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Stress systems in language: a connectionist examination

Pralilacl Gupta*

Abstract

Metrical phonology is a relatively successful linguistic theory that attempts to explain stress systems
in language. This paper discusses a connectionist model that learns a variety of stress patterns with-
out the incorporation, as processing primitives, of theoretical linguistic constructs such as wdriail
foot and parameter. An analysis of the learnability of various stress patterns is developed, hnsed on
learning results and connection weights developed for different stress systems. This analysis predicts
that certain aspects of stress systems will be more difficult to learn, at least within the computa-
tional framework adopted. The model demonstrates an ability to generalize, and its encoding of
know lodge of stress patterns indicates systematicity. with symmetries among stress patterns bring
rHIretrd in the encoded knowledge. f-

1. Introduction

The work decribed here is an a t tempt to apply connectionist techniques to modeling; the learning;
and processing of certain aspects of language. The domain of language chosen for exploration
is slnss sf/sh nts: the reasons for this choice, as in the case of recent work by Dresher K' Kaye
([Dresher {)()]). are: (a) that the linguistic theory of stress (metrical phonology) is fairly well-
developed, so tha t , compared with (for example) the domain of syntax, there is a relatively com-
plete linguistic description of the observed phenomena: and (b) that stress systems can be studied
relatively independently of other aspects of language ([Dresher 90. page 1]). Thus, stress systems
were chosen as a relatively constrained and linguistically well-defined domain.

The focus has been on computational-issues, such as the kinds of connectionist architecture that
are minimally necessary for the task, and on analysis of the internal states of trained networks,
to determine which aspects of those states contribute to the network's having learned the task.
Additionally an a t tempt has been to examine the nature of the relationship of linguistic theory to
language processing.

1.1. Linguistic structure in language processing

There j s controversy over the relation of linguistic theory to the processing involved in the human
use of language. For example. Treiman [Treiman 89] concludes that there is evidence for the psycho-
logical reality of syllable structure in human language processing, while Seidenberg [Seidenberg; K0]
draws a distinction between linguistic constructs as analytical tools, on the one hand, and the
explicit representation and incorporation of these constructs into models of language processing,
on the other. This suggests that the latter is not necessarily appropriate, and that results such

*1 am grateful to Dave Touretzky for much helpful discussion and many valuable suggestions through Hie course of
this work. Deinlre Wheeler provided extensive feedback throughout. I would also like to thank Brian MarWhinnev,
.lay McClelland. Eric Nyberg. Brad Piitchett and Steve Small for helpful comments.



as Treiman's are perhaps better viewed as epiphenomenal effects of processing rather than as ev-
idence for any explicit representation of syllable structure in processing. Carlson fc Tanenhaus
([Carlson 89]) note that these differing perspectives reflect an underlying tension in the field of
psycholinguistics. Seidenberg's views, moreover, are representative of the "connectionist" perspec-
tive: see. for example. [McClelland 86], which suggests that much of the structure perceived In-
human cognitive processing may be epiphenomenal in nature, rather than explicitly present in pro-
cessing representations. See also [Jackendoff 88] on differing views about the relevance of linguistic
theory to models of language processing.

1.2. Modeling approaches

Those differing perspectives point to various possible approaches to language modeling.
One approach would take linguistic analyses and constructs as its starting point, and would

base processing models on the manipulation, by structure-sensitive operations, of representations
of such constructs. This would be. in Fodor <*c Pylyshyn's view [Fodor HH]. the "classical" approach:
it makes the assumption that explicitly structured representations are necessary in processing, and
that those structures correspond to those suggested by linguistic analysis.

Another approach, exemplified by some "connectionist" models of language processing, takes as
a guiding principle the requirement that the individual computing elements in a model be simple
"neuron-like* units, and seeks to simulate phenomena observed in language processing (typically
a.ddrossod by the analyses of theoretical linguistics) without explicit incorporation of linguistic
constructs into the models: the at tempt here is to explain the observed linguistic phenomena as
epiphenomena of parallel distributed processing. For example, in Elman's work [Elman Sf)]. 1 ho
processing of sentences with embedded relative clauses ( The boy who chased tlu boy who kicked tlu
cfit tripped) involves no recursive syntactic structure explicitly manipulated or constructed by t ho
processing at any given moment, but processing dynamics suggest recursive structure in time.

One way of viewing the relationship between these two approaches is in terms of (an interproia-
tion of) David M a r r s characterization of information-processing tasks ([Man* 82]). which proposes
throe levels at which the task needs to be understood or analyzed: (1) the level of cftmpulational
theory, at which an abstract functional description is provided of what is being computed: (2) tho
lovel of represf ntation find algorithm, at which representations of the inputs and outputs of tho
function characterized at the first level are specified, are algorithms that transform representations
ol inputs to representations of outputs: (3) the implementation level, at which tho instantiation of
the computation in physical processing elements is considered.

In terms of this framework, the descriptions of language provided by linguistic analyses can be
seen as belonging to the first level; they characterize the output of the function being computed
in terms of constraints that apply to that output: this provides general constraints on the nature
of strategies that may be employed in computing the function. For example, constraints on the
structure of linguistic expressions are specified by syntactic analysis: and those constraints have
implications for the computational mechanisms that may be involved: those mechanisms must
provide a basis for the production of output conforming to the structural constraints.

Hot h classical and connectionist models (of. for example, language processing), are character-
izations of the language information-processing task formulated at Man's second level, that of
representation and algorithm. They differ in assumptions regarding the appropriate nature of
representations and algorithms. Classical models assume the appropriateness of representations
involving a compositional syntax, and of algorithms formulated in structure-sensitive forms to op-
orafo on those explicitly structured representations. Connectionist models assume representations
that aro not explicitly structured, and algorithms specified in terms of primitive operations on prim-
itive* computing elements, rather than in terms of operations on structural primitives. A further
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characterization that can be made of the two approaches is that classical models employ represen-
tations that explicitly incorporate the constraints suggested by level 1 analyses; representations in
coniiectioiiist models are intended to incorporate to a greater extent the constraints suggested by
neural science, which is concerned with issues relating to level 3. For example, classical models
of language processing employ representations such as parse trees and semantic networks, which
explicitly incorporate the notions of structure suggested by syntactic analyses of linguistic compe-
tence: connectionist models of language processing employ representations such as the activations
of "layers of units", where the layers of units are taken to be analogues of populations of neurons.
A third distinction is that, in connectionist modeling approaches, the issue of learning is intimately
bound up with that of processing mechanisms and the construction of representations, whereas in
classical approaches, there is less concern with the learning of representations, and. to the extent
that learning is modelled, it is considered to involve processing mechanisms distinct from those
that apply what has been learned. That is. in classical learning, there may be one set of com-
putational operations involved in building up (i.e.. learning) knowledge structures: subsequently,
cognitive processing is considered to involve the manipulation of those learned knowledge structure's
by other operations, ones which may be distinct from those that were involved in learning.

1.3. Aims and motivation of the present work

Tin: rationale of the present work is that it should be more interesting and fruitful to compare
"connect ionist" and "classical" approaches for a relatively well-defined domain of language (one*
for which theoretical analyses provide relatively good coverage) than it would be for fragmentary
aspects of a less well-defined linguistic domain. This motivated the choice of stress systt nis a.s
t lie domain of exploration, rather than of more particular phenomena such as prepositional phrase
attachment or particular inflectional paradigms.

Tin* aims an1: (a) to explore the ability of connectionist techniques to model the assignment of
stress in individual words: and (b) to consider, in the light of this investigation, the assumptions
and relationship of the connectionist and classical approaches—in particular, to examine the con-
nect iouist view that the constructs of theoretical linguistics belong at the level of description, and
that they need not form part of the inventory of computational primitives in a prex-essing model.

2. Background: s tress sys tems in language

2.1. Evolution of linguistic theory

The linguistic analysis of stress systems has evolved through a number of phases: (I) Linear analyses
presented stress as a phonemic feature of individual vowels, with different levels of stress repre-
sent in.u; different levels of absolute prominence: this was the approach taken in [Trager 51], and
culminated in the analysis of stress presented in Chomsky k Halle's seminal The Sound Pattern
of English [Chomsky f)N]. (II) Metrical theory, as developed in [Liberman 75] and [Liberman 77].
introduced both a non-linear analysis of stress patterns (in terms of metrical trees), and the treat-
ment of stress as a relative property rather than an absolute one: however, the stressfeature was
retained in the analysis. (Ill) In subsequent developments ([Prince 76]. [Selkirk 80]). reliance on
this feature was eliminated by incorporation of the idea that subtrees of metrical trees had an inde-
pendent status (nietrieal feet)- so that stress assignment rules could make reference to them. (IV)
The positing of internal structure for syllables ([Vergnaud 78]. [McCarthy 79a]. [McCarthy 70b])
provided a means of distinguishing light and heavy syllables, a distinction to which stress patterns
are widely sensitive, but which had been problematic under previous analyses. (V) An analysis
of metrical tree geometries ([Hayes SO]) provided an account of many aspects of st ress systems in
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terms of a small number of parameters.
Throughout the development of metrical theory, there has been debate over whether Ihe auto-

segmental representational structures for stress are metrical trees only ([Hayes 80]), metrical grids
only ([Prince 83], [Selkirk 84]), or some combination of the two ([Liberman 75], [Liberman 77],
[Hayes 84a]. [Hayes 84b], [Halle 87a], [Halle 87b]).

2.2. Syllable structure and stress

A syllable is analyzed as being composed of the onset, which contains the material before the vowel,
and the rime: the rime is composed of the nucleus, which contains the vocalic material, and the
coda, which contains any remaining (non-vocalic) material. (For further discussion, see [Kayo NO.
pp. r>.J-r>x]).

A syllable may be open (it ends in a vowel): or closed (it ends in a consonant). In terms of
syllable structure, an open syllable has a non-branching rime (the rime has a nucleus, but not a.
coda), and a closed syllable has a branching rime (the rime has both a nucleus and a coda).

In many languages, stress tends to be placed on certain kindsof syllables rather than on others:
the funnei- are termed heavy syllables, and the latter light syllables. What counts as a heavy
or a light syllable may differ across languages in which such a distinction is present, but. most
commonly, a heavy syllable is one that can be characterized as having a branching rime, and a
light syllable can be characterized as having a non-branching rime. ([Goldsmith 00. page 113]).
Languages that involve such a distinction (between heavy and light syllables, i.e.. between the
w( ighf of syllables) are termed quantity-sensitive, and languages that do not. quanfity-instnsilivt.
(Note* tha t , in quantity-insensitive languages, syllables can occur both with and without branching
rimes: but Ihe distinction between these kinds of syllables has no relevance for the* placement of
st ress).

2 . 3 . Metrical theory

'There seems to be t heoret ical agreement that stress patterns are sensitive to information about
syllable structure, and in particular, to the structure of the syllable rime, and not the syllable
onsii. Thus, for example, according to Dresher <k~ Kaye. "// is generally agreed thai ons< Is an not
rthvanl to slrtss ruhs" ([Dresher 90. page 3]: see also [Goldsmith 90. page 170]). Metrical theory
thus takes rime structure as the basic level at which accounts of stress patterns can be formulated.
(However, both [Davis NN] and [Everett 84] present evidence that onsets may in fact be relevant to
the placement of stress).

The theory of metrical phonology further involves the notion that stress patterns are controlled
by metrical structures built on top of rime structures. (For an overview of metrical theory, see
[Goldsmith 90. chapter 4]. [Kaye 89. pp. 139-145]. [van der Hulst 82] or [Dresher 90. pp. 1-8]). As
discussed earlier, in one version of the theory, these metrical structures are metrical tires, whose
construction can be characterized in terms of a number of parameters. One formulation of these
parameters is as follows ([Dresher 90. p.4]):

( I) The word-tree is strong on the [Left/Right]
(2) I'eet are [Binary/Unbounded]
(3) Feet are built from the [Left/Right]
(4) Feet are strong on the [Left/Right]
(5) \>W\ are Quantity-Sensitive (QS) [Yes/No]
(0) Feel are QS to the [Rime/Nucleus]
(7) A strong branch of a foot must itself branch [No/Yes]



(8) There is an extrametrical syllable [Yes/No]
(0) It is extrametrical on the [Left/Right]
(10) A weak foot is defooted in clash [No/Yes]
(11) Feet are non-iterative [No/Yes]

As a result of this parametrized characterization, metrical theory is an exemplar of the prinripU s
and parameters approach, of which a central hypothesis is that language learning proceeds through
the learning of appropriate values (settings) for parameters. A particular set of parameter settings
characterizes a particular possible human language: once the parameter settings are determined,
the nature of structure-sensitive operations and the nature of the linguistic structures on which
they operate is known, so that the structures and processes involved in language processing are
automatically determined (at an abstract level). For example, if parameter (2) above is determined
to be set to [Binary], parameter (3) to [Left] and parameter (4) to [Right], then this not only
characterizes the language, but also means that the processing relevant to the imposition of stress
contours on words is determined, and corresponds, in the abstract, to the assigning of stress to
words by (among other things) construction of binary, left-headed, metrical trees, from left to right.
Learning the stress pattern of the language involves determining (i.e.. learning) the appropriate
parameter settings: subsequently, the assignment of stress in the actual production or proassingof
language involves neural processes that correspond quite directly with the abstract application of
these parameter settings as guidelines to the construction and manipulation of metrical feet.

2.4. A connectionist perspective

Thus, metrical theory: (a ) cons t i tu tes a fairly well-developed sys tem for specification of the reg-
ularities observed in the stress sys tems of h u m a n languages: (b) posits abs t rac t representa t ional
s t ruc tu res and s t ructure-sensi t ive opera t ions on those s t ruc tu res as the basis of that specification
sys tem: (<•) provides an abs t rac t account , in t e rms of character is t ics of that specification sys tem,
of what it is t h a t is learned in the acquisit ion of a stress sys tem.

Iroin the connectionist point of view, metr ical theory provides one of the clearest available
analyses of a relatively independent domain of language. Applied to this domain , one possible
connectionist view would be (a) t h a t the analysis provided by the theory is a Marr ian level I
analysis: (b) tha t the parameters of metr ica l phonology are not computa t iona l primitives that
must necessarily be incorpora ted in a processing model of the learning of s tress: and . (c) that the
ass ignment of stress to words , once the stress p a t t e r n has been learned, does not necessarily involve
metrical trees/grids as computational/representational primitives.

In this view, there is no necessity for processing models to directly incorporate constructs such
as those of theoretical linguistics. However, the plausibility of such a claim, and the value of such
an approach, can only be determined by investigation of whether or not connectionist models can in
fact learn t he correct assignment of stress, quite generally, for a variety of different stress patterns.

2.5. Other computational models of stress systems

Computational models of stress systems in language processing have been developed by Dresher
<V- Kaye ([Dresher 90]) and by Nyberg ([Nyberg 89]. The focus of both of those models is on the
learning of the jxirameters specified by metrical theory: they therefore take as a starting point t he
constructs of that theory, and incorporate its assumptions. What they add to the linguistic theory
is what Dresher <*c Kaye term a learning theory, a specification of how linguistic data the language
learner encounters in its environment is to be used in order to set parameters. The following features
can be said to characterize these two models: (1) they assume the existence of processes explicitly



corresponding to the linguistic notion of parameter setting; (2) the learning theory they propose as
an account of that parameter-setting process is couched in terms of a "classical^ model: (3) they
assume that the process of production (i.e., of producing appropriate stress contours for input words,
after learning has occurred) involves explicit representational structures and structure-sensitive
operations directly corresponding to metrical-theoretic trees and operations on those trees: (4) they
assume no necessary relationship between the processing mechanisms and structures involved in
ham ing ami production. That is, as discussed in Section 1.2., learning involves mechanisms leading
to the configuration of the various parameters of metrical theory: these then form a knowledge base
for stress assignment, whose processing involves, for example, the construction of binary trees from
right 1o left - an operation having no necessary correspondence with the operations by which I he
parameters were learned.

The work reported here differs from the Dresher <k: Kaye and Nyberg models with regard to
these same characteristics: (1) the aim here is to explore the issue of learning of stress systems
without explicit incorporation of parameters: (2) the learning theory employed consists of one
of the general learning algorithms common in connectionist modeling, in conjunction with the
specific network architectures developed: (3) the process of production does not involve explicitly
structured representations in the classical sense: (4) the processing mechanisms and structures
involved in production are essentially the same as those involved in learning.

All of these differences are. of course, primarily the domain-specific manifestations of classical-
ccMined ionist emit rast s.

3. Description of the model

3.1. Scope

As in the case of work by Dresher <L~ Kaye and Nyberg ([Dresher 90]. [Nyberg 89]). the scope of I li*»
present work has been limited to consideration of the placement of stress in single words: moreover,
again as in the other models, the effects of niorpho-syntactic information (such as lexical category
of the word) on the placement of stress are ignored.

3.2. Assumpt ions

The following discussion applies to stress phenomena within the scope delineated above.
As mentioned earlier (Section 2.3.). it has been widely accepted that it is the material contained

in the syllable rime that is relevant to the placement of stress, with material in the syllable onset
being irrelevant; more recently, however, there has been discussion of the role of the onset in stress
systems. Here, the simplifying assumption is made that only information about the syllabic material
in rimes is relevant to stress systems: this follows the assumption made in the computational models
developed by Dresher <<c Kaye ([Dresher 90. p.3]) and by Nyberg (personal communication).

As discussed in Section 2.2.. in Quantity-Sensitive (QS) languages, the assignment of stress is
sensitive to the weight of syllables, while in Quantity-Insensitive (QI) stress systems, the weight
of syllables is irrelevant. Words of a given number of syllables in length can differ in terms of tin*
weights of the actual syllables that comprise them. In QI systems, the stress contour will be the
same for all //-syllable words, since syllable weight is immaterial. In QS systems, the stress contour
will not be the same for all //-syllable words, since the placement of stress is affected by syllable
weight.

As also discussed in Section 2.2.. in QS systems, what most commonly counts as a heavy syllable
is one with a branching rime, while a Ught syllable is one with a non-branching rime. However, it is
possible for other properties of the syllable to be criteria! in determining weight. For example, in



Central Siberian Yup ik, it is syllables with a long vowel that count as heavy; closed syllables with
short vowels do not count as heavy, as they would in the more commonly-occurring heavy-light
distinction ([Goldsmith 90, p. 179]).

In the parameter scheme for metrical phonology developed by Dresher fc Kaye ([Dresher 90,
p.4]. summarized in Section 2.3. above), this distinction between types of quantity-sensitivity is
handled by incorporation of the following parameter: (6) Feet are QS to the [Rime/Nucleus]. If
parameter ((>) is set to [Rime], this amounts to specifying that the stress system has quantity-
sensitivity involving a distinction between branching and non-branching rimes (or. equivalently.
between closed and open syllables): thus a syllable with a branching rime is treated as heavy.
and one without a branching rime is treated as light. Let this be designated "Type A" quantitv-
sensitivitv. If (6) is set to [Nucleus], this means that what will count as heavy in the stress system
is a long vowel, i.e.. a rime with a branching nucleus: this is exemplified by the quantity-sensitive
system of Yupik, which may be designated "Type B" . (A long vowel is analyzed as occupying two
(inn slots or motne. which are dominated by the nucleus, while a short vowel occupies only one
mom: thus a long vowel corresponds to a branching nucleus, and a short vowel to a non-branching
nucleus).

The assumption implicit in this parameter scheme is that these are the only two kinds of
quantity-sensitivity that occur: and this same assumption will be made here. In other words. the
only features of a syllable that can be criterial in determining weight are (i) whether or not there*
is a branching rime, and (ii) whether or not there is a branching nucleus.

In t he present work, the aim has been to draw upon linguistic analysis for insight regarding what
information must be available in a processing model of stress learning/assignment. For quantity-
sensitive stress systems of "Type A", information must be available about the presence/absence
of syllable-final non-vocalic material: for quantity-sensitivity of "Type B". information must be
available about whether vocalic material in the syllable is of one or more worae in duration.

(Jeneralizino; over these informational requirements, it can be seen that the input to a stress
learning/assignment system must encode the following information for each syllable: (a) whether
the syllable has a coda (Yes/No): (b) whether the duration of vocalic material is one ntom or more
(Single/Multiple). The possible values for these features set up a necessary four-way distinction
between syllables, as follows: ( I ) ("Type 1") coda and multiple-mora vocalic: (2) ("Type 2")
coda and single-mora vocalic: (3) ("Type 3") multiple-mora vocalic but no coda: (4) ("Type \")
single-mora vocalic, and no coda.

Input that represents syllables categorized into one of the these four types encodes sufficient
information for assignment of stress in any QI or QS language (within the scope of consideration
adopted here). In a QI language, the categorization will be immaterial - all syllables are equal; in
a "Type A'* QS language, syllables of types (1) and (2) will count as heavy, and all others as light;
in a "Type B" QS language, syllables of types (1) and (3) will count as heavy, and all others as
Itelii.

('onceptually. therefore, input to a stress learning/assigning system could be imagined as coming
from ot her (unspecified) kinds of processing that syllabify the speech signal, and categorize syllables
into the four above types: it seems reasonable to assume the existence of processing mechanisms
that can make this four-way distinction.

In practice, in the model adopted here, a further simplification has been made: the input consists
of syllables that are distinguished only in terms of whether they are light or htavy. Since what
counts as light or heavy varies across stress patterns, this amounts to encoding some additional
information into the input. However, encoding additional information seems reasonable in view
of the fact that the kinds of representations that have been discussed here ("syllable", "heavy
syllable", "light syllable") are in any case abstractions: if the input were not to be an abstraction
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in any souse. it would have to be a speech signal.

3.3. Linguistic data

Descriptions of stress systems have been taken from [Hayes SO]. Nine Quant it y-InscMisit ivc» ami ten
Quant iiy-Sensjtive stress patterns were examined:

Quantity-Insensitive: Latvian. French. Maranungku. Weri. Garawa. Lakot;i. Polish. Southern
Piiiuie ;in<| Warao.

Quantity-Sensitive: Koya. West Greenlandic Eskimo. Malayalam. Yapese. Ossetk*. Hoimnsm.
Eastern Pennyak Komi. Eastern Cheremis. Khalkha Mongolian and Aguacatec Maysm.

3.4. Network architecture and processing

A "module" is a data structure representing a set of connectionist "units". A number of "modules"
constitute the input layer of the network: each of these is connected through an array of connection
weights to the output layer. The modules implement a buffer into which input is shifted from right
to loft: thus modules are used as elements in an input buffer which is the input layer of the network.

Figure 1 illustrates the architecture for a 2-Jayer network. Input representing the sequence of
syllables comprising a word enters at the rightmost module (buffer element) and can be thought
<>f as being transmitted through the buffer from each module to the module on its left. Thus if ;in
input enters the rightmost module at time /. then at time t+L this first module transmits to the
second module, and also receives the next external input.

The center module (i.e.. element of the buffer) is designated as a "monitored" element: trans-
mission of inputs in the various modules in the buffer occurs only when the "monitored" module
is kiac1ive~. i.e.. has some input in it. Whenever that is so. all the modules (i.e.. buffer elenienis)
that are active transmit to the output layer, to which they are connected by weighted connect ions.
This buffering scheme amounts to a moving window.

In silmosl silJ simulations that will be described here, the output layer has consisted of a single
ii nil. Inputs to the system are conceived of as being in twoparaDel streams, with ihe (representation



of) the signal carrying information about the sound segments (syllables, really) "flowing" through
the input buffer, as just described, and associated suprasegmental information (in this case, the
stress associated with each syllabic unit) flowing through an identical, parallel buffer, synchronously
with the syllabic-segmental information. Thus at any point, when a module in the input buffer
contains a particular syllable, the corresponding module in the "suprasegmentar buffer contains
the stress associated with that syllable. So. when the "monitored" element in the input buffer
has input, and the contents of the buffer are therefore going to be transmitted, the module of
the "suprasegmenta.r buffer corresponding to the monitored input module will contain the stress
appropriate for the monitored input. The monitored module therefore contains what is treated
as the "current input", and the buffer as a whole contains the whole word: at each point, the
"monitored" module in the suprasegmental buffer contains the "target pattern" for the current
input.

Training of the network proceeds in standard connectionist fashion: the input pattern consists
of the whole word (as a stream of syllables), and the training target is the stress for that part
of the input that is in the "monitored" module. Training proceeds by error correction, based on
the difference between the output evoked at the output unit and what the target was: connection
weights are updated appropriately.

A Her training to some criteria! point, a final pass over the input training set is made by way of
"testing" of the network. Weights are not changed at this point: inputs are fed into the network,
and outputs are observed and compared with targets.

Figun1 1 shows that the buffer is composed of modules: each module, however, represents a
grouping of connectionist units, a subdivision that is not indicated in the figure. In the architectures
used here, each module was taken to have two units, so that the set of modules comprising, say.
the input buffer, can as well be thought of as a more typical array structure consisting of two rows
of* cells.

Two input representation schemes were used:

1. Syllabic information only: that is. an /?-syllable word is represented as a sequence of n identical
tokens: the associated stress pattern is represented as a sequence of stress levels. For example,
a seven-syllable word is represented as [S S S S S S SJ. and the associated stress pattern for
a language with word-initial stress would be [1 0 0 0 0 0 ()]. Note that this ("syllabic")
representation is insufficient for quantity-sensitive languages. Each S token is represented in
the simulations as a [I 1] vector. Thus when the first syllable enters the input buffer, t he two
units of the rightmost module (module 9, in Figure 1) receive inputs of " 1 " .

2. Information about syllables and syllable weight. A heavy syllable is represented as H, and a
light syllable as L. For example, a seven-syllable word consisting of alternate heavy and light
syllables would be represented as [H L H L H L H] ("weight strings"). This information is
minimally necessary for quantity-sensitive languages. An Htoken is encoded as the vector [I
0], and an L token as the vector [0 lj.

In models with a single output unit, the training target for Primary Stress was a [1] vector, for
Secondary stress a [0.5] vector, and for no stress a [0] vector. For stress systems involving three
levels of stress, a slightly different scheme was used: a [1] vector for Primary stress, and a [0] vector
for no stress, as before: but Secondary stress was represented by a [0.6] vector, and Tertiary stress
by a [0.-15] vector.

Where two output units were used. Primary stress was represented as a [1 1] vector. Secondary
stress as a [1 0] vector, and no stress as a [0 0] vector. Tertiary stress was represented as a [0 I]
vector.
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As a more detailed example of processing, suppose that the next word in the training set for
some QI language is the four-syllable [S S S 5/, and the associated stress pattern (i.e., target), is
[0 0 0 1] (indicating that the final syllable receives stress, and all other syllables are unstressed).
The units in each module in both the input and target buffers ("segmentar and "stress" buffers,
in Figure 1) at this point have zero activations. (A representation of) the first syllable enters the
rightmost element (module 9) of the input buffer, and simultaneously, (a representation of) the
target stress for that syllable (zero stress) enters module 9 of the target buffer. However, no forward
propagation of activation takes place from the input buffer (layer) to the output layer, since the
"monitored" module in the input layer (module 0) is inactive, i.e.. has zero activation in its units.
This simulates one "time cycle * of processing. On the next time cycle, the activations in module
9 of both the input and target buffers are transmitted, imchanyeih to module 8 of each buffer:
the next syllable enters module 9 of the input buffer, and the associated stress enters module 0 of
the target buffer. No forward propagation of activation will occur on this time cycle either, since
module 0 of the input buffer is still inactive.

After two further time cycles, modules (3. 7. 8 and 9 of the input buffer contain the four syllables
of the current word, and the corresponding modules of the target buffer contain the associated
stress levels for those syllables. On the fifth time cycle, a vector of zeroes enters module 9 of the
input buffer (indicating "no input"), and also module 9 of the target buffer. On the next four time
cycles, the leftward flow of activations through the two buffers continues, still without any forward
propagation from the input layer to the output layer, until, at the end of time cycle 9. the activations
are in modules 1 through 4. (Modules 5 through 9 of both buffers contain zero activations, as a
result of the leftward flow of the zero vectors that entered on time cycle 5). On time cycle 10.
the activations move into modules 0 through 4 of the two buffers: the "monitored" module of the
input buffer is for the first time "active", i.e.. its units have non-zero activation. On this cycle*,
therefore, "transmission" occurs from the input buffer: all the input buffer modules that are active,
propagate* their activations forward to the output layer. This is the forward propagation part, of
the* connectionist processing. The target pattern for the output layer is whatever is in module* 0
of the* target buffer at this point. Computation of error, and the changing of connection weights
between the input and output layers, occurs in accordance with whatever learning algorithm is
being employed (in the simulations reported here, the back-propagation learning algorithm), if this
is t he "training" phase of the simulation. In descriptions of processing in the rest of this paper, the
eontenls e>f the "monitored" input buffer module at the time of a "transmission" from the* input
buller will be referred to as the "current input".

On the next time cycle, the "current input" will become the second syllable of the four-syllable
word, and forward propagation will occur again, as it will also on the next two time cycles (cycles
12 and 13). On time cycle 14, the leftward flow of activations through the buffers will leave module
0 in both buffers "inactive", and there will therefore be no transmission. At this point, both buffers
arex (IIISIHMI (activatiems of all units in all modules of the two buffers are set to zero), and one "trial"
is e»ver. The next word in the training set can now enter, beginning the next trial.

Thus the processing of one word, syllable by syllable, in a number of "time cycles", constitutes
e)ite» trial. One pass through all the words in the training set is one epoch.

I or purposes of further discussion, the following abbreviations will be used for the various
network architectures and input representations used in simulations:

• Network architectures:

1. Two layers, one output unit, back-propagation algorithm (N~t)

2. Two layers, two output units, back-propagation (N-2)
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A2
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A4

A5

A 6
AT
A<s

AD

L A N G U A G E

Latvian

French
Maraiiungku

Weri

Garawa

Lakota
Polish
Paiute

Warao

DESCRIPTION OF STRESS PATTERN

Fixed word-initial stress
Fixed word-final stress
Primary stress on initial syllable,
secondary stresses on every other
syllable thereafter
Main stress on final syllable,
with secondary stresses on each alt.
preceding syllable
Main stress on initial syllable,
secondary stress on penult,
tertiary stress on alternating
syllables preceding penult, but no
stress on second syllable
Fixed second stress
Fixed penultimate stress
Main stress on second vowel,
secondary stress on alternate
succeeding vowels
Main stress normally on penult,
with secondary stresses on alt.
syllables before the main stress

EXAMPLE

51505050505050
50505050505051
5I5U5L' 50 525O g2

S'2 5 ° S'2 S° S'J S{) S1

<jl <̂ f0 v,'O < '̂3 <̂ »0 <^2 <̂ »0

<^0 <^1 <^0 C,'O ̂ ' 0 ̂ '0 (̂ <)

^•0 c,«U ^ '0 ^ 0 5 0 ^'1 5 0

s° s1 s° s-s° s-s°

s{)s-s{)s-si}sls{)

EPOCHS ||
17
16
37

31

165

255
254

**

Table I: Quantity-Insensitive patterns: description, example stress assignment, and learning; per-
formance jn the X-j/S model.

• Input representations:

1. Syllabic representation (S)

2. Weight-string representation (HL)

.'{. Kqualized weight-string representation (HLE)

Thus a simulation employing a two-layer architecture with 2 output units, the back-propagation
algorithm, and a weight-string representation will be abbreviated as X-2/HL.

Except where otherwise noted, the input set comprises words of up to seven syllables in length.
for all the simulations discussed below.

4. Simulations: results and analysis

4.1. Quantity-Insensitive stress patterns

Nine Quantity-Insensitive (QI) languages were examined: Latvian. French. Maraiiungku. Weri.
Lakota. Polish. Southern Paiute. Warao and Garawa.

The stress patterns of Latvian k French. Maraiiungku <!e Weri. Lakota <t Polish, and Sont hern
Paiute <V* Warao are mirror images of each other. Table 1 summarizes the patterns for each language,
and exemplifies the assignment of stress to a seven-syllable word.

Latvian cV* French: Latvian is a language with fixed word-initial stress, while French has fixed
word-final stress.

Marannngku Ac Weri: In Maraiiungku. primary stress falls on the first syllable of a word, and
secondary stress on alternate syllables succeeding the first: in Weri. primary stress is on 1 he last
syllable* of a word, and secondary stress on alternate syllables preceding the last.
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Lakota k Polish: Lakota has primary stress on the second syllable; Polish has primary stress
on the penultimate syllable.

Southern Paiute k Warao: Southern Paiute assigns primary stress to the second syllable, and
secondary stresses to alternate syllables succeeding the second. In Warao, primary stress falls on
the penultimate syllable, and secondary stress on alternate syllables preceding the penult.

In Cara.wa. primary stress falls on the first syllable, secondary stress on the penultimate syllable,
and tertiary stress on alternate syllables preceding the penultimate. However, the second syllable
never bears any stress. (The first syllable never bears any stress other than primary).

Carawa exemplifies the tendency in human languages to avoid the appearance of stress on
adjacent syllables. The secondary and tertiary stress patterns, as stated above, would lead to the
assignment of tertiary stress to the second syllable in all words of odd length greater than three, and
to the assignment of secondary stress to the second syllable in words of length three. This would,
however, lead to stress appearing on both the first and the second syllables, which is avoided.

An incidence of stress on adjacent syllables, as an anomaly among regularities, is. in linguistic
analysis, termed stress clash.

4.1.1. Learning results

Using minimal connectionist architecture (X-l) and syllabic representation, seven of the nine QI
si ress patterns were learned with 100% accuracy. The last column of Table 1 shows the number
of epochs of training necessary to achieve 100% accuracy for each stress pattern (an epoch is one
presentation of the complete set of training data , in this case consisting of the seven possible
words of lengths one through seven syllables). In most cases, the figures are an average over three
simulation runs.

'The learning time for each member of the pairs of mirror-image stress patterns is closely similar.
Thus Latvian took 17 epochs and French 1(5: Maranungku 37 epochs and Weri 34: Lakota 2.r).r> epochs

and Polish 254. Carawa took 165 epochs. Paiute and Warao were not learnable in the X-l/S model.

4.1.2. Connection weight displays

Connection weights for the seven learned languages are shown in Figure 2. The display for each
language is a graphic depiction of the connection weights in the network when the language has
been learned with 100% accuracy. These connection weights represent the "knowledge" of the
stress pattern that the network has acquired: they both encode the network's "understanding" of
the pattern and enable the network to perform correct processing of input representations. .

Each display is a representation of the network as a whole. The large grey shaded rectangle at
the base of each display represents the input buffer of the network, with its two layers of input units
(see Section 3.4.). The single square protruding from the left of the input buffer is the bias unit to
the single output unit, which is represented by the protruding square on top of the input buffer. A
white blob in a particular position denotes a positive connection weight from the unit represented
by that position to the output unit: thus a white blob in the bias unit position represents a positive
connection weight from the bias unit to the output unit. A black blob denotes a negative connect ion
(from the unit represented by the position in which the blob appears) to the output unit. The
size (area) of the blobs is proportionate to the absolute magnitude of the positive/negative weight:
the weight with the largest absolute magnitude is depicted in each display as a perfect square, and
other weights are depicted by blobs of proportionate size. The scale (i.e.. absolute magnitude of
the largest weight) is indicated by the number in the title bar of each display. Thus, for Lakota.
the absolute magnitude of the largest weights is 4.02: these are the large (black) negative weights
left of center in the input buffer.
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2: Connection weights for the Quantity-Insensitive stress patterns learned by the N-l/S
del. Numbers in each title bar indicate the absolute magnitude of the largest weight: lionee i\\r

scalr of the weights display.
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Note that the weights displayed are those resulting from a single particular run, and not the
average of weights over a number of runs. As can be seen from the figure, and as might be expected,
the magnitude of connections weights differs across different stress patterns, but is the same for
the members of each pair of mirror-image stress patterns. The magnitude seems proportional to
training time, but does not in itself seem to correspond directly with any significant property of
the particular pattern.

To enable precise description of individual weights, let the input buffer be regarded as a 2x13
array: let the 7th (i.e. center) column be numbered 0: let the columns to the left of the center be
numbered negatively -1 through -6 going leftward from the center, and the columns to the right of
the center be numbered positively 1 through 6. going right-ward from the center. (This numbering
scheme is illustrated in Figure 1. which depicts a somewhat larger buffer size). Let the rows be /,
and // (upper and lower, respectively). Thus, the large negative weights mentioned earlier in the
display for Lakota are designated w-2L and w-2H.

As discussed in Section 3.4.. in the syllabic representation for inputs, a syllable is represented
uniformly by a [1 1] vector. Since both elements of input vectors are 1. the two rows of the buffer
have identical contents when using the syllabic representation.

4.1.3. Analysis of connection weights

lor Latvian, the large negative weights w-1 enable detection of the left edge of a word: only the
first syllable of a word passing through the input buffer from right to left will be unaffected by t hose
weights when it is the "'current input", i.e.. in position 0 in the buffer (see Section 3.4. for discussion
of processing in the networks). When any non-initial syllable of any word is the current input. there
will be some other ("previous") syllable to its left in the buffer. Activation to the output unit will
be negative, since the negative magnitude of w-1 is greater than the positive magnitude of the bias
weight. The oiiipul of the network (appearing at the output unit) will therefore be low. denoting
zero stress. The initial syllable of any word, however, will have no syllables to its left in the buffer,
and so ir I will have no effect. Activation to the output unit will therefore be positive (from the
bias unit ). and so the output of the network will be high, representing primary stress. lor French,
only the last syllable of a word will escape the effect of the large negative weights w+L and thus
only the last syllable will receive stress. Connection weights for French are the mirror image of
those for Latvian, just as the patterns themselves are mirror images of each other.

For Weri. the largest weights are ir+1; these are large negative weights. Consider the processing
of, say, a C-syllable word. When the leftmost syllable is the "current input" and the target output
is therefore the output for zero stress, there will be two pairs of medium-strength positive weights
(ic+2 and w+4) and two pairs of medium-strength negative weights (w+3 and w+5.) These four
pairs, representing four syllabic elements in the buffer, roughly cancel each other out. There is also
a pair of large negative weights (ic-hl). The net input to the output unit will therefore be negative,
resulting in the output for zero stress. When the second syllabic element is the current input, the
large negative weights w+1 still apply, as do the medium positive weights w+2 and w+j. However,
the medium negative weights applicable are now only w+3. Therefore, the net input to the output
unit is larger than it is for the previous syllable, and results in the desired output representing
secondary stress. A similar pat tern of alternation continues for all the syllables of the word: in
each case, there will be either a balance of medium and positive weights applicable (resulting in
zero stress) or one pair more of positive medium weights than negative medium weights, resulting
in secondary stress. The exception is the last syllable: when this is the current input, there will be
neither medium positive nor negative weights applied: but there will also not be the large negative
weights w+l. Thus this is the only syllable that escapes the effect of these large negative weights.
As a result, the net input to the output unit will be higher for this syllable than for any other.
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resulting, as desired, in an output representing primary stress. An analogous analysis can be made
for Maranungku, whose weights are the mirror image of those for Weri.

For Lakota, if the "current input" is a monosyllable, the bias unit triggers primary stress.
However, when the first syllable of a polysyllable is the current input, the negative weights w+1
override the bias activation. If the current input is the second syllable of a word, the output unit
receives high positive activation from w-1 in addition to the bias: this is sufficient to overcome the
negative weights w+1. However, any syllable after the second triggers the high negative activation
of w-J. and so cannot receive stress. The analysis for Polish is very similar.

In (iarawa. the first syllable receives stress from the bias unit. The second syllable triggers high
negative activation from w-L and so is never stressed (the positive weights ic-J cannot provide
positive activation for the second syllable). From the third syllable onwards, the presence or absence
of secondary stress is determined by the alternating weights w+1 through w+6. in conjunction with
w 2.

The connection weights indicate systematic encoding of knowledge of the patterns by the net-
works. The patterns of weights for stress patterns which are mirror images of each other are
themselves mirror images.

4.1.4. Learnabili ty

The learning times differ considerably for {Latvian, French). {Maranungku. Weri). {Lakoia.
Polish} and (iarawa. as shown in Table 1. Moreover. Paiute and Warao were unlearnable with
this model.

Examination of the inherent features of these stress patterns suggests various factors as being
relevant to the learning of stress patterns:

Al ternat ion of stresses (as opposed to a single stress) is suggested by the difference between
learning times for {Latvian. French) and {Maranungku. Weri}. which in turn suggests that the
number of stress levels may be relevant.

The greater learning time for Carawa suggests that stress clash avoidance is computationally
expensive.

In languages such as Latvian. French. Maranungku. Weri and Garawa. primary stress is always
on a syllable at the edge of the word. In Lakota and Polish, whose learning times are substantially
greater than those of the other languages, primary stress is always at a non-edge syllable, except
in disyllables and monosyllables: Paiute and Warao are identical, with respect to the placement
of primary stress, to Lakota and Polish, respectively, and are unlearnable; thus, placement of
primary stress seems computationally relevant. In particular, it appears more difficult to learn
patterns in which primary stress is assigned at the edges inconsistently.

To explore these indications more fully, and to determine what features of Paiute and Warao
led to their non-learnabilitv. a number of hypothetical stress patterns were examined. These stress
patterns are described in Table 2. and the analysis of learnability is summarized in Table :] for all
the QI stress patterns, both actual and hypothetical.

The following factors emerge as determinants of learnability for the range of QI patterns con-
sidered:

P r i m a r y Stress P lacement (PSP) : It is computationally expensive to learn the pattern if
neither edge receives primary stress except in monosyllables and disyllables. This can be
regarded as an index of computational complexity that takes the values {0. 1}: 1 if an edge
receives primary stress inconsistently, and 0. otherwise.

Stress Clash Avoidance (SCA) : If the components of a stress pattern can potentially lend to
stnss clash, then the language may either actually permit such stress clash, or it may avoid
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LANGUAGE

Latvian2stress
Latvian3stress
French 2s tress
French3stress
Latvian2edge
La( vian2edge2stress
N Iaraimngku3st ress
Weri3st ress
Lat vian2edge2st ress-alt
' larawa-SC
< iara\va2st ress-SC
Marai.ungku 1 st ress
\\ eri I stress
Lat vian2«dge-alt
(Jarawa 1 st ress-SC
Lat vian2edge2st less- 1 alt
' larawa-non-alt
Lat via..3st ress2edge-S( A
L;ttvian2edge-SCA
Lat vian2edge2stress-.SC A
< iara\va2st ress
Lat viai.2* f Ige2st ress-alt-SCA
f iarawal st less
Lat vian2edge-alt-SCA
Lat via..2edge2stress-lalt-SCA
Lakota2stress
Lakot a2edge
Lakota2edge2stress
Lakota-alt
Lakota2st ress-alt

DESCRIPTION OF STRESS PATTERN

Main stress on first syllable, secondary on second
Main stress on first, secondary on second, tertiary on third syllable
Main stress on final, secondary on antepenult
Main stress on final, secondary on penult, tertiary on antepenult
Main stress on first and last syllables
Main stress on first and last, secondary on antepenult
Main stress on first, secondary on penult, alternate preceding tertiary and srmndary slivsscs
Main stress on last, secondary on antepenult, alternate preceding tertiary and secondary stress
Main stress on first, secondary on penult and alternate preceding syllables
Main stress on first, secondary on penult, tertiary on alternate pr^rrding syllables
Main stress on first, secondary on penult and alternate preceding syllables
Main stress on first and alternate succeeding syllables
Main stress on last and alternate preceding syllables
Main stress on first and last and alternate preceding syllables
Main stress on first, and penult and alternate preceding syllables
Main stress on first, and antepenult and alternate preceding syllables, secondary on final
Main stress on first, secondary on penult, tertiary on ante-antepenult. no stress on second

Main stress on first and last but no stress on second
Main stress on first and last, secondary on antepenult, no stress on second
Main stress on first, secondary on penult and alternate preceding syllables, no stress on srcond
Main stress on first, secondary on last and alternate preceding syllables, no stress «>n second
Main stress on first, and penult and alternate preceding syllables, but no stress on second
Main stress on first, and last and alternate preceding syllables, no stress on s<< i»n<l
Main stress on first, and antepenult and alt preceding syllables, secondary on last, but no sin ss o
Main stress on second, secondary on penult
Main stress on second and penult syllables
Main stress on second and penult, secondary on fourth syllable
Main stress on second and alternate succeeding syllables, but not on last
Main stress on second and penult, secondary on fourth and alternate succeeding syllables

Table 2: Descriptions of hypothetical stress patterns.
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1
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SCA

1
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1
1
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Alt

0

0

0
0
1
1

1

1

0
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0
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1
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0
1
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1
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0

1

0
1
0
1

0

1

0
1

0
1
1

0

1

0

1
0
1
1

0
1

LANGUAGE

Latvian
French
Latvian2stress
Latvian3stress
French2stress
French3stress
Latvian2edge

Latvian2edge2stress
impossible

Maranungku
Weri
Maranungku3stress
Weri3stress
Latvian2edge2stress-a.lt
Garawa-SC
Garawa2stress-SC

Maranungkulstress
Werilstress
Latvian2edge-alt
Garawa istress-SC
Latvian2edge2stress-lalt

impossible
Garawa-non-alt

Latvian3stress2edge-SC'A
Latvian2edge-S(.'A
Latvian2edge2stress-SCA
Garawa
Gara\va2stress
Latvian2edge2stress-al(-SCA
Garawa 1st ress
Latvian2edge-alt-SCA
Latvian2edge2stress-lalt-SCA

Lakota
Polish
Lakota2stress
Lakota2edge
Lakota2edge2stress
Paiute
Warao
Lakota-alt
Lakota2stress-alt

R E F

Al

A2
h i
L2
h3
h4
h5
U6

A3

•U
h7
h8
h9
hlO
h l l
hi 2
hi 3
li 1-1
h l 5
hlO

h 17
h i s

It 10

h20
A.j

h21
Ii22
h23
h24
h25

A 6
A 7
h26
h27
h28
AS
A 9

h29
h30

EPOCHS | |

17
16
21
11
23
14
30
37

37
34
43
41
58
3*

50
01
05
7X
ss
S5

MM
103
MM
200
105
71
91

121
120
120

255
254

**
**

**
**
**
**
**

Tablo :$: Analysis of Quantity-Insensitive learning in the ;Y-7/S'model. PSP = Prhnary Stress Place-
ment: S(.'A=Stress ( lash Avoidance: Alt.=Alternation: NPS = No. of Primary Stresses: NSL=No.
of Stress Levels. References index into Tables 1 and 2.



it. This index takes the values {0, 1}: 0 if stress clash is permitted, and 1 if stress clash is
avoided.

Alternation (Alt) : An index of learnability has value 0 if there is no alternation, and value 1 if
there is. Alternation denotes any pattern that repeats on alternate syllables.

N u m b e r of primary stresses (NFS) : The NPS value is 0 if there is exactly one primary
stress. It is 1 if there are more then one primary stresses. It has been assumed that a
repeating pattern of primary stresses will be on alternate rather than adjacent syllables.
Thus, [Alternatioii=0] implies [NPS=0]. The hypothetical stress patterns examined here
include ones with more than one primary stress: however, as far as is known, no actually
occurring Ql stress pattern has more than one primary stress.

N u m b e r of stress levels (NSL) : The NSL value is 0 if there is a single level of stress (primary
stress only): the value is 1 otherwise.

The computational complexity of learning a stress pattern can be characterized as a -r>-I>it binary
number whose bits represent the five factors above, in decreasing order of significance. Table 3
indicates that this complexity measure fits the learning times of various actual and hypothetical
patterns rea.soua.bly well. There are. however, exceptions, indicating that this 5-bit characterization
is only a heuristic. For example, the hypothetical stress patterns with reference numbers h2l
through h25 have a higher 5-bit characterization than other stress patterns, but lower learning
times.

SCA The effect of s tress clash avoidance is seen in consistent learning time differentials
between stress patterns of complexity less than or greater than binary "1000". Learning times
with complexity "001** are in the range 10 to 25 epochs, while complexity "1001" patterns arc*
of the order of 170 epochs. Complexity "010" is of the order of 30 epochs, and "1010" is of the
order of 190 epochs. (This latter contrast pair happens to represent patterns between which 1 lie
presence/absence of stress clash avoidance (SCA) is the only difference. They are. respectively.
Latvian'iedge (reference h5) and Latvian2edge-SCA (reference 19).) A pattern with complexity
"ON" ( Lat vian2edge2stress. reference h6) has a learning time of 37 epochs, while a pattern dif-
fering only in the addition of SCA (Latvian2edge2stress-SGA. reference h20) takes 200 epochs.
Complexity "101" patterns are in the range 30 to 60 epochs, while complexity "1101" patterns are
in the range* 70 to 170 epochs. In particular, while Garawa (reference A5) has a learning time of
1(55 epochs, the same pattern without SCA has a learning time of 38 epochs (Garawa-SC. refernce
hlO). A stress pattern of complexity "111" takes 85 epochs to learn (Latvian2edge2stress-lalt,
reference h 16), while addition of stress clash avoidance results in a learning time of 129 epochs
(Latviaii2edge2stress-lalt-SCA. reference h25).

l)f Alt: The effect of alternation on learning times can be seen in the following three contrast
pairs: Patterns of complexity "001" take 10-25 epochs, while those of "101" take 30-00 epochs:
complexity of "010" takes 30 epochs while complexity of "110"takes 60-90 epochs: complexity of
"Oil" takes 37 epochs, while "111" takes 80 epochs.

NPS The effect of the number of primary stresses is exemplified in the following two com-
parison pairs: Latvian2stress (reference h i . complexity "001". 21 epochs) and Latvian2edge2stress
(reference h(i. complexity "011". 37 epochs): Latvian2edge2stress-alt (reference h9. complexity
"101". 5S epochs) and Latvian2edge2stress-lalt (reference lil(3. complexity "111". 85 epochs).

PSP The effect of the placement of primary stress is considerable. Stress patterns whose
most significant bit is 1 are learnable in the X-l/S model only if all the other bits are (). Such
patterns (Lakota, Polish, references A6. A7, complexity "10000". requiring 255 epochs) have a
higher learning time than any of the patterns whose most significant bit is 0. All the examined
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stress patterns of complexity greater than "10000" were unlearnable in the N-i/S model. Recall
that Paiute and Warao were unlearnable; the present framework is consistent with that result,
since under the present analysis, these two patterns have a computational complexity of greater
than "10000" (both have complexity of "10101").

NSL The impact of the number of stress levels is relatively smaller and less uniform; both
of these results make NSL the least significant factor. Thus, though there are several instances
where a stress pattern with a greater number of stress levels has a higher learning time (111 vs. Al:
h3 vs. A2: h6 vs. h5: h7 vs. A3; h8 vs. A4; h21 vs. A5). there also exit cases in which a stress
pattern with a higher number of stress levels has a lower learning time than one with fewer stress
levels (h2 vs. hi : h4 vs. h3: h l l vs. hl5: h21 vs. h23).

The effects of a particular factor seem to be reduced when a higher-order bit has a non-zero
value. Thus, the effects of alternation are less clear when there is stress clash avoidance. Without
SCA. the range of learning times for patterns is 10 to 40 epochs without alternation and 30 to 90
epochs with alternation. With SCA. the range is 160 to 210 epochs without alteration . and 70 to
I 70 epochs with alteration.

In summary, the "complexity measure" suggested here appears to identify a number of factors
relevant to the learnability of (QI) stress patterns within the minimal connectionist architecture
(the S-l/S model): and it also assesses their relative impacts. The present analysis is undoubtedly
a simplification, but it does provide some sort of framework within which to relate* the various
learning results.

4.1.5. Paiute &; Warao

The Paiute and Warao stress patterns are interesting both because they serve to establish bounds
on the computational capacity of the X-l/S model (with respect to stress patterns) and because
they highlight the significance of input and output representations for computational behavior.

As already discussed, the stress patterns of Paiute and Warao proved unlearnable with the* A-
I/S model (for up to 375.000 epochs, at which point training was terminated). The major problem
with both of these patterns was that too low a stress was assigned to monosyllables, which was I he
original pointer in the direction of the relevance of primary stress placement as a factor in learning
complexity. In Paiute (Warao). primary stress falls on the first (last) syllable only in monosyllables,
and in all other cases, the first (last) syllable is completely unstressed: evidently, it is difficult to
adjust weights so as to deal with this exceptional stress assignment.

Modifying the stress patterns so that monosyllables are unstressed resulted in the patterns being
learned in approximately 30 epochs, thus confirming the hypothesis that exceptional monosyllabic
primary stress was the problem. This suggested modifying the frequency distribution of training
patterns as a possible remedy, i.e., increasing the number of instances of monosyllables in the train-
ing sei. However, this did not enable learning. When seven additional instances of a monosyllable
were included in the training pattern, stress was correctly assigned to monosyllables, but other
errors occurred, reflecting the fact that the distribution of training data was skewed.

The t wo st ress patterns were learnable for training sets comprising words of up to only 1 syllables
in length (a "length-4" training set); the learning time was 54 epochs. With the addition of 5-
syliable words (a "length-5" training set), however, no solution could be found in the A-//V.
X-l/lIL or A-l/HLE models. The connection weights established for Paiute with the "length—T
training set are displayed in Figure 3a. Figure 3b is a schematic illustration of the same weights.
It abstracts from the double buffer scheme, which is non-essential for a QI language (since t he only
necessary representation is syllabic): the figure also abstracts from the bias unit, since the bias unit
weights can always be re-distributed over other connection weights. The buffer positions A. D. (\
I). E and Fin Figure 3b correspond respectively to the positions w-Jh xv-3. w-2. w~L wO <\\M\ wl in
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Figure 3: (a) Connection weights for the Quantity-Insensitive stress pattern of Painte. learned for
words of up to 4 syllables in length, in the N-l/S model, (b) a schematic depiction of those weights
in a buffer capable of processing words of up to 5 syllables in length. E has a positive connection
weight to the output unit (not shown), and D a large positive weight: F h a s a large negative weight.
and (' 'A very large negative weight.

Figure 3a. However. 3b depicts a larger buffer than is shown in 3a.
When the first syllable of a four-syllable word is the current input, the large negative weight F

offsets the positive effect of if. resulting in a low activation to the output unit (corresponding to
zero stress). When the current input is the second syllable, the appropriate output corresponds to
primary stress, which is ensured by the positive activation from D and if combined, which is greater
than 1-lie* negative activation from F. When the third syllable is the current input, the combined
negative weights ( ' a n d F offset the positive activation of D and if combined, so that the output
corresponds to zero stress. For the fourth syllable, the combined positive weights B. I) and / / a r e
sufficient |y greater than the negative weight C to yield an output corresponding to secondary st ress.
but not so much greater than ( ' a s to produce an output corresponding to primary stress.

The processing of the first three syllables of a/? re- syllable word is identical to that just described
for a four-syllable word: the weights involved are C. D. E and F. When the fourth syllable of a
/(////•-syllable word is the current input, the word is spread over positions B. (\ I) and /:: the
negative weight F plays no role. However, when the fourth syllable of a /NT-syllable word is 1 he
current input, the five-syllable word is spread over positions B. C\ D. if and F. The output should
correspond to secondary stress, just as in the case of the fourth syllable of the four-syllable word,
for which the weights B. C. D and if were appropriate, as described above. For the five-syllable
word, however, output is affected not only by those four weights, but also by the weight F. For B.
C\ D and E to produce the appropriate output in the five-syllable case, F would have to be zero;
however, for appropriate output to the first syllable of words of length greater than 1, Fmust have
the negative value shown. Thus there is a conflict between the requirements for F, for the correct
processing of "length-4" and ulength-5" training sets.

This is shown more formally below1. Let Oi be the threshold activation that must be delivered
tot he out put unit for a response corresponding to primary stress: let ff2 ' ) e the threshold activation
for secondary stress. The following constraints must then hold:

I < -E

E + F < e2

( 1 )

( 2 )

( 3 )
=> 02 > E

'The following analysis was formalized by Dave Touretzky. following a suggestion by (.ieoff Hinton.
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=» 02 > Ot + F
=>02-0i>F (I)

0i >(B + C + D + E) >02 (r>)
=• -0i < {B + C + D + EX - 0 2 (6)

0i > (B + C + D + E + F) > 02 (")

Inequality ( i) expresses the constraint necessary for iT to be able to produce primary stress for
a monosyllable. Statements (2) and (3) express the constraints necessary for E and F jointly to
be able to suppress both primary and secondary stress for the first syllable of a word of length
greater than one. Statement (4) is derived from (3) as shown, and establishes an upper bound
for the magnitude of F. Inequality (5) indicates the constraint that must be satisfied for B. C. I)
and E to produce secondary stress when the current input is the final syllable of a four-syllable
word: Statement ((3) is derived from (5). So far. the constraints are all as required for correct
assignment of stress in the "length-4" training set. and all the inequalities can be satisfied. The
additional constraint needed to assign secondary stress to the fourth syllable of a ///Y-svllable word
is indicated in (7). from which (8) can be derived. This is the constraint that makes the ""leiigth-.V"
training set unlearnable. Adding (6) and (8) yields (9). which includes the condition ti2 — 0\ < ' •
However, we previously have (4) 02 — 0\ > F. Thus. (4) and (9) impose contradictory constraints
on the value needed for F. as was discussed above: this leads to the non-learnabilitv of Paiufe. An
analogous demonstration can be made for Warao.

It is worth noting that the previous analysis of Paiute and Warao in terms of Primary Stress
Placement (PSP) is d(scriptin ly accurate, at a gross level, based on observable properties of those
and othor stress patterns. The explanation just given of the non-learnabilitv of Painte can be
made only in terms of the interactions of the properties of that stress pattern with rather specific
properties of t he processing mechanisms and architecture employed in the A-/ model.

Paiute and Warao having proved unlearnable in the A -1 model, the next-minimal conned ionist
architect ure examined was a 2-layer network with 2 output units: training targets had to be modified
accordingly for this architecture. Essentially, target patterns for this architecture are |ength-2
vectors: the representations used were the fairly natural [0 0] for zero stress. [1 0] for secondary
stress, and [1 1] for primary stress.

The two-output-unit architecture reduces the complexity of the task of each output unit, in
comparison with the task of a single output unit. A single output unit has to output three different
responses, corresponding to zero, secondary and primary stress. With two output units (and given
the output representation adopted), the first output unit has only to make a two-way distinction:
ihe response to the "current input" should be 1 if it receives (primary or secondary) stress, and 0.
otherwise. The second output unit has to make a 2-wav distinction between whether the "current
input" should receive Primary stress (response 1) or not (response 0). The establishment of weights
to each output unit should be simpler when only binary decisions are required, and thus the overall
learning task should be simpler for Paiute and Warao in the A'- i /S ' than in the N-l/S model.

In fact, in the N-2/S model. Paiute was learned in 732 epochs, and Warao in 757 epochs:
connection weights are displayed in Figure 4. Each display is a representation of connection weights
to each of the two output units, which are depicted separately. Thus, in the Paiute display, the
weights shown in the leftmost of the two-network silhouettes are to the first output unit, and those
shown in the rightmost silhouette are to the second output unit.

For Paiute. the weights enable correct stress assignment as follows: for the second output unit,
only the second syllable will trigger the positive activation of w-1 while not triggering the negative*
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Figure 4: Connection weights for the Quantity-Insensitive stress patterns of Soutliern Paiute and
Warao. learned by the N-3/S model. Numbers indicate the absolute magnitude of the largest
weight, and hence the scale of the weights display.

activation of w-3: thus the second output unit 2 outputs a 1 when the second syllable is the current
input, and a 0 for all other syllables. Weights to the first output unit enable it to produce a 1 in
response to all even-numbered current inputs, and a 0 in response to all other syllables. Wrights
for Warao can be analyzed similarly, since it is the mirror image of the weights for Paiute.

4.1.6. From QI to QS stress patterns

Consistent with the aim of exploring the minimal architectures necessary for learning of various
kinds of stress patterns, simulations with Quantity-Sensitive (QS) patterns were also made with the
2-layer. i-output unit model. However, for QS patterns, information about syllable weight has nec-
essarily to bo included in the input representation - the input has to consist of (encoded) sequences
of "II" and *i/* tokens: a syllabic input representation is (by definition of quantity-sensitivity)
inadequate. IIV iyht-striny representations were therefore adopted, as discussed in Section IJ.-I..

The use of weight strings greatly increases the size of training data that needs to be considered:
for a maximum syllable length of /?. there are only /? input patterns using the syllabic representation,
but there are V^_i 2" = (2"+ 1 — 2) possible weight strings. For // = 7. this is 7 vs. 25 f possible
patterns.

In order to obtain learnability results (regarding minimal architectures, and learning times)
that might be consistent across both QI and QS stress patterns (i.e., that might reflect differences
between the language patterns themselves, rather than merely reflecting differentials in the com-
plexity of the learning task arising from the differing input representations and training set sizes),
simulations for the QI languages were re-run using the weight-string representation. (The stress
patterns for all possible weight strings of length n are the same for a QI language).

The training set initially used included exactly one instance of each possible weight string, for
weight strings of up to length 7 (the N-l/HL model). Simulations with this input representation
were unsuccessful for several of the QI patterns of complexity greater than "1000". Since all weight-
strings of a given length have the same associated stress pattern for a QI language, the weight-st ring
training set has a distribution that is heavily skewed in favor of longer words, which can distort
the error gradient and trap the back-propagation learning procedure in a local minimum in weight
space. To correct this, the distribution was adjusted so that there was an equal number of instances
of weight-strings of each length up to 7. and the QI simulations re-run with this "equalized"* training
set (the \-I/HLE model). All the QI patterns learnable in the N-l/S model were also Jearnable
in this model, thus providing a basis for comparison of QI learning times with learning times for
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| RBF

AH)
All
A12
A13
A i l
AI5
A10
A17
A18
AH)

LANGUAGE

Koya
Eskimo
Mai aval am
Yapese
Ossetic
Rotuman
Koini
Cheremis
Mongolian
M avail

DESCRIPTION OF STRESS PATTERN

Main stress on first, secondary stress on heavy syllables
Stress the final syllable and closed (heavy) syllables
Stress first syllable except where first vowel short and second vowel long
Stress final syllable except where final vowel short and penult long
Stress first vowel if long, else second vowel
Stress last vowel if long, else penult
Stress first long vowel, else last vowel
Stress last long vowel, else first vowel
Stress first long vowel, else first vowel
Stress last long vowel, else last vowel

E P O C H S | |

2
3

20
18
28

21)
217
211)

2312
2301

Table 4: Quantity-Sensitive patterns: description and learning performance in the N-l/HLEmodel.

QS patterns.

4.2. Quantity-Sensitive stress patterns

Ten Quantity-Sensitive (QS) languages were examined: Koya. West Greenlandic Eskimo. Malay-
alam. Yapese. Ossetic. Rotuman. Eastern Permyak Komi. Eastern Cheremis. Khalkha Mongolian,
and Aguaeatec Mayan.

The stress patterns of Malayalam fc Yapese. Ossetic <k~ Rotuman. Komi tV* Cheremis. and Mon-
golian <V' Mayan are mirror images of each other.

In Koya. primary stress is on the initial syllable, and secondary stress falls on closed syllables
and syllables with a long vowel. Eskimo stresses the final syllable and closed syllables.

In Malayalam. primary stress falls on the initial syllable except when the initial vowel is short
and the second long, in which it falls on that second syllable. In Yapese. primary stress is on the
final syllable except when the final vowel is short and the penultimate vowel long, in which case
stress falls on the penult.

Ossetic assigns primary stress to the first vowel if it is long, otherwise to 1 he second vowel.
Hotiimaii st resses the last vowel if it is long, otherwise the penultimate vowel.

In Komi, stress falls on the first long vowel, and on the final vowel in words without long vowels.
In Cheremis. stress falls on the last long vowel, and on the initial vowel in words without a long
vowel.

Mongolian stresses the first syllable with a long vowel, and the first syllable if there are no long
vowels. Mayan stresses the last syllable with a long vowel, and the last syllable if there are no long
vowels.

Table I summarizes the stress patterns and learning times.

4.2.1. Learning results

Using the minimal possible connectionist architecture (N-l) and the equalized weight-string repre-
sentation, all ten QS stress patterns were learned with 100% accuracy. The last column of Table 4
shows the number of epochs of training necessary to achieve 100% accuracy for each stress pattern.

Learning times for each of the pairs of mirror image patterns are very close to each other: 20
epochs for Malayalam and 18 epochs for Yapese: 28 epochs for Ossetic and 29 epochs for Rot iimaii;
217 epochs for Komi and 219 epochs for Cheremis: 2312 epochs for Mongolian, and 2304 epochs
for Mayan. The learning time for Koya was 2 epochs, and 3 epochs for Eskimo.
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4.2.2. Analysis of connection weights

Connection weights for the learned patterns are displayed in Figure 5. Interpretation of the displays
is as discussed in Section 4.1.2.. However, with the HLE representation for inputs, a heavy syllable
is represented by a [1 0] vector, and a light syllable by a [0 1] vector. For heavy syllables, therefore,
there will be a 1 in the bottom row (row H) and a 0 in the top row (row L): for light syllables, a 0
in the bottom row (H) and a 1 in the top row (L). Thus the contents of the two rows of the input
buffer are usually not identical, and this is relevant to understanding how the connection weights
encode knowledge of the stress patterns.

For Koya. the bias weight enables a fairly high positive activation to the output unit: there is
also high positive activation when a heavy syllable is the "current input", arising from irOb. If the
"current input" is the first syllable, then the large negative weights w-1 have no effect, and the
bias activation results in an output denoting primary stress. If the current input is not the first
syllable, then the pair w-1 produces a large negative activation to the output unit, whether the
syllable in - / is heavy or light, thus offsetting positive activation from the bias unit. Net activation
to the output unit will be low. resulting in a low output denoting zero stress, unless the current
input is a. heavy syllable, in which case the large positive weight wOH enables a large activation
to the output unit. This positive activation, plus that of the bias unit, together produce greater
positive activation to the output unit than is offset by the negative activation from w-1: therefore
t IK* output is medium, representing secondary stress. In other words, the weights encode f IK-* stress
patiern: stress the first syllable, and assign secondary stress to heavy syllables.

In Malayalam. the current syllable is stressed if it is the first syllable and one of two conditions
exist: Kit her it is heavy (large positive activation from wOH. and the large negative weight w III
has no effect), or it is light but the second syllable is also light (in which case the negative weight
w+III will have no effect). If the current syllable is the first, but is light, and the second syllable is
heavy, then wOH will provide no stress, and additionally. w+lH will damp stress provided by the
Mas unit. If the current input is the second syllable, it receives stress only if it is heavy (positive
activation from wOH) and the previous syllable was light (no negative activation from w III). No
syllable other than the first or second will be stressed because two of the four large negative weights
in w I and w-J will always be triggered. The analysis for Yapese is similar.

For Ossetic. if the current input is the first syllable, it receives stress only if it is heavy (positive
activation from wOH. If the current input is the second syllable, it receives stress only if the previous
syllable* was light (no negative activation from w-lH). All syllables other than the first and second
encounter negative activation from either w-2L or w-2H. and so never receive stress.

The connection weights for Komi and Cheremis are interesting in that they establish a means of
"scanning" the buffer. Recall the stress pattern of Komi: stress the first heavy syllable, or the last
syllable if there are no heavy syllables. If the "current input" is heavy, it should be assigned primary
st ress only if there have been no preceding heavy syllables. A heavy current syllable receives stress
from wOll and from the bias term, and this is sufficient to offset the effect of the negative weights
w+lll and w+lL: but if there is a heavy syllable to its left, this stress is overridden by the weights
w III through w-6H. Thus a heavy syllable will be stressed iff it is the first heavy syllable.

If the current input is light, it should be assigned primary stress only if it is the last syllable
and there have been no heavy syllables in the word. The connection weights make no provision for
positive activation to the output unit from any buffer position containing a light syllable. When a
light syllable is the current input, therefore, positive activation to the output unit comes only from
the bias unit: this positive activation, however, is offset by negative activation arising from w+1
and by negative activation arising from w-lH through w-6H. The positive bias is not outweighed
by negative activation just in case there are no syllables succeeding the current input in the buffer,
and no heavy syllables preceding the current input—i.e.. just in case the current input is the last
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Figure 5: ('onnection weights for Quantity-Sensitive stress patterns learned by the N-l/IILEmoilvl.
Numbers in each title bar indicate the absolute magnitude of the largest weight, and hence the
scale of the weights display.

25



syllable in a word without any heavy syllables.
The weights w-lH through iv-6H thus produce, in parallel, the effect of "scanning" that portion

of the buffer that contains syllables that "precede" the current one. This scanning is necessary to
determine the appropriate assignment of stress both to heavy and light syllables. The analysis of
weights for Cheremis is analogous to that for Komi.

4.2.3. Learnability

Tlie learnability analysis proposed in Section 4.1.4. on the basis of QI patterns requires some
refinement. Placement of primary stress (PSP) was hypothesized as taking binary values; a 1 value
for PSP was used to indicate that primary stress was assigned inconsistently at the edge of words:
a 0 value indicated that this was not the case. If this measure is modified so that its value indicates
the projHrrtion of cases in which primary stress is not assigned at the edge of a wont, the learning
results for both QI and QS patterns can be integrated, to a large extent, into a unified account.

The learning times for Malayalam and Yapese are approximately 20 epochs, while those for
Ossotic and Rotuinaii are approximately 30 epochs. The difference between these pairs of stross
patterns is as follows: For Malayalam and Yapese. primary stress is placed at the edge execpt when
the edge vowel is short and the next vowel long (i.e.. except 0.25 of the time): for Ossetic and
Rot u man, primary stress falls at the edge except when the edge vowel is short— i.e.. except in 0.50
of I lie* cases.

The five factors discussed earlier were: Primary Stress Placement (PSP): Stress Clash Avoidance
(S( 'A): Alternation (Alt): Number of Primary Stresses (NPS): and Number of Stress Levels (NSL).
TIK1 values of these indices, respectively, for both Malayalam and Yapese. are [0.25 0 0 1 ()]: and
for both Ossetic and Rotuman. [0.50 0 0 10]. The difference between learning times for those pairs
of otherwise identical patterns can then be accounted for in terms of differing values of the PSP
measure.

Rolinoment of the PSP measure thus seems warranted. Note that the earlier analysis of QI
languages remains unchanged: stress patterns that had a PSP value of 0 still do. and those that
had a PSP value of 1 still do as well.

Tho learning times of Komi and Cheremis are substantially higher than those of Kova. Kskimo.
Malayalam. Yapese. Ossetic and Rotuman. As discussed above, for Komi and Cheremis. tho
networks in effort simulate "scanning" of the input buffer, which requires a greater number of
connection weights to reach significant magnitude. It seems reasonable to hypothesize that this
requirement is computationally expensive, i.e., that the learning time for Komi and Cheremis is
higher because it takes longer to establish multiple weights of large magnitude. The connection
weight displays of Figure 5 illustrate the fact that none of the other QS stress patterns require
establishment of more than two or three weights of large magnitude; for Komi and Cheremis, by
contrast, there is a string of large weights across the buffer.

For Komi, a particular syllable S receives primary stress under the following conditions2: (I)
Thoro aro no heavy syllables to the left of S in the syllable string: AND (2) S is Heavy OR S
is the last syllable. The second clause of the conditional involves single-positiexnal information:
information either about the syllable S itself (S is Heavy), or about the absence/presence of a
syllable right-adjacent to S in the weight-string. (If there is no syllable to the right of S in the
weight-string, then S is the last syllable: if there is a syllable right-adjacent to S. then S is not
the last syllable). The first clause of the conditional, however, involves aggngative information:
information about all the syllables to the left of S in the weight-string. The simulated "scanning"
referred to above provides precisely this aggregative information: and similarly for Cheremis.

2Thf following analysis owes much to discussion with Dave Touretzky.

26



Komi and C'heremis can therefore be analyzed as stress patterns that require aggregative infor-
m at ion for the determination of stress placement; none of the other stress patterns require such
information. For example, for Koya, a syllable S should receive stress if it is the first syllable (which
can be determined from information about the presence/absence of a syllable in the left-adjacent
weight-string position), or if it is heavy, both of which are single-positionalkinds of information. For
Ossetic. a syllable S should be stressed if (a) it is the first syllable AND it is heavy (which requires
singlc-ltositionalinformation about the left-adjacent weight-string position, and about S itself): or
if (b) it is the second syllable (single-positional information about the weight-string element two
positions to the left of S) AND the syllable in left-adjacent position is light (also singlf-positional
in format ion).

The difference in learning times between Komi and Cheremis on the one hand, and Koya,
Eskimo. Malayalam. Yapese, Ossetic and Rotuman. on the other, can now be analyzed in terms
of the differing informational requirements. As has been seen, aggregative information requires the
building of a series of weights of large magnitude across the buffer, and this requires greater learning
times. Whether or not aggreyative information is needed, therefore, seems to be an additional factor
relevant to the learnability of stress patterns.

The patterns of Mongolian and Mayan have very much higher learning times than those of any
other stress patterns, including Komi and Cheremis. For Mongolian, if the current input is heavy,
then it should receive stress if it is the first heavy syllable: thus, as for Komi, each of the weights
w III through w 6H must be capable of damping the positive activation from icOH. If the current
syllable is light, then it should receive stress only if (a) there is no syllable to its left in the buffer
(if there is. then one of w-lHor w-lL will override the bias activation). AND (b) there is no heavy
syllable to its right in the buffer. Note that this requires a set of weights to the right of the current
input, to determine whether there is a heavy syllable. Thus, for Mongolian, there is aggtrgativt
information required about heavy syllables both to the left of the current input, and to its right.
This seems |(> |>p what makes the pattern so difficult to learn. (As a matter of fact. 1 here is a. kind

of compounding of aggregative requirements: the weight wOH must be large enough to overcome
all of ir+lH through w+6H. and so must be rather large: but also, each of w-lH through //• (ill
must he able to override ivOIL and so each of these must be even larger. Thus, several very large
weights are needed, as evidenced by the magnitude of the largest weights for Mongolian: 2N.(M. as
against a range of approximately 9.0 to 11.0 for the other QS patterns.)

The results from Komi. Cheremis. Mongolian and Mayan thus suggest an additional factor that
is relevant for determination of learnability—whether or not aggirgative information is required
but that comes into play only in the case of QS patterns. This can be treated as a sixth index
of computational complexity that can take the values {0, 1,2}: 0 if no aggregative information is
required (single-positionalinformation suffices); 1 if one kind of aggregative information is required
( Komi. Cheremis): and 2 if two kinds of aggregative information are required (Mongolian, Mayan).

The learning results and learnability analysis for both QI and QS stress patterns are summarized
in Table r>: learning times for both QI and QS patterns are with the X-l/HLE model, which should
make them comparable.

The differences in learning times across QI patterns are less marked in comparison with the
differentials in Table 3. which summarized QI learning results with the N-l/S model. This is
the result of the increased training set size with the equalized weight-string representation as
compared with the syllabic representation. Learning times are. nevertheless, consistent with the
overall learnability analysis.

As can be seen, differences in learning times between QS stress patterns also fit in with the
analysis developed earlier, and with the analysis of single-positional vs. aggregative informational
requirements developed in this section.
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Table* r>: Summary of results and analysis of QI and QS learning in the N-l/IILE model.
A gg=Aggregative Information: PSP=Primary Stress Placement: S(.'A = Stress Clash Avoidance:
AM =Altenmtion: NPS = No. of Primary Stresses: NSL=No. of Stress Levels. References index into
Tables I and 1.

The QI stress patterns Lakota and Polish have higher complexity indexes than the QS stress
paitertis Malavalam. Yapese. Ossetic and Rotuman. but lower learning times. Quantity-sensitivity
thus ap|>ears to affect learning times, as seems reasonable to expect, due to the distribution of 1 he
//A/:'I raining set. However, no "measure" of its effect will be offered here. The analytical framework
developed thus far appears to hold within QI languages and within QS languages: further analysis
would be needed to relate learning results across the two kinds of stress patterns.

4.3. Generalization

The ability of trained networks to generalize has been examined for QI stress patterns. All the
simulations described so far involved training sets representing words of up to seven syllables in
length (a "length-7" training set). To test generalization, networks that had been trained to 100%
accuracy on those ("length-7**) training sets were re-trained on training sets of all words of up to
length X syllables (a "length-8" training set). The criterion for generalization was that the time
taken (in epochs) to learn the "length-8" training set after prior training on the ulength-7" training
sot should be less than the time taken to learn the "length-8" training set ab initio. i.e.. without
any such prior training.

Results are summarized in Table 6. which shows learning times for a "length-S" training set. for
all the QI stress patterns learnable in the N-l/Smodel. The first column shows learning time from
scratch, i.e. without prior training on the "length-7" set. and the second column shows learning
time for the "length-*" set when the network has already been trained on the "length-7" set.

For Latvian. French. Lakota and Polish, no extra training is required to learn stress assignment
for the "length-8" set. once the "length-7" set has been learned. Turning back to the weight displays
in Figure 2. this can be seen as a natural outcome of the fact that these stress patterns have a
single, fixed stress: the weights that are established with the "length-"" training set will, clearly.
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REF

A l
A2
A3
A4
A5
A6
A7

LANGUAGE

Latvian
French
Maranungku
Weri
Garawa
Lakota
Polish

EPOCHS TO LEARN

UP-TO-LENGTH-8 WORDS

From scratch
22
19
46
48

161
303
299

Pre-traiiiing
0
0

35
35
19

0
0

Table (j: Generalization for QI stress patterns. Column 3 shows the number of epochs required to
learn a training set of words of up to 8 syllables in length. Column 4 shows the number of epochs
required to learn the same training set after the network has already been trained on words of up
to 7 syllables in length. References are made to Table 1. which describes these stress patterns.

enable the networks to process words of arbitrary length. For languages with a single fixed stress,
therefore, there is perfect generalization.

For Maranungku and Weri. the weight displays of Figure 2 (which show weights established with
a "lengih-7" training set) indicate that additional weights would need to be established to handle
N-syllable words, since stress is neither fixed nor single, but alternating, and with two levels. The
same observation seems true of Garawa. For Maranungku and Weri. there is in fact a reduction
in learning time, from about 45 epochs to learn the "length-8" training set from scratch to about
.'$r> epochs to learn it after training on the "length-7" training set. While this is itself a- non-trivial
reduction, the relatively low number of epochs for ab initio training on the "Iength-N" set may
in fact be masking the generalization effect: in the case of Garawa. for instance, there is a very
substantial reduction in learning time, from 1(31 epochs to 19 epochs.

An alternative, and more stringent, criterion of generalization would define "generalization"
as the ability to assign stress to a word of greater length than previously encountered, on Jirsl
/)r<s< nfalion. As will be discussed in the next section, it is by no means clear whether such a
criterion is truly appropriate in the present context. In any case, it seems reasonable to conclude-
that t he present results indicate some ability to generalize previous learning.

5. Discussion

5.1. Performance of the model

5.1.1. Generality

The simulation results reported in the previous section indicate that the connectionist models
considered can learn stress-assignment phenomena quite generally. A total of nineteen actual
stress patterns was examined: seventeen of them were learnable by the minimal connectionist two-
layer model, and the remaining two (Paiute and VVarao) were learnable by a two-layer architecture
with one additional output unit. Thus all the stress patterns examined were learnable by relatively
simple connectionist models.

The linguistic analysis of stress patterns in terms of parameters is. in fact, incapable of providing
an account of all the stress patterns considered here. For example, the stress pattern of Garawa does
not seem amenable to characterization in terms of parameter settings alone. Thus the description
of Garawa given by Hayes ([Hayes 80. pp. 54-55]) involves the construction of binary feet both at
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the left edge of a word, and iteratively, starting at the right edge of the word. The combination of
these operations has no analogue in the purely parametrized characterization adopted by Dresher
k Kaye (see Section 2.3.)? and, in fact, Dresher k Kaye do not report any examination of the
stress pattern of Garawa. To take another example, the stress pattern of Aklan is well-known for
its complexity: the analysis given in [Hayes 80, pp. 20-33, page 59] includes conditions that cannot
be expressed purely in terms of a parameter setting scheme, and Dresher k Kaye do not discuss
this pattern either.

One of the achievements of metrical theory is considered to be its relatively good coverage of the
phenomena, in its domain; this in turn has yielded parameterized characterizations, and these have
formed the basis of computational models such as those of Dresher fc Kaye. and Nyberg. Where
the parametrized characterization breaks down, therefore, a model based on a direct mapping from
these abstract parameters to computational operations has no basis for modeling stress assignment.

*In order to model the learning of non-parameterized stress systems, arbitrary computational oper-
ations would have to be introduced (as. in fact, they are in the linguistic analysis of these stress
patterns). This would, however, defeat the purpose of the parameterized approach, one of whose
motivations is to identify a constrained set of universal operations.

Thus, current parametrized treatments of metrical phonology do not have fully general cover-
age: neither, correspondingly, do computational models employing those parameters (and related
constructs) as processing primitives. It is therefore interesting that the stress patterns of both
Carawa and Aklan were learned by connectionist networks in the present simulations. (iarawa
has already been discussed (Section 4.1.1.. Table 1): the stress pattern of Aklan was learned with
difficulty (50.4X1 epochs of training), in a three-layer architecture.

In a sense, therefore, it appears that the processing primitives of the connectionist models
employed here provide a broader and more general basis for stress assignment than do direct
mappings from the constructs of (parametrized) metrical phonology.

5.1.2. Generalization

As discussed in Section 4.3.. the ability of the trained networks to generalize was examined for Ql
stress patterns. In all cases, the time taken to learn a set of words of up to S syllables in length
(a "lengt h-X" training set) when the network had previously been trained on words of up to 7
syllables in length (a "length-7" training set) was significantly less than the time taken to Irani
a "lengl h-X" training set without prior training on a "length-7" training set. This indicates some
ability to generalize from previous training.

It might be argued that, for true generalization, the networks should have been able to assign
stress correctly to 8-syllable words on first encounter, once they had learned a "length-7" training
set: certainly, this is the prediction of the linguistic model, in which parameter settings, once
determined, provide the basis for processing (i.e.. assigning of stress to) words of arbitrary length.
However, as will be argued below, the fact that this is what linguistic theory predicts does not in
itself render the present generalization results inadequate.

An obvious question is that of how generalization occurs in human processing. To conform to the
predictions of linguistic analysis, a human language learner should be able to assign stress correctly
to words of greater length than it has previously encountered, even on first exposure. It has not-
been possible to determine whether there are research results that bear directly on this question:
Dresher <̂- Kaye state that the stress acquisition literature does not appear to provide evidence
that can be directly related to parameter setting ([Dresher 90. page 42]. In general, developmental
evidence relating to stress acquisition seems to be limited (Peter Gordon, personal communication).

A further relevant question here is: What kinds of information does a human language learner
bring to bear on the acquisition of stress? Linguistic theory presents syllable structure as the only
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necessary informational basis for descriptions of stress patterns. This does not mean, however, that
this is the only information utilized in actual human processing: potentially, all the information
available in the speech signal (which encodes more than just syllable structure) is available. It seems
quite likely that human processing utilizes information about the segmental content of words. For
example, in generalizing stress from words of length three syllables to words of length four syllables,
it is at least plausible that the human language learner is guided by analogies with previously
encountered words: thus, familiarity with the three-syllable words charity and clarity, and the
four-syllable word capacity could provide the knowledge that stress appears two syllables before ///
in words suffixed with ity. This could aid in generalizing to the five-syllable word genemlity.

The proposition that the human processing underlying stress learning/assignment makes ref-
erence only to syllabic information may be true or false, even though it is assumed to be true in
linguistic theory.

Now. suppose that evidence were to reveal that children are. in fact, able to assign stress
correctly to words of greater syllable-length than they have previously encountered, even the very
first time they are exposed to them (i.e. they are able to generalize "instantaneously").

If it is false that human stress processing makes reference only to syllabic information, then
"Instantaneous" generalization does not reveal inadequacies in the connectionist architecture of the
present model as much as it reveals inadequacies in the input representation. Input representation,
according to linguistic analysis, has been taken to encode syllabic information only.

If it is trm that human stress processing makes reference only to syllabic information, then "in-
stantaneous" generalization would reveal inadequacies in the present models, since they incorporate
the necessary information, but do not produce instantaneous generalization.

In sum. the generalization results from the present models are not necessarily in accord with
the predictions of linguistic theory: however, as has just been argued, any difference does not in
hself invalidate those results. The results would be inadequate only if (a) human processing does
exhibit "instantaneous" generalization in the domain of stress, and (b) human processing in stress
phenomena makes reference only to syllabic information. Both of these are empirical questions,
and answering them does not fall within the purview of formal linguistics.

5.1.3. Systematicity

Fodor <V' Pvlvshvn have argued ([Fodor 88]) that systematicity is an intrinsic aspect of the way
humans use language. Thus, it is not possible for a human language user to be able to understand
the meaning of John loves Mary without being able to understand the meaning of Mary loves John:
this understanding implies the ability to grasp the predicate relations inhering between the verb,
subject and object—to grasp structural relations in general. Since connectionist models do not
incorporate such structural relations, they can provide no basis for such systematicity.

The metrical theory analysis of stress systems sets up. for each system, an inventory of repre-
senintional structures, and operations on those structures, that are employed in characterizing the
assignment of stress to words in that stress system. In the example of systematicity given above, it
is awareness of the structures of the sentences that underlies the human inability to understand one
wit hunt being able to understand the other, or to know that one is grammatical without also know-
ing that the other is grammatical. In analogous fashion, it could be argued that the descriptions of
stress patterns involve reference to structures such as binary quantity-insensitive feet, unbounded
quantity-sensitive feet, and so on. The ability of a child to learn a stress system described by a
set of structures deployed in one particular configuration (e.g.. binary, quantity-insensitive feet,
constructed from right to left) implies the ability to learn a stress system described by those same
structures, configured in some other fashion (eg., binary, e/uantity-inse nsitive feet, constructed from
left to right). More generally, it implies the ability to learn some other stress system which draws on
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the same inventory of representational and operational primitives. Viewed this way, systematicity
is a by-product of the notion of Universal Grammar.

In this view, there should be no reason to expect a connectionist model to be able to learn
groups of systematically related stress patterns except in an arbitrary way: none of the structure
that establishes those relationships has been incorporated in the model. Thus, if a connectionist
model can learn stress system A. it will be entirely coincidental if it can also learn stress pattern
#, which is the mirror image of ,4.

In fact, as has been seen, the results of the simulations are remarkably systematic in this regard.
Several pairs of mirror-image patterns were examined, and learning times for the members of the
pairs were almost identical (see Tables 1 and 4). Moreover, the "knowledge" of the stress pattern
that is encoded in the connection weights reflects very systematically the fact that the pairs of
patterns are mirror-images of each other, as can be seen from Figures 2 and 5.

The performance of the models in the simulations examined here therefore seems to exhibit
some kind of systematicity. despite the fact that none of the structured representations of metrical
theory have been directly incorporated.

5.2. Levels of analysis

5.2.1. An existence proof

As discussed earlier (Sections 1.3.. 2.4.). there is a clearly defined set of theoretical constructs in
terms of which the linguistic analysis of the domain of stress systems in language is stated. That
analysis. moreover, provides fairly good coverage of the observed phenomena- of the domain, lor t ho
"classical" approach, therefore, there is a well-defined set of putatively computational primitives
in terms of which to formulate processing models.

The connectionist models described here have in fact proved capable of learning a wide variety
of stress patterns, without the incorporation of theoretical constructs such as metrical Ira and
jxirami t( / as processing primitives. In other words, the models have been able to learn correct Iv t he
si ross-assignment phenomena- described by the linguistic analysis without recourse to the struci ured
representations employed by that analysis. The connectionist models do employ insights from
linguistic theory, and therefore do. to an extent, incorporate linguistic constructs: nevertheless,
this differs substantially from a model such as that of Dresner <V* Kaye. which is essentially a.
computer implementation of linguistic theory and learnability theory.

To the extent that current simulations are considered successful, their success can be viewed
as constituting something like an existence proof (in the domain of stress systems) for the con-
nectionist view that the notions of linguistic theory need not map directly onto the computational
primitives of a processing account. Conversely, these results weaken the classical argument that
connectionist techniques are in principle inappropriate simply because their representation schemes
do not incorporate the structure characteristic of linguistic analysis. The results also support the
argument that linguistic theory properly belongs to a different level of analysis from that of com-
putational modeling, and that it is a crucial assumption of classical modeling (rather than a matter
of necessity) that the mapping between these two levels should be rather direct. In other words,
having Marrian-Level-Two representations and algorithms directly reflect the structures posited by
M a man- Level-One linguistic theory is not the only way in which a processing model can incorpo-
rate, and be guided by, the insights of that theory.
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5.2.2. Gedanken experiment

The Yapese Room

EXPERIMENTER:

LINGUIST:

COMSCI:

LINGUIST:

COMPLING:

Well, were ready to begin. All of you are interested in stress patterns in
language, so we've arranged to have you analyze them in your own ways.
Inside that room is a tape recorder, on which we will play individual words of
the language Yapese. Let's see what different analyses of the stress pattern
you come up with.

(A sequence of words is heard from inside the room)

Ah. I think I see what's going on!

Really? All I can tell is that stress is sometimes on the last syllable, and
sometimes on the second from last.

You're quite right. Stress falls on the final syllable except when the final
vowel is short and the penult long, in which case stress falls on the penult.

Just what I was about to say myself: I agree with your analysis.

COMSCI:

COMSCI:

COMPLING:

COMSCI:

COMPL1NG:

Hmm. that's pretty neat. (To the experimenter) Do you hav<j (lain froin
other languages?

(Many stress patterns later....)

Well, now that we've all agreed on all the stress patterns, I'm off to develop
a computational model of stress assignment.

Hey. wait! That's what I was going to do! How do you plan to go about it?

It's pretty straightforward. For each pattern. I just need to put together a.
piece of code consisting of a couple of conditionals. I can read the syllables
of the words into an array. For Yapese, for example, I need to write code to
look at the last syllable in the array and assign stress to it, unless it happens
to be a short vowel and the second-last syllable in the array is long, in which
case I assign stress to the second-last element.

Well, that's rather naive, actually. In reality, you should be looking at the
linguistic analysis that Linguist here has made. You need to incorporate
those ideas for your model to be anything other than a linguistically unso-
phisticated hack. Are you familiar with the SPE analysis?

33



COMSCI:

(-OMSCI:

COMPLING:

LINGUIST:

('OMPLING1:

COMSCI:

I'm not sure I know what you're talking about. Well, anyway, Tin off—I
have pretty clear descriptions of the stress patterns, I think. Good luck with
whatever it is you're going to put into your model.

(Some time later....)

I'm back! My program's up and running. I call it Artificially Intelligent
Stress Processor—AISP. for short.

My model's done. too. I call it SPE—for Stress Patterns Explained. What
do you think. Linguist? Want to take a look at our models?

(Looking up from deep thought) What? You know, these stress patterns are
really interesting. I've been thinking about them since you two went away,
and I think there's a much better linguistic analysis to be made. Bettor
still, it is one that provides a means of showing that these patterns differ
from each other along only a small number of dimensions of variation, which
can be regarded as parameters of the model. It's really quite an Hega.nt
framework. Let's call it metrical phonology. Here's how it works ....

(Some time later )

That's a really neat theory. And I think I see a way to model stress assign-
ment using it. I'll need to work out the way in which the data interact with
universal principles to establish parameter settings. But basically, your met-
rical stuff provides really clear representations for a computational modH.
I'll be back soon, with SPE-2.

Er....actually. I think 1*11 stay with my original model. I don't
to change it. (Backs out of the room.)

(The next day)

any

EXPERIMENTER: And how are all of you today? I have someone here who'd like to meet you—
the person who put together the speech synthesis system that produced the
data vou heard yesterday.

LINGUIST: Speech synthesizer? Didn't you tell us we were listening to tape recordings?5v

EXPERIMENTER: If you'll excuse me. I have to be going. Here's our good friend Connhacker.

(-ONNH ACKER:

COMPLING:

I take it that our little speech system passed for human-like sound on tape?
That's a great achievement for us. you know. We sincerely appreciate your
co-operation yesterday.

Never mind all that. What about the stress patterns? Do you mean to
tell me I've been developing computational models of some lousy speech
synthesizer?
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CONNHACKER:

COMPLING:

LINGUIST:

COMPLING:

LINGUIST:

C'OMSCI:

CONNHACKER:

It's state-of-the-art, actually. For each language, we synthesize and put
together syllables according to a stored list of word forms for that language;
a stress contour is imposed by a connectionist network that we trained up
specially.

I've been modeling a connectionist network! ( Turns to Linguist) What does
this do to your metrical theory? Down the tubes!

No. actually the theory stands as it was—at least, if the stress contours
were accurate. The theory merely provides a descriptive framework, within
which to make sense of the data. Analyzing those little units in the con-
nectionist network, or neural pathways in the brain, isn't going to give you
a particularly good understanding of the pattern. Metrical theory can do
that, and can also help uncover interesting relationships among patterns.
It might even suggest constraints on the wiring of human stress processing
apparatus. But the primary benefit of the theory is in organizing the fact s.
If the speech synthesizer or connectionist network or whatever actually has
replicated those stress facts accurately, then the metrical theory I devised is
just as good as if I had devised it by listening to actual human speech.

But I've been using your theory to model the stress processing 1 hat I < hough!,
was being produced by humans. Obviously, it's totally inappropriate to use
that theory if all that's in there is a connectionist network. There are no
metrical trees or anything else going on in there that corresponds to your
theory—just silly little "units".

I never said there were metrical trees in the human brain: merely that then1

must be structures that provide a basis for the phenomena I characterized
in terms of metrical trees. Your computational model is as appropriate or
inappropriate as it would have been if you had modelled real speech produced
by a real human with a real brain.

Say. I don't know what you guys are going on about, but I'd like to take a
look at this speech synthesizer. ( Turns to Connlwekf r) Can we?

Certainly. Since all of you seem particularly interested in the stress assign-
ment aspects, let me show you some analyses we made of the connectionist
network. While training it, we noted the learning times, and found we could
pretty much predict how long it would take for the network to learn a par-
ticular kind of pattern on the basis of certain observable characteristics of
the pattern. We could also tell which patterns would be learnable and which
would require architectural modification of the network before they could be
learned. Here are some of the factors we identified as relevant. First. whether
there's alternation of stresses in the pattern. Second, whether there's just
one. or more than one equal stresses per word. Third, whether it's a pattern
with stress clash. Fourth
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COMSCI: This is really interesting. Tin pretty sure I can simulate these results. All I
need is a binary counter to characterize these factors you've identified, and
then I'll be able to determine how long it should take to "learn" any given
stress system. I can model the actual processing using Linguist's metrical
tree formalism. Yep. I think I can model your connectionist network.

COMPLING: Anathema!

(Enter a Connectionist Magus. Connniag. looking enraged.)

CONNMAG: (Boxing Connhacker's ears) Imbecile! Is this what you've learned? I heard
you spouting your spurious analysis of "scanning" and "primary stress place-
ment". Bah! Don't you see that your "explanations" of the different learning
times of different stress patterns are only abstractions based on what's ob-
servable about the stress patterns? Do you see any correspondence between
your analysis and the computations being carried out in the network? Can
you prove that the Paiute stress pattern is unlearnable. based on your bi-
nary digit scheme? Of course you can't. To do that, you have to look at \hr
architecture of the model you've set up. at the actual connection weights, in
addition to features of the stress pattern itself. That analysis gives you an
"explanation" in terms of the processing: everything else is just a correlation
between a descriptive framework and observed regularities. Your descriptive
analysis, stated in terms of observable properties of the stress patterns, such
as "alternation" and "primary stress placement" helps to identify character-
istics of those patterns that seem to correlate with their learnability. Thus,
it helps organize and make sense of the observed learning results. Hut don't
you fall into the trap of thinking your descriptions are explanations. If you
do that, you'll end up inventing more theories of the kind these people have
been talking about. Who arc all these people, anyway?
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