
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ProP Documentation

Bob Carpenter
Computational Linguistics Program

Carnegie Mellon University-

October 11, 19S9

1 Introduction

PROP is a PROLOG implementation of the PATR-II unification grammar workbench. PROP extends
the context-free grammar formalism by allowing partial descriptions of categories in both lexical
entries and rules.

Details concerning the original PATR-II system can be found in Shieber et al (1983). For an
introduction to the linguistic applications of PATR-II and related grammar formalisms, see Shieber
(1986). For a more general computational overview of unification, see Knight (1989), which also has
an extensive bibliography.

2 Prolog Preliminaries

This section contains all of the information about PROLOG necessary to run PROP.
A PROLOG constant is composed of either a sequence of characters beginning with a lower case

letter, a number, or any sequence of characters surrounded by single quotes. So, abc, johnDoe,
b_17, 123, 'JohnDoe', ' .65a.1 are constants, and A19, JohnDoe, B_19, _au8, [dd,e] are not.

In grammar files, blank lines and line breaks are ignored. Any symbols on a line appearing after
a V* symbol are treated as comments and ignored.

The PROLOG prompt looks like

What you type after the prompt is called a query. Queries always end with a period. In fact, all of
the grammar rules, macros and lexical entries must end with periods.

After the execution of many queries, the words yes or no will appear before the next prompt.
Unless otherwise noted, these responses are irrelevant in the context of PROP.

You can leave PROLOG by entering the query halt at any prompt (followed by a period, of course).

3 Feature Structure Matrices

In PROP, feature structure matrices (FSM) are used to model categories. FSMs can be defined by
two cases, one for atomic FSMs and the other for structured ones.

• If a is a PROLOG constant, then | a | is an atomic FSM

• A structured FSM provides the following information

— the values for a finite (possibly empty) set of features, where a feature is a PROLOG
constant and a feature value is an FSM

- structure sharing links that indicate that two features in the FSM have the same value

Consider the structured FSM

11: 12: lall
f3: |a2|

14: 12: 15: |a6|

Here the value of the feature 11 is the FSM

12: lall
13: Ia2|

The value of the feature f3 in this FSM is the atomic FSM |a2 | . Notice that features can occur
more than once in an FSM. Note that we write a constant between bars to represent an atomic
feature structure.

We can compose the feature value operation to provide values for lists of features, which are
also called paths. Paths are represented by PROLOG lists of features, that is, as square bracketed
sequences of features separated by commas. So we have, in BNF notation,

<path> ::= [<1eat>,...,<leat>]

For instance, [] , [f9] , [17,12,1 1] are paths, but 1 1:12:13, <13,19>, 13 19, (12,13,14) are
not. FSMs have values for paths just as they have values for features. In the above FSM, the value
of the path [14,12] is the FSM

15: Ia6|

Finally, consider the FSM

11: (1) 15: lall
±6: Ia2|
17: | a3 |

12: 13: (1)
14: |a4|

The numbers occuring in parentheses in this FSM are called tags. Tags are used to indicate structure
sharing. For instance the tag (1) above indicates that the value for the path [11] (or equivalently for
the feature 11) is the same as for the path [12,13]. In this case, the additional feature information
is not displayed a second time. The value associated with the feature 12 in the above is thus

13: 15: |al|
f6: |a2|
17: |a3|

14: a4

The actual number associated with a tag is not important — the number merely serves to identify
structure sharing. FSMs which only differ in the numbers of their tags are considered identical.

An FSM is said to contain a cycle if there is a path which is tagged with the same label as one
of its subpaths. For instance,

11: (1) 12: | a |
13: 14: (1)

is cyclical since [11] and [11,13,14] are shared. Cyclical FSMs are not allowed in PROP. If an
attempt is made to create a cycle, PROP will most likely crash.

4 Subsumption and Unification

The collection of categories can be partially ordered by a relation of subsumption. We take an FSM
C\ to subsume another FSM Co if the information represented by C\ is equal or more general than
that given by C2. We also say that Ci is more specific than C\. To be more specific than another
FSM requires some additional information in terms of additional feature values, more specific feature
values or additional shared structure. Subsumption can be formally defined inductively by means
of two cases.

• an atomic FSM subsumes only itself

• a structured FSM C\ subsumes another FSM Ci just in case

- every feature / defined in C\ has an equal or more specific value in C2
- every structure sharing that exists in C\ also exists in C2

Note that the second clause of this definition requries the set of paths given values in C\ to be
a subset of the paths with values in Co. Some examples of subsumption follow, with < for the
subsumption relation:

lal < lal

11: lall < 11: lall
f2: Ia2|

11: (1) 12: lall 11: (1) 12: lall
13: Ia2| < 13: Ia2I

f2: 13: (1) 15: (2)
12: 13: (1)
14: (2)

11: 12: lall < 11: (1) 12: lall
13: Ia2| 13: Ia2|

13: f2: lall 13: (1)
13: Ia2|

Only the first of these subsumptions holds in the opposite direction, so that only the first pair of
categories are equivalent in the sense of mutual subsumption. For all intents and purposes, feature
structures which subsume each other can be taken to be identical.

The unification of two categories can be defined as the smallest category (with respect to sub-
sumption) that is subsumed by both of them. Operationally, unification can be recursively defined
by two cases.

• an atom can only unify with itself

• — two FSMs have a unification in which the value of a feature is the unification of the
values in the two FSMs if both are defined, the one that's defined if just one is defined
and undefined otherwise

- structure sharings that exist in either feature structure must be preserved, by unifying
all of the values of paths that are shared

Of course, unification can fail, as in the case of two distinct atoms, or feature structures with
features which fail to unify. FSMs which can not be unified are said to be incompatible in the
sense of containing contradictory information. Two FSMs can be incompatible if they are distinct
atoms or if there is some feature for which they provide incompatible values. Using + to represent
unification, we have the following equations

lal + lal = lal

11: lall + 12: Ia2I = 11: lall
12: Ia2|

11: 12: lall + 11: 13: f6: Ia4I = 11: 12: lall

13: 14: Ia2| 17: Ia5I 13: 14: Ia2I

15: Ia3| 16: Ia4I
15: Ia3|
17: |a5|

11: (1) + 11: 14: lall = 11: (1) 14: lall

12: 13: (1) 12: 13: 15: Ia2| 15: Ia2l
12: 13: (1)

11: (1) + 11: lall = FAILS

12: 13: (1) 12: 13: |b|

11: (1) + 11: 13 : (2) = FAILS

12: (1) 12: (2)

Note that the last unification fails because the resulting FSM would be cyclic.
Unification and subsumption are defined in such a way that A < B if and only if there is some C

such that A + C = B.

5 Descriptions

PROP uses Kasper-Rounds Logic for describing FSMs (Kasper and Rounds 1986). The well-formed
formulas (wff) of this language can be given using the following Backus-Naur formulation

<wll> ::= <atomic-lsm>
I (<leature> : <wll>)

I (<path> == <path>)

I (<wll> , <wll>)

I (<wll> ; <wll>)

I .
Both features in <leature> and atomic FSMs in <atomic-lsm> are represented by PROLOG constants.
We use the colon for describing the value of a feature, the double equality to indicate structure sharing
between paths, the comma to indicate conjunction and the semicolon to indicate disjunction. The
underscore in the last line is called the bottom and taken to be the unique minimal descripiton which
describes every FSM. Note that we have no need for a corresponding top description that would
correspond to unification failure.

As usual, parentheses may be deleted where not necessary. The operators are ordered according
to how tightly they bind. The loosest binding operator is the semicolon, the next is the comma,
and everything else binds more tightly. Furthermore, all of the operators are right associative. For
instance,

• /i : h : <t> = h : (h : 0)

Formulas are used to describe FSMs. An FSM which is described by a formula is said to satisfy
that formula. The recursive definition of satisfaction can be presented by cases.

• The FSM | a | is the only FSM which satisfies the atomic wff a.

• An FSM satisfies the wff / : <f> just in case its value for the feature / satisfies the wff <j>.

• An FSM satisfies TTI == 7r2 just in case its value for the path wi is shared with its value for
the path 7To.

• An FSM satisfies (<£,̂) if it satisfies both <f> and tp.

• An FSM satisfies (<?\tp) if it satisfies either <j> or if>.

• Every FSM satisfies _ .

A description is said to be satisfiable if it is satisfied by at least one FSM, and unsatisfiable
otherwise. Two descriptions are said to be logically equivalent if they are satisfied by exactly the
same set of FSMs. A description <j> is said to logically entail another description rj) if every FSM
which satisfies <f> also satisfies ip.

It should be clear from the definition of satisfaction that the order of information within con-
junctions and disjunctions, as well as the order of paths in path equalities does not affect the set of
solutions to the description.

The bottom description _ will not affect a solution if added in as a conjunct, so that the descrip-
tions (_, <j>) and (<£,_) and <j> are all logically equivalent. Note that the minimal FSM which satisfies
. does not contain any specific information and will thus not show up in any of the displays except
as empty space. Of course, this is the only FSM which will be displayed as empty space, so no
confusion should arise.

It is important to note that there are two ways in which a description can be satisfied by more
than one FSM. The first is through vagueness. For instance, the feature structures

f l : f2: (1) f4:
13: (1)

and

f l : f2: (1) f4:
f5: (2) Ia2l

13: (1)
16: (2)

both satisfy the description ([f 1 ,f 2] == [f 3] , f 3:f4:al). But, the first has the important prop-
erty of being the (subsumption) minimal category that satisfies the description, while the second is
an FSM which is subsumed by the first. Such a descripiton is said to be vague. Every FSM which
satisfies this description is more specific than the first FSM above. Conversely, every FSM more
specific than the first FSM above satisfies the description. In this sense, every description is vague.
Extra information can always be added about new features.

The second route to multiple satisfaction is through ambiguity. For instance, both

f l :

and

f 3 :

f 2 :

f l :
f 2 :

lal

(1)
(1)

satisfy the description (i 1:12: a ; i 3 : ([i l] == [f 2])) . But, neither of these solutions subsumes
the other. Such a description is said to be ambiguous or non-deterministic. This kind of ambiguity
can only arise from disjunctions in descriptions.

Kasper and Rounds (1986) have proved a normal form theorem stating that for every description,
there is a recursively decidable finite set of FSMs such that every FSM that satisfies the description
is more specific than some FSM in the set. The proof of this result lies in the construction of a
sound and complete unification algorithm.

This means that a description will be ambiguous if and only if there is more than one such
minimal FSM in the set of minimal satisfiers of the description. As a general rule of unification
grammar writing, ambiguity should be traded for vagueness wherever possible.

Due to the fact that there are possibly an exponential number of minimal solutions for a dis-
junctive description, the satisfaction problem for descriptions is NP-hard. This result stems solely
from the ability of the description language to express disjunction, which leads to ambiguity. The
satisfaction problem for unambiguous descriptions without disjunction can be solved in polynomial
time.

6 Lexical Entries

Lexical entries take the following form

<lex> ::= <word> > <wff>.

A word in <word> is just an arbitrary PROLOG constant. The idea here is that the word can have
any lexical category which satisfies the formula it is associated with.

For instance, the lexical entry

mukesh > syn:head:maj:(nom:yes,
verb:no),

syn:(head:agr:pers:3,

foot:bar:2),
syn:head:(agr:num:sing,

agr:nform:norm),
sem:mukesh.

would mean that John has the category

syn : head : maj : nom : I yes I
verb : I no I

agr : pers : 131
num : Is ing I
nform : I normI

foot : bar : |2|
sem : ImukeshI

which is the minimal FSM satisfying its lexical description.
One or more entries may be given for each word. For instance, we could have

bank > syn:noun, sem:riverbank.
bank > syn:noun, sem:moneybank.
bank > syn:verb, sem:turn.

or the equivalent disjunctive

bank > (syn:noun, sem:(riverbank ; moneybank))
; (syn:verb, sem:turn).

t

6

7 Grammar Rules

Grammar rules in PROP are written with a bottom-up context-free grammar orientation. The BNF
specification of a rule is

<rule> ::= <catnamelist> ===> <catname> if <form>.

Elements of <catname> are simply PROLOG constants and elements of <catnamelist> are PROLOG

sequences of such constants. A PROLOG sequence contains elements separated by commas, such as
(x l , x 2 , . . . ,xN). Note that it is not possible to have an empty sequence () , thus there are no null
productions allowable in the grammar. The formula after the if serves to restrict the categories
named in the rules. Keep in mind that the names given to categories in a rule have no significance
in the grammar, but simply serve to uniquely identify the information associated with each node in
a local tree. For instance, consider the simple rule

np, vp ===> s if
np:maj:np,
vp:maj:vp,
[np,agr] == [vp,agr].
s:maj:s,
[s,sem] == [vp,sem],
[s,sem,subj] == [np,sem].

The minimal FSM which satisfies the formula given by this rule is

np: maj: InpI
agr: (1)
sem: (3)

vp: maj: IvpI
agr: (1)
sem: (2) subj: (3)

s: maj: Is I
sem: (2)

The interpretation of such a rule is that FSM1 and FSM2 can rewrite to FSM3 if we unify

np: FSM1
vp: FSM2

with the solution to the rule to get an FSM whose value for s is FSM3. This allows information to
flow up from the daughter categories to the mothers via unification. For instance, this rule would
allow us to carry out the following reduction

maj: I np I maj: IvpI maj: Is I
agr: Isingl sem: rel: Ifeastl ===> sem: rel: Ifeastl
sem: lutherl subj: lutherl

since unifying

np: maj: InpI
agr: Isingl
sem: lutherl

vp: maj: IvpI
sem: rel: Ifeastl

with the rule vields

tip: ma j :
agr:
sem:

vp: ma j :
agr:
sem:

s: maj:
sem:

Inpl
(1)
(3)

Ivpl
(1)
(2)

|s|

(2)

Isingl
1uther1

Isingl
subj: (3)
rel: 1 feast 1

which has the appropriate value for the feature s.
The formal generative power of PATR-II is such that for any recursively enumerable language,

there is a PATR-II grammar which accepts it. In particular, it is possible to write grammars which
are undecidable. As we mention below in the section on parsing, undecidable grammars all have
the characteristic of allowing some string to have an infinite number of subsumption incomparable
analyses.

8 Macros

Since the construction of grammars often requires the use of the same categorial information over
and over again in different categories, it is helpful to have an efficient means of coping with such
redundancy. For this purpose, there are macros patterned after the templates of PATR-II. A macro
can be thought of as an abbreviation for a formula. Macros are written into the grammar in the
form

<macro> ::= <macro-name> macro <wff>.

where a macro name in <macro-name> is some PROLOG constant.
We add the additonal clause

<wff> : : = Q <macro-name>

to the definition of well-formed formulas, so that a marked macro name may stand in for formulas
in any part of the grammar (including in the definition of other macros). The space between the Q
symbol and the macro name is not significant.

For instance, consider the two macros

np macro maj:np.

third_sing macro agr:(num:sing,person:third).

With these macros, the following lexical entries would produce identical results

uther > maj:np, agr:num:sing, agr:person:third.
uther > top, ®third_sing.
Recursive macro definitions will cause chaos. Such definitions lead to an infinite regress which

will cause the gramamr to hang at compile time. For instance, the macro definitions

a macro b.
b macro a,d.

are not acceptable, since trying to expand a leads us to try and expand b which leads us back to
expanding a.

9 Grammar Compilation

The query new_grammar ('fi lename') will load a file residing in filename. For instance, a grammar
in the file 'gram.pl' is loaded by

I ?- new_grammar('gram.pl').

This will load the lexical entries, rules and macros from the specified file and compile the lexicon
and rule set from them.

There are also specialized predicates new_macros, new_rules and new_lex to read and compile
just the appropriate grammar components from a file. These can also be used to extract the lexicon
from one complete grammar file and the rules from another.

Compiling a grammar consists of finding all of the minimal solutions to the rules and lexical
entries and recording them before parsing ever begins. This is similar to converting the entire
grammar into disjunctive normal form. Since the grammar is compiled, the substitution of a formula
for another formula with the same set of minimal solutions will have no effect on run-time speed.

10 Grammar Inspection

There are a number of utilities in PROP which can be used to display parts of the grammar. From
here on out, all examples will be drawn from the sample grammar in the appendix.

To query a lexical entry, use the following format

I ?- lex(feasted) .

WORD: feasted
ENTRY:
syn : head : maj : verb : I yes I

nom : I no I
agr : nform : I normI
vform : I fin I

foot : bar : 101
subcat : 111

sem : tim : Ipast I
rel : I feast I

Another? y.
WORD: feasted
ENTRY:
syn : head : maj : verb : I yes I

nom : I no I
agr : nform : I normI
vform : |past_part|

foot : bar : 101
subcat : 111

sem : aspect : (perfect I
rel : I feast I

Another? y.
no

Notice that after the first entry, the program prompts the user, who may enter y. or n. to tell the
program to either provide another entry or stop looking for entries. Note that this query will not

9

rest until you've given it a period. In this context, the answer of no is significant in that it signals
the lack of additional solutions to the query. This user query system is used in all of the interface
modules.

l e x and the other grammar inspection predicates r u l e and macro can be used with or without
arguments. When used without arguments, they will iterate through the solutions in the relevant
part of the grammar one by one.

To inspect a rule in the grammar, use

I ?- r u l e ((n p , v p ===> s)) .

MOTHER:
syn : head : (2) maj : (0) verb : I yes I

nom : I no I
vform : I f i n I
agr : (1)

foot : bar : | 2 |
sem : (6) subj : (5)
DAUGHTERS:
* syn

sem
* syn

sem

: head

foot

: (5)
: head
foot

: (6)

: maj :

case

agr :

: bar :

: (2)
: bar :

nom : I yes I
verb : Ino I
: IsubjI
(1)
121

111

Note that for the predicate rule it is neccessary to enclose the rule in two sets of parentheses so
that PROLOG does not get confused about the commas. Rules are printed out with the mother first,
followed by a sequence of daughters. The beginning of each daughter category is marked with an
asterisk. In this example and from now on, we will eliminate the queries for multiple solutions from
our examples. Such a rule can be thought of in terms of local tree templates. For a local tree to be
acceptable it must be able to unify with a local tree generated by one of the rules in the grammar.

Finally, macros can be inspected in the same way, with

I ?- macro(np).

MACRO: np
syn : head : maj : nom : I yes I

verb : Ino I
foot : bar : | 2 |

11 Parsing and Debugging

PROP uses an active bottom-up chart parser enhanced to cope with the partial nature of unification
grammars. Details on chart parsing can be found in Allen (1988, pages 60-72). The most significant
difference between a unification chart parser and a standard chart parser is that the unification
version must check a proposed edge to make sure it does not stand in a subsumption relationship
either way to an existing edge. If a proposed edge is subsumed by something on the chart, then it
is not added. If it subsumes an edge on the chart, the existing edge is removed and the new edge
added. This can lead to unexpected behaviour if some expected edges don't show up on the chart.

10

It is important to keep in mind that the bottom-up chart parser in PROP will construct the entire
chart before informing the user of any complete analyses. A grammar which produces an infinite set
of subsumption incomparable categories will thus cause the parser to hang.

A list of words to be parsed must be given as a PROLOG list to the predicate rec. For instance

I ?- rec ([uther , feas ted]) .

STRING:
0 uther 1

CATEGORY:
syn : head

foot
sem : subj

tim
rel

feasted 2

: maj : verb
nom :

: lyesl
Inol

vform : Ifinl
agr : pers

nura :
nform

: bar : |2|
: 1uther1

: Ipastl
: 1 feast 1

: 131
Isingl
: I norm1

The string is first displayed for convenience, since the numbers are necessary to inspect particular
zones of the chart later.

To look at parse trees of the most recently parsed string, use

I ?- t ree .

* np,vp===>s •
syn : head : (2) maj : (0) verb : lyesl

nom : I no I
vform : Ifinl
agr : (1) pers : 131

nura : Isingl
nform : I normI

foot : bar : |2|
sem : (5) subj : IutherI

tim : Ipastl
rel : I feast I

* lexical entry *
syn : head : maj : nom : lyesl

verb : I no I
case : IsubjI
agr : (1)

foot : bar : |2|
sem : IutherI

<uther>
* iv===>vp *
syn : head : (2)

foot : bar : 111
sem : (5)

* lexical entry *

11

syn : head : (2)
foot : bar : 101
subcat : 111

sem : (5)
<feasted>

Note that the trees are printed out in the standard computer-oriented indented list format. That is,
the mother category is aligned at some column, and all of the daughters are indented. Each category
is also preceeded by the name of the rule that was successfully fired, including lexical entries. The
actual lexical token follows its lexical entry in the standard format. This is where mnemonic labels
for categories in rules come in handy. Again, in trees, we do not print out redundant information at
more than one node.

There is also a parameterized version of tree in which the span from left to right can be specified.
For instance, tree(O,l) would print out just the part of the tree spanning uther.

12 Inspecting the Chart

Edges in the chart may be inspected in the following way

I ?- edge(O,l) .

SPANS: < uther >

INACTIVE EDGES:

SPAN 0 TO 1
syn : head : maj : nora : I yes I

verb : Ino I
agr : pers : 131

num : I sing I
nform : |normI

foot : bar : |2|
sem : IutherI

ACTIVE EDGES:

SPAN 0 TO 1
syn : head : (2) maj : (0) verb : I yes I

nora : I no I
vform : I f in I
agr : (1) pers : 131

num : I sing I
nform : I normI

foot : bar : | 2 |
sem : (5) subj : IutherI
AFTER GETTING:

* syn : head : (2)
foot : bar : 111

sem : (5)

Note that the inactive edges are printed out followed by the active edges. The active edges include
information on the categories that they need to get before becoming inactive. These categories are

12

printed out in the same manner as daughters in rules.

There is a facility to trace the parser as it adds edges to the chart. At any prompt, use the query

I ?- edge_trace.

to turn the edge tracer on and the query

I ?- no_edge_trace.
to turn the tracer off. When the tracer is on, it will display the edges as they are being produced, as
well as any result category that is found after the chart is built. After every edge that is displayed,
the user will be queried as to whether or not to proceed. A n. answer will turn off the tracer, but
not abort the parse. Any other input will continue tracing with the next edge (remember to follow
any input with a period).

13 Off-Line Input and Output
There is a mechanism for allowing a corpus of test sentences to be entered into a file and re-used.
The file containing the test sentences should contain queries of the form test(<words>), as in

test([uther,feasted]).
test([uther,feasted,yesterday]).

test([uther,probably,feasted,yesterday]) .

To test the sentences in the file filename, use

I ?- reefile(filename).

This will cause all of the categories generated for each string to be printed out in order.

A Running C-Prolog under Unix
Change directories to where the grammar file(s) reside.

Enter the shell command

•/, prolog

at which point you will see

C-Prolog version 1.5

I ? -

/prolog/ can be called with additional heap, local stack, global stack, atom area and auxiliary stack,
with the flags

-h heap
-g global stack
-1 local stack

-t trail
-a atom area
-x auxiliary stack

For instance, if you run out of heap space or global or local stack, use

'/• prolog -h 5000 -1 5000 -g 5000
/

13

If PROP is in the file propf ilename, use the command

I ?- reconsult(*propfilename').

to load PROP.

For the LCL Bobcats, P R O P can be found in

/net/prospero/usr/local/prolog/ProP/prop.pl

and the sample grammar in

/net/prospero/usr/local/prolog/ProP/gram.pi

B Context-Free and Definite Clause Grammars

ConiexUfree grammars (CFG) are just a special case unification grammars in which every category
is atomic. To encode a context-free grammar, just use constants for the description of every category
in every rule and every lexical entry.

PROP is general enough to encode definite clause grammars (DCG) of the sort often found in
PROLOG implementations. This is because general PROLOG terms may be used in place of constants in
atomic FSMs. The only thing to keep in mind here is that the subsumption check is not implemented
with DCGs in mind and will assume a subsumption holds if two categories can be unified.

For example, a simple PROP DCG encoding number agreement between subjects and verbs would
be:

John > subj(s ing) . parliament > subj(plu).
votes > pred(sing). vote > pred(sing).
c l , c 2 ===> c3 if c l :subj(X), c2:pred(X), c3 : s .

It should be noted that when printing out a category which is merely a variable nothing will be
displayed just as with the minimal satisfier of the bottom description.

Of course, PROP uses the same parser for these grammars and thus provides a bottom-up inter-
pretation of DCGs and CFGs.

C Sample Grammar

*/. RULES

np, vp ===> s if
np: Csubj_np,
vp:(Cvp,€finite),
s: €s,
[np,syn,head,agr] == [vp,syn,head,agr]
[s,syn,head] == [vp,syn,head],
[s,sem] == [vp,sem],
[s,sem,subj] == [np,sem].

det, n ===> np if
det: Odet,
n: On,
np: ©np,

14

[det, syn, head, agr] == [n, syn, head, agr] ,
[np,syn,head] == [n,syn,head],
[np, s em,quant] == [det,s em],
[np,sem,restr] == [n,sem].

iv ===> vp if

iv:(©verb,

syn:subcat:1),

vp: ©vp,

[vp,syn,head] == Civ,syn,head],
[vp,sem] == [iv,sem].

tv, np ===> vp if
tv:(©verb,

syn:subcat:2) ,
np: ©obj_np,
vp: ©vp,
[vp,syn,head] == [tv,syn,head],
[vp,sem] == [tv,sem],
[vp,sem,obj] == [np,sem].

bv, npl, np2 ===> vp if
bv: (©verb,

syn:subcat:3),
npl: ©obj_np,
np2: ©obj_np,
vp: ©vp,

[vp,syn,head] == [bv,syn,head],
[vp,s em] == [bv,s em],
[vp,sem,obj] == [np2,sem],
[vp,sem,obj2] == [npl,sem].

aux, vpl ===> vp2 if

aux: (flverb,

syn:subcat:4),
vpl: Qvp,
vp2: «vp,

[aux,syn,aux] == [vpl,syn,head,vform] ,
[vp2,syn,head] == [aux,syn,head],
[vp2,syn,head,agr] == [vpl,syn,head,agr],
[vp2,sem,xcomp] == [vpl,sem],
[vp2,s em] == [aux,s em].

cv, inf ===> vp if

cv: (©verb,

syn:subcat:5),
inf: (©vp,

syn:head:vform:inf),
vp: ©vp,
[vp,syn,head] == [cv,syn,head],
[vp,syn,head,agr] == [inf,syn,head,agr],

15

[vp,sem] == [cv,sem],
[vp,s em,xcomp] == [i n f , s em],
[vp,sem,subj] == [inf , sem,subj] .

adv,vpl ===> vp2 if
adv: (©adv,

syn:order:pre),
vpl: ©vp,
vp2: ©vp,
[vp2,syn,head] == [vpl,syn,head] ,
[vp2,sem,rel] == [adv,sem],
[vp2,sem,xcomp] == [vpl,sem].

vpl,adv ===> vp2 if
vpl: ©vp,
adv: (©adv,

syn:order:post),
vp2: ©vp,
[vp2,syn,head] == [vpl ,syn,head],
[vp2,sem,rel] == [adv,sem],
[vp2,sem,xcomp] == [vpl,sem].

adj , nl ===> n2 if
adj : ©adj ,
nl : ©n,
n2: ©n,
[n2,syn,head] == [nl , syn,head] ,
[n2,sem,rel] == [adj,sem],
[n2,sem,xcomp] == [nl ,sem].

'/. LEXICOH

Y* Proper Names
V.
uther >

©name,
sem:uther.

lancelot >
©name,
sem:lancelot.

V, Pronouns

it >
©np, ©third_sing, ©norm, ©pro.

he >
©subj.np, ©third.sing, ©norm, ©pro.

him >

16

©obj_np, ©third.sing, ©norm, ©pro.

'/• Indexicals

i >

©subj.np, ©first, ©sing, ©norm,

sem:speaker,

me >

©obj.np, ©first, ©sing, ©norm,

sem:speaker,

you >

©np, ©second, ©norm,

sem:hearer,

we >

©subj.np, ©first, ©plu, ©norm,

sem:speaker.and_hearer.

us >

©obj_np, ©first, ©plu, ©norm,

sem:speaker.and_hearer.

%l% Expletives
y _

it >
©subj_np, ©it,
sem .-dummy.

54 Determiners

the >

©det, ©third, ©norm,
sem:the.

every >

©det, ©third_sing, ©norm,
sem:every,

all >
©det, ©third, ©plu, ©norm,
sem:all.

•/• Nouns

sheep >
to,
sem:sheep,

knight >

to, ©sing,

sem:knight.
knights >

to, ©plu,
sem:knights.

% Adjectives

17

tall >
©adj,
sem:tall.

'/• Intransitive Verbs
y

feast >
©verb, ©norm, ©base,
syn:subcat:1,
sera:rel:feast.

feasted >

©verb, ©norm, ©past,

syn:subcat:1,

sem:rel:feast.

feasts >

©verb, ©norm, ©third_sing, ©present,

syn:subcat:1,

sem:rel:feast.

feast >

©verb, ©norm, ©non_third_sing, ©present,

syn:subcat:1,

sem:rel:feast,

feasting >

©verb, ©norm, ©present.participle,
syn:subcat:1,
sem:rel:feast.

feasted >
©verb, ©norm, ©past.participle,
syn:subcat:1,
sera:rel:feast.

%l% Expletive Intransitive Verbs
y#

rain >

©verb, ©it, ©base,
syn:subcat:1,
sem:rel:rain,

rained >
©verb, ©it, ©past,
syn:subcat:1,
sem:rel:rain,

rains >

©verb, ©it, ©present,
syn:subcat:1,

sem:rel:rain,
raining >

©verb, ©it, ©present_participle,
syn:subcat:1,
sem:rel:rain,

rained >

18

©verb, ©it, ©past.participle,
syn:subcat:1,
sem:rel:rain.

X Transitive Verbs

fight >
©verb, ©norm, ©base,
syn:subcat:2,
sem:rel:fight.

fought >
©verb, ©norm, ©past,
syn:subcat:2,

semrrel:fight,
fights >

©verb, ©norm, ©third_sing, ©present,
syn:subcat:2,
sem:rel:fight.

fight >

©verb, ©norm, ©non_third_sing, ©present,
syn:subcat:2,

sem:rel:fight,
fighting >

©verb, ©norm, ©present_participle,
syn:subcat:2,
sem:rel:fight.

fought >

©verb, ©norm, ©past.participle,
syn:subcat:2,
sem:rel:fight.

X Bintransitive Verbs

give >

©verb, ©norm, ©base,

syn:subcat:3,
sem:rel:give.

gave >

©verb, ©norm, ©past,

syn:subcat:3,
semrrel:give,

gives >

©verb, ©norm, ©third.sing, ©present,
syn:subcat:3,

sem:rel:give.
give >

©verb, ©norm, ©non_third_sing, ©present,
syn:subcat:3,
sem:rel:give.

giving >
©verb, ©norm, ©present.participle,

19

syn:subcat:3,
sem:rel:give.

given >
©verb, ©norm, ©past_participle,
syn:subcat:3,
sem:rel:give.

•/• Subject Raising Verbs

seem >
©verb, ©base,
syn:subcat:5,
sem:rel:seem,

seemed >

©verb, ©past,
syn:subcat:5,
sem:rel:seem,

seems >

©verb, ©present,
((©third_sing, ©norm)

syn:subcat:5,
semrrel:seem,

seem >

©verb, ©norm, ©non_third_sing, ©present,
syn:subcat:5,
sem:rel:seem,

seeming >

©verb, ©present.participle,
syn:subcat:5,
sera:rel:seem,

seemed >

©verb, ©past.participle,
syn:subcat:5,
semrrel:seem.

% Auxiliaries
y
did >

©verb, ©past,

syn:subcat:4,
syn:aux:base,

do >

©verb, ©non_third_sing, ©present,
syn:subcat:4,

syn:aux:base,
does >

©verb, ©third.sing, ©present,
syn:subcat:4,
syn:aux:base.

20

have >
©verb, ©base,

syn: subcat:4,

syn:aux:past_part.
had >

©verb, ©past,
syn:subcat:4,

syn:aux:past_part.
have -—>

©verb, ©non_third_sing, ©present,
syn:subcat:4,

syn:aux:past.part.
has >

©verb, ©present,
((©third_sing, ©norm)

syn:subcat:4,

syn: aux: past__part.

to >
©verb, ©inf,
synrsubcat:4,
syn:aux:base.

be >
©verb, ©base,
syn:subcat:4,

syn:aux:pres_part.
was >

©verb, ©past, ©sing, ©norm,
syn:subcat:4,
syn:aux:pres_part.

was >

©verb, ©past, ©it,

syn:subcat:4,

syn:aux:pres_part.
were >

©verb, ©past, ©norm,

(©second

;€plu).
syn:subcat:4,

syn:aux:pres_part.
am >

©verb, ©present, ©first, ©sing, ©norm,
syn:subcat:4,

syn:aux:pres_part.
is >
©verb, ©present, ©third.sing, ©norm,
syn:subcat:4,
syn:aux:pres.part.

are >

21

©verb, ©present, ©norm,
(©second
;©plu),
syn:subcat:4,
syn:aux:pres_part.

being >
©verb, ©present.participle,
syn:subcat:4,
syn:aux:pres_part.

been >
©verb, ©past_participle,
syn:subcat:4,
syn:aux:pres_part.

•/. Adverbs

slowly >
©adv,
sem:slowly,

probably >
©adv,
syn:order:pre,
sem:probably,

yesterday >
©adv,
syn:order:post,
sem:yesterday.

*/• MACROS

barO macro syn:foot:bar:0.
barl macro syn:foot:bar:1.
bar2 macro syn:foot:bar:2.

pro macro s em:pro.

first macro syn:head:agr:pers:1.
second macro syn:head:agr:pers:2.
third macro syn:head:agr:pers:3.

sing macro syn: head :agr: num.* sing,
plu macro syn:head:agr:num:plu.

third_sing macro ©third, ©sing.
non_third_sing macro ©plu ; ©second ; ©first.

finite macro syn:head:vform:fin.
base macro syn:head:vform:base.

22

inf macro syn:head:vform:inf.

present macro ©finite, sem:tim:present,
past macro ©finite, sem:tim:past.

pres ent.part ic iple macro

syn:head:vform:pres_part,
sem:aspect:progressive.

past.participle macro

syn:head:vform:past_part,

sem:aspect:perfect.

norm macro syn:head:agrinform:norm,
it macro syn:head:agrinform:it.

nominal macro syn:head:maj:nom:yes.

non.nominal macro syn:head:maj:nom: no.

verbal macro syn:head:maj:verb:yes.
non_verbal macro syn:head:maj:verb:no.

n macro ©nominal, toon.verbal, ©barl.
np macro ©nominal, ©non_verbal, ©bar2.

name macro ©np, ©third.sing, ©norm.

subj_np macro ©np, syn:head:case:subj.
obj_np macro ©np, syn:head:case:obj.

verb macro ©verbal, ©non_nominal, ©barO.
vp macro ©verbal, ©non_nominal, ©barl.
s macro ©verbal, ©non_nominal, ©bar2.

det macro syn:head:maj:det.
adv macro syn:head:maj:adv.
adj macro syn:head:maj:adj.

Acknowledgements

I would like to thank Alex Franz for comments on two earlier drafts. The fact that this piece of
software exists in usable form is due to Lori Levin, who wanted a PATR-II parser for her Natural
Language Processing course at Carnegie Mellon. PROP was developed on a Hewlett-Packard Bobcat
350 workstation using C-Prolog.

References

Allen, J, 1987. Natural Language Understanding. Benjamin Cummings, Menlo Park.

Kasper, R. T. and W. C. Rounds, 1986. A logical semantics for feature structures. In Proceedings
of the 24th Annual Conference of the Association for Computational Linguistics, pages 235-

23

242.

Knight, K, 1989. Unification: A Multidisciplinary Survey. ACM Computing Surveys, Vol. 21, No.
1, pages 93-124.

Shieber, S. M., 1986. An Introduction to Unification-Based Approaches to Grammar. CSLI Lecture
Notes, Vol. 4, Chicago University Press, Chicago.

Shieber, S. M., H. Uszkoreit, F. C. N. Pereira, J. Robinson, and M. Tyson, 1983. The formalism and
implementation of PATR-II. In Research on Interactive Acquisition and Use of Knowledge,
SRI International, Menlo Park, California.

24

