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1. Introduction

Researchers routinely face the problem of inferring causal relationships
from large amounts of data, sometimes involving hundreds of variables.
Often, it is the causal relationships between "latent" (unmeasured)
variables that are of primary interest. The problem is how causal
relationships between unmeasured variables can be inferred from
measured data. For example, naval manpower researchers have been asked
to infer the causal relations among psychological traits such as job
satisfaction and job challenge from a data base in which neither trait is
measured directly, but in which answers to interview questions are
plausibly associated with each trait. By combining background knowledge
with an algorithm that searches for causal structure among the
unobserved variables, we have created a tool that can reliably extract
useful causal information about latent variables from large data bases. In
what follows we describe the class of causal models to which our
techniques apply, the property that connects the causal structure of such
models to measured data, the algorithm that searches for causal
structures, its reliability and complexity, and simulation studies that
attest to the algorithm's reliability on samples of realistic size.

2. Causal Models

2.1 Causal Graphs and Causal Models. Economists, psychologists,
sociologists, and political scientists routinely employ "structural
equation models," or "causal models," to represent the causal structure
among a set of random variables. These include regression models, factor
analytic models, and path models.2 These models typically are expressed
as systems of linear equations among a set of random variables V along
with an intended causal interpretation and distributional assumptions
about V. The causal structure can be represented by a directed graph G,
called a causal graph, such that there is an edge from variable V1 to V2
in G just in case V1 is a direct cause of V2. For example, in the causal

2See (Bollen 89) for a good introduction to "structural equation models."



graph in figure 1, both SAT and IQ scores are directly caused by
intelligence and test-taking ability.

Intelligence Test-taking-ability

IX /
IQ score SAT score

t t
errori error2

Figure 1

In structural equation models every effect is a linear combination of all
of its direct causes. This assumption allows us to represent the
equations in such models by attaching labels to the edges in the causal
graph, where these labels represent the linear coefficients in the
associated equations.

Intelligence Test-taking-ability

f.96
/

Figure 2

In figure 2, for example, IQ score = 1.5*lntelligence + .56*Test-taking-
ability + errori. Let a linear causal model associated with a causal
graph G be given by <D,9>, where D is a distribution over the exogenous
variables in G (those that are only causes and not effects) and e is a
vector of linear coefficients that correspond to the appropriate edge



labels in G.3 Given a causal graph G, the variance/covariance matrix I
among the measured variables in G is completely determined by <D,e>.

2.2 Connecting the Evidence to the Causal Structure: Vanishing Tetrad
Constraints. There are, however, constraints on E that are determined
just by the causal graph G associated with a causal model. That is, there
are constraints on Z that are satisfied regardless of the value of <D,8>.
T h e s e c o n s t r a i n t s i n c l u d e v a n i s h i n g p a r t i a l c o r r e l a t i o n s a n d
vanishing tetrad differences, and they provide a connection between
causal structure and measured data. For variables X, Y, W, and Z, there are
three possible vanishing tetrad differences, any two of which are
independent of each other:

PXY * PWZ - PXW * PYZ = 0
PXW * PYZ - PXZ * PYW = 0
PXZ * PYW - PXY * PWZ = 0

If the exogenous variables in D have non-zero variance, then we have a
purely graphical characterization of the conditions under which a causal
graph implies for all values of 6 a vanishing tetrad difference among
measurable correlations. The characterization allows us to calculate the
set of tetrad equations implied by a causal graph extremely quickly. We
search for the causal graph that implies the set of vanishing tetrad
differences that most closely matches the set of vanishing tetrad
differences judged to vanish inthe population.^

3We also assume that each variable has a unique associated "error" variable of non-zero variance,

that is all variables of non-zero indegree are the effect of a variable of indegree 0 and outdegree

1.
4See (Spirtes 89).
5The statistical tests we use to judge whether a tetrad difference vanishes in the population, and

the metric that we use to measure how closely a set of tetrad differences implied to vanish match

the set of tetrad differences judged to vanish in the population are described in detail in (Spirtes

91), and (Scheines 91). It is possible that a tetrad difference vanishes in the population for a given

graph for some but not all values of 6; however if a graph does not entail that a given tetrad
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Figure 3

Tetrad equations allow us to discriminate among different latent variable
models where partial correlations do not.6 For example, suppose that in
graphs (1) and (2) in figure 3 only X, Y , Z, and Z are measured. Neither
graph implies any vanishing partial correlations, but

graph 1 implies:
PX1 ,X3 * PX2.X4 = PX1 ,X4 * PX2.X3
PX1 ,X4 * PX2.X3 = PX1 ,X2 * PX3.X4
PX1 ,X3 * PX2.X4 = PX1 ,X2 * PX3,X4

graph 2 implies:
PX1 ,X2 * PX3.X4 = PX1 ,X3 * PX2.X4

If the results of statistical tests indicate that only PXW * PYZ = PXY * P W Z
in the population, then graph 2 is a better model of the data, because it
entails the only tetrad difference judged to vanish in the population, and
it does not entail any vanishing tetrad differences that are judged not to
hold in the population.

difference vanishes for all values of 6, the Lebesgue measure of the set of 6's for which the tetrad

does vanish is zero.
6For example, vanishing partial correlations. Although vanising partial correlations of any order

give us as good a connection to causal structure as can be had when all the common causes of

measured variables are themselves measured (Spirtes 91), they cannot distinguish among the

two graphs in Figure 3, unlike tetrad constraints.



3. The Strategy

Structural equation models that involve latent variables are sometimes
presented as containing two parts: the "measurement model", and the
"structural model." The structural model involves only the causal
connections among the latent variables, and the measurement model is the
rest of the causal connections. Roughly, our strategy is to use certain
tetrad equations to find a pure measurement model, i.e. one in which each
measured variable is directly associated with only one latent. Having
such a measurement model, we can then use different tetrad equations to
constrain the structural model.

3.1 Pure Latent Variable Models.

A model is a pure latent variable model if and only if

i) each latent variable has at least two measured variables as its

direct effects,
ii) each measured variable is the cause of no variable, and
iii) each measured variable is the direct effect of exactly one latent
variable and a unique error term.7

For example:

T1 «* T2 • T3

/A •/IK /KK
A1 A2 A3 A4 A5 A6 A7 A 8 A9 A10 A11

Figure 4

where the As represent measured variables and the Ts represent
unmeasured variables, and for convenience the error terms have been
omitted. The important fact is that in a pure latent variable model the

7Models like these are also called "multiple indicator models.1'



correlations and vanishing tetrad constraints partially determine the
causal structure among the unmeasured variables.

What if we are given a set of variables that do not form a pure latent
variable model? It is possible that while a given set of variables do not
form a pure latent variable model, some subset of the variables do. It is
possible to use vanishing tetrad differences to reliably select a subset of
the variables that form a pure latent variable model (if one exists), even
if the causal structure among the latent variables is unknown. We then
use vanishing tetrad constraints to partially determine the causal
structure among the latent variables in the pure latent variable model. We
will explain each of these procedures in more detail.

3.3 Finding Pure Latent Variable Models.

A measurement model is pure just in case it is the measurement model of
a pure latent variable model, i.e., each measured variable is not a cause
and is the direct effect of exactly one latent variable and its own
independent error term. In actual research the set V of measured variables
in a data base is often chosen to measure a particular set of latent
variables T. That is, for each latent variable Tj, a subset of V is intended
to measure Tj. We suppose the investigator can, by whatever means, form
mutually exclusive subsets of V such that each subset measures a latent
variable Tj, i.e. the researcher can partition V into V j i , such that for each
i the variables in V j j are direct effects of Tj.8 The resulting model may
not be a pure latent variable model, however, because some of the
measured variables may be causes of other variables, or because some
measured variables may be caused directly by more than one latent
variable in T. To summarize, we assume that a researcher attempting to
discover the causal relations among a set of latent variables T from
measured variables X, can

1) Identify T, and

^That is, there is an edge from Tj to each V in V j | .



2) successfully partition the variables in X into groups that at least
measure each Tj.

True Causal Structure

T1 • T2 • T3 ^ T4

X3 x4 x5 X6 X7 X8 X9 X10 X11 x12 x13 x14

t I
Figure 5

For example, suppose that the true causal graph G is the one depicted in
figure 5. The we assume a researcher can identify T = {T1,T2,T3,T4}( and
can successfully partition X = {X1-X14} into clusters as we show in figure
6.9

Clusters From Background Knowledge

T 1 T2 T3 T4

A\
X1 X2 X3 x4 x5 X6 X7 X8 X9 X10 X11 x12 x13 x14

Figure 6

G (figure 5) is not a pure latent variable model because X1 causes X2, X6 is
caused by both T1 and T2, and X12 causes x8. Consequently, the set of
measured variables X1 through X14 do not constitute a pure measurement
model of T. There are subsets of {X1-X14} that can constitute a pure
measurement model of T, however, and figure 7 shows one.

clusters in figure 6 are not uniquely correct. Another correct initial clustering might group X6

with the T1 cluster.



Pure Measurement Model

T 1 T2 T3 T4

i\ /i\ l\
X2 X3x4 x5 X7 X8 X9 X10 X11 x13 x14

Figure 7

We have designed an algorithm that can reliably find a subset of variables
that form a pure latent variable model, regardless of what the (up to this
point unknown) causal connections among the latent variables are. We call
this part of the procedure and a later part the SCALES procedure. SCALES
eliminates those members of V j i that are impure measures of Tj, either
because they are also the effects of some other unmeasured variable Tj or
because they are also causes or effects of some other measured variable.

Impure Indicators

A measured variable can be an impure measure for three reasons, which
are exhaustive but not exclusive.

1) If Vj measures Tj, but is also causally connected to a latent
variable Tj in some way not mediated by Tj, then we say that Vj is
latent-measured impure.

2) If a pair of measured variables V1, V2 from the same cluster VTi
are causally connected in some way not mediated by Tj then we say
V1 and V2 are intra-construct impure.

3) If a pair of measured variables V1, V2 from distinct clusters V j i
and VTJ are causally connected in some way not mediated by either
Tj or Tj then we say V1 and V2 are cross-construct impure.



T1 T2

X1-**X2 X3 X4 X5 X6

t
Figure 8

For example, in figure 8, X1, X2, and X6 are impure. The breakdown is as
follows.

Intra-construct impure: { X1, X2}
Cross-construct impure: { X2, X6}
Latent-measured impure: { X4 }

The strategy for finding subsets of V that form a pure measurement model
is to use tetrad equations of one type to eliminate those measured
variables that are intra-construct impure, to use tetrad equations of a
different type to eliminate those that are cross-construct impure, and
finally those that are latent-measured impure. Provided the initial
clusterings are correct, the strategy will correctly identify a subgraph
that is a pure latent variable model (if one exists).

Foursomes

Tetrad equations involve foursomes of measured variables. Based on the
clustering from background knowledge: call a foursome of measured
variables an intra-construct foursome if all of the measured variables
are effects of the same latent variable (see Figure 9). Call a foursome in
which at least two measured variables are measures of two different
latent variables, and in which there are exactly two latent variables, a
cross-construct foursome. Call a foursome in which one indicator is
from one latent variable, two indicators are from a second latent variable,
and another indicator is from a third latent variable a 1-2-1 foursome.
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Intra-Construct

X1 X2 X3 X4

Cross-Construct

T1 T2 T1 T2

/ \ / V / \ \ V
X1 X2 X3 X4 X1 X2 X3 X4

2 x 2 3 x 1

1-2-1 Foursome

T1 T2 T3

\ A
X1 X2 X3 X4

Figure 9

Tetrad equations among intra-construct foursomes identify intra-
construct impurities. Those among 2x2 cross-construct foursomes
identify cross-construct impurities, and those among 3x1 cross-construct
foursomes identify measured variables that are latent-measured impure.

Tetrad Equations and Statistics

Let Tp be a population tetrad difference, say:

PX1.X2 * PX3.X4 - PX1.X3 * PX2.X4.
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Let Ts be the corresponding tetrad difference in the sample. Let p(T) = the
probability that a sample tetrad difference > Ts, given that Tp = 0. We
calculate such a probability by using the Wishart statistic10 for the
variance of a tetrad difference under the assumption of multinormally
distributed variables. Since the sample distribution of the tetrad
difference is asymptotically normal, we can calculate p(T)
straightforwardly. In the TETRAD II program, the decision to reject or
accept the hypothesis Tp = 0 is based on a user set significance level. In
what follows, we heuristically assume that the the higher p(T), the more
likely that Tp = 0. To capture this intuition, we assign a score11 to each
tetrad equation:

If p(T) > significance level, then Score = Score + p(T),
else Score = Score - (1 - p(T))

Intra-Construct Foursomes

An intra-construct foursome X1-X4 implies all three tetrad equations:

PX1.X2 * PX3.X4 = PX1.X3 * PX2.X4 = PX1 ,X4 * PX2.X3

if at least three of X1-X4 are intra-construct impure. If a pair among X1-
X4, say <X1,X2> as in the top right of figure 10, is intra-construct impure,
then the tetrad equations involving pxi,X2 are not implied by the model.
Unfortunately, both equations that involve pxi,X2 also involve px3,X4, so we
cannot, just from a single intra-construct foursome, distinguish which
among two pairs is impure. Thus, in figure 10, we show in the top right
the model that generates the data, the tetrad equation that implied by that
model, and the two pairs <X1,X2> and <X3,X4> that we can postulate as
candidates for intra-construct impure measures.

10See(Glymour87).
11 For more detail on the scoring function, see (Spirtes 90a)
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Intra-Construct

X1 X2 X3 X4 X1—^X2 X3 X4

rX1 ,X3 * rX2,X4 = rX1 ,X4 * rX2,X3 rX1 ,X3 * rX2,X4 = rX1 ,X4 * rX2,X3
rX1 ,X4 * rX2,X3 = rX1 ,X2 * rX3,X4
rX1 ,X3 * rX2,X4 = rX1 ,X2 * rX3,X4

<x1,x2> or <x3,x4>

X2 X3 X4 X5

rX5,X3 * rX2,X4 = rX5,X4 * rX2,X3
rX5,X4 * rX2,X3 = rX5,X2 * rX3,X4
rX5,X3 * rX2,X4 = rX5,X2 * rX3,X4

Cannot be <x3,x4>

Figure 10

We can distinguish which pair is impure by checking other intra-construct
tetrad equations that involve one pair and not the other. For example, if
we check the foursome {X2,X3,X4,X5}, then only the pair <X3,X4> is
involved. If the two tetrad equations in this foursome involving px3,X4
hold, then we cannot eliminate <X3,X4> from consideration. In essence, we
use redundancy to overcome the underdetermination unavoidable from
single foursomes. The algorithm for eliminating intra-construct
impurities is as follows.

Repeat
For each indicator Vi in V j i ,

For each intra-construct foursome F involving Vi,
For each tetrad equation T in F,

If p(T) > significance level, then Score = Score + p(T),
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else Scorevi = Scorevi - (1 - P(T)).
V T I : = V J I - {Vi with lowest score}.

Until (Min(Scorevi) > User set cutoff) Or |Vjil <= 4

Cross-Construct Foursomes

2x2 Foursomes
Since intra-construct foursomes involve only one latent variable, the
causal connections among the latent variables has no effect on this part
of the algorithm. Cross-construct foursomes involve two latent
variables, say T1 and T2. Luckily, the causal structure between T1 and T2
has no effect on the tetrad equations applied among cross-construct
foursomes involving T1 and T2.

T1 T2 T1 T2

•v /v /v /v
X1 X2 X3 X4 X1 X2-*X3 X4

rX1,X3 * rX2,X4 = rX1,X4 * rX2,X3 T1 . * T2

X1 X2 X3 X4

<x1 ,x3> or <x2,x4> or
,x4> or <x2,x3>

Figure 11

In the left side of figure 11 we show a 2x2 cross-construct foursome
from a pure measurement model, and under it the tetrad equation it
implies regardless of the nature of the causal connection between T1 and
T2. This eqaution is not implied by a model in which any of the four
possible cross-construct pairs are impure. On the right side we show two
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ways in which one of the cross-construct pairs, <X2,X3>, is impure. Below
the models on the right we show what we can learn from this foursome if
either of these models is correct. Again, to narrow the blame we look at
overlapping foursomes. The algorithm for 2x2 foursomes is as follows.

Repeat
For each indicator Vi in V,

For each 2x2 cross-construct foursome F involving Vi, tt
For each tetrad equation T in F, %•

If p(T) > significance level, then Score - Score + p(T), j|
else Scorevi = Scorevi - (1 - p("0). f

V:= V - {Vi with lowest score}, provided no |Vji| <= 3. j
Until (Min(Scorevi) > User set cutoff ?

3x1 Foursomes i
After the 2x2 procedure, we will have eliminated all cross-construct |
impurities except for a single latent-measured impurity, if there is one. ft
This is because a 2x2 foursome implies one tetrad equation if it is pure or |
if exactly one of its indicators is latent-measured impure. In the 3x1 %
cross-construct foursome the situation is better. Whereas the two J
measurement models on the left side of figure 12 imply all three tetrad §
equations no matter what the causal connection between T1 and T2, the |
model on the right implies only one. The difference is that in the middle |
model the indicator on the 1 side of a 3x1 (the singleton) is latent- %
measured impure, whereas on the right one of the indicators on the 3 side $
of a 3x1 is impure. In the latter case the tetrad equations involving a ^
correlation between the impure indicator and the singleton are not implied g
by the model. Thus if one equation holds, we can uniquely identify the |-
impure indicator. •§
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T1 T2

\
X1 X2 X3 X4

T1 T2

X1 X2 X3 X4

T1 T2

X1 X2 X3 X4

rX1 ,X3 * rX2,X4 = rX1 ,X4 * rX2,X3
rX1 ,X4 * rX2,X3 = rX1 ,X2 * rX3,X4
rX1,X3 * rX2,X4 = rX1,X2 * rX3,X4

rX1 ,X3 * rX2,X4 = rX1 ,X4 * rX2,X3

< T 2 "> x 3>

Figure 12

Again, however, we use a strategy of redundancy to detect latent-
measured impurities. The algorithm for 3x1 foursomes is as follows.

Repeat
For each indicator Vi in V,

For each 3x1 cross-construct foursome F involving Vi,
For each tetrad equation T in F,

If p(T) > significance level, then Score = Score + p(T),
else Scorevi - Scorevi - (1 - P("0).

V:= V - {Vi with lowest score}, provided no |Vj i | <= 2.
Until (Min(Scorevi) > User set cutoff

After the 3x1 procedure we have a subset of V that constitutes a pure
measurement model. We can now search for facts about the causal
connection among the latent variables.

3.4 Finding the Structural Model.

If a set of measured variables V is causally sufficient, i.e., if every
common cause of two variables in V is also in V, then V1 and V2 (in V) are
causally adjacent if and only if V1 and V2 are dependent conditional on
every subset in V that doesn't include V1 or V2. If we begin with an
undirected graph in which every pair V1 and V2 is adjacent, as soon as we
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find a conditioning set S such that V1 and V2 are independent conditional
on S, we can remove the undirected edge between V1 and V2.

If a pair <V1,V2> is independent conditional on a set S, and the cardinality
of S is n, we say that V1 and V2 are nth-order independent. In the PC-
algorithm,12 the strategy is to begin by removing all edges that connect
pairs that are O-order independent, ascend to sets of size 1, size 2, etc.13

The current strategy is to use PC on the latent variables, but instead of
providing with facts about conditional independence, we provide facts
about O-order andist-order trek-separability, which we can determine in
pure latent variable models respectively from the correlations between
indicators of distinct latent variables and from the tetrad equations that
hold in 1-2-1 foursomes.

3.4.1 Trek Separability.

Let a path between vertices X and Y in an graph G be a sequence of edges
from X to Y.

Let a trek between X and Y be either an acyclic path from X to Y, an
acyclic path from Y to X, or a pair of acylic paths from some other
variable Z to X and to Y such that these paths intersect only at Z.

V1 and V2 are nth-order trek-separated just in case there are n
vertices Vj...Vn * V1.V2, and no set smaller than Vj...Vn such that each
trek between V1 and V2 includes some member of Vj...Vn.

12See(Spirtes9i).
13The number of nth-order independence facts PC needs to check is constrained not only by the

edges removed in the n-1th order stage, but by the variables that are neighbors. For details, see

(spirtes91).
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V1 and V2 are O-order trek-separated just in case there is no trek
connecting them.

V1 and V2 are 1st-order trek-separated just in case there is a vertex
V3 such that all treks between V1 and V2 pass through V3.

T1 • T2 + T5

\ \
T3 • T4

\
T6

Figure 13

For example, in the model in figure 13 the following trek-separability
facts hold.

O-order trek-separated:
{<T1,T5> <T3,T5> <T4,T5> <T6,T5> }

1st-order trek-separted:
{<T1,T4 by T3> <T1,T6 by T4 or T3> <T2,T6 by T4> <T3,T6 by T4> }

2nd-0rder trek-separated:
{ <T2,T3 by {T1 ,T4}> }

The SCALES program finds a pure latent variable model and with it
determines the O-order and 1st-order trek separability facts. We use its
output as input to a slight modification of the PC algorithm:

Latent-PC

Begin with a complete undirected graph G among T.
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For each pair <Tj,Tj> that are 0-order trek separated, remove the
edge Ti-Tj in G.

For each pair Tj.Tj that still have an edge between them in G, remove
Tj-Tj are 1st-order trek separated by some Tk,

For each triple Ti, Tj, Tk, such that Ti-Tj and Tj-Tk and not Ti-Tk,
direct Ti->Tj and Tk->Tj if Ti and Tk are 0-order trek separated.

The question now reduces to how we can determine facts about O-order
and 1st-order trek-separability relations. There is an obvious method for
determining 0 order trek separability facts among latent variables. Two
measured variables are uncorrelated in a pure latent variable model if and
only if they are effects of distinct latent variables that are not trek
connected. In figure 5, T2 is O-order trek separated from T4 because pX6
X13 = PX6 X14 = PX7 X13 = PX7 X14 = 0. In practice, we consider all the
correlation between a indicator from one latent and an indicator from
another. If the majority of these correlations are insignificant, then we
judge the pair of latents to be 0-order trek separated.

Tetrad equations among 1-2-1 foursomes in a pure measurement model
identify 1st order trek-separability relations. For example, on the left
side of figure 14 we show a 1-2-1 foursome in which T2 1st-order trek
separates T1 and T3. This structure and only this structure implies all
three tetrad equations among this foursome. Assuming that T1, T2 and T3
are trek connected, which we have already determined from the O-order
trek separability procedure, any other causal arrangement among the
three latents will imply only 1 tetrad equation, as we show on the right
side of figure 14.



19

T1 T2 T3

X1 X2 X3 X4
X1 X2 X3 X4

X1 X2 X3 X4

rX1 ,X3 * rX2,X4 = rX1 ,X4 * rX2,X3
rX1,X4 * rX2,X3 = rX1,X2 * rX3,X4 rX1,X4 * rX2,X3 = rX1,X2 * rX3,X4
rX1 ,X3 * rX2,X4 = rX1 ,X2 * rX3,X4

Figure 14

In order to determine whether a latent variable T2 1st-order trek
separates T1 and T3, we again exploit the redundancy inherent in a
multiplie-indicator model.

For each 1-2-1 foursome F in which T2 is the parent of the twosome
and T1 and T3 are parents of the singeltons,

For both tetrad equations T in F implied only by a model in
which T2 trek-separates T1 and T3,

If p(T) > user set significance level, then Score:= Score + p(T)
else Score:= Score - (1 - p(T)).

If Score > 0, then T2 trek separates T1 and T3.

If, for a given triple of latent variables, we discover that the score for
more than one 1st-order trek separation relation is greater than 0, we
take only the relation with the largest score to be true, thus we avoid
inconistency.

4. Reliability
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There are two issues that bear on the full algorithm's reliability. First
we can consider PC-latents reliability, i.e. the full algoritym's reliability
if the the facts about O-order and 1st-order trek-separability latent-PC
takes as input are correct, and second we can consider its reliability in
determing these facts, i.e. the reliability of SCALES.

4.1 Latent-PC Reliability

First suppose that latent-PC receives correct O-order and 1st-order trek
separability facts. Two variables Vj and Vj are adjacent if and only if Vj
is a direct cause of Vj or vice versa. The full set of trek-separability
facts determine the full set of adjacencies. A subset of the trek-
separability facts determine a superset of the adjacencies. Because we
can now only determine O-order and 1st-order trek separability facts, the
algorithm can at best identify all the correct adjacencies, but might also
identify some that do not exist. It may well be that non-quadratic
constraints on correlations determine further higher order trek
separability relations among the unmeasured variables, but it is now an
open question.

The test for ordering we perform in latent-PC is strictly weaker than the
full PC test. Thus, latent-PC might fail to order an edge that the full PC
algorithm could order, but it will never order an edge that the full PC
algorithm would leave undirected.

For an example of what the latent-PC algorithm could recover with the
correct 0-rder and 1st-order trek separability facts, consider figure 15.
Let a pattern be a graph in which some edges are directed and some are
not. Both graphs in figure 15 are displayed as patterns. An edge is
undirected in a pattern if the full PC algorithm for ordering cannot order
it.14

14See(Spirtes91)
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E.g.,

True Pattern Recovered Pattern

T1 +12 * T5

T3 T4

\
T6

Figure 15

Latent-PC would recover all the adjacencies, but add one that does not
exist in the true pattern, T2-T3. It does so because <T2,T3> are 2nd-order
trek-separated by {T1.T4}, but latent-PC cannot obtain such information
and would thus leave in the edge.

4.2 SCALES Reliability

The reliability of the SCALES procedure is less well understood.

If
1) the statistical assumptions are satisfied, and
2) the clustering information is correct, and
3) there is a measurement model of the true model such that there
are at least two pure indicators connected to each latent, and
4) there is no sampling error,
5) no tetrad equations hold in the population that are not implied by
the causal structure,

then,
there exist cutoffs such that SCALES will output the correct O-order
and 1st-order trek separability facts.
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We do not know exactly what these cutoffs are, and we are currently
performing monte carlo simulation tests to optimize them.

5. Complexity.

The algorithm's complexity is determined by the number of tetrad
differences it must check, which is determine by how many foursomes of
variables there are. If there are n measured variables the total number of
foursomes is O(n4). We don't check each possible foursome, however, and
the actual complexity depends on the number of latent variables and how
many variables measure each latent. If there are m latent variables and s
measured variables for each, then the number of foursomes is O(m * s4)
Under these assumptions, the number of intra-construct foursomes is

exactly m*s4. The number of 2x2 foursomes is s-1 * ( 2 ) * m- T n e

number of 3x1 foursomes is m* (^ ) + s*m*( s~2 ). Thus the order of the

calculation is m*s4. Since m*s = n, this is O(n * s3), which is much lower

than O(n4) if s « n.

We have implemented the algorithm in Pascal on a Decstation 3100 and
tested it on graphs with up to six latent variables and 50 measured
variables. It runs in under 20 seconds on graphs of such size, and we are
thus confident that it is feasible to construct models with well over 100
measured variables.

6. Simulation Studies

The algorithm has already been used to extract causal information from
real data bases. Naval manpower researchers used an earlier version of
the algorithm to build latent variable models from a data base that
includes more than 200 variables and 7,000 observations. They were able
to find several plausible pure latent variable models that passed a
statistical goodness of fit test, even on a sample size powerful enough to
detect very small failures in any of the assumptions underlying the model.
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Pure latent variable models that pass a chi-square test on samples of this
size are almost unheard of.

Decisions throughout the SCALES procedure rest on simultaneously testing
individual tetrad equations that are not independent. Simultaneous
inference is a well known statistical problem, but solutions to it that we
might apply are still forthcoming. Our best evidence about its reliability
on realistic data can at present only come from Monte Carlo studies.

We conducted simulation studies on the causal graph in figure 9, which
has 10 impure indicators out of a possible 32.

True Causal Graph

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30 X31 X32

Impure Indicators = {x1, x2, x4, x10, x12, x14, x18, x23, x25, x27, x30}

Figure 16

We set the distribution for the exogenous variables to be standard
multivariate normal (all variables have mean 0 and variance 1), and chose
the linear coefficients randomly to be inbetween .5 and 1.5. We generated
data from this model for each unit in the sample by psuedo-randomly
sampling to produce values for the exogenous variables, and then by using



24

the linear equations to fill in the values for the rest of the variables. We
recorded only data for the measured variables, i.e. those that begin with X.

We conducted 20 trials at sample sizes of 100, 500, and 2000. We
counted errors of commission and errors of ommission for 0 order and 1st
order trek separability. In each case we counted how many errors the
procedure could have made and how many it actually made. We also give
the number of samples in which the algorithm identified the trek
separability facts perfectly. At sample size 2,000, the algorithm was
literally perfect.

Sample Size 0 order

Commission Omission

1st Order Number

Commission Omission Perfect

100 2/80 0/40 7/220 1/20 13/20

500 1/80 0/40 2/220 0/20 19/20

2000 20/20

In a more substantial study, we used the base model we show in figure 17,
and added causal connections to it randomly that make indicators impure.

Figure 17
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We varied three parameters, the proportion of indicators are latent-
measured impure (Im-prop), the proportion of indicators that are
measured-measured impure (mm-prop), and the sample size. For this
study we kept the cutoff fixed arbitrarily at .25. In the first study we
kept mm-prop at 0 and varied only the Im-prop and the sample size. We
show the results graphically below. The behavior of the algorithm is very
reliable at sample sizes above 500 and at levels of impurity below .5.

Study 1

1) LM-prop
2) MM-prop
3) Sample

= (•1 .3 .5)
= 0

size = (100
4) Cutoff criterion = .

0

0

LM-prop

.5 —

.4 —

500
25

= .1

2000)

Prop.
Error 0.3 —

0.2 —

0.1 —

0.0 —

1CO.

0co-
OonOmO

100

Oom = O-order ommission
Oco = O-order commission
1om = 1st-order ommission
1co = 1st-order commission

500
Sample Size

i

2000
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LM-prop = .3

Error

0.5 —

0.4 —

0.3 —

0.2 —

0.1 -

0.0 - Oom

Oom = O-order ommission
Oco = O-order commission
1om = 1st-order ommission
1co = 1st-order commission

100 500
Sample Size

i
2000

LM-prop = .5

0.5 —

0.4 —

Prop.03

Error

0.2 —

0.1 —

0.0 —

Oom

1co

1om

Oco.

Oom
Oco

Oom 1om

1om

1CO

Oco

O-order ommission
O-order commission
1st-order ommission
st-order commission

Oom

I I
100 500

Sample Size

1om

1CO

Oco

I
2000
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Study 2

In the second study we kept Im-prop at 0 and varied mm-prop and the
sample size. Again, the performance is quite good at sample sizes over
500 and at levels of mm-prop impurity below .5.

1) LM-prop = 0
2) MM-prop = (.1 .3 .5 .7)
3) Sample size = (100 500
4) Cutoff criterion = .25

MM-prop = .1

0.5 —

0.4 —

0.3 -
Prop.
Error Q 2 __

0.1 —

0.0 —

2000)

Oom = 0-order ommission
Oco = O-order commission
1om = 1st-order ommission
1co = 1st-order commission

Oom
I I

100 500

Sample Size
2000
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MM-prop = .3

0.5 —

0.4 —

0.3 —
Prop.
E r r O r 0.2 - H

0.1 —

0.0 —

Oom = O-order ommission
Oco =* O-order commission
1om = 1st-order ommission
1co = 1st-order commission

lorn
Oco

I I
100 500

Sample Size

i
2000

MM-prop = .5

Prop.
Error

0.5 —

0.4 —

0.3 —

0.2 -

0.1 —

0.0 —

Oom = O-order ommission
Oco = O-order commission
1om = 1st-order ommission
1co = 1st-order commission

Oco

100 500
Sample Size

i

2000
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MM-prop = .7
Oom

0.5 —

0.4 —

0.3 —
Prop.
Erroro.2 -n

0.1 —

0.0 —

1co

1om

Oco-

Oom

Oom = O-order ommission
Oco = O-order commission
1om = 1st-order ommission
1co = 1st-order commission

— Oom
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1om

1co
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1co
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I I
100 500

Sample Size
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