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Abstract. Individual users of medical language manifest great variation in the expression of
concepts and have difficulty in selecting appropriate terminology when confronted with systems
that rely on standardized language, such as MeSH, SNOMED, or ICD, and the special terms sets
of systems such as HELP, INTERNIST-I/QMR, and DXplain. Indeed, the need to map natural
language into appropriate special terms—as well as the need to map one system's specialized
terminology into another's—is one of the problems being addressed by the National Library of
Medicine€s UMLS System, with its associated information sources maps. The problem is extremely
difficult, in part, because such mappings depend on semantic equivalences among terms, not merely
the superficial matching of words or phrases.

As ageneral and robust solution to the problem of mapping across vocabularies, we implemented
aversion of "latent semantic indexing" , taking terms from different vocabularies as the '‘documents
to be retrieved by natural-language expressions of concepts, taken as 'queries. In one of several
experiments testing our approach, for example, we selected approximately 225 terms each from the
INTERNIST-I/QMR, PTXT, and META-1 vocabularies corresponding to clinical findings under
the physical exam. We constructed a source matrix of associations between the findings and all the
'words they contained, supplemented with word-level synonyms and related terms. The resulting
source rectangular matrix was approximately 650x3000. Under singular value decomposition, this
was reduced to a compressed space of at most 650 dimensions. The performance of the reduced
gpace as a "latent semantic® map of the source domain was evaluated by processing phrases,
intended to be interpreted as clinical findings, as term-vectors, projected into the reduced space.
In calculating the projections, we considered only the 150 most significant dimensions. Mappings
to concepts (i.e., standardized terms) were determined by taking the cosine-distance measure of
the vector to all the term-points in the reduced space. As an example of the results, the phrase
"gomach discomfort worse after eating” scored as follows (taking the cosine squared measure as a
score of 'relevance, for the top four):

0563391 [PTXT] ABD PAIN, AGGRAVATED BY EATING
0529701 [QMR] DIET INTOLERANCE TO SPECIFIC FOOD <S>
0499395 [PTXT] CHEST PAIN, MADE WORSE BY EATING
0494474 [META-1] EATING DISORDERS

The power of the approach is that it does not depend on explicit, -declarative semantic repre-
sentations or on word-for-word correspondences among terms; and that multiple vocabularies can
be represented side-by-side.

Communications should be directed to:
Dr. David A. Evans, Laboratory for Computational Linguigtics, Carnegie Mdlon Universty, Pittsburgh, PA
15213-3890. (dae@ld.cmu.edu)
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1 The Problem: Managing Semantics in Medical Vocabularies

Many systems that store information in natural language make that stored information
available to users through language subsets. In the simplest case, the subsets are isolated
strings of the language—access is afforded viainverted indexes. In morerefined instances, the
subsets are controlled vocabularies or encoding schemes—access is afforded via selection of
terms. In fact, almost any process that succeeds in indexing natural language will generate a
subset of words or phrases that are taken to represent concepts in the texts to which they are
linked. Indexing and encoding schemes in biomedicine reflect such practice. The biomedical
literature is indexed using MeSH terminology. Hospital records are often annotated with
SNOMED” or ICDM® codes. Many medical institutions have 'home-grown' coding schemes
to manage patient data. (Cf. [16] for one example at the Mayo Clinic.)

The problem is not confined to systems that provide access to textual materials. Varieties
of computer systems that support medical decision making—such as HELP,1?® INTERNIST-
I/QMR,?#%* and DXplain"!—utilize medical language subsets to indicate information (or
concepts). Input to such systems often must be in the form of a restricted terminology;
output is typically expressed in arestricted language (often the same set of terminology that
IS acceptable as input).

In the face of the common practice to restrict terminology, individual users of medical
language manifest great variation in expressing concepts. In general, people can be expected
to show very little agreement in preferred choices of language to make observations® and
will have difficulty in selecting appropriate terminology when confronted with systems that
respond only to limited subsets of terms. (Cf. [3] for a study in which this effect is shown
to contribute to poor (20%) retrieval of relevant information.)

Indeed, the need to map natural language into appropriate special terms—as well as the
need to map one system's specialized terminology into another's—is one of the problems
being addressed by the National Library of Medicine's (NLM) UMLS System, with its as-
sociated information sources mapJ'*°I The problem is extremely difficult, in part, because
such mappings depend on semantic equivalences among terms, not merely on the superficia
matching of words or phrases. The semantic typing of terms and the basic semantic network
in the UMLS System represent a first step in the direction of developing an independent,
semantic basis for associating terms from different vocabularies A" The problem is cer-
tainly not new—a number of studies have advocated semantic typing, decomposition, and
networks to establish and control cross-vocabulary concept representations®®¥'*—but it is
becoming increasingly urgent in the context of efforts to unite multiple terminologies.
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2 The Basis bf a Solution: Latent Semantic Indexing

One approach to the problem of finding dependencies among 'information objects' involves
a procedure called "Latent Semantic Indexing* (LSI)W In its applications to date, LS has
been used principally to improve document retrieval. In brief, the method takes advantage of
the fact that words in documents do not co-occur randomly: there are implicit dependencies
among them based on their meanings. LS facilitates the construction of a high-dimensional
space in which the words and documents are co-located. Through transformations of the
space, it is possible to derive a similar space in which a subset of the dimensions maxi-
mally clusters the documents. The new, reduced set of dimensions is statistically the 'best’
representation of the hidden dependencies among the words in the documents—the 'latent
semantics'.

In the following sections we describe the basis of LS as applied to document indexing
and discuss the strengths and weaknesses of the approach. Given the space limitations of
this paper, our discussion of these points is necessarily abbreviated.

2.1 Brief Characterization of LSI

While the basic idea of using word co-occurrence dependencies to define a semantic space is
quite intuitive, the procedures associated with LS are not. A sense of the LSl approach may
be obtained by a description of LS methodology. We offer a characterization of LSl from the
point of view of its use in information retrieval, not a full exposition of the method. (The
reader is referred to [7] for a detailed explanation of the latent semantic indexing process,
with sample matrices and numbers.) '

In general, documents can be regarded as collections of words. A correlation matrix (such
as is given in Figure 1) can be constructed to make this correspondence explicit. In such a
matrix, the columns represent documents and the rows represent words that appear in the
documents. In practice, such correlation matrices are rectangular; the number of words is
greater than the number of documents. A value can be assigned to aword (e.g., "0" or ")
based on whether it appears in a document or not. Each word-row defines an orthogonal
dimension; documents are thus located in a high-ordered space. For virtually any actual
collection of documents, the matrix will be 'sparse: there will be many zeros, effectively
giving regions in which some subsets of documents are not found.

A corfelation matrix of the sort in Figure 1 makes clear why word-based indexing and re-
trieval can lead to bad results. Traditional word-based retrieval depends on finding a match
between a word and a document—a cell in the matrix containing a " 1" . When users use dif-
ferent words (perhaps meaning the same thing) they will retrieve different documents, since
two different words will almost always have different patterns of "0"s and ®|"s. LS attempts
to circumvent this problem by indexing documents based on secondary and tertiary asso-
ciations of words—essentially, 'discovering' the semantic relations that discriminate among
alternative word meanings, as revealed by the co-occurrence patterns of words in documents.

Beginning with a wordx document source matrix, M, the LSl process derives a dimension-
aly 'reduced’ space using a method called "singular value decomposition” (SVD)J*"® The
gffect of the reduction is that previously orthogonal word-dimensions are coerced into de-
rived, composite dimensions based on their ability to 'fit" documents into the reduced space.
In particular, words and documents that are closely associated are placed near one another
in the reprojected space. LS actually approximates the source space using the k largest
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Dy D, D3 .. Ds
word; | 1 0 o0 0
word; | 1 1 0 0
word3 1 0 0 1
word, | 1 0 1. 0
words | 1 1 0 0
word, | 0 0 0o .. O

Figure 1: Schematic Representation of a Source Word x Document Matrix

singular vectors of the word—document relevance matrix, where k is some user-selected num-
ber. (The number is typically in the range of 100-200—big enough to capture the semantic
structure and small enough to avoid noise).

Decomposition allows one to reconstruct (reproject) a matrix—M’'—having the full di-
mensionality of the source matrix M but with the effect of locating all the points as though
they were in a reduced space. There are two ways to view the result. First, the original ma-
trix has been transformed from a high-dimensional (O(10%)) space into a space of a smaller
number (e.g., 100-200) dimensions. Documents represented by vectors in the larger source
space are now transformed into vectors in the smaller space, ‘pushing them closer’ to other
documents. Second, the original matrix has been approximated (in a least-squares sense)
with a smaller number (e.g., 100-200) vectors. When we reconstruct the original matrix
(deriving M’), many of the entries that were zero will contain values other than zero. A
synonym of a word is likely to have a non-zero value and to be taken into consideration in
the retrieval process.

Queries can be interpreted as vectors of the words they contain and can be projected into
the space defined by M’. A distance from the query-vector to all the points in the space can
be calculated, for example by calculating a cosine distance measure—the cosine of the angle
of the query vector and the vector to each document-point. Those points that are closest
(geometrically) on this measure are the ‘best’ responses to the query.

2.2 Strengths & Weaknesses of LSI

LSI has a number of important strengths. In a variety of experiments and applications, it
has been shown to lead to improved retrieval. It provides extremely good fits of queries
to documents. Queries can be made in natural language and are virtually unrestricted in
length: another document can be used as a query, for example. The method is general and
robust.

However, LSI has several weaknesses that make it unsuitable for unrestricted information-
retrieval applications. Most critically, LSI is computationally expensive (hence, impractical
for use with large document collections) and the value of LSI in discovering “semantics” is
weakened to the extent that polysemous words in any collection will lead to bad results of
processing. We elaborate on these points briefly.

In practice, LSI/SVD is too computationally expensive to be applied to large document
sets: currently, the processing of non-trivial matrices on the order of 10,000x10,000 can
take significant time (e.g., days) on a supercomputer. Given these limitations, even with
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reasonable increases in the efidency of SYD agorithms and in the speed of workstations, it
is not likely that the genera method will apply to 'industrial-sized' indexing and retrieval
problems. _ - ' .
Because the method exploits the co-occurrence of items in documents to derive pseudo

semantic associations, any words that are used with different senses will result in semantic
distortions. As an illustration of this effect, consder the case where the polysemous word
"digit" occurs in some documents with the sense finger or toe and in other documents in
the same collection with the sense number. Presumably the two sets of documents will
not occupy the same generad space—the location for those documents having to do with
fingers and toes will likely be different from the location of the documents having to do with
numbers. The single dimension defined by the string "digit" is bound to 'split' the distance
between the two clusters. Such a derived sense for "digit" will be true of neither of the
original senses.

3 The Hypothesis: LSl Applied to Terms

In work under the CLARIT Project,™** a variation of the LS approach described above is
being used as a genera and robust solution to the problem of mapping unrestricted language
into sets of appropriate index terms. In particular, while the ‘traditional’ use of LS is to
relate words and documents, the CLARIT approach involves relating words (or language,
more generally) to terms.

3.1 The Special Case of Relating Non-Homogeneous Terms

One specia case involves the use of LS to derive the common semantic space of terms from
different vocabularies. Each term is treated as a 'document’; the information content of the
term is given in natural language, which can be treated as the 'words' of the 'document’.
An LS space not only clusters terms according to their implicit semantics, but can dso be
used to map any natural-language variants of the terms to the set of 'best-matching' terms
in the space. In effect, the variant expressons are taken as 'queries’ and the retrieved terms
are the 'documents' that best match the query.

The matrix in Figure 2 illustrates one possble redization of a wordx term space. In this
case, theterms are treated as concepts having sub-conceptua structuregiven by lexical items.
Some of the lexical items actually occur in the term. These have the highest association
vaues. Others do not occur but are Smilar in meaning to items that do occur. These have
lower values. Except for the differentid weighting of lexical items and the introduction of
related items aong with those that actually occur in aterm, such a matrix is identical in
form to the word* document matrix of Figure 1.

3.2 The Decomposition of Concepts into Lexical Components

The approach we take in building representations for medical-term space is a generalization
and extension of the strategy illustrated in Figure 2. As summarized in Figure 3, we treat a
term (or concept) as a collection of lexicd items. The concept can be regarded as containing,
as well, the equivalence class and a set of related lexical items. Indeed, the concept itsalf
might have equivalent or related terms (expressible as lexica items), which can dso be
treated as part of its meaning. All such lexicd items define a vector for the concept. Different
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Ci .
Postprandial C2 . é
Abdominal | Chest Pain {1 irregular
. Substernal Heart
Discomfort e e Iy
Postprandial 5 0 BEt
After Eating 4 0 0
Food 2 0
Dinner 2 0 0
- i : :
Abdominal 5 2 0
Stomach 4 1 0
Belly 4 2 0
Chest 2 5 2
i ;
Discomfort 5 0
Pain 4 5 0
Distress 4 4 0
; : :
< Lexical-ltem>, 0 0 0

Figure 2. Example of a Partially Completed Source Matrix

weights for different categories of lexicd relations determine the relative magnitude of the
vector in each of the many lexical dimensons that comprise it. '

Since concepts will exist in a complex space containing many other concepts, we need to
Insure that appropriate contrasts are preserved. We would not want "high blood pressure’
and "low blood pressure” to occupy the same space smply because they share so many com-
mon features through the sub-concept "blood pressure”. In fact, we want them to contrast:
on the 'blood-pressure’ scale, they are opposites. Thus, in developing a concept vector, we
include semantically-appropriate 'opposites among the lexica items, with negative magni-
tudes to insure their separation in the term space. Note that the weights we givein Figure 3
are suggestions. At this stage in our evaluation we have no reason to nominate particular
welghting strategies except in theory.

Figure 4 gives a concrete example for the term "postprandial abdomina discomfort".
The sets of 'equivalent’ and 'related’ lexicd items (and their opposites) are not intended
to be exhaustive; they merely illustrate the types of lexicd items that one would attempt
to include under each category. Though there are many dimensions for this one term in
isolation, the dimensionality of the space for a collection of terms from the same domain
will not be excessvely great, Snce we can expect many of the same lexicd items to appear
in other terms. Thus, the space in which terms are located can be kept relatively small,
Insuring computational tractability.

4 Experiments: LSI Mappings of Medical 'Term Space'

We have conducted a variety of experiments to refine our methods for developing latent
semantic spaces for medical terms. In this section, results from severa experiments are
presented, principaly to iUustrate our basic methodology and some of the properties of LS
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C = Lex-ltemi + Lex-Item? + ... -f Lex-Itemn
Lex-ltemi k
Lex-l1tem? k
: \
Lex-Itemn k
Eq(C) k
Eq(Lex-Itemi) k-m
Eq(Lex-Item?) k-m
Eq(Lex-1temn) i-m
Rel(C) k-m
Rel(Lex-Item)) k-2m
Rtl(Lex-1tem?) k-2m
\ :
Rel(Lex-1tem*) k-2m
Eqg-'(C) -k
Eq-'(Lex-1tem,) -(k-m)
Eq' " (Lex-Item?) -(K-m)--
\ :
Eq'~ (Lex-ltemn) -(k-m)
[ RS T kem) ]
Ref'(L ex-ltem,) -(k-Sm)
Ret* (Lex-1tem?) -(k-£m)
|
Ref* (Lex-Itemn) -(k-Sm)

Key:

C = a concept; term-phrase

Lex-Item = a unit lexical item; word or (sub-)phrase

Eq(X) = the equivalence class of X; a set of sense-preserving variants and synonyms of X
Rel(X) = the non-synonymous terms (words and phrases) related to X

Eq~'(X) = the inverse equivalence class of X; a set of sense-appropriate antonyms of X
Re\T*(X) = the inverse set of terms related to X; the pragmatically appropriate contrasts to X
k = a constant rational in therange 1 < k<5

m = a constant rational in the range 0 < m < k/2

Figure 3. Generalized Concept Vector Illustrating Weighting of Lexical Items
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C =
Pogprandial
Abdominal
Discomfort
Lex-ltems. postprandia 4
abdominal 4
discomfort 4
Eq(C): — —
Eq(postprandial): after eating Q
Egfabdominal):  stomach
bdly §
intestine 3
Eq(discomfort): pain 3
distress 3
o upset 3
Rel(C): dyspepsa 3
indigestion 3
Rel(postprandial): food 2
meal 2
dinner 2
lunch 2
breakfast 2
full 2
eat 2
Rel(abdominal): chest 2
groin 2
sde 2
Rel (discomfort): burping 2
burning 2
sharp 2
+ Egq->(C): — —
Eq~' (postprandial):  before eating -3
Eqg" ~ (abdominal): head -3
neck -3
extremity -3
Eqg" *(discomfort): relief -3
Ref'(C): — —
Ret~'(postprandial): hungry -2
empty -2
Ret" *(abdominal): — —
Ret! (discomfort): mild -2
moder ate -2

Figure 4: Example of a Concept Vector for Postprandial Abdominal Discomfort
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term spaces. All of the experiments involved the following procedure:

1. Terminology was selected corresponding to clinical findings under physical exam from
the INTERNIST-I/QMR, HELP/PTXT, and NLM/UMLS META-1 vocabularies. Every
experiment involved some terms from each; the numbers were roughly equal. An
example of some of the terms chosen is given in Table 1.

2. Terms were decomposed lexically (and normalized morphologically). Decomposition
was accomplished automatically, then checked by hand. Essentialy, all terms were
broken into their constituent words. Function words of English (such as "the", "a",
"of, etc.) were discarded. Any cases where words should not have been split (as when
a pair of words or a phrase formed a unit lexical item) were corrected.

3. Lexical items were supplemented with synonymous and related terms. A sample of
the lexically related items is given in Table 2. The sets of synonyms and related terms
were derived using two methods. First, medically-knowledgeable members of the team
(Hersh and Pereiro) added lexical variants, synonyms, and related terms by hand for
each lexical item derived from the terms. In practice, this was not a time-consuming
task: most of the synonyms were produced by one person (Hersh) in approximately
three hours of work. Second, the sets of associated terms were reviewed by other

i members of the team for consistency and completeness. At this stage, some additional

terminology was derived from available medical dictionaries.|®]

. A source Lexx Term matrix (M) was created with different values for lexical entries
based on their status in terms. '

5. SVD was performed. At present, we use afairly standard, numerically stable algorithm
due to Golub and ReinschJ™* Unfortunately, the algorithm has execution time on the
order of n® for the smaller dimension (typically the number of documents) and n? for
the larger dimension (typically, the number of terms). A complete decomposition for
matrices of the size we are currently experimenting with requires up to 24 hours on a
DECsystem 5820.

6. Natural-language statements (treated as 'queries’) were decomposed into lexical vectors
and projected into the compressed space, M', as determined for variable numbers of
factors (typically in the range 50-300).

7. Termsin M' ('retrieved’ by the query) were ranked based on their cosine distance from
the query vector. (We actually use the square of the cosine.) In practice, retrieval takes
approximately one second: all distances are calculated and the top n terms, typically
10-20, are displayed.

|
o

=

N

[

‘o 4.1 Experiment 1: 648x3891 Space

Experiment 1 involved a space of 648 terms and 3891 lexical items. Approximately 225
terms each were taken from the three source vocabularies. All lexical items were given equal
values of "1" or 0", depending on whether they were associated with a term. SVD took
approximately six hours on a DECsystem 5820.

Table 3 presents two sample results. The number of factors used (to give the reduced
dimensionality of the space) is indicated before the 'query’. The examples illustrate one of
the principal effects of the method: terms that are 'retrieved’ do not have to share lexical
items with the 'query'. In the case of the first example, the only common lexical item is
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.

UMLSMETA-1

Heart bur n

Hem anopsi a

Hemi pl egi a

Hi ccup

Hoar seness

Hyper al gesi a

Hyperbi | irubinem a
Hyperbilirubinem a, hereditary
Hyper capni a

Hyper est hesi a

Hypersomi a

Hyperventil ation

Hypest hesi a

Hypot herm a

Hypovent il at i on

I'l'l usi ons

I nsomi a

Jaundi ce

Jaundi ce, chronic idiopathic
Jaundi ce, neonat al

Kerni cterus

Lameness, ani nmal

Language devel oprent di sorders
Language di sorders

Liver cirrhosis, biliary
Halignant hyperthemia
Heni ngi sm

Hi grai ne

Hout h breat hi ng

Hovenent disorders

Husde hypertonia

Muscl e hypotoni a

Husde rigidity

Husde spasticity

Huti sm

Hyodonus

| ausea

| eural gi a

| eurol ogi ¢ Mani festations

HELP/ PTXT

Abd pain nade worse wth bending
Abd pai n nocturnal

Abd pain periunbilical

Abd pain radiates to back

Abd pain radiates to left chest
Abd pain radiates under sternum
Abd pain recurring

Abd pain recurring, duration
greater than tvo years

Abd pain resolved by vonmiting
Abd pain rlqg (right |over quadrant
Abd pain ruq

Abd pain severity causes

di aphoresi s

Abd pain sharp

Abd pain sharp or cranping

Abd pain vorse with novenent or
cough

Abdom nal fullness, epigastric
Abdomi nal full ness,

hypogast ri c/ suprapubic

Abdomi nal fullness, Ilq

Abdomi nal fullness, luq

Abdomi nal fullness, periunbilical
Abdomi nal fullness, rlq

Abdomi nal fullness, ruq

Acid or food regurgitating up into
the pharynx

Acid or food regurgitation with
choking on fluid regurgitant
Acute chest pain

Al ternating constipation/diarrhea
Annual breast self exam nation
Bloody diarrhea

Bl oody st ool

Breast dinpling

Breast discoloration

Burni ng chest pain

Chest pain interferes with sleep

INTERNIST-I/QMR

Abdormen mass paraortic

Abdomen mass periunbilical
Abdonmen mass right |over quadrant
Abdonen pain present

Abdonen pain right upper quadrant
exertional hx

Abdoren smal | bovel visible
peristalsis

Abdoren tenderness generalized
Abdonen tenderness hypogastrium
Abdonen tenderness periunbilical
Abdonen tenderness rebound
general i zed

Abdonen tenderness rebound

| ocal i zed '

Abdoren tenderness right |over
quadr ant

Abdonen tenderness suprapubic
Abdonen tynpanites

Abdoren urinary bl adder pal pable
or percussabl e

Abdomen vail draining sinus <es>
Abdomen vail fluctuant mass <es>
Af fect anxious and/or fearful

Af fect apprehensive

Affect blunted or flat

Af fect depressed

Affect depressed vorse in norning
Affect euphoric

Affect labile

Chest pain apical stabbing

Chest pain girdle distribution
Chest pain lateral dull aching
Chest pain lateral sharp

Chest pain lateral sharp recurrent
attack <e> hx

Chest pain substernal at rest
Chest pain substernal burning
Chest pain substernal crushing

Table 1: Examples of the Findings Terminology from Different Systems
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accoaaodate 1 contain | containing | bound |I enclose | include | conprise | hold
acconpani ed | superpuesto | con | acoapana | acoapanado | with
acconpany | with | along

ach« | problea | disease | disconfort | pain | difficulty | difficult
aching | pena | dolor | doloroso | hurting | tender | distressing
I smarting | throbbing | sore | irritating | unconfortable
I pain | painful | calaa | irritativo | opresivo | dislacerante
| agudo | pulsante | pupa | irritant* | disconfort

acrid | burning | acid | caustic | acute | sharp
act | behavior | Mvenent | »ove | action | do | conduct
action | behavior | nove | act | do | conduct | novenent
I Mtion | activity
activities | nmotion | novenments | novenent
activity | exertion | labor | work | constitutional | body | exertional
| exercise | nmoverment | stool | Mtion | action
acute | pain | severity | strong | severe | harsh | burning
| acid | caustic | acrid | sensitive | penetrating
| shooting | high | annoying | threatening | stabbing
| piercing | cutting | intense | peaked | pointed | sharp
|
|
|

sever | extreae | rapid | sudden | abrupt | painful
excruciating | dire | inpending | iaainent | deep

serious | aajor | great | critical

beat | flap | tick | pulsate |I pulse | throb I heartbeat

bed I lying | down | reclining | resting | recline

beef | steak | aeat

bleed | bleeding | henorrhage | bl ood

bl eeding | epistaxis | nosebleed | bloody |I bleed | blood

blind | heaianopsia | heaianopia | blindness | half I vision | |oss

colic | pain | spasa | colon
colicky | spasnodic | spasa | intermttent

diffuse | scatter | extend | scattered

digest | postprandial | ingestion | eating | nmeal | after | later
I lunch | dinner | eat
digestive | intestine | tumy | food | eat | stomach
dilatation | dilate | dilation | opening | expahsion | open | swell
I swelling | widening | increase | enlargenment

Table 2. Sample Sets of Related Terms
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100: stomach disconfort worse alter eating

0.563391 [PTXT]  Abd pain, aggravated by eating
0.529701 [QW Diet intolerance to specific food <s>
0.499395 [PTXT] Chest pain, nmade worse by eating
0.494474 [META-1] Eating disorders ’

100: coffee ground enesis

0.849161 [QW] Voniting coffee ground
0.745221 [QW Vomting fecul ent

0.517106 [META-1] Vomiting

0.428197 [ PTXT] Recent vomiting, henatenesis

Table 3: Sample Results on 648x3891 Space

"eating" and it appears only once in the top two terms. The second example shows sSmilar
effects. Another observation, of course, is that the ‘queries—though reasonably formulated
as expressions of medica findings—do not have exact matches with any of the findings from
the three vocabularies. The mapping, thus, performs the additiona function of showing the
user which of the available terms might best match the concept he or she is attempting to
express.

4.2 Experiment 2: 822x3015 Space

Experiment 2 involved a space of 822 terms and 3015 lexicd items. 179 terms were taken
from META-1, 221 from PTXT, and 422 from INTERNIST-I/QMR. Exact-matching lexicd
items were given a vaue of "5". Equivaence-class and related lexicd items were given a
uniform vaue of "4". SVD took 22 hours on a DECsystem 5820.

Table 4 presents a number of results. As in the case of the examples from Experiment 1,
exact lexica matching is not required to retrieve appropriateterms. The examples aso reved
some of the properties of the semantic space of the terms. The numbers are ranked based
on the sgquare of the cosne of the angle separating the query vector from the term vectors.
Terms that are 'close’ to one another will have smilar distance from the query vector. In
genera, the set of closest terms will define alocation in semantic space—the region in which
the corresponding concept is represented. Naturally, in practical applications of expresson
mapping, we would use only the highest-ranking terms and would discard terms that dropped
df in distance from the highest ones.

One can dso see in the examples that the smilarities of individual terms in the three
vocabularies is captured without having to establish a mapping from vocabulary to vocab-
ulary or term to term. In particular, terms are located in the same homogeneous space; the
distances between terms gives an absolute measure of smilarity.

4.3 Experiment 3. 369x3084 Space—English and Spanish

Experiment 3 involved a space of 369 terms and 3084 lexicd items. Approximately 125
terms each were taken from the three source vocabularies. In developing the source matrix,
we included lexica items in Spanish as wel as English. (Some examples of the Spanish
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150: cough blood 0.620719 [PTXT] Hemoptysis
0.534173 [META-1] Cough
0.534173 [QMR] Cough
0.528974 [PTXT] JNon-productive cough
0.450769 [PTXT] Cough productive of blood-streaked sputum
0.372125 [PTXT] - Productive cough
0.314800 [PTXT] Recurring cough and sputum production
0.300045 [META-1] Anoxemia

150: rough voice 0.770907 [QMR] Hoarseness
0.770907 [META-1] Hoarseness
0.507794 [PTIT] Hoarseness or a change in the voice
0.237814 [META-1] Aphonia
0.159180 [META-1] Voice disorders
0.136267 [META-1] Vocal cord paralysis
0.091883 [PTXT] A dry throat
0.040473 [QMR] Dehydration

150: uncontrolled 0.602760 [QMR] Speech echolalia
repeat speech 0.465534 [META-1] Echolalia

0.201566 [QMR] Speech neologisms
0.201566 [QMR] Speech explosive
0.201566 [QMR] Speech perseveration
0.201566 [QMR] Speech monotonal
0.201566 [QMR] Speech scanning
0.185416 [QMR] Speech slow

150: muscle quiver 0.543594 [META-1] Fasciculation
0.525968 [META-1] Tremor
0.433057 [META-1] Muscle rigidity
0.394071 [QMR] Myalgia
0.324234 [QMR] Muscle <s> cramp <s>
0.319028 [META-1] Muscle hypertonia
0.302419 [META-1] Muscle spasticity
0.286339 [META-1] Torticollis

150: decrease breathe 0.816871 [META-1] Hypoventilation
0.644709 [QMR] Breathing biots
0.644709 -[QMR] Breathing cheyne stokes
0.391361 [META-1] Hyperventilation
0.294757 [META-1] Mouth breathing
0.158838 [META-1] Hypothermia
0.158838 [QMR] Hypothermia
0.113876 [META-1] Apnea

150: cannot sleep 0.492858 [META-1] Insomnia
0.492858 [QMR]) Insomnia
0.253118 [QMR] Focturia
0.208416 [META-1] Somnambulisa
0.208416 [QMR) Somnambulism
0.204001 [QMR] Sleep paralysis
0.177027 [META-1] Hypersommia
0.154213 [QMR] Sleeping excessive

Table 4: Sample Results on 822x3015 Space
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ISQ dificultad para respirar acostado
[ difficulty breathing |ying down ]

0.636176 [PTXT] Othopnea

0.636176 [QWR Ot hopnea

0.606431 [QWR Dyspnea paroxysmal noct urnal
0.565984 [PTXT] Dyspnea

0.548591 [QWR I nsomi a

150: em sion heces negras con presencia sangre
[ black stools "enission" with blood presence ]

0. 824417 [PTXT] Bl oody st ool
0.824417 [PTXT] Bl oody stools
0.734859 [PTXT] Helena

0.676487 [PTXT] Geasy stools
0.641968 [PTXT] Bl oody diarrhea

Table 5: Sample Results for Spanish on 369x3084 Space

lexical items are found in Table 2.) All lexical items received a " 1" or "0" value. SVD took
approximately ninety minutes on a DECsystem 5820.

Table 5 gives results. English glosses of the Spanish phrases are provided below each
phrase (but were not used in the 'retrieval’ process). We include these examples to illustrate
another potential use of LSI-term mapping. Because the method operates only on strings
(= lexical items) and is not sensitive to features of actual natural language, it is possible
to decompose terms in one language with lexical items from another. Indeed, the lexical
items of several languages can be used side by side to represent the conceptual content of
terms. The resulting semantic space will locate terms on multi-lingual dimensions. 'Queries
in one language can be used to 'retrieve’ terms in another—without overt translation. The
examples in Table 5 show this effect.

5 Conclusion: Developing General, Robust Methods for Medical Semantics

The are several important features of our Lexx Term-LS method. It does not depend on
explicit, declarative semantic representations or on word-for-word correspondences among
terms. Multiple—arbitrary—vocabularies can be represented side-by-side. The required
resources—Ilexical-item correspondence sets—can be developed quickly and authoritatively.
There is tolerance of noise; 'fuzzy' approximations are handled automatically. It is entirely
algorithmic.

Some of the difficulties of the traditional Wordx Document-LSl approach are effectively
avoided. We circumvent the problem of polysemy because we work with terminology in a
sub-language: there is little inherent polysemy and actual problems can be anticipated and
treated as special cases. We work with spaces that remain computationally tractable, since
we do not deal with more than several thousand terms at a time. (Indeed, for sub-domains
of medicine, several thousand terms is quite sufficient.)

The methods we have described need further refinement. We clearly aso need to ex-
periment with different strategies for weighting lexical items and for decomposing terms.
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Some LS research must be devoted to developing or applying better SVD algorithms, es-
pecially to take advantage of the inherent sparseness in the input data. In addition, better
decomposition algorithms could make use of an upper limit on the expected or approxi-
mate dimensionality of the latent semantic space, then calculate only to that size. Lanczos
methods show some promise: since we are only interested in the 'most significant' aspects
of the data, such a statistical approach seems appropriate. However, some implementations
of Lanczos**® have potentially significant drawbacks. Global orthogonality of the singular
vectorsis not assured; the method has difficulty resolving close singular values, and therefore
vectors, and its operation is not as clearly automatic as others.

We have argued that the success of any attempt to unite multiple medical vocabularies or
to link restricted medical terminology to natural language will depend on our ability to treat
terms as semantic objects and to relate them based on their conceptual content. Traditional
attempts to create explicit semantic networks for terms have had only limited success. In
general, semantic networks are expensive to develop, controversial in their structure, and
epistemologically—and computationally—problematic. We clearly need general, robust, and
empirically sound methods for discovering and utilizing the semantics of terms. We believe
that the approach we outline in this paper has promise as one such method.

Acknowledgements. The CLARIT has been supported by grants from the Digital Equip-
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