hypothesis we obtain Ej, i<2, of

A, T(F)
A, (3y) (Ih(y)-c A f(y)-1), and
A, (3x) fE())*1

with new parameters ¢ and u. The 3.-inversion lemma provides terms
t and s and also QF-normal BT-derivations Fi and F2 of

A, Ih(t[c])-c A f(t[c])=1 and A, f(@(s[u]))*1.

The terms s and t may contain further parameters, but u does not
occur in t. Now observe: (i) t yields sequences of arbitrary length in
the tree f that do not necessarily form a branch; (i) f(T(s[u]))*1
expresses the well-foundedness of f. In short, we have a binary tree
(according to E,) that contains sequences of arbitrary length and is
well-founded. This conflicting situation can be exploited by means
of a formalized recursion theoretic observation: s can be majorized
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(in the sense of [Howard]) by a numerical term s* that does not
contain u, since ucan be taken to be majorized by 1. Let t[s*] be the
0-1-sequence

tOr---; ts«u -1

and define with ~-abstraction the function u* by
ur(n) = t, ifn<g

and u*(n) equals O otherwise.  u*(s*) obviously equals t[s*]; f is
provably a tree according to Eo; and s* is a bound for s. Thus, we
have from F, a derivation G2 of A,f(t[s*])*1. From F<\ one can obtain
easily a derivation d of A,f(t[s*])=1. A cut of G1 and G, yields the
sought for derivation E of A. Q.E.D.

Clearly, this elimination lemma together with analogous results for
the zf-induction principle and the zf-axiom of choice does provide
computational information; that is expressed in the following
corollary.

Corollary. If (BT +zf-IA+zf-ACo+WKL) proves the restatement
(Vx)(3y)vxy, then there is a primitive recursive function f and a proof
of yaf(a) in (PRA).

Mathematical investigations of the sort | described do stand in
a long tradition, but they have focused on weak subsystems of
analysis only during the last 15 years; and yet, they have uncovered
most surprising results. The systematic connection of weak
arithmetic theories with complexity classes was begun to be
explored only with Buss (1986); and yet, there is already an
impressive body of results and a growing arsenal of techniques.
There is also a reasonable expectation that we might obtain real
mathematical information from a pursuit of (what | would like to
call) "Kronecker's Program"” and that we might gain more detailed
computational information from the proof theoretic characterization
of complexity classes. But what | find most remarkable, from a
slightly detached perspective, is this: Broad foundational concerns
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have been sharpened and de-ideologized, and they have moved us to
invent tools for addressing questions of concrete and genuine

interest.
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