
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

'"• •"•• £V C ^ £ * ^ " - - V " 3

A Parser for HPSG

Alex Pranz

Jvdy 1990

Report No. CMU-LCL-90-3

Laboratory for
Computational
Linguistics

139 Baker Hall
Department of Philosophy
Carnegie Mellon University
Pittsburgh, PA 15213

A Parser for HPSG

Alex Franz1

*I would like to thank Carl Pollard and Bob Carpenter for helpful comments and discussions. This work
was supported by the NSF under grant number IRI-8806913.

Contents

?2 Running the Parser < :v . v r-:?.ri.v£*»}£
2.1 Preparing a Grammar • • . . • '• . , 3
2.2 Loading the Parser • • • ; . • . 3
2.3 Reading an Input Grammar • . . . 4
2.4 Parsing Sentences 5
2.5 Displaying Output 7
2.6 Using &TEX to Display Output 8
2.7 Changing Search Strategy and other Parameters 10

3 About HPSG 12
3.1 Organization of HPSG Grammars 12
3.2 The Signature 13
3.3 Principles of Grammar and Sort Definitions 14
3.4 The Lexicon 17
3.5 Lists 17
3.6 Relations 17

4 An Example Grammar 18
4.1 Scope of the Example Grammar 18
4.2 The Sort Signature 19
4.3 Principles of Grammar ' 22
4.4 Lexical Entries 27
4.5 Sort Definitions 29

5 Input Specifications 30
5.1 Signature Specification 31
5.2 Sort Definitions 31
5.3 Relation Definitions 32

6 Grammar Debugging 33
6.1 Error Messages 33
6.2 Structure of the Trace File 35
6.3 Semantic Grammar Mistakes 36
6.4 If You're Desperate 37

6.4.1 Verbose Printing of Structures 37
6.4.2 Examining the Converted Grammar 38

. - S3ISX-?o
7 Grammar Conversion 38

7.1 Overview^{^^ 38
7.2 Parsing the Signature • . • . 39
7.3 Reading Sort and Relation Definitions " . " f V . ? . ^ ^ # f ^ 40
7.4 Handling the Sort Hierarchy . ; . . . ;v . ir.".%"^ . 40
7.5 Graph Representation . . . TV. ~. .'r; . : t ;-7 . 41
7.6 Constructing Initial Record Types . rr. /I V. / / ; ?; . . ? . 41
7.7 Constructing Graphs from Definitions 42
7.8 Expanding Graphs 43

8 Parsing 44
8.1 'Overview 44
8.2 Initializing Search 44
8.3 Selecting Moves 45
8.4 Generating new States through Unification 46

9 Further Work 47
9.1 Efficiency Improvements 47
9.2 Extensions to the Parser 48

Appendices 50

A Sample Grammar 50

B System Trace •' 61

C Parser Output 65

D Printing Feature Structures 72

D.I Overview 72
D.2 Tagging Graphs 72
D.3 Conversion to Lists 72
D.4 Printing ASCII Graphs 73
D.5 Producing MfcX Output 73
D.6 Parameters for MfcX output 74

References 78

1 Overview

This document describes a parser for Head-driven Phrase Structure Grammar (HPSG). The system
was implemented in Lucid Common Lisp (Version 2.1.1) in the Laboratory for Computational
Linguistics on an HP 9000/370 workstation.

Following [Carpenter and Pollard, 1989], I view the HPSG formalism as a set of constraints
over a type scheme for sorted feature structures. The function of the HPSG interpreter is to solve
these constraint equations.

The interpreter has three conceptual components: The grammar conversion routines trans-
form an HPSG grammar into the appropriate internal format. The grammar processor performs
parsing, and output routines print sorted feature structures either in ASCII format, or directly
generate Î TgX instructions.

The next section provides a brief guide to running the parser. Subsequent sections describe
HPSG from a grammar-writer's point of view, and provide formal input specifications that define
the version of the HPSG formalism adopted here.

Following this, there are sections that describe grammar conversion and parsing in detail.

A sample grammar, a grammar conversion and parsing trace, some output from the program,
and further details on printing feature structures are contained in the appendices.

2 Running the Parser

Following is a brief guide to running the parser that should provide enough information to allow
the reader to start experimenting with the system.

2.1 Preparing a G r a m m a r

First of all, an input grammar must be provided. Appendix A contains a sample grammar that
could be modified for this purpose. Sections 4 and 5 describe HPSG grammars in more detail, and
should be referred to during more serious grammar-writing efforts.

2.2 Loading the Parser

The parser has been compiled for Lucid CL versions 2.1.1 and 3.0, but the Lisp source should load
in most Common Lisp implementations. When compiling the program on other machines care must
be taken to first load the Lisp source files in order to properly compile macros.

The source code has been divided into the following files:

[e startup.lisp (global declarations) . « .

aux.lisp (auxiliary functions) Vi \ iT L •

graph-rep.lisp (functions for representation and manipulation of graphs)

parse.lisp (parser functions)

convert-input-gramxnar.lisp (functions to read and convert input grammars)

latex-output . l isp (functions to generate &T£X instructions for printing graphs)

debug.lisp (auxiliary grammar and parser debugging functions)

Typing (load "startup") at the Lisp prompt causes all parser files to be loaded:

> (load "startup")
Loading binary file "startup.hbin"
Loading binary file "aux.hbin"
Loading binary file "graph-rep.hbin"
Loading binary file "parse.hbin"

;; Loading binary file "convert-input-grammar.hbin"
; Loading binary file "latex-output.hbin"
;; Loading binary file "debug.hbin"

#Pl7users/alex/Courses/Nlp3/Code/startup.hbin"

If the parser files have not been compiled for the machine in use, first load the source files, then
type r

(compile-parser)

to cause all the files to be compiled. Finally, load the binaries by typing (load "startup") again.

2.3 Reading an Input Grammar

Type (run) to start the parser. The greeting will be printed, and you will be asked whether you
wish to keep a trace in the log file; typing <retura> causes this to default to "no*. The trace, which
is written to a file called parser.log, contains a lot of information (see Section 6.2) and keeping
a trace will slow parsing down considerably. However, it is essential for grammar-debugging, and
examining selected parts of the trace will provide insights on the working of the parser.

> (run)

;_pr - . -: . HPSG P a r s e r "'- '' * L Z1" ~
4 s-r • -+ - . • - -^ c - -J

??? Do you want to keep a trace in the log f i l e ?: ["No"] yes
**• Trace will be written to f i l e parser.log:=.• *.: ~i:-- '

Next, you will be prompted to type the name of the file containing the input grammar. Type
<retura> to read the default file, grammarl.text:

??? Enter f i l e name of input grammar: ["grammarl.text11]
*** Initializing Converter Variables
*** Converting grammar in f i l e "grammarl.text11

*** Parsing signature specification
*** There are 131 sorts
**• Reading sort and relation definitions
*•• Performing inheritance in sort hierarchy
*** Constructing minimal satisfiers
• Constructing datatypes
*** Constructing satisf iers of definite constraints
*** Constructing satisf iers of conjuncts in definitions
• Constructing satisf iers of disjunctive constraints
*** Expanding minimal satisfiers
• Grammar conversion was successful.
**• Initializing parser

The parser now reads the input grammar and converts it into a number of internal data structures.
Messages indicating itsj>rogress are printed throughout, as shown above.

2.4 Pars ing Sentences

After a little while you will reach the parsing component of the system, indicated by the following
message and prompt:

<parser> Enter type of expression and words terminated by ';>:

Input to the parser consists of two parts. The first indicates the type of expression you wish to
parse; possible expressions include sentence, phrase, sign. This is followed by the words that
constitute the expression. Commands to the parser must be ended by a semicolon.

sentence may be abbreviated as s. In addition, if the keyword : a l l is included the parser
will retTirn all possible parses; otherwise, it will deliver only the first parse found. Below are some
examples of possible input to the parser if the grammar in grammar 1. text has been loaded:

—> sentence sandy laughs; "

—> : a l l s sandy gives cindy tea;

—> : a l l phrase l ikes cindy;

Once an expression has been entered, the parser starts working on the input. It attempts to resolve
sort and relation definitions in the grammar by searching through the space of non-disjunctive
sorted feature structures created by disjunctions in the definitions. At every state, a message of
the following format is printed out:

*** 0 s ta tes in queue: NIL
Moving from graph #1
Resolving disjuncts of — sentence —
Mode: DEPTH-TIL-SPLIT Generated 3 new s ta tes :

(#2 sentence #3 sentence #4 sentence)

The first line indicates how many unresolved states are currently waiting in the queue. Every time
a new graph is created during search it is labelled with a number. The above message was printed
at the initial state; thus, there are no states in the queue, and we are moving from the start state,
corresponding to "graph #1*. The third line tells us that the parser is attempting to resolve the
definition of the sort sentence, a special sort created to act as a template for parsing sentences.

Finally, the last line informs us that we are in search mode DEPTH-TIL-SPLIT and that we have
generated three new states. It also tells us the numbers of the new graphs (#2, #3 , and #4). The
term aDepth-til-split" means breadth-first search that proceeds down paths until they split. That
is, at any point where only one new state is generated we continue search from the new state, but
whenever two or more new states are generated the new states are adjoined to the back of the
queue, and search proceeds in the usual breadth-first manner.

If all moves from some non-final state fail, a message like the following is printed:

** 2 s ta tes in queue: (#3 #4)
Moving from graph #2
Resolving disjuncts of — vord —
All moves fai led (backtracking).

*• 1 s ta tes in q u e u e : (# 4)
Moving from graph #3

Graph #2, while not bdng final, turned out to be a dead end since a "word" constraint could not
be satisfied. Thus, the graph was deleted, and search continued from the next state in the queue
(#3). ..._lu-*. S r .- ~**rl"*}••; 5 T

' If you axe running in all-paths-paxsing mode (having included the : a l l keyword), the parser
prints this message every time it has found a parse: v ^ 7;-: ^2: -

• Found one parse — looking for more...

The parser may be interrupted at any time; the feature structures corresponding to the parses
found so fax will be accessible in a list as the value of the global variable *all-parses*.

Eventually, one of the following messages will be printed out:

*** Exiting; f irst parse found is in *parse*

*** Exiting; there was no successful parse

*** There are no more parses; al l parses found are in *all-parses*

This will be followed by the parser's listener prompt

<parser> Enter type of expression and words terminated by ' ; ' :

The parser has finished, and you are ready to inspect the result.

2.5 Displaying Output

The parser listener is a simple loop that accepts expressions to be parsed (as shown above), the
command quit, or a Lisp form to be evaluated. The latter is achieved by typing the following:

—> eval <Lispform>;

The function (print-graph <graph>) can be used to print a feature structure in ASCII format,
as shown on the next page.

PHOK <»«&st-pao»-word>
ir-!: FIRST |l]<MBdy>

? BEST W rfU

SYKSEM l»] y
LOCOoc»l>

CAT <c*t>
MARKING <«nm»rked>
BEAD [5] <**T*>>

VPOBlf <fin>
AUX <minw>
IKV <nun«>
PRD <mi»tt*>
SPEC <»3rn»exn>

C" SUBCAT <elbt.«yB»cm>
CONT [3] <U«fB-M>*>

xEf. . ". LAUGHER |2] <apro>
IKDEX <iadex>

GEKD <feadcr>
KUM <«ng>
PER <third>

DTRS <he*d.coxnp-«truc>
HEAD-DTR <phr»*«>

PHOK 17]
SYKSEM <syn*«m>

LOC Ooc*l>
CAT <c»t>

MARKING <unm*rked>
SUBCAT <ueli»t.«yn»en.>

FIRST [4] <iyn»ena>
LOC <loc»]>

CAT <c*t>
MARKIKG <«nm»rked>
SUBCAT <«li«t-tyn*em>
HEAD <BO«B>

SPEC I«]
PRD <boolean >
CASE <nom>

COKT <rei-obj>
RESTR <n»mMO»>

KAME II]
NAMED 12]

PARA 12]
REST <eli*t-»yn*em>

BEAD \b)
CONT f3]

DTRS <he*d-comp.«tmc>
HEAD-DTR <U«ffl»-w©rd>

PBON <BdUt.pboB.word>
FIRST l«]
REST <clUt.pboB.word>

SYNSEM <tyB*em>
LOC <loc*l>

CAT <c*t>
MARKING <unm*rked>
SUBCAT <nelwt.«yn»eni>

FIRST [4]
REST <eli*t.«yn#«m>

BEAD [5]
CONT 13]

COMP-DTRS <cfi*t.MfB>
- COMP-DTRS <ndi«u«fB>

FIRST <»*Bdy-word>
PBON <neli»t.pbon-word>

FIRST [I]
REST <clwt-phoB-word>

SYNSEM [4]
REST <eli»t-»if»>

Eater typ« of cxprcMioB »ad word* terminated by ';':

2.6 Using UTjpC to Display Output

Since HPSG's feature structures quickly grow beyond a manageable size, output functions have
been provided that generate MfcX instructions directly from graphs. There axe three macros for

generating MjpC instructions to typeset a feature structure:

.- >*&.'<la-s <graph>) to typeset a feature structure in a miniscule typeface=

-a <graph>) to typeset a feature structure in a minute typeface ^~ — '

(la -1 <graph>) to typeset a feature structure in a small typeface; ' _ \] \

Let's assume that a sentence has just been parsed, and that the command quit has been issued
to the parser, placing us back at Lisp top level with the global variable *parse* holding the result
of parsing.

*** Exiting; f i r s t parse found i s in *parse*
<parser> Enter type of expression and words terminated by ' ; ' :

—> quit;
NIL
> (l a - s *parse*)
??? Enter f i l e name for LaTeX output: ["graphtex.txt"]

You are prompted for the name of the file to which the MjpC instructions will be written. Unless
you want to prevent it from being overwritten the next time I^TJJX instructions are generated, just
hit return to direct output to the default file:

*** Sett ing LaTeX parameters for s ty l e TABULAR in s i z e SMALL
• Writing LaTeX source to f i l e "graphtex.txt11

• Done writing LaTeX output
NIL

Next, type (la tex) to start M E X on the newly written output, and to produce a dvi-file:1

lfThis function is operating system dependent, and might not work in a different implementation of l isp.

> (latex)
*** LaTeXing root file crammedoutput.tex
This is TeX, Version 2.93 (eas «(#) 1.61 88/10/11 17:57:06)
(preloaded format=lplain 88.10.11)
(crammedoutput.tex
LaTeX Version 2.09 <4 Aug 1988>
(/usr/lib/tex/macros/article.sty
Document Style 'article1 <16 Mar 88>,
(/usr/lib/tex/macros/artll.sty)) (/usr/lib/tex/macros/fleqn.sty)
(/usr/lib/tex/macros/leqno.sty) (crammedoutput.aux) (graphtex.txt) [1]
(crammedoutput.aux)
Output written on crammedoutput.dvi (1 page, 5008 bytes).
Transcript written on crammedoutput.log.
**• Starting xdvi on file crammedoutput.dvi
??? Do you want to print the output ?: ["Ho"]
HIL

The function runs &T£X on the instructions generated earlier, starts up xdvi (an X-Windows based
DVI previewer) on the output, and asks whether to print the dvi-file.2 Figure 1 shows the final
product of this procedure.

2.7 Changing Search Strategy and other Parameters

Table 1 summarizes general system parameters. (See appendix D for StTjjX-outpnt related param-
eters.)

Name

•search*
max-no-of - sor t s
max-sentence-length
•circular-features*

Default Value

DEPTH-TIL-SPLIT
140
20
("SPEC")

Other Possible Values

BREADTH DEPTH
integer < 250
integer < 40
list of strings

Table 1: Some System Parameters

The value of *search* controls the search mode of the parser. The two numeric variables control
the size of certain internal data structures that axe set up during grammar conversion and parsing;
setting them to values much larger than necessary will cause Lisp to set up unneccessarily large
arrays. It is important to add the names of features that introduce cycles in Feature Structures to
the value of *circular-f eatures*; otherwise, the parser might get stuck in a loop when trying to
expand feature structures (see Section 7.8).

2Again, the latter two operations can not be expected to work on machines outside the LCL without changes to
the Lisp code in the file latex-output.lisp.

10

Output from HPSG
July 10,1990

GraplT Mraiber #24

FHOlf*
FIRST

REST

SYNSEM | 3 J
LOC

FIRST
REST

COKT

DTRS
HEAD-DTR phr**t

PHON
SYKSEM

DTRS

MARKING
HEAD

««fn«rJk«i

BOAT elwl

LAUGHER fTI

mtaw
m w w

INDEX

MLARXING «««MHbei
SUB CAT mciMf-«jr»«cm

FIRST [T] iy»im
LOC

HEAD [TJ

CONT fTI

FIRST rr

SYNSEM

SPEC |3J

;

NAME rn

NAMED [7]

PARA | T |

HEAD

CONT |T|

G«»m«r*«4
*cnii>im{e»
FIRSTm
REST cETtjjrmjem

COMP
FIRST —ndj-wori

PHON
FIRST l l

SYNSEM |T]
R E S T eiM<-««fm

Figure 1: ^TjjX output generated by parser for "Sandy laughs"

11

3 About HPSG _

This section constitutes a brief review of some relevant aspects of the HPSG formalism. It is not in-
tended to provide exhaustive coverage; for this, the reader is advised to turn to [Pollard, forthcoming,
Pollard and Moshier, 1990].

HPSG uses sorted feature structures to model the information contained in linguistic objects.
Natural Language grammars are written as constraints on feature structures, and "the linguistic
entities which correspond to admissible feature structures constitute the predictions of the theory"
([Pollard and Sag, forthcoming]).

Sorted feature structures are a specific kind of graph structure that can be identified in a
number of ways. In this report, as in much of the HPSG literature, I use diagrams of Attribute-
Value Matrices (AVMs), and a logical feature structure description language is defined below to
represent input to the parser. Inside the parser sorted feature structures are represented in yet
another way, which is described in Section 7.5.

3 .1 Organizat ion o f H P S G G r a m m a r s

I have divided HPSG grammars into a number of components:

Signature Four kinds of information are specified in the signature:

• The available sorts, features, and relations

• The subsumption ordering on the sorts.

• Which features are carried by the individual sorts ("feature appropriateness").

• Type restrictions on the values of individual features ("sortal restrictions") and on the
arguments of relations

Lexicon The lexicon is the repository of all information carried by lexical sorts.

Principles of Grammar Universally valid well-formedness conditions such as the Head Feature
Principle and the Subcategorization principle.

Constituent Structure Principles Well-formedness conditions on phrases related to constituent
structure. This includes the Immediate Dominance Principle (IDP), and the Constituent Or-
der Principle (COP).

The IDP and COP are not included with the other principles of grammar because they repre-
sent information about phrase structure. One possibility to avoid the combinatorial explosion of
disjunctions would be to treat these constraints differently than other disjunctive constraints in the
grammar; however, such a scheme has not been implemented here.

How does the above correspond to a system of constraints on models of linguistic objects? IVom
a technical point of view, grammars written in the HPSG formalism consist of two components:

12

• The signature defines a system of types for feature structures, where each type of feature
structure corresponds to a type of linguistic object that has been identified in the empirical
domain.

• A system of constraints over this type scheme, including relational constraints, represents the
constraints on admissible models.

Given a signature that specifies a type scheme of sorted feature structures, the principles of
grammar make up a set of recursive constraint equations over the type scheme. For each sort in the
sort hierarchy, the equations specify the constraints that have to be met by well-formed instances
of the sort. These constraints are called the sort's definition.

3.2 T h e S ignature

As described above, the signature defines a type scheme for sorted feature structures. Formally, it
has the following parts:

• SORTS is the set of sorts.

• FEATURES is the set of features.

• C is an inheritance (or "subsumption") ordering over SORTS

• Appropriate: SORTS —• (FEATURES -> SORTS) is a function that defines which features axe
appropriate for individual sorts, and type restrictions on the values of those features.

Sorts are similar to record datatypes. Here is an example of an entry that might be found in a sort
hierarchy: -

sign

