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Preface

A number of people have asked me to make this system, along with its
documentation, available to the public. Now that it's available, I hope that
it's useful. But a word of caution is in order. The system is still only a
prototype, hence the label "version 0"

Any bug reports would be greatly appreciated. But what I'd really like
is comments on the functionality of the system, as well as on the utility of
its documentation. I am also interested in hearing of any applications that
axe made of the system. I would also be glad to answer questions about the
system. I have tried to document the strategies used by ALE in this guide. I
have also tried to comment the code to the point where it might be adaptable
by others. I would, of course, be interested in any kind of improvements or
extensions that are discovered or developed, and would like to have the chance
to incorporate any such improvements in future versions of this package.

In the implementation, I have endeavored to follow the logic programming
methodology laid out by O'Keefe (1990), but there are many spots where I
have fallen short. Thus the code is not as fast as it could be, even in Prolog.
But I view this system more as a prototype, indicating the utility of a typed
logic programming and grammar development system. Borrowing techniques
from the WAM directly, implementing an abstract machine C, would lead to
roughly a 100-fold speedup, as there is no reason that ALE should be slower
than Prolog itself.

I would like to acknowledge the help of Gerald Penn in working through
many implementation details of a general constraint resolver, which was the
inspiration for this implementation. The next version of this system, which
should be available by Summer 1993, will be greatly improved due to Gerald's
work on the system. Secondly, I would like to thank Michael Mastroianni, who
has actually used the system to develop grammars for phonology. Finally, I
would like to thank Carl Pollard and Bob Kasper for looking over a grammar
of HPSG coded in ALE and providing the impetus for the inclusion of empty
categories and lexical rules.

The system is available without charge from the author. It is designed to
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run in either SICStus or Quintus Prologs.
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Chapter 1

Introduction

This report serves as an introduction to both the ALE formalism and its
Prolog implementation. ALE is an integrated phrase structure parsing and
definite clause logic programming system in which the terms axe typed feature
structures. Typed feature structures combine type inheritance and appropri-
ateness specifications for features and their values. The feature structures used
in ALE generalize the common feature structure systems found in the linguistic
programming systems PATR-II and FUG, the grammar formalisms HPSG and
LFG, as well as the logic programming systems Prolog-II and LOGIN. Programs
in any of these languages can be encoded directly in ALE.

Terms in grammars and logic programs are specified in ALE using a typed
version of Rounds and Rasper's attribute-value logic with variables. The def-
inite clause programs allow disjunction, negation and cut, specified with Pro-
log syntax. Phrase structure grammars axe specified in a manner similar to
DCGs, allowing definite clause procedural attachment. The grammar formal-
ism also fully supports empty categories. Lexical development is supported
by a very general form of lexical rule which operates on both categories and
surface strings. Macros are available to help organize large descriptions, either
in programs or in grammars. Both definite clause programs and grammars
are compiled into abstract machine instructions. These instructions are then
interpreted by an emulator compiled from the type specifications. Like Pro-
log compilers, a structure copying strategy is used for matching both definite
clauses and grammar rules.

For parsing, ALE compiles from the grammar specification a Prolog-
optimized bottom-up, dynamic chart parser. Definite clauses are also com-
piled into Prolog. As it stands, the current version of ALE, running definite
clause programs, runs at rougly 1000 logical inferences per second (1000 LI/s)
on a DECStation 5100. This is roughly 15% of the speed of the SICStus 2.1
interpreter, and about 1.5% as fast as the SICStus compiler running naive
reverse on a 30-element list. The definite clause compiler performs last call
optimization, but does not index arguments.
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Full details of the theory behind ALE can be found in Carpenter (1992).
The user who is only interested in definite clause programming can skip

the material on phrase structure grammars, while those interested in only
grammars without procedural attachments may skip the material in the section
on definite clauses.
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Prolog Preliminaries

While it is not absolutely necessary, some familiarity with logic program-
ming in general, and Prolog in particular, is helpful in understanding the
definite clause portion of ALE. Similarly, experience with unification gram-
mar systems such as PATR-II, DCGs, or FUG is helpful in understanding the
phrase structure component of the system. In particular, writing efficient pro-
grams and grammars in ALE involves the same kinds of strategies necessary
for writing efficient programs in Prolog or PATR-II. For those not familiar
with Prolog, the sequence of two books by Sterling and Shapiro (1986) and by
O'Keefe (1990) are excellent general introductions to the theory and practice
of logic programming. For those not familiar with unification-based gram-
mar formalisms, Shieber (1986), Gazdar and Mellish (1987) and Pereira and
Shieber (1987) are useful resources.

For those not familiar with Prolog, we need to point out the salient features
of the language which will be assumed throughout this report. This section
contains all of the information necessary about Prolog required to run ALE.

Terms

A Prolog constant is composed of either a sequence of characters and/or under-
scores, beginning with a lower case letter, a number, or any sequence of symbols
surrounded by apostrophes. So, abc, johnDoe, bJ .7 , 123, 'JohnDoe',
'65$ ' , and '_65a. ' are constants, but A19, JohnDoe, B_112, _au8, and
[dd,e] are not. A variable, on the other hand, is any string of letters, under-
scores or numbers beginning with a capital letter. Thus C, C_f oo, and TR5ab
are variables, but lXa, aXX, and JCy1 are not.

In general, it is a bad idea to have constants or variables which are only
distinguished by the capitalization of some of their letters. For instance, while

1 Technically, a variable may begin with an underscore, but such variables, said to be
anonymous, have a very different status than those which begin with a capital letter. The
use of anonymous variables is discussed later.
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aBa and aba are different constants, they should not both be used in one
program. One reason for this in the context of ALE is that the output routines
adopt standard capitalization conventions which hide the differences between
such constants.

Space and Comments

In your own program and grammar files, extra whitespace between symbols
beyond that needed to separate constants or variables is ignored. Whitespace
consists of either spaces, blank lines or line breaks are ignored. This allows
you to format your programs in a manner that is readable. Furthermore, any
symbols on a line appearing after a % symbol are treated as comments and
ignored.

Running Prolog

To fire up Prolog locally, you should contact your systems administrator. You
should have either SICStus or Quintus Prolog, or a Prolog compiler compatible
with one of these. Once Prolog is fired up, you will see a prompt The Prolog
prompt should look like:

I ?-

It is important that Prolog be invoked from a directory for which the user
has write permission. ALE, in the process of compiling user programs, writes
a number of local files.

Queries

What you type after the prompt is called a query. Queries should always end
with a period and be followed by a carriage return. In fact, all of the grammar
rules, definite clauses, macros and lexical entries in your programs should also
end with periods. Most of the interface in ALE is handled directly by top-level
Prolog queries. Many of these will return yes or no after they are called, the
significance of which within ALE is explained on a query by query basis.

Running ALE

To run ALE, it is only necessary to type the following query:

I ?- compile (File) .

where File is the file in which the file a l e . p l resides. Note that File does not
have to be local to the directory from which Prolog was invoked.



Exiting Prolog and Breaking

Exiting Prolog and Breaking

To exit from Prolog, you can type halt at any prompt (followed by a period,
of course). If you find Prolog hanging at some point, a control-c should
produce something like the following message:

Prolog interruption (h for help)?

You should reply with the character a, with or without a following period,
followed by a carriage return.

If this doesn?t work, typing control-z should take you out of Prolog alto-
gether.

Saved States

All information concerning an ALE state is encoded in the current Prolog state.
Thus, any options presented by the local system to save Prolog states should
be able to save ALE states.
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Feature Structures, Types and
Descriptions

This section reviews the basic material from Carpenter (1992), Chapters
1-6 and 10, which is necessary to use ALE.

Inheritance Hierarchies

ALE is a language with strong typing. What this means is that every struc-
ture it uses comes with a type. These types are arranged in an inheritance
hierarchy, whereby type constraints on more general types are inherited by
their more specific subtypes, leading to what is known as inheritance-based
polymorphism. Inheritance-based polymorphism is a cornerstone of object-
oriented programming. In this section, we discuss the organization of types
into an inheritance hierarchy. Thus many types will have subtypes, which are
more specific instances of the type. For instance, person might have subtypes
male and female.

ALE does much of its processing of types at compile time, as it is reading
and processing the grammar file. Thus the user is required to declare all of the
types that will be used along with the subtyping relationship between them.
An example of a simple ALE type declaration is as follows:

bot sub [ b , c ] . '/• two basic types — b and c
b sub [ d , e ] .

d sub [g ,h] .
e sub [] .

c sub [d,f] . % b and c unify to d
f sub [] .

There are quite a few things to note about this declaration. The types declared
here are bot, b, c, d, e, f and g. Note that each type that is mentioned
gets its own specification. Of course, the whitespace is not important, but it
is convenient to have each type start its own line. A simple type specification
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consists of the name of the type, followed by the keyword sub, followed by
a list of its subtypes (separated by whitespace). In this case, bot has two
subtypes, b and c, while f, d and e have no subtypes. The subtypes axe
specified by a Prolog list. In this case, a Prolog list consists of a sequence of
elements separated by commas and enclosed in square brackets. Note that no
whitespace is needed between the list brackets and types, between the types
and commas, or between the final bracket and the period. Whitespace is
only needed between constants. The extra whitespace on successive lines is
conventional, indicating the level in the ordering for the user, but is ignored by
the program. Also notice that there are comments on two of the lines; recall
that comments begin with a y£ sign and continue the length of the line.

The relation of subtyping is only specified one step at a time, but is taken
to be transitive. Thus, in the example, d is a subtype of c, and c is a subtype
of bot, so d is also a subtype of bot. The user only needs to specify the direct
subtyping relationship. The transitive closure of this relation is computed by
the compiler. While redundant specifications, such as putting d directly on
the subtype list of bot, will not alter the behavior of the compiler, they are
confusing to the reader of the program and should be avoided. In addition,
the derived transitive subtyping relationship must be anti-symmetric. In par-
ticular, this means that there should not be two distinct types each of which
is a subtype of the other.

There are two additional restrictions on the inheritance hierarchy beyond
the requirement that it form a partial order. First, there is a special type bot,
which must be declared as the unique most general type. In other words, every
type must be a subtype of bot. Removing the declaration of bot would violate
this condition, as would adding an additional specification, such as simply
adding j sub [ k , l ] , as j would not be a subtype of bot, or a declaration m
sub [bot], as bot would no longer be the most general type.

The second and more subtle restriction on type hierarchies is that they
be bounded complete. Since type declarations must be finite, this amounts to
the restriction that every pair of types which have a common subtype have a
unique most general common subtype. In the case at hand, b and c have three
common subtypes, d, g, and h. But these subtypes of b and c are ordered
in such a way that d is the most general type in the set, as both g and h. are
subtypes of d. An example of a type declaration violating this condition is:

bot sub [ a , b ] .
a sub [ c , d ] .

c sub [] .
d sub [] .

b sub [ c , d ] .

The problem here is that while a and b have two common subtypes, namely
c and d. they do not have a most general common subtype, since c is not a
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subtype of d, and d is not a subtype of c. In general, a violation of the bounded
completeness condition such as is found in this example can be patched without
destroying the ordering by simply adding additional types. In this case, the
following type hierarchy preserves all of the subtyping relations of the one
above, but satisfies bounded completeness:

bot sub [a ,b] .
a sub [e] .

e sub [c ,d] . •
c sub [] .
d sub [] .

b sub [e] .

In this case, the new type e is the most general subtype of a and b.
This last example brings up another point about inheritance hierarchies.

When a type only has one subtype, the system provides a warning message (as
opposed to an error message). This condition will not cause any compile-time
or run-time errors, and is perfectly compatible with the logic of the system. It
is simply not a very good idea from either a conceptual or implementational
point of view. For more on this topic, see Carpenter (1992:Chapter 9).

Feature Structures

The primary representational device in ALE is the typed feature structure. In
phrase structure grammars, feature structures model categories, while in the
definite clause programs, they serve the same role as first-order terms in Prolog,
that of a universal data structure. Feature structures are much like the frames
of AI systems, the records of imperative programming languages like C or
Pascal, and the feature descriptions used in standard linguistic theories of
phonology, and more recently, of syntax.

Rather than presenting a formal definition of feature structures, which can
be found in Carpenter (1992:Chapter 2), we present an informal description
here. In fact, we begin by discussing feature structures which are not neces-
sarily well-typed. In the next section, the type system is presented.

A feature structure consists of two pieces of information. The first is a
type. Every feature structure must have a type drawn from the inheritance
hierarchy. The other kind of information specified by a feature structure is a
finite, possibly empty, collection of feature/value pairs. A feature value pair
consists of a feature and a value, where the value is itself a feature struc-
ture. The difference between feature structures and the representations used
in phonology and in GPSG, for instance, is that it is possible for two different
substructures (values of features at some level of nesting) to be token identical
in a feature structure. Consider the following feature structure drawn from the
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lexical entry for John in the categorial grammar in the appendix, displayed in
the output notation of ALE:

cat
QSTDRE e_list
SYNSEM basic

SEM j
SYN np

T h e type of this feature structure is c a t , which is interpreted to mean it is a
category. It is defined for two features, QSTORE and SYNSEM. As can be seen
from this example, we follow the HPSG notational convention of displaying
features in all caps, while types are displayed in lower case. In this case, the
value of the QSTORE feature is the simple feature structure of type e - l i s t , 1

which has no feature values. On the other hand, the feature SYNSEM has a
complex feature as its value, which is of type b a s i c , and has two feature
values SEM and SYN. both of which have simple values.

This last feature structure doesn't involve any structure sharing. But con-
sider the lexical entrv for runs:

c a t
QSTORE
SYNSEM

e_list
backwarcI
ARG bas ic

SEM
SYN

[0] indiv idual
np

RES bas ic
SEM

SYN

run
RUNNER [0]
s

Here there is structure sharing between the path SYNSEM ARG SEM and the path
SYNSEM RES SEM RUNNER, where a path is simply a sequence of features. This
structure sharing is indicated by the tag [ 0 ] . In this case, the sharing indicates
that the semantics of the argument of runs fills the runner role in the semantics
of the result. Also note that a shared structure is only displayed once; later
occurrences simply list the tag. Of course, this example only involves structure
sharing of a very simple feature structure, in this case one consisting of only a
type with no features. In general, structures of arbitrary complexity may be
shared, as we will see in the next example.

1Set values, like those employed in HPSG, are not supported by ALE. In the categorial
grammar in the appendix, they are represented by lists and treated by attached procedures
for union and selection.
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ALE, like Prolog II and HPSG, but unlike most other systems, allows cyclic
structures to be processed and even printed. For instance, consider the follow-
ing representation we might use for the liar sentence This sentence is false:

[0] fa lse
ARG1 [0]

In this case, the empty path and the feature ARG1 share a value. Similarly,
the path ARG1 ARG1 ARG1 and the path ARG1 ARG1, both of which are defined,
are also identical. But consider a representation for the negation of the liar
sentence, It is false that this sentence is false:

false
ARG1 [0] fa lse

ARG1 [0]

Unlike Prolog II, ALE does not treat these two feature structures as being
identical, as it does not conflate a cyclic structure with its infinite unfolding.

It is interesting to note that with typed feature structures, there is a choice
between representing information using a type and representing the same in-
formation using feature values. This is a familiar situation found in most
inheritance-based representation schemes. Thus the relation specified in the
value of the path SYNSEM RES SEM is represented using a type, in:

SEM run
RUNNER [0]

An alternative encoding, which is not without merit, is:

SEM unary.rel
REL run
ARG1 [0]

In general, type information is processed much more efficiently than feature
value information, so as much information as possible should be placed in
the types. The drawback is that type information must be computed at
compile-time and remain accessible at run-time. More types simply require
more memory.2

Subsumption and Unification

Feature structures are inherently partial in the information they provide.
Based on the type inheritance ordering, we can order feature structures based

2 In general, the amount of memory required to represent n types is proportional to the
number of pairs of consistent types. In the worst case, this is O(n2) in the number of types.
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on how much information they provide. This ordering is referred to as the sub-
sumption ordering. The notion of subsumption, or information containment,
can be used to define the notion of unification, or information combination.
Unification conjoins the information in two feature structures into a single
result if they are consistent and detects an inconsistency otherwise.

Subsumption

We define subsumption, saying that F subsumes G, if and only if:

• the type of F is more general than the type of G

• if a feature / is defined in F then / is also defined in G such that the
value in F subsumes the value in G

• if two paths are shared in F then they are also shared in G

Consider the following examples of subsumption. where we let < stand for
subsumption:

agr
PERS

sign
SUBJ

sign

SUBJ

OBJ

first

agr
PERS pers

agr
PERS first
NUM plu
agr
PERS first
NUM plu

false

ARGl false
ARGl false

agr
PERS
NUM

<

<

<

first
plu

phrase
SUBJ agr

PERS

NUM

sign
SUBJ CO]

PERS
NUM

OBJ CO]

false
ARGl CO]

ARGl

first
plu

agr
first
plu

[1] false
false < ARGl [l]
CO]

Note that the second of these subsumptions holds only if pers is a more
general type than f i r s t , and sign is a more general type than phrase. It is
also important to note that the feature structure consisting simply of the type
bot will subsume every other structure, as the type bot is assumed to be more
general than every other type.
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Unification

Unification is an operation defined over pairs of feature structures that com-
bines the information contained in both of them if they are consistent and
fails otherwise. In ALE, unification is very efficient.3 Declaratively, unifying
two feature structures computes a result which is the most general feature
structure subsumed by both input structures. But the operational definition
is more enlightening, and can be given by simple conditions which tell us how
to unify two structures. We begin by unifying the types of the structures in the
type hierarchy. This is why we required the bounded completeness condition
on our inheritance hierarchies; we want unification to produce a unique result.
If the types are inconsistent, unification fails. If the types are consistent, the
resulting type is the unification of the input types. Next, we recursively unify
all of the feature values of the structures being unified which occur in both
structures. If a feature only occurs in one structure, we copy it over into the
result. This algorithm terminates because we only need to unify structures
which are non-distinct and there are a finite number of nodes in any input
structure.

Some examples of unification follow, where we use + to represent the oper-
ation:

agr
PERS first

1

sign

SUBJ agr

PERS 1st

OBJ agr

NUM plu

t

F [0]

G CO]

agr
PERS

t +

first

t

F

G

+

h agr *

NUM plu

sign

+ SUBJ [0]

OBJ [0]

t

t - F

F [1]

Cl] G

agr

PERS second

agr

PERS
NUM

bot

Cl] t
F Cl]
Cl]

first

sing

sign
= SUBJ

OBJ

CO] agr
PERS first

NUM plu

Co]

= *failure*

3Using a typed version of the Martelli and Montanari (1982) algorithm, which was
adapted to cyclic structures by Jaffar (1984), unification can be performed in what is known
as quasi-linear time in the size of the input structures, where in this case, quasi-linear in
n is defined to be O(n • acifc""1(n)), where ack~l is the inverse of Ackermanns function,
which will never exceed 4 or 5 for structures that can be represented on existing computers.
There is also a factor in the complexity of unification stemming from the type hierarchy and
appropriateness conditions, which we discuss below.
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e . l i s t + ne . l i s t = *failure*
HD a
TL e . l i s t

Note that the second example respects our assumption that the type bot is
the most general type, and thus more general than agr. The second example
illustrates what happens in a simple case of structure sharing: information is
retrieved from both the SUBJ and OBJ and shared in the result. The third
example shows how two structures without cycles can be unified to produce
a structure with a cycle. Just as the feature structure bot subsumes every
other structure, it is also the identity with respect to unification; unifying the
feature structure consisting just of the type bot with any feature structure F
results simply in F. The last two unification attempts fail, assuming that the
types f i r s t and second and the types e_list and ne_list are incompatible.

Type System

As we mentioned in the introduction, what distinguishes ALE from other ap-
proaches to feature structures and most other approaches to terms, is that
there is a strong type discipline enforced on feature structures. We have al-
ready demonstrated how to define a type hierarchy, but that is only half the
story with respect to typing. The other component of our type system is
a notion of feature appropriateness,, whereby each type must specify which
features it can be defined for, and furthermore, which types of values such
features can take. The notion of appropriateness used here is similar to that
found in object-oriented approaches to typing. For instance, if a feature is
appropriate for a type, it will also be appropriate for all of the subtypes of
that type. In other words, appropriateness specifications are inherited by a
type from its supertypes. Furthermore, value restrictions on feature values are
also inherited. Another important consideration for ALE's type system is the
notion of type inference, whereby types for structures which are underspecified
can be automatically inferred. This is a property our system shares with the
functional language ML, though our notion of typing is only first-order. To
further put ALE's type system in perspective, we note that type inheritance
must be declared by the user at compile time, rather than being inferred. Fur-
thermore, types in ALE are semantic, in Smolka's (1988b) terms, meaning that
types are used at run-time. Even though ALE employs semantic typing, the
type system is employed statically (at compile-time) to detect type errors in
grammars and programs.

As an example of an appropriateness declaration, consider the simple type
specification for lists with a head/tail encoding:

bot sub [ l is t ,a tom].
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list sub [e.list ,ne_list] .
e.list sub [] .
ne.list sub []

intro [hdrbot,
t l i l i s t ] .

atom sub [a,b].
a sub [] .
b sub [] .

This specification tells us that a list can be either empty (e_list) or non-
empty (neJ.ist). It implicitly tells us that a non-empty list can not have
any features defined for it, since none are declared directly or inherited from
more general types. The declaration also tells us that a non-empty list has
two features, representing the head and the tail of a list, and, furthermore,
that the head of a list can be anything (since every structure is of type bot),
but the tail of the list must itself be a list. Note that features must also be
Prolog constants, even though the output routines convert them to all caps.

In ALE, every feature structure must respect the appropriateness restric-
tions in the type declarations. This amounts to two restrictions. First, if a
feature is defined for a feature structure of a given type, then that type must
be appropriate for the feature. Furthermore, the value of the feature must be
of the appropriate type, as declaxed in the appropriateness conditions. The
second condition goes the other way around: if a feature is appropriate for a
type, then every feature structure of that type must have a value for the fea-
ture. A feature structure respecting these two conditions is said to be totally
well-typed in the terminology of Carpenter (1992, Chapter 6).4 For instance,
consider the following feature structures:

list
HD a
TL bot

ne.list
HD bot
TL ne_list

HD atom
TL list

4The choice of totally well-typed structures was motivated by the desire to represent
feature structures as records at run-time, without listing their features. Internally, a feature
structure is represented as a term of the form Tag-Sort(VI,. . . ,VN) where Tag represents
the token identity of the structure using a Prolog variable, Sort is the type of structure, and
VI through VN are the values of the appropriate features, which are themselves left implicit.
Furthermore, the Tag is used for forwarding and dereferencing during unification.
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ne . l i s t
HD [0] n e . l i s t

HD [0]
TL [0]

TL e . l i s t

The first structure violates the typing condition because the type l i s t is not
appropriate for any features, only ne_list is. But even if we were to change
its type to ne_list, it would still violate the type conditions, because bot is
not an appropriate type for the value of TL in a ne_list. On the other hand,
the second and third structures above are totally well-typed. Note that the
second such structure does not specify what kind of list occurs at the path TL
TL, nor does it specify what the HD value is, but it does specify that the second
element of the list, the TL HD value is an atom, but it doesn't specify which
one.

To demonstrate how inheritance works in a simple case, consider the spec-
ification fragment from the categorial grammar in the appendix:

functional sub [forward,backward]
intro [argisynsem,

res:synsem].
forward sub [] .
backward sub [] .

This tells us that functional objects have ARG and RES features. Because
forward and backward are subtypes of functional, they will also have ARG
and RES features, with the same restrictions.

There are a couple of important restrictions placed on appropriateness
conditions in ALE. The most significant of these is the acyclicity requirement.
This condition disallows type specifications which require a type to have a
value which is of the same or more specific type. For example, the following
specification is not allowed:

person sub [male,female]
intro [father:male,

mother:female].
male sub [] .
female sub [] .

The problem here is the obvious one that there are no most general feature
structures that are both of type person and totally well-typed.5 This is be-
cause any person must have a father and mother feature, which are male and

5The only finite feature structures that could meet this type system would have to be
cyclic, as noted in Carpenter (1992). The problem is that there is no most general such
cyclic structure, so type inference can not be unique.
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female respectively, but since male and female are subtypes of person, they
must also have mother and father values. It is significant to note that the
acyclicity condition does not rule out recursive structures, as can be seen with
the example of lists. The l i s t type specification is acceptable because not
every list is required to have a head and tail, only non-empty lists are. The
acyclicity restriction can be stated graph theoretically by constructing a di-
rected graph from the type specification. The nodes of the graph are simply
the types. There is an edge from every type to all of its supertypes, and an
edge from every type to the types in the type restrictions in its features. Type
specifications axe only acceptable if they produce a graph with no cycles. One
cycle in the person graph is from male to person (by the supertype relation)
and from person to male (by the FATHER feature). On the other hand, there
are no cycles in the specification of l i s t .

The second restriction placed on appropriateness declarations is designed
to limit non-determinism in much the same way as the bounded completeness
condition on the inheritance hierarchy. This second condition requires every
feature to be introduced at a unique most general type. In other words, the
set of types appropriate for a feature must have a most general element. Thus
the following type declaration fragment is invalid:

a sub [b, c, d] .
b sub []

intro [f:w,
g :x ] .

c sub []
intro [f:y ,

h :z ] .
d sub [] .

The problem is that the feature F is appropriate for types b and c, but there
is not a unique most general type for which it's appropriate. In general, just
like the bounded completeness condition, type specifications which violate the
feature introduction condition can be patched, without violating any of their
existing structure, by adding additional types. In this case, we add a new
type between a and the types b and c, producing the equivalent well-formed
specification:

a sub [ e , d ] .
e sub [b,c]

intro [ f :bot ] .
b sub []

intro [f:w,
g:xl.

c sub []
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intro [fry,
h :z] .

d sub [] .

This example also illustrates how subtypes of a type can place additional
restrictions on values on features as well as introducing additional features.

As a further illustration of how feature introduction can be obeyed in gen-
eral, consider the following specification of a type system for representing
first-order terms:

sem.obj sub [individual,proposition].
individual sub [a ,b] .

a sub [] .
b sub [] .

proposition sub [ atomic.prop,relational].
atomic.prop sub [] .
relational.prop sub [unary, prop, trans it ive.prop]

intro [argl: individual] .
unary.prop sub [] .
transitive.prop sub [binary .prop, ternary .prop]

intro [arg2:individual].
binary .prop sub [] •
ternary.prop sub []

intro [axg3:individual].

In this case, unaxy propositions have one argument feature, binary propositions
have two argument features, and ternary propositions have three argument
features, all of which must be filled by individuals.

Attribute-Value Logic

Now that we have seen how the type system must be specified, we turn our
attention to the specification of feature structures themselves. The most con-
venient and expressive method of describing feature structures is the logical
language developed by Kasper and Rounds (1986), which we modify here in
two ways. First, we replace the notion of path sharing with the more compact
and expressive notion of variable due to Smolka (19SSa). Second, we extend
the language to types, following Pollard (in press).

The collection of descriptions used in ALE can be described by the following
BNF grammar:

<desc> ::= <type>
I <variable>
I (<feature>:<desc>)
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I (<desc>,<desc>)
I (<desc>;<desc>)

As we have said before, both types and features are represented by Prolog
constants. Variables, on the other hand, are represented by Prolog variables.
As indicated by the BNF, no whitespace is needed axound the feature selecting
colon, conjunction comma and disjunction semi-colon, but any whitespace
occurring will be ignored.

These descriptions are used for picking out feature structures that sat-
isfy them. We consider the clauses of the definition in turn. A description
consisting of a type picks out all feature structures of that type. A vari-
able can be used to refer to any feature structure, but multiple occurrences
of the same variable must refer to the same structure. A description of the
form (<feature>:<desc>) picks out a feature structure whose value for the
feature satisfies the nested description. There are two ways of logically com-
bining descriptions: following Prolog, the comma represents conjunction and
the semi-colon represents disjunction. A feature structure satisfies a conjunc-
tion of descriptions just in case it satisfies both conjuncts, while it satisfies a
disjunction of descriptions if it satisfies either of the disjuncts.

Standard assumptions about operator precedence and association are fol-
lowed by ALE, allowing us to omit most of the parentheses in descriptions. In
particular, feature selecting colon binds the most tightly, followed by conjunc-
tion and then by disjunction. Furthermore, conjunction and disjunction are
left-associative, while te feature selector is right-associative. For instance, this
gives us the following equivalences between descriptions:

a, b ; c, d ; e = (a ,b) ; (c ,d) ;e

a,b,c = a,(b,c)

f :g :bot ,h : j = ( f : (g :bot ) ) , (h : j )

A description may be satisfied by no structure, a finite number of structures
or an infinite collection of feature structures. A description is said to be
satisfiable if it is satisfied by at least one structure. A description <j> entails a
description xj) if every structure satisfying <j> also satisfies rp. Two descriptions
are logically equivalent if they entail each other, or equivalently, if they are
satisfied by exactly the same set of structures.

ALE is only sensitive to the differences between logically equiva-
lent formulas in terms of speed. For instance, the two descriptions
( t l : l i s t ,ne_ l i s t ,hd :bo t ) and hd:bot are satisfied by exactly the same
set of totally well-typed structures assuming the type declaration for lists
given above, but the smaller description will be processed much more effi-
ciently. There are also efficiency effects stemming from the order in which
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conjuncts (and disjuncts) are presented. The general rule for speedy pro-
cessing is to eliminate descriptions from a conjunction if they are entailed by
other conjuncts, and to put conjuncts with more type and feature entailments
first. Thus with our specification for relations above, the description (axgl: a,
binary .proposition) would be slower than (binary-proposition,argl:a),
since binary .proposition entails the existence of the feature argl, but not
conversely.

At run-time, ALE computes a representation of the most general feature
structure which satisfies a description. Thus a description such as hd:a with
respect to the list grammar is satisfied by the structure:

ne.list
HD a
TL list

Every other structure satisfying the description hd: a is subsumed by the struc-
ture given above. In fact, the above structure is said to be a vague representa-
tion of all of the structures that satisfy the description. The type conditions in
ALE were devised to obey the very important property, first noted by Kasper
and Rounds (1986), that every non-disjunctive description is satisfied by a
unique most general feature structure. Thus in the case of hd: a, there is no
more general feature structure than the one above which also satisfies hd:a.

The previous example also illustrates the kind of type inference used by
ALE. Even though the description hd:a does not explicitly mention either
the feature TL or the type ne_list, to find a feature structure satisfying the
description, ALE must infer this information. In particular, because neJ.ist
is the most general type for which HD is appropriate, we know that the result
must be of type ne_list. Furthermore, because ne_list is appropriate for
both the features HD and TL, ALE must add an appropriate TL value. The
value type l i s t is also inferred, due to the fact that a neJList must have a
TL value which is a list. As far as type inference goes, the user does not need
to provide anything other than the type specification; the system computes
type inference based on the appropriateness specification. In general, type
inference is very efficient in terms of time. The biggest concern should be how
large the structures become.6 In contrast to a vague description, a disjunctive
description is usually ambiguous. Disjunction is where the complexity arises in
satisfying descriptions, as it corresponds operationally to non-determinism.7

6Finding most general satisfiers for non-disjunctive descriptions, even those involving
type inference, is quasi-linear in the size of the description. But it should be kept in mind
that there is also a factor of complexity determined by the size of the type specification. In
practice, this factor is proportional to how large the inferred structure is. In general, the
size of the inferred structure is linear in the size of the description, with a constant for the
type specification.

7It corresponds so closely with non-determinism that satisfiability of descriptions with
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For instance, the description hd:(a;b) is satisfied by two distinct minimal
structures, neither of which subsumes the other:

ne_list
HD a
TL list

ne.list
HD b
TL list

On the other hand, the description hd:atom is satisfied by the structure:

ne.list
HD atom
TL list

Even though the descriptions hd:atom and hd: (a;b) are not logically equiva-
lent (though the former entails the latter), they have the interesting property
of being unifiable with exactly the same set of structures. In other words, if
a feature structure can be unified with the most general satisfier of hd:atom,
then it can be unified with one of the minimal satisfiers of hd: (a;b).

In terms of efficiency, it is very important to use vagueness wherever possi-
ble rather than ambiguity. In fact, it is almost always a good idea to arrange
the type specification with just this goal in mind. For instance, consider the
difference between the following pair of type specifications, which might be
used for English gender:

gender sub [masc,fem,neut].
masc sub [] .
fern sub • .
neut sub [] .

gender sub [animate,neut]
animate sub [masc,fern] .

masc sub [] .
fern sub [] .

neut sub [] .

Now consider the fact that the relative pronouns who and which are distin-
guished on the basis of whether they select animate or inanimate genders. In
the flatter hierarchy, the only way to select the animate genders is by the am-
biguous description masc;fern. The hierarchy with an explicit animate type
can capture the same possibilities with the vague description animate. An ef-
fective rule of thumb is that ALE does an amount of work at best proportional
to the number of most general satisfiers of a description and at worst propor-
tional to 2n, where n is the number of disjuncts in the description. Thus the
ambiguous description requires roughly twice the time and memory to pro-
cess than the vague description. Whether the amount of work is closer to the
number of satisfiers or exponential in the number of disjuncts depends on how
many unsatisfiable disjunctive possibilities drop out eaxly in the computation.

disjunctions is NP-complete. Furthermore, the algorithm employed by ALE may produce
up to 2n satisfiers for a description with n disjunctions.
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Macros

ALE allows the user to employ a general form of parametric macros in de-
scriptions. Macros allow the user to define a description once and then use a
shorthand for it in other descriptions. We first consider a simple example of a
macro definition, drawn from the categorial grammar in the appendix. Sup-
pose the user wants to employ a description qstore :e_l i s t frequently within
a program. The following macro definition can be used in the program file:

quantifier_free macro
qstorerealist.

Then, rather than including the description qs tore : e_l is t in another descrip-
tion, <5 quantif ier_free can be used instead. Whenever® quantif ier_free
is used, qstore :e_List is substituted.

In the above case, the <macro_spec> was a simple atom, but in general,
it can be supplied with arguments. The full BNF for macro definitions is as
follows:

<macro_def> :: = <macro_head> macro <desc>.

<macro_head> ::= <macro_name>
I <macro_name>(<seq(<var>)>)

<macro.spec> ::= <macro_name>
I <macro_name>(<seq(<desc>)>)

<seq(X)> : := X
I X, <seq(X)>

Note that <seq(X)> is a parametric category in the BNF which abbreviates
non-empty sequences of objects of category X. The following clause should be
added to recursive definition of descriptions:

<desc> :: = Q <macro\_spec>

A feature structure satisfies a description of the form Q <macrospec> just in
case the structure satisfies the body of the definition of the macro.

Again considering the categorial grammar in the appendix, we have the
following macros with one and two arguments respectively:

np(Ind) macro
syn:np,
sem:Ind.
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n(Restr,Ind) macro
synm,
sem:(body:Restr,

ind:Ind).

In general, the arguments in the definition of a macro must be Prolog variables,
which can then be used as variables in the body of the macro. With the first
macro, the description Q np(j) would then be equivalent to the description
syn:np,sem: j. When evaluating a macro, the argument supplied, in this case
j, is substituted for the variable when expanding the macro. In general, the
argument to a macro can itself be an arbitrary description (possibly containing
macros). For instance, the description:

n((and,conj1:Rl,conj 2:R2),Ind3)

would be equivalent to the description:

synm,
sem: (body: (and,conj 1 :Rl,conj2:R2),

ind:Ind3)

This example illustrates how other variables and even complex descriptions can
be substituted for the arguments of macros. Also note the parentheses around
the arguments to the first argument of the macro. Without the parentheses,
as in n(and,conjl:Rl,conj2:R2,Ind3), the macro expansion routine would
take this to be a four argument macro, rather than a two argument macro
with a complex first argument. This brings up a related point, which is that
different macros can have the same name as long as they have the different
numbers of arguments.

Macros can also contain other macros, as illustrated by the macro for proper
names in the categorial grammar:

pn(Name) macro
synsem: 0 np(Name) ,
(8 quant if ier_free.

In this case, the macros are expanded recursively, so that the description pn( j)
would be equivalent to the description

synsem:(syn:np,sem:j),qstore:e_list

It is usually a good idea to use macros whenever the same description is
going to be re-used frequently. Not only does this make the grammars and
programs more readable, it reduces the number of simple typing errors that
lead to inconsistencies.

As is to be expected, macros can't be recursive. That is, a macro, when
expanded, is not allowed to invoke itself, as in the ill-formed example:
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in f in i t e . l i s t (E l t ) macro
hd:Elt,
t l : i n f i n i t e . l i s t ( E l t )

The reason is simple; it is not possible to expand this macro to a finite de-
scription. Thus all recursion must occur in grammars or programs; it can't
occur in either the appropriateness conditions or in macros.

Because programming with lists is so common, ALE has a special macro
for it, based on the Prolog list notation. A description may also take any of
the forms on the left, which will be treated equivalently to the descriptions on
the right in the following diagram:

[] e.list

[HIT] (hd:H,
tl:T)

,AN] (hd:Al,
tl:(hd:A2,

t l : . . .
tl:(hd:AN,

tl :e_list) . . . ))

(hd:Al,
tl:(hd:A2,

t l : . . .
tl:(hd:AN,

Note that this built-in macro does not require the macro operator Q. Thus,
for example, the description [a|T3] is equivalent to hd:a,t l :T3, and the
description [a,b,c] is equivalent to hd:a , t l : (hd:b, t l : (hd:c , t l :e_l is t ) ) .
There are many example of this use of Prolog's list notation in the grammars
in the appendix.
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Definite Constraints

The next two sections, covering the constraint logic programming and
phrase structure components of ALE, simply describe how to write ALE pro-
grams and how they will be executed. Discussion of interacting with the system
itself follows the description of the programming language ALE provides.

The definite logic programming language built into ALE is a constraint logic
programming (CLP) language, where the constraint system is the attribute-
value logic described above. Thus, it is very closely related to both Prolog
and LOGIN. Like Prolog, definite clauses may be defined with disjunction,
negation and cut. The definite constraints of ALE are executed in a depth-
first, left to right search, according to the order of clauses in the database.
ALE performs last call optimization, but does not perform any clause indexing.1

Those familiar with Prolog should have no trouble adapting that knowledge
to programming with definite clauses in ALE. The only significant difference
is that first-order terms are replaced with descriptions of feature structures.

While it is not within the scope of this user's guide to detail the logic
programming paradigm, much less CLP, this section will explain all that the
user familiar with logic programming needs to know to exploit the special
features of ALE. For background, the user is encouraged to consult Sterling
and Shapiro (1986) with regard to general logic programming techniques, most
of which are applicable in the context of ALE, and Ait-Kaci and Nasr (1986)
for more details on programming with sorted feature structures. For more
advanced material on programming in Prolog with a compiler, see O'Keefe
(1990). The general theory of CLP is developed in a way compatible with ALE in
Hohfeld and Smolka (1988). Of course, since ALE is literally an implementation
of the theory found in Carpenter (1992), the user is strongly encouraged to
consult Chapter 14 of that book for full theoretical details.

The syntax of ALE'S logic programming component is broadly similar to
that of Prolog, with the only difference being that first-order terms are replaced

1Thus, additional cuts might be necessary to ensure determinism, so that last call opti-
mization is effective.

24
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with attribute-value logic descriptions. The language in which clauses axe
expressed in ALE is given in BNF as:

<clause> : : - <literal> if <goal>.

<li teral> ::= <pred_sym>
I <pred_sym>(<desc_seq>)

<desc_seq> ::= <desc>
I <desc>,<desc_seq>

<goal> ::= true
<literal>
(<goal>,<goal»
(<goal>;<goal»
i

(\+ <goal>)

Just as in Prolog, predicate symbols must be Prolog atoms. This is a more
restricted situation than the definite clause language discussed in Carpenter
(1992), where literals were also represented as feature structures and described
using attribute-value logic. Also note that ALE requires every clause to have
a body, which might simply be the goal true. There must be whitespace
axound the if operator, but none is required axound the conjunction comma,
the disjunction semicolon, the cut symbol !, or the unprovability symbol \+.
Parentheses, in general, may be dropped and reconstructed based on operator
precedences. The precedence is such that the comma binds more tightly than
the semicolon, while the unprovability symbol binds the most tightly. Both
the semicolon and comma are right associative.

The operational behavior of ALE is nearly identical to Prolog with respect
to goal resolution. That is, it evaluates a sequence of goals depth-first, from
the left to right, using the order of clauses established in the program. The
only difference arises from the fact that, in Prolog, literals can't introduce non-
determinism. In ALE, due to the fact that disjunctions can be nested inside
of descriptions, additional choice points might be created both in matching
literals against the heads of clauses and in expanding the literals within the
body of a clause. In evaluating these choices, ALE maintains a depth-first left
to right strategy.

We begin with a simple example, the member/2 predicate: 2

member(X,hd:X) if
t rue .

2As in Prolog, we refer to predicates by their name and arity.
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member(X,tl:Xs) if
member(X,Xs).

As in Prolog, ALE clauses may be read logically, as implications, from right
to left. Thus the first clause above states that X is a member of a list if it
is the head of a list. The second clause states that X is a member of a list if
X is a member of the tail of the list, Xs. Note that variables in ALE clauses
axe used the same way as in Prolog, due to the notational convention of our
description language. Further note that, unlike Prolog, ALE requires a body
for every clause. In particular, note that the first clause above has the trivial
body true. The compiler is clever enough to remove such goals at compile
time, so they do not incur any run-time overhead.

Given the notational convention for lists built into ALE, the above program
could equivalently be written as:

member(X,[X|J) if
true,

member (X,L I Xs]) if
member(X,Xs).

But recall that ALE would expand [X|_] as (hd:X,tl:_). Not only does ALE
not support anonymous variable optimizations, it also creates a conjunction
of two descriptions, where hd:X would have sufficed. Thus the first method is
not only more elegant, but also more efficient.

Due to the fact that lists have little hierarchical structure, list manipulation
predicates in ALE look very much like their correlates in Prolog. They will also
execute with similar performance. But when the terms in the arguments of
literals have more interesting taxonomic structure, ALE actually provides a gain
over Prolog's evaluation method, as pointed out by Ait-Kaci and Nasr (1986).
Consider the following fragment drawn from the syllabification grammar in the
appendix, in which there is a significant interaction between the inheritance
hierarchy and the definite clause less-sonorous/2:

segment sub [consonant,vowel].
consonant sub [nasa l , l iquid ,g l ide] .

nasal sub [n,m].
n sub [] .
m sub [] .

l iquid sub [ l , r ] .
1 sub [] .
r sub [] .

glide sub [y,w].
y sub [] .
w sub [] .
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vowel sub [a ,e , i ]
a sub [] .
e sub [] .
i sub [] .

less_sonorousjbasic(nasal,liquid) if t rue ,
less.sonorous_basic(liquid,glide) if t rue .
less_sonorous_basic(glide,vowel) if t r ue .

less_sonorous(Ll,L2) if
less_sonorous_basic(Ll,L2).

less_sonorous(Ll,L2) if
less_sonorous_basic(Ll,L3),
less_sonorous(L3,L2).

For instance, the third clause of less-sonorous_basic/2, being expressed
as a relation between the types glide and vowel, allows solutions such as
less_sonorous_basic(w,e), where glide and vowel have been instantiated
as the particular subtypes w and e. This fact would not be either as straight-
forward or as efficient to code in Prolog, where relations between the individual
letters would need to be defined. The loss in efficiency steins from the fact that
Prolog must either code all 14 pairs represented by the above three clauses and
type hierarchy, or perform additional logical inferences to infer that w is a glide,
and hence less sonorous than the vowel e. ALE, on the other hand, performs
these operations by unification, which, for types, is a simple table look-up.3 All
in all, the three clauses for less_sonorous_basic/2 given above represent re-
lations between 14 pairs of letters. Of course, the savings is even greater when
considering the transitive closure of less_sonorous_basic/2, given above as
less.sonorous/2, and would be greater still for a type hierarchy involving a
greater degree of either depth or branching.

While we do not provide examples here, suffice it to say that cuts, negation
and disjunction work exactly the same as they do in Prolog. In particular,
cuts conserve stack space representing backtracking points, disjunctions create
choice points and negation is evaluated by failure, with the same results on
binding as in Prolog.

It is significant to note that clauses in ALE are truly definite in the sense
that only a single literal is allowed as the head of a clause, while the body can
be a general goal. In particular, disjunctions in descriptions of the arguments
to the head literal of a clause are interpreted as taking wide scope over the
entire clause, thus providing the effect of multiple solutions rather than single

3Table look-ups involved in unification in ALE rely on double hashing, once for the type
of each structure being unified.
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disjunctive solutions. The most simple example of this behavior can be found
in the following program:

foo((b;c)) if t rue,

bar(b) if t rue .

baz(X) if foo(X), bar(X).

Here the query foo(X) will provide two distinct solutions, one where X is of
type b, and another where it is of type c. Also note that the queries f oo(b)
and f oo(c) will succeed. Thus the disjunction is equivalent to the two single
clauses:

foo(b) if t rue ,
foo(c) if t rue .

In particular, note that the query baz(X) can be solved, with X instantiated to
an object of type b. In general, using embedded negations will usually be more
efficient than using multiple clauses in ALE, especially if the disjunctions are
deeply nested late in the description. On the other hand, cuts can be inserted
for control with multiple clauses, making them more efficient in some cases.
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Phrase Structure Grammars

The ALE phrase structure processing component is loosely based on a com-
bination of the functionality of the PATR-II system and the DCG system built
into Prolog. Roughly speaking, ALE provides a system like that of DCGs, with
two primary differences. The first difference stems from the fact that ALE uses
attribute-value logic descriptions of typed feature structures for representing
categories and their parts, while DCGs use first-order terms (or possibly cyclic
variants thereof). The second primary difference is that ALE uses a bottom-up
active chart parser rather than encoding grammars direclty as Prolog clauses
and evaluating them top-down and depth-first. In the spirit of DCGs, ALE al-
lows definite clause procedures to be attached and evaluated at arbitrary points
in a phrase structure rule, the difference being that these rules are given by
definite clauses in ALE's logic programming system, rather than directly in
Prolog.

Phrase structure grammars come with two basic components, one for de-
scribing lexical entries, and one for describing grammar rules. We consider
these components in turn, after a discussion of the parsing algorithm.

Parsing

It is not necessary to fully understand the parsing algorithm employed by ALE
to exploit its power for developing grammars. But for those users concerned
with efficiency and writing grammars with procedural attachments, it is crucial
information.

The ALE system employs a bottom-up active chart parser which has been
tailored to the implementation attribute-value grammars in Prolog. The single
most important fact to keep in mind is that rules are evaluated from left
to right. Most of the implementational considerations follow from this rule
evaluation principle and its specific implementation in Prolog.

The chart is filled in using a combination of depth- and breadth-first con-
trol. In particular, the edges are filled in from right to left, even though

29
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the rules are evaluated from left to right. Furthermore, the parser proceeds
breadth-first in the sense that it incrementally moves through the string from
right to left, one word at a time, recording all of the inactive edges that can
be created beginning from the current left-hand position in the string. For
instance, in the string The kid ran yesterday, the order of processing is as
follows. First, lexical entries for yesterday are looked up, and entered into the
chart as inactive edges. For each inactive edge that is added to the chart, the
rules are also fired according to the bottom-up rule of chart parsing. But no
inactive edges are recorded. Inactive edges are purely dynamic structures, ex-
isting only locally to exploit Prolog's copying and backtracking schemes. The
benefit of paxsing from right to left is that when an active edge is proposed
by the bottom-up rule, every inactive edge it might need to be completed has
already been found. The real reason for the right to left parsing strategy is to
allow the active edges to be represented dynamically, while still evaluating the
rules from left to right. While the overall strategy is bottom-up, and breadth-
first insofar as it steps incrementally through the string, filling in every possible
inactive edge as it goes, the rest of the processing is done depth-first to keep
as many data structures dynamic as possible, to avoid copying other than that
done by Prolog's backtracking mechanism. In particular, lexical entries, the
bottom-up rule, and the active edges are all evaluated depth-first, which is
perfectly sound, because they all start at the same left point (that before the
current word in the right to left pass through the string), and thus do not
interact with one another.

Rules can incorporate definite clause goals before, between or after category
specifications. These goals are evaluated when they are found. For instance,
if a goad occurs between two categories on the right hand side of a rule, the
goal is evaluated after the first category is found, but before the second one is.
The goals are evaluated by ALE's definite clause resolution mechanism, which
operates in a depth-first manner. Thus care should be taken to make sure
the required variables in a goal are instantiated before the goal is called. The
resolution of all goals should terminate with a finite (possibly empty) number
of solutions, taking into account the variables that are instantiated when they
are called.

The parser will terminate after finding all of the inactive edges derivable
from the lexical entries and the grammar rules. As things stand, ALE does
not keep track of the parse tree. Of course, if the grammar is such that an
infinite number of derivations can be produced, ALE will not terminate. Such
an infinite number of derivations can creep in either through recursive unary
rules or through the evaluation of goals.

The current version of ALE has no mechanism for detecting duplicate edges.
Thus there is no mechanism to prevent the propagation of spurious ambigu-
ities through the parse. A category C spanning a given subsequence is said
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to be spurious if there is another category C spanning the same subsequence
such that C is subsumed by C". Only the most general category needs to be
recorded to ensure soundness. Furthermore, it might be the case that there is
redundancy, in the sense that there are two derivations of the same category.
ALE is also unable to detect this situation. This strategy was followed rather
than the standard one which checks for subsumption when an edge is added,
because it was felt that most grammars do not have any spurious ambiguity.
Most unification-based grammars incorporate some notion of thematic or func-
tional structure representing the meaning of a sentence. In these cases, most
structural ambiguities result in semantic ambiguities. Thus it would actually
slow the algorithm down to constantly check for a condition that never occurs.
Future versions of ALE should allow the user to set a flag which determines
whether spurious ambiguity and redundancy is captured during parsing.

Lexical Entries

Lexical entries in ALE are specified as rewriting rules, as given by the following
BNF syntax:

<lex_entry> ::= <word> > <desc>.

For instance, in the categoricJ grammar lexicon in the appendix, the following
lexical entry is provided, along with the relevant macros:

John >
<D pn(j) .

pn(Name) macro
synsem: Q np(Name),
Q quant i f ier . f ree .

np(Ind) macro
syn:np,
semilnd.

quantifier_free macro
qstore: [] .

Read declaratively, this rule says that the word j ohn has as its lexical category
the most general satisfier of the description <3 pn(j), which is:

cat
SYNSEM basic

SYN np
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SEM j

QSTORE e.list

Note that this lexical entry is equivalent to that given without macros by:

John >
synsem:(syn:np,

sem:j),
qstore:e_ l i s t .

Macros axe useful as a method of organizing lexical information to keep it
consistent across lexical entries. The lexical entry for the word runs is:

runs > <B iv((run,runner:Ind) ,Ind) .

iv(Sem,Arg) macro
synsem:(backward,

arg: Q np(Arg),
res:(syn:s ,

sem:Sem)),
<0 quant if ier_free.

This entry uses nested macros along with structure sharing, and expands to
the category:

cat
SYNSEM backward

ARG synsem
SYN np
SEM [0] sem.obj

RES SYN s
SEM run

RUNNER [0]
QSTORE e . l i s t

It also illustrates how macro parameters are in fact treated as variables.
Multiple lexical entries may be provided for each word. Disjunctions may

also be used in lexical entries. Thus the first three lexical entries, taken to-
gether, are identical to the fourth:

bank >
syn:noun,
sem:river_bank.

bank >

syn:noun,
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sem:money.bank.
bank >

synrverb,
sem:roll_plane.

bank >
( syn:noun,
sem:( river.bank

; money.bank

)

; syn:verb,
sem:roll_plane

Note that this last entry uses the standard Prolog layout conventions of placing
each conjunct and disjunct on its own line, with commas at the end of lines,
and disjunctions set off with vertically aligned parentheses at the beginning of
lines.

The compiler finds all the most general satisfiers for lexical entries at com-
pile time, reporting on those lexical entries which have unsatisfiable descrip-
tions. In the above case of bank, the second combined method is marginally
faster at compile-time, but their run-time performance is identical. The reason
for this is that both entries have the same set of most general satisfiers.

ALE supports the construction of large lexicons, as it relies on Prolog's hash-
ing mechanism to actually look up a lexical entry for a word during bottom-up
parsing.

Empty Categories

ALE allows the user to specify certain categories as occurring without any
corresponding surface string. These are usually referred to somewhat mislead-
ingly as empty categories, or sometimes as null productions. In ALE, they are
supported by a special declaration of the form:

empty <desc>.

Where <desc> is a description of the empty category.
For example, a common treatment of bare plurals is to hypothesize an

empty determiner. For instance, consider the contrast between the sentences
kids overturned my trash cans and a kid overturned my trash cans. In the
former sentence, which has a plural subject, there is no corresponding deter-
miner. In our categorial grammar, we might assume an empty determiner with
the following lexical entry (presented here with the macros expanded):
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empty
gdet(Quant) macro
synsem:(forward,

arg:(syn:(n,

num:plu),
sem:(body:Restr,

ind:Ind)),
res:(syn:(np,

num:plu),
semrlnd),

qstore:[ (Quant,
var:Ind,
restr:Restr) ] .

Of course, it should be noted that this entry does not match the type system
of the categorial grammar in the appendix, as it assumes a number feature on
nouns and noun phrases.

Empty categories are expensive to compute under a bottom-up parsing
scheme such as is used in ALE. The reason for this is that these categories
must be inserted at every position in the chart during parsing (with the same
begin and end points). If the empty categories cause local structural ambigui-
ties, parsing will be slowed down accordingly as these structures are calculated
and then propagated. Consider the empty determiner given above. It will
produce an inactive edge at every node in the chaxt, then match the forward
application rule scheme and search every edge to its right looking for a nom-
inal complement. Because there are relatively few nouns in a sentence, not
many noun phrases will be created by this rule and thus not many structural
ambiguities will propagate. But in a sentence such as the kids like the toys,
there will be an edge spanning kids like the toys corresponding to an empty
determiner analysis of kids. The corresponding noun phrase created spanning
toys will not propagate any further, as there is no way to combine a noun
phrase with the determiner the. But now consider the empty slash categories
of form X/X in GPSG. These categories, when coupled with the slash passing
rules, would roughly double parsing time, even for sentences that can be ana-
lyzed without any such categories. The reason is that these empty categories
are highly underspecified and thus have many options for combinations. Thus
empty categories should be used sparingly, and prefarably in environments
where their effects will not propagate.

Another word of caution is in order concerning empty categories: they can
occur in constructions with other empty categories. For instance, if we specify
categories C\ and C2 as empty categories, and have a rule that allows a C
to be constructed from a C\ and a C2, then C will act as an empty category,
as well. These combinations of empty categories are computed at run-time,
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and may be a processing burden if they apply too productively. Keep in mind
that ALE computes all of the inactive edges that can be produced from a given
input string, so there is no way of eliminating the extra work produced by
empty categories interacting with other categories, including empty ones.

Lexical Rules

Lexical rules provide a mechanism for expressing redundancies in the lexicon,
such as the kinds of inflectional morphology used for word classes, derivational
morphology as found with suffixes and prefixes, as well as zero-derivations as
found with detransitivization, nominalization of some varieties and so on. The
format ALE provides for stating lexical rules is similar to that found in both
PATR-II and HPSG.

In order to implement them efficiently, lexical rules, as well as their effects
on lexical entries, are compiled in much the same way as grammars. To en-
hance their power, lexical rules, like grammar rules, allow arbitrary procedural
attachment with ALE definite constraints.

The lexical rule system of ALE is productive in that it allows lexical rules
to apply sequentially to their own output or the output of other lexical rules.
Thus, it is possible to derive the nominal runner from the verb run, and then
derive the plural nominal runners from runner, and so on. At the same time,
the lexical system is leashed to a fixed depth-bound, which may be specified
by the user. This bound limits the number of rules that can be applied to any
given category. The bound on application of rules is specified by a command
such as the following, which should appear line initially somewhere in the input
file:

: - lex_ru le_depth(2) .

Of course, bounds other than 2 can be used. The bound indicates how many
applications of lexical rules can be made, and may be 0. If there are more
than one such specification in an input file, the last one will be the one that
is used.

The format for lexical rules is as follows:

<lex_rule> : := <lex_rule_name> lex.rule <lex_rewrite>
morphs <raorphs>.

<lex_rewrite> : := <desc> **> <desc>
I <desc> **> <desc> if <goal>

<morphs> : := <morph>
I <morph>, <morphs>
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<morph> ::= (<string_pattern>) becomes (<string_pattern>)
I (<string_pattern>) becomes (<string_pattern>)

when <prolog_goal>

<string_pattern> ::= <atomic_string_pa.ttern>
I <atomic_string_pattern>, <string_pattern>

<atomic_string_pattern> ::= <atom>
I <var>
I <list(<var_char>)>

<var_char> ::= <char>
I <var>

An example of a lexical rule with almost all of the bells and whistles (we put
off procedural attachment for now) is:

plural_n lex.rule
(n,

numrsing)
**> (n,

num:plu)
morphs
goose becomes geese,
[k,e,y] becomes [k,e,y,s],
(X,man) becomes (X,men),
(X,F) becomes (X,F,es) when fricative(F),
(X,ey) becomes (X,[i,e,s]),
X becomes (X,s).

f r ica t ive( [s ] ) .
f r icat ive([c ,h]) .
f r ica t ive([s ,h]) .
fr icative( [x]).

We will use this lexical rule to explain the behavior of the lexical rule sys-
tem. First note that the name of a lexical rule, in this case plural-n. must in
general be a Prolog atom. Further note that the top-level parentheses around
both the descriptions and the patterns are necessary. If the Prolog goal, in this
case fricative(F), had been a complex goal, then it would need to be paren-
thesized as well. The next thing to note about the lexical rule is that there are
two descriptions — the first describes the input category to the rule, while the
second describes the output category. These are arbitrary descriptions, and
may contain disjunctions, macros, etc. We will come back to the clauses for
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f r icative/1 shortly. Note that the patterns in the morphological component
are built out of variables, sequences and lists. Thus a simple rewriting can be
specified either using atoms as with goose above, with a list, as in [k,e,y], or
with a sequence as in (X,man), or with both, as in (X, [ i , e , s ] ) . The syntax
of the morphological operations is such that in sequences, atoms may be used
as a shorthand for lists of characters. But lists must consist of variables or
single characters only. Thus we could not have used (X, [F] ) in the fricative
case, as F might is itself a complex list such as [s,h] or [x]. But in general,
variables ranging over single characters can show up in lists.

The basic operation of a lexical rule is quite simple. First, every lexical
entry, including a word and a category, that is produced during compilation,
is checked to see if its category satisfies the input description of a lexical rule.
If it does, then a new category is generated to satisfy the output description
of the lexical rule, if possible. Note that there might be mutliple solutions,
and all solutions are considered and generated. Thus multiple solutions to the
input or output descriptions lead to multiple lexical entries.

After the input and output categories have been computed, the word of the
input lexical entry is fed through the morphological analyzer to produce the
corresponding output word. Unlike the categorial component of lexical rules,
only one output word will be constructed, based on the first input/output pat-
tern that is matched.1 The input word is matched against the patterns on the
left hand side of the morphological productions. When one is found that the
input word matches, any condition imposed by a when clause on the produc-
tion is evaluated. This ordering is imposed so that the Prolog goal will have
all of the variables for the input string instantiated. At this point, Prolog is in-
voked to evaluate the when clause. In the most restricted case, as illustrated in
the above lexical rule, Prolog is only used to provide abbreviations for classes.
Thus the definition for f r icat ive/1 consists only of unit clauses. For those
unfamiliar with Prolog, this strategy can be used in general for simple mor-
phological abbreviations. Evaluating these goals requires the F in the input
pattern to match one of the strings given. The shorthand of using atoms for
the lists of their characters only operates within the morphological sequences.
In particular, the Prolog goals do not automatically inherit the ability of the
lexical system to use atoms as an abbreviation for lists, so they have to be
given in lists. Substituting fricative(sh) for fr icat ive( [s,h]) would not
yield the intended interpretation. Variables in sequences in morphological pro-
ductions will always be instantiated to lists, even if they are single characters.
For instance, consider the lexical rule above with every atom written out as
an explicit list:

1Thus ALE'S lexical rule system is not capable of handling cases of partial suppletion.
where both a regular and irregular morphological form are both allowed. To allow two
ouptut forms, one must be coded by hand with its own lexical entry.
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[g ,o ,o , s , e ] becomes [ g , e , e , s , e ] ,
[k,e,y] becomes [ k , e , y , s ] ,
(X,[n,a,n]) becomes (X,[m,e,n]),
(X,F) becomes (X,F,[e ,s j ) when fr icat ive(F) ,
(X,[e,y]) becomes ( X , [ i , e , s ] ) ,
X becomes (X, [ s ] ) .

In this example, the s in the final production is given as a list, even though it
is only a single character.

The morphological productions are considered one at a time until one
is matched. This ordering allows a form of suppletion, whereby special
forms such as those for the irregular plural of goose and key to be listed
explicitly. It also allows subregularities. such as the rule for fricatives
above, to override more general rules. Thus the input word beach be-
comes beaches because beach matches (X,F) with X = [b,e,a] and F =
[c,h], the goal f r i cat ive ( [c,h]) succeeds and the word beaches matches
the output pattern (X,F, [ e , s ] ) , instantiated after the input is matched to
([b,e,a] , [c,h] , [ e , s ] ). Similarly, words that end in [e,y] have this se-
quence replaced by [ i , e , s ] in the plural, which is why an irregular form is
required for keys, which would otherwise match this pattern. Finally, the
last rule matches any input, because it is just a variable, and the output it
produces simply suffixes an [s] to the input.

For lexical rules with no morphological effect, the production:

X becomes X

suffices. To allow lexical operations to be stated wholly within Prolog, a rule
may be used such as the following:

X becomes Y when morph_plural(X,Y)

In this case, when morph_plural(X,Y) is called, X will be instantiated to the
list of the characters in the input, and as a result of the call, Y should be
instantiated to a ground list of output characters.

We finally turn to the case of lexical rules with procedural attachments, as
in the following (simplified) example from HPSG:

extraction lex .rule
local: (cat: (head:H,

subcat:Xs),
cont:C),

nonlocal:(to_bind:Bs,
inherited:Is)

**> local:(cat:(head:H,
subcat:Xs2),
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cont:C),
nonlocal:(to_bind:Bs,

inherited:[Gils])
if

select(G,Xs,Xs2)
morphs

X becomes X.

select(X,(hd:X),Xs) if t rue.
select(X,[Y|Xs],[Y|Ys]) if

select(X,Xs,Ys).

This example illustrates an important point other than the use of conditions on
categories in lexical rules. The point is that even though only the local cat
subcat and nonlocal inherited paths are affected, information that stays
the same must also be mentioned. For instance, if the cont:C specification
had been left out of either the input our output category description, then the
output category of the rule would have a completely unconstrained content
value. This differs from the defaulty nature of the usual presentation of lexical
rules, which assumes all information that hasn't been explicitly specified is
shared between the input and the output. As another example, we must also
specify that the head and to-bind features are to be copied from the input to
the output; otherwise there would be no specification of them in the output
of the rule. This fact follows from the description of the application of lexical
rules: they match a given category against the input description and produce
the most general category(s) matching the output description.

Turning to the use of conditions in the above rule, the select /3 predicate
is defined so that it selects its first argument as a list member of its second
argument, returning the third argument as the second argument with the
selected element deleted. In effect, the above lexical rule produces a new
lexical entry which is like the original entry, except for the fact that one of the
elements on the subcat list of the input is removed from the subcat list and
added to the inherited value in the output. Nothing else changes.

Procedurally, the definite clause is invoked after the lexical rule has
matched the input description against the input category. Like the morpholog-
ical system, this control decision was made to ensure that the relevant variables
are instantiated at the time the condition is resolved. The condition here can
be an arbitrary goal, but if it is complex, there should be parentheses around
the whole thing.
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Grammar Rules

Grammar rules in ALE are of the phrase structure variety, with annotations
for both goals that need to be solved and for attribute-value descriptions of
categories. The BNF syntax for rules is as follows:

<rule> ::= <mle_name> rule <desc> ===> <nile_body>.

<nile_body> ::= <mle_clause>
I <mle_clause>, <mle_body>

<rale_clause> ::= cat> <desc>
I goal> <goal>

The <rale_name> must be a Prolog atom. The description in the rule is
taken to be the mother category in the rule, while the rule body specifies the
daughters in the rule along with any side conditions on the rule, expressed as
an ALE goal. A further restriction on rules, which is not expressed in the BNF
syntax above, is that there must be at least one category-seeking rule clause in
each rule body.2 Thus empty productions are not allowed and will be flagged
as errors at compile time.

A simple example of such a rule, without any goals, is as follows:

s_np_vp rule
(syn:s,
sem:(VPSem,

agent:NPSem))

cat>
(syn:np,
agr:Agr,
semrNPSem),

cat>

(syn:vp,
agr:Agr,
semrVPSem).

There are a few things to notice about this rule. The first is that the paren-
theses around the category and mother descriptions are necessary. Looking at
what the rule means, it allows the combination of an np category with a vp
type category if they have compatible (unifiable) values for agr. It then takes
the semantics of the result to be the semantics of the verb phrase, with the
additional information that the noun phrase semantics fills the agent role.

2By doubling the size of the BNF for rules, this requirement could be expressed.
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Even though the parsing proceeds from right to left, rules are evaluated
from left to right, so that the descriptions of daughter categories are evaluated
in the order in which they are specified. This is significant when consider-
ing goals that might be interleaved with searches in the chart for consistent
daughter categories.

Unlike the PATR-II rules, but similar to DCG rules, "unifications" are speci-
fied by variable co-occurrence rather than by path equations, while path values
axe specified using the colon rather than by a second kind of path equation.
The rule above is similar to a PATR-II rule which would look roughly as follows:

xO > x l , x2 if
(xO syn) — s,
(xl syn) — np,
(x2 syn) == vp,
(xO sem) =- (x2 sem),
(xO sem agent) == (xl sem) ,
(xl agr) == (x2 agr)

Unlike lexical entries, rules are not expanded to feature structures at
compile-time. Rather, they are compiled down into structure-copying oper-
ations involving table look-ups for feature and type symbols, unification op-
erations for variables, sequencing for conjunction, and choice point creation
for disjunction. In the case of feature and type symbols, a double-hashing
is performed on the type of the structure being added to, as well as either
the feature or the type being added. Additional operations arise from type
coercions that adding features or types require. Thus there is nothing like
disjunctive normal-form conversion of rules at compile time, as there is for
lexical entries. In particular, if there is a local disjunction in a rule, it will be
evaluated locally at run time. For instance, consider the following rule, which
is the local part of HPSG's Schema 1:

schemal rule
(cat:(head:Head,

subcat: [] ) ,
cont:Cont)

cat>
(Subj,
cat:head:( subst

; spec:HeadLoc,

) ) ,
cat>

(HeadLoc,
cat:(head:Head,
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subcat:[Subj]),
cont:Cont).

Note that there is a disjunction in the cat:head value of the first daughter
category (the subject in this case). This disjunction represents the fact that
the head value is either a substantive category (one of type subst), or it has a
specifier value which is shaxed with the entire second daughter. But the choice
between the disjuncts in the first daughter of this rule is made locally, when
the daughter category is fully known, and thus does not create needless rule
instantiations.

ALE's general treatment of disjunction in descriptions, which is an extension
of Kasper and Round's (1986) attribute-value logic to phrase structure rules,
is a vast improvement over a system such as PATR-II, which would not allow
disjunction in a rule, thus forcing the user to write out complete variants of
rules that only differ locally. Disjunctions in rules do create local choice points,
though, even if the first goal in the disjunction is the one that is solvable.3 This
is because, in general, both parts of a disjunction might be consistent with a
given category, and lead to two solutions. Or one disjunct might be discarded
as inconsistent only when its variables are further instantiated elsewhere in
the rule.

Finally, it should be kept in mind that the mother category description is
evaluated for most general satisfiers only after the categories and goals in the
body of the rule have been solved.

A more complicated rule, drawn from the categorial grammar in the ap-
pendix, and involving a non-trivial goal, is as follows:

backvard.application rule
(synsem:Z,
qstore:Qs)

cat>
(synsem:Y,
qstore:Qsl),

cat>

(synsem:(backward,
arg:Y,
res:Z),

qstore:Qs2),
goal>

append(Qsl,Qs2,Qs).

3In a future release, cuts will be allowed within descriptions, to allow the user to eliminate
disjunctive choice points when possible.
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Note that the goal in this rule is sequenced after the two category descriptions.
Consequently, it will be evaluated after categories matching the descriptions
have already been found, thus ensuring in this case that the variables Qsl
and Qs2 are instantiated. The append(Qsl,Qs2,Qs) goal is then evaluated by
ALE's definite clause resolution mechanism. All possible solutions to the goal
are found with the resulting instantiations carrying over to the rule. These
solutions are found using the depth-first search built into ALE's definite con-
straint resolver. In general, goals may be interleaved with the category spec-
ifications, giving the user control over when the goals are fired. Also note
that goals may be arbitrary ALE definite clause goals, and thus may include
disjunctions, conjunctions, negations, cut, etc., all of which will be evaluated
normally in the context of a phrase structure rule.

As a programming strategy, rules should be formulated like Prolog clauses,
so that they fail as early as possible. Thus the features that discriminate
whether a rule is applicable should occur first in category descriptions. The
only work incurred by testing whether a rule is applicable is up to the point
where it fails.

Just as with PATR-II, ALE is RE-complete (equivalently, Turing-equivalent),
meaning that any computable language can be encoded. Thus it is possible
to represent undecidable grammars, even without resorting to the kind of
procedural attachment possible with arbitrary definite clause goals. With its
mix of depth-first and breadth-first evaluation strategies, ALE is not strictly
complete with respect to its intended semantics if an infinite number of edges
can be generated with the grammar. This situation is similar to that in Prolog,
where a declaratively impeccable program might hang operationally.
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Compiling ALE Programs

This section is devoted to showing how ALE programs can actually be com-
piled. ALE was developed to be run with a Prolog compiler, such as SICStus or
Quintus Prolog. As the system was developed with SICStus, which is meant
to be compatible with Quintus, ALE should work with either of these Prolog
compilers. It would be futile to run ALE with only a Prolog interpreter, as
it would be slowed by at least two orders of magnitude. The local systems
administrator should be able to provide help in running Prolog. This docu-
mentation only assumes the user has figured out how to run Prolog as well as
write and edit files. It is otherwise self-contained.

File Management

After firing up Prolog, the following command should be used to load the ALE
system:

I ?- compile(AleFile) .

where AleFile is an atom specifying the file name in which ALE re-
sides. For instance, in Unix, you might need to use something like:
compile(Vusers/carp/Prolog/ALE/ale.piO ., or a local abbreviation for
it like compile(ale) . if the system is in a file named ale.pl in the local di-
rectory (SICStus, at least, can fill in the " .pi" suffix). Note that the argument
to compile must be an atom, which means it should be single-quoted if it is
not otherwise an atom. After the system has compiled, you should see another
Prolog prompt. It is necessary to have write permission in the directory from
which Prolog is invoked, because ALE creates files during compilation. But
note that neither the grammar nor ALE have to be locally defined; it is only
necessary to have local write permission.

ALE source code, being a kind of Prolog code, must be organized so that
predicate definitions are not spread across files.1 For instance, the sub/intro

1 Unless the appropriate multifile declarations are made.

44
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clauses specifying the type hierarchy must all be in one file. Similarly, the
definite clauses must all be in one file, as must the grammar rules and macros.

Compiling Programs

ALE can compile a program incrementally to some extent. In particular, the
compiler is broken down into four primary components for compiling the type
hierarchy, the attribute-value logic, the definite clauses and the grammar.
Compiling the type hierarchy consists of compiling type subsumption, type
unification and appropriateness specifications. The logic compiler compiles
predicates which know how to add a type to a feature structure, how to find
a feature value in a type and how to perform feature structure unification.
Compiling the grammar consists of compiling the lexicon, empty categories,
rules and lexical rules. Macros are not compiled, but are rather interpreted
during compilation.

There is one predicate compile_gram/l which can be used to compile a
whole ALE grammar from one file, as follows:

I ?- compile_gram( GramFile) .

where GramFile is the name of the file in which the grammar resides. The
compiler will display error messages to the screen when it is compiling. But
since ALE uses the Prolog compiler to read the files, Prolog might also complain
about syntax errors in specifying the files. In either case, there should be some
indication of what the error is and which clause of the file contained it.

The following predicates are avaiable to compile grammars and their com-
ponent parts. They are listed hierarchically, with each command calling all
those listed under it. Each higher-level command is nothing more than the
combination of those commands below it.

Command

compile_grammar
compile_sig
compile_sub_type
compile_unify_type
compile_approp

compile.logic
compile.add_to_type
compile.featval
compile_u

compile.dcs
compile_grammar

Requires File Clause

nothing *

nothing *

* sub
compile_sub_type
compile_unify_type * intr

compile.sig
compile_add_to_type
compile_sig
compile_logic * if
compile_logic *
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compile_lex compile_logic * >
compile.empty compile.logic * empty
compile.rules compile.logic * rule

The table above lists which compilations must have already been compiled
before the next stage of compilation can begin. Thus before compile_grammar
can be called, compile_logic must be called (or equivalently, the sequence
of compile_add_to_type and compiled eatval). Each command with an as-
terisk in its clauses column in the above table may be given an optional file
argument. The file argument should be an atom which specifies the file in
which the relevant clauses can be found. The clauses needed before each stage
of compilation can begin are listed to the right of the asterisks. For instance,
the if clauses must be loaded before compile.dcs is called. But note that
compile.unif y.type does not require any clauses to be loaded, as it uses the
compiled definition of sub-type rather than the user specification in its opera-
tion. Thus changes to the signature in the source file, even if the source file is
recompiled, will not be reflected in compile.unif y.type if they have not been
recompiled by compile_sub_type first. If an attempt is made to compile a
paxt of a program where the relevant clauses have not been asserted, an error
will result.

Each of the lowest level commands generates a file in the directory from
which Prolog was called, (add.to.type and f eatval actually generate two
files each). These files contain Prolog source code that is then compiled to
generate the run-time environment for ALE. Thus it is important to have
write permission in the directory from which ALE is being called. While these
files are in an ASCII format, they are not intended to be read by ALE users.

In general, whenever the ALE source program is changed, it should be
recompiled from the point of change. For instance, if the definite clauses
are the only thing that have changed since the last compilation, then only
compile.dcs (FileSpec) needs to be run. But if in changing the definite clauses,
the type hierarchy had to be changed, then everything must be recompiled.

Unfortunately, the ALE compiler is itself not very efficient, though it pro-
duces rather efficient code. Thus it is always a good idea to recompile as little
as possible. The savings in time can be significant.

Compile-time Error Messages

There are three sources of compile-time messages generated by ALE: Prolog
messages, ALE errors, and ALE warnings.

ALE uses Prolog term input and output, thus requiring the input to be
specified as a valid Prolog program. Of course, any ALE program meeting the
ALE syntax specification will not cause Prolog errors. If there is a Prolog error
generated, there is a corresponding bug in the grammar file(s). Prolog error
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messages usually generate a message indicating what kind of error it found, and
just as importantly, which line(s) of the input the error was found in. The most
common Prolog error messages concern missing periods or operators which
can not be parsed. Such errors are usually caused by bad punctuation such as
missing periods, misplaced commas, commas before semicolons in disjunctions,
etc. These errors are usually easy to track down.

Prolog also generates warnings in some circumstances. In particular, if
you only use a variable once in a definition, it will report a singleton variable
warning. The reason for this is that variables that only occur once are use-
less in that they do not enforce any structure sharing. There is little use for
singleton variables in ALE outside of the Prolog goals in morphological rules
and some macro parameters. Usually a singleton variable indicates a typing
error, such as typing AgrNum in one location and Agrnum in another. It is
standaxd Prolog practice to replace all singleton variables with anonymous
variables. An anonymous variable is a variable which begins with the under-
score character. For instance, a singleton variable such as Head can be replaced
with the anonymous variable .Head, or even just _, to suppress such singleton
variable warnings. Two occurrences of the simple anonymous variable _ are
not taken to be co-referential, but two occurrences of something like -Head
are taken to be co-referential. In particular, the two descriptions, (foo:X,
bar:X) and (f oo: JC, bar:JC) are equivalent to each other, but distinct from
(foo:_,bar:_) in that the latter description does not indicate any structure
sharing. The second description above is considered bad style, though, as it
uses the anonymous variable _X co-referentially.

Besides Prolog syntax errors, there are many errors that ALE is able to
detect at compile time. These errors will be flagged during compilation. Most
errors give some indication of the program clause in which they are found.
Some errors may be serious enough to halt compilation before it is finished.
In general, it is a good idea to fix all of the errors before trying to run a
program, as the error messages only report serious bugs in the code, such as
type mismatches, unspecified types, ill-formed rules, etc.

Less serious problems are flagged with warning messages. Warning mes-
sages do not indicate an error, but may indicate an omission or less than
optimal ALE programming style.

The ALE error and warning messages are listed in an appendix at the end
of this report, along with an explanation. The manual for the Prolog in which
ALE is being run in will probably list the kinds of errors generated by the
Prolog compiler.



Chapter 7

Running and Debugging ALE
Programs

After the ALE program compiles without any error messages, it is possible
to test the program to make sure it does what it is supposed to. We consider
the problem from the bottom-up, as this is the best way to proceed in testing
grammars. ALE does not have a sophisticated input/output package, and thus
all ALE procedures must be accessed through Prolog queries.

Testing the Signature

Once the signature is compiled, it is possible to test the results of the compi-
lation. To test whether or not a type exists, use the following query:

I ?- type(Type).

Type = bot ?;

Type = cat ?;

Type = synsem ?

yes
Note that the prompt I ?- is provided by Prolog, while the query consists
of the string type (Type)., including the period and a return after the period.
Prolog then responds with instantiations of any variables in the query if the
query is successful. Thus the first solution for Type that is found above is Type
= bot. After providing an instantiation representing the solution to the query,
Prolog then provides another prompt, this time in the form of a single question
mark. After the first prompt above, the user typed a semicolon and return,
indicating that another solution is desired. The second solution Prolog found
was Type = cat. After this prompt, the user requested a third solution. After

48
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the third solution. Type = synsem, the user simply input a return, indicating
that no more solutions were desired. These two options, semicolon followed
by return, and a simple return, are the only ones relevant for ALE. If the
anonymous variable _ is used in a query, no substitutions are given for it in
the solution. If there are no solutions to a query, Prolog returns no as an
answer. Consider the following two queries:

I ?- type(bot ) .

yes

I ?- type(foobar).

no

In both cases, no variables are given in the input, so a simple yes/no answer,
followed by another prompt, is all that is returned.

The second useful probe on the signature indicates type subsumptions and
type unifications. To test type subsumption, use the following form of query:

I ?- sub_type(X,Y).

X = and,
Y = and ?;

X = backward,
Y = backward ?

yes

Note that with two variables, substitutions for both are given, allowing
the possibility of iterating through the cases. In general, wherever a
variable may be used in a query, a constant may also be used. Thus
sub .type (synsem, forward) . is a valid query, as are sub_type (synsem, X)
and sub-type (Y,f orward). The first argument is the more general type, with
the second argument being the subtype.

Type unifications are handled by the following form of query:

I ?- unify_type(Tl,T2,T).

The interpretation here is that Tl unified with T2 produces T3. As before, any
subset of the three variables may be instantiated for the test and the remaining
variables will be solved for.

The following query will indicate whether given features have been de-
fined and can also be used to iterate through the features if the argument is
uninstantiated:
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I ?- feature(F).

Feature introduction can be tested by:

I ?- introduce(F,T).

which holds if feature F is introduced at type T.
Finally, the inherited appropriateness function can be tested by:

I ?- approp(Feat,Type,Restr).

A solution indicates that the value for feature Feat for a type Type structure
is of type Restr. As usual, any of the variables may be instantiated, so that it
is possible to iterate through the types appropriate for a given feature or the
features appropriate for a given type, the restrictions on a given feature in a
fixed type, and so on.

There is one higher-level debugging routine for the signature that outputs
a complete specification for a type, including a list of its subtypes and su-
pertypes, along with the most general feature structure of that type (after all
type inference has been performed). An example of the show_type/l query is
as follows:

I ?- show_type functional.

TYPE: functional
SUBTYPES: [forward,backward]
SUPERTYPES: [synsem]
MOST GENERAL SATISFIER:

functional

ARG synsem
RES synsem

If synsem had any appropriate features, these would have been added, along
with their most general appropriate values.

Evaluating Descriptions

Descriptions can be evaluated in order to find their most general satisfiers.
ALE provides the following form of query:

I ?- mgsat t l : e _ l i s t .

ne_list.quant
HD quant

RESTR proposition
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SCOPE proposition
VAR individual

TL e . l i s t

ANOTHER? n.

yes

Note that there must be whitespace between the mgsat and the description
to be satisfied. The answer given above is the most general satisfier of the
description t l :eJLis t using the signature in the categorial grammar in the
appendix. It is important to note here that type inference is being performed to
find most general satisfiers. In the case at hand, because lists in the categorial
grammar are typed to have quantifiers as their HD values, the value of the HD
feature in the most general satisfier has been coerced to be a quantifier.

Satisfiable non-disjunctive descriptions always have unique most general
satisfiers as a consequence of the way in which the type system is constrained.
But a description with disjunctions in it may have multiple satisfiers. Consider
the following query:

I ?- mgsat h i t , h i t t e r : ( j ;m).

hit
HITTEE individual
HITTER j

ANOTHER? y.

hit
HITTEE individual
HITTER m

ANOTHER? y.

no

After finding the first most general satisfier to the description, the user is
prompted as to whether or not another most general satisfier should be sought.
As there are only two most general satisfiers of the description, the first re-
quest for another satisfier succeeds, while the second one fails. Failure to find
additional solutions is indicated by the no response from Prolog.

Error messages will result if there is a violation of the type hierarchy in the
query. For instance, consider the following query containing two type errors
before a satisfiable disjunct:
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I ?- mgsat hd:j ; a ; j .

add_to could not add incompatible type j to:
quant

RESTR proposition
SCOPE proposition
VAR individual

add_to could not add undefined type: a to

bot

MOST GENERAL SATISFIER OF: hd:j;a;j

ANOTHER?

Here the two errors are indicated, followed by a display of the unique most
general satisfiers. The problem with the first disjunct is that lists have elements
which must be of the quantifier type, which conflicts with the individual type
of j , while the second disjunct involves an undefined type a. Note that in
the error messages, there is some indication of how the conflict arose as well
as the current state of the structure when the error occurred. For instance,
the system had already figured out that the head must be a quantifier, which
it determined before arriving at the incompatible type j . The conflict arose
when an attempt was made to add the type j to the quant type object.

To explore unification, simply use conjunction and mgsat. In particular, to
see the unification of descriptions Dl and D2, simply display the most general
satisfiers of Dl, D2, and their conjunction (D1,D2). To obtain the correct
results, Dl and D2 must not share any common variables. If they do, the
values of these will be unified across Dl and D2, a fact which is not represented
by the most general satisfiers of either Dl or D2. Providing most general
satisfiers also allows the user to test for subsumption or logical equivalence by
visual inspection, by using mgsat/1 and comparing the set of solutions. Future
releases should contain mechanisms for evaluating subsumption (entailment),
and hence logical equivalence of descriptions.

Hiding Types and Features

With a feature structure system such as ALE, grammars and programs often
manipulate very large feature structures. To aid in debugging, two queries
allow the user to focus attention on particular types and features by supressing
the printing of other types and features.
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The following command supresses printing of a type:

I ?- no_write-type(T) .

After no-vrite-typeCD is called, the type T will no longer be displayed
during printing. To restore the type T to printed status, use:

I ?- write_type(T) .

If T is a variable in a call to write.type/1, then all types are subsequently
printed. Alternatively, the following query restores printing of all types:

I ?- write_types.

Features and their associated values can be supressed in much the same
way as types. In particular, the following command blocks the feature F and
its values from being printed:

I ?- no-write J e a t ( F ) .

To restore printing of feature F, use:

I ?- write-f eat (F) .

If F is a variable here, all features will subsequently be printed. The following
special query also restores printing of all features.

I ?- write_feats.

Evaluating Definite Clause Queries

It is possible to display definite clauses in feature structure format by name.
The following form of query can be used:

I ?- show.clause append.

HEAD: append(e.l ist ,
[0] bot,
[0] )

BODY: true

ANOTHER? y.

HEAD: append(ne_list.quant
HD [0] quant

RESTR proposition
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SCOPE proposition
VAR individual

TL [1] list.quant,
[2] bot,
ne_list_quant
HD [0]
TL [3] list_quant)

BODY: append([1] ,
[2] ,
[3])

ANOTHER? y.

no

Note that this example comes from the categorial grammar in the appendix.
Also note that the feature structures are displayed in full with tags indicating
structure sharing. Next, note that prompts allow the user to iterate through
all the clauses. The number of solutions might not correspond to the number
of clause definitions in the program due to disjunctions in descriptions which
are resolved non-deterministically when displaying rules. But it is important
to keep in mind that this feature structure notation for rules is not the one
ALE uses internally, which compiles rules down into elementary operations
which are then compiled, rather than evaluating them as feature structures by
unification. In this way, ALE is more like a logic programming compiler than
an interpreter. Finally, note that the arity of the predicate being listed may
be represented in the query as in Prolog. For instance, the query show_clause
append/3 would show the clauses for append with three arguments.

Definite clauses in ALE can be evaluated by using a query such as:

I ?- query append(X,Y,[a,b]).

append(e_list,
[0] ne_list
HD a
TL ne_list

HD b
TL e_list,

[0] )

ANOTHER? y.
append(ne_list

HD [0] a
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TL e . l i s t ,
[1] ne.list
HD b
TL e . l i s t ,
ne_list
HD [0]
TL [1] )

ANOTHER? y.
append(ne.list

HD [0] a
TL ne_list

HD [1] b
TL e . l i s t ,

[2] e_ l i s t ,
ne_list
HD [0]
TL n e . l i s t

HD [1]
TL [2] )

ANOTHER? y.

no

The definition of append/3 is taken from the syllabification grammar in the ap-
pendix. After displaying the first solution, ALE queries the user as to whether
or not to display another solution. In this case, there are only three solutions,
so the third query for another solution fails. Note that the answers are given in
feature structure notation, where the macro [a,b] is converted to a head/tail
feature structure encoding.

Unlike Prolog, in which a solution is displayed as a substitution for the
variables in the query, ALE displays a solution as a satisfier of the entire query.
The reason for this is that structures which are not given as variables may also
be further instantiated due to the type system. Definite clause resolution in
ALE is such that only the most general solutions to queries are displayed. For
instance, consider the following query, also from the syllabification grammar
in the appendix:

I ?- query less_sonorous(X,r).

less.sonorous(nasal,
r)
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ANOTHER? y.

less.sonorous(sibilant,

r)

ANOTHER? n.

Rather than enumerating all of the nasal and sibilant types, ALE simply
displays their supertype. On the other hand, it is important to note that the
query less_sonorous(s ,r) would succeed because s is a subtype of s ibi lant .
This example also clearly illustrates how ALE begins each argument on its own
line arranged with the query.

In general, the goal to be solved must be a literal, consisting only of a
relation applied to arguments. In particular, it is not allowed to contain con-
junction, disjunction, cuts, or other definite clause control structures. To solve
a more complex goal, a definite clause must be defined with the complex goal
as a body and then the head literal solved, which will involve the resolution
of the body.

There are no routines to trace the execution of definite clauses. Future
releases of ALE will contain a box port tracer similar to that used for Prolog.
At present, the best suggestion is to develop definite clauses modularly and test
them from the bottom-up to make sure they work before trying to incorporate
them into larger programs.

Displaying Grammars

ALE provides a number of routines for displaying and debugging grammar
specifications. After compile-time errors have been taken care of, the queries
described in this section can display the result of compilation.

Lexical entries can be displayed using the following form of query:

I ?- lex(kid).

WORD: kid
ENTRY:
cat
QSTORE e.list
SYNSEM basic

SEM property
BODY kid

ARG1 [0] individual
IND [0]
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SYN n

ANOTHER? y.

no

As usual, if there are multiple entries, ALE makes a query as to whether more
should be displayed. In this case, there was only one entry for kid in the
categorial grammar in the appendix.

Empty lexical entries can be displayed using:

I ?- empty.

EMPTY CATEGORY:
cat
QSTORE ne_list_quant

HD some
RESTR [0] proposition
SCOPE proposition
VAR [1] individual

TL eJList
SYNSEM forward

ARG basic
SEM property

BODY [0]
IND [1]

SYN n
RES basic

SEM [1]
SYN np

ANOTHER? no.

Note that the number specification was removed to allow the empty category
to be processed with respect to the categorial grammar type system. As with
the other display predicates, empty provides the option of iterating through
all of the possibilities for empty categories.

Grammar rules can be displayed by name, as in:

I ?- ru le fo rward .app l i ca t ion .

RULE: forward.appl ica t ion

MOTHER:
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cat
QSTQRE [4] list.quant
SYNSEM [0] synsem

DAUGHTERS/GOALS:

CAT cat
QSTORE [2] l i s t . q u a n t
SYNSEM forward

ARG [ l ] synsem
RES [0]

CAT cat
QSTQRE [3] list.quant
SYNSEM [1]

GOAL append([2],
[3],
[4])

ANOTHER? n.

Rules are displayed as most general satisfiers of their mother, category and
goal descriptions. It is important to note that this is for display purposes
only. The rules are not converted to feature structures internally, but rather
to predicates consisting of low-level compiled instructions. Displaying a rule
will also flag any errors in finding most general satisfiers of the categories
and rules in goals, and can thus be used for rule debugging. This can detect
errors not found at compile-time, as there is no satisfiability checking of rules
performed during compilation.

Macros can also be displayed by name, using:

I ?- macro np(X).

MACRO:
np([0] sem_obj)

ABBREVIATES:
basic
SEM [0]
SYN np

ANOTHER? n.
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First note that the macro name itself is displayed, with all descriptions in the
macro name given replaced with their most general satisfiers. Following the
macro name is the macro satisfied by the macro description with the variables
instantiated as shown in the macro name display. Note that there is sharing
between the description in the macro name and the SEM feature in the result.
This shows where the parameter is added to the macro's description.

Finally, it is possible to display lexical rules, using the following query:

I ?- lex_rule p l u r a l . n .

LEX RULE: plural_n
INPUT CATEGORY:

n
NUM sing
PERS pers

OUTPUT CATEGORY:
n
NUM plu
PERS pers

MORPHS:
[g,o,o,s,e] becomes [g,e,e,s,e]
[k,e,y] becomes [k,e,y,s]
A,[m,a,n] becomes A,[m,e,n]
A,B becomes A,B,[e,s]

when f r icat ive(B)
A , [e ,y ] becomes A , [ i , e , s ]
A becomes A,[s]

ANOTHER? n.

Note that the morphological components of a rule is displayed in canonical
form when it is displayed. Note that variables in morphological rules are
displayed as upper case characters. When there is sharing of structure between
the input and output of a lexical rule, it will be displayed as such. As with
the other ALE grammar display predicates, if there are multiple solutions to
the descriptions, these will be displayed in order. Also, if there is a condition
on the categories in the form of an ALE definite clause goal, this condition will
be displayed before the morphological clauses. As with grammar rules, lexical
rules are compiled internally and not actually executed as feature structures.
The feature structure notation is only for display. Also, as with grammar rules,
displaying a lexical rule may uncover inconsistencies which are not found at
compile time.
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Executing Grammars

In this section, we consider the execution of ALE phrase structure grammars.
The primaxy predicate for parsing is illustrated as follows:

I ?- rec [John,hi ts ,every , toy] .

STRING:
0 John 1 hits 2 every 3 toy 4

CATEGORY:
cat
QSTDRE e.list
SYNSEM basic

SEM every
RESTR toy

ARG1 [0] individual
SCOPE hit

HITTEE [0]
HITTER j

VAR [0]
SYN s

ANOTHER? y.

CATEGORY:
cat
QSTORE ne.list.quant

HD every
RESTR toy

ARG1 [0] indiv idual
SCOPE proposit ion
VAR [0]

TL e_ l i s t
SYNSEM bas ic

SEM h i t
HITTEE [0]
HITTER j

SYN s

ANOTHER? y.

no
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The first thing to note here is that the input string must be entered as a Prolog
list of atoms. In particular, it must have an opening and closing bracket, with
words separated by commas. No variables should occur in the query, nor
anything other than atoms. The first part of the output repeats the input
string, separated by numbers which indicate positions in the string for later
use in inspecting the chart directly. The second part of the output is a category
which is derived for the input string. If there are multiple solutions, these can
be iterated through by providing positive answers to the query. The final no
response above indicates that the category displayed is the only one that was
found. If there are no parses for a string, an answer of no is returned, as with:

I ?- rec([runs,John]).

STRING:
0 runs 1 john 2

no

Notice that there is no notion of "distinguished start symbol" in parsing.
Rather, the recognizer generates all categories which it can find for the input
string. This allows sentence fragments and phrases to be analyzed, as in:

I ?- rec [big,kid] .

STRING:
0 big 1 kid 2

CATEGORY:
cat
QSTORE ne_ l i s t . quan t

HD some
RESTR and

C0NJ1 kid
ARG1 [0] individual

C0NJ2 big
ARG1 [0]

SCOPE proposition
VAR [0]

TL e.list
SYNSEM basic

SEM [0]
SYN np

ANOTHER? n.
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Once parsing has taken place for a sentence using rec/1, it is possible to
look at categories that were generated internally. In general, the parser will
find every possible analysis of every substring of the input string, and these
will be available for later inspection. For instance, suppose the last call to
rec/1 executed was rec [John,hits,every,toy], the results of which are
given above. Then the following query can be made:

I ?- edge(2,4).

COMPLETED CATEGORIES SPANNING: every toy

cat
QSTORE ne_list_quant

HD every
RESTR toy

ARG1 [0] individual
SCOPE proposition
VAR [0]

TL e . l i s t
SYNSEM basic

SEM [0]
SYN np

ANOTHER? n.

This tells us that from positions 2 to 4, which covers the string every toy
in the input, the indicated category was found. Even though an active chart
parser is used, it is not possible to inspect active edges. This is because ALE
represents active edges as dynamic structures which are not available after
they have been evaluated.

Using edge/2 it is possible to debug grammars by seeing how fax analyses
got and inspecting analyses of substrings. In the current version of ALE, this is
all that is provided in the way of debugging. Future releases should be greatly
improved along this dimension.
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Appendix A

Sample Grammars

English Syllabification Grammar

*/. Signature

bot sub [unit,list,segment] .
unit sub [cluster,syllable,word]

intro [first:segment,
last-.segment] .

cluster sub [consonant.cluster, vowel.cluster]

intro [segments:list.segment].
consonant.cluster sub [onset,coda].
onset sub [] .
coda sub [] .

vowel.cluster sub [].
syllable sub []

intro [syllable:list_segment].
word sub []

intro [syllables:list.list.segment].
segment sub [consonant,vowel].

consonant sub [sibilant,obstruent,nasal,liquid,glide]
sibilant sub [s,z].
s sub [] .
z sub [] .

obstruent sub [p,t,k,b,d,g].
p sub [] .
t sub [] .
k sub [] .
b sub [] .
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d sub [] .
g sub [] .

nasal sub [n,m].
n sub [] .
m sub [] .

liquid sub [l,r] .
1 sub [] .
r sub [] .

glide sub [y,w].
y sub [] .
w sub [] .

vowel sub [a,e,i,o,u],
a sub [] .
e sub [] .
i sub [] .
o sub [] .
u sub [] .

l i s t sub [e_list,ne.list,list_segment,list_list_segment].
e.list sub [] .
ne.list sub [ne.list.segment ,ne_list_list_segment]

intro [hdrbot,
t l i l i s t ] .

list.segment sub [e.list,ne_list_segment].
ne.list.segment sub []

intro [hd:segment,
tl:list.segment].

list.list.segment sub [e.list,ne_list.list.segment] .
ne.list.list.segment sub []

intro [hd:list.segment,
tl:list.list.segment].

7. Rules
7. =====

word.schema.rec rule
(word,
syllables: [Syllable I Syllables] ,
f irst :First l ,
last:Last2)

===>

cat> (syllable,
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syllable:Syllable,
first:First1,
last:Last1),

cat> (word,

syllables:Syllables,
first:First2,
last:Last2),

goal> (\+ less.sonorous(Last1,First2)).

word_schema_base rule
(word,
syllables:[Syllable],
first:First,
last:Last)

cat> (syllable,

syllable:Syllable,
first:First,
last:Last).

v.syllable rule
(syllable,
syllable:[Vowel] ,
first:Vowel,
last:Vowel)

cat> (vowel,Vowel).

vc.syllable rule
(syllable,

syllable:[VowellSegsl],
first:Vowel,
last:Last)

cat> (vowel,Vowel),

cat> (coda,
segments:Segsl,
last:Last).

cv.syllable rule
(syllable,
syllable:Segs,
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first:First,
last:Vowel)

cat> (onset,
segments:Segsl,

first-.First) ,
cat> (vowel,Vowel),
goal> append(Segsl,[Vowel],Segs) .

cvc.syllable rule
(syllable,
syllable:Segs,
first:First,
last:Last)

cat> (onset,
segments:Segsl,
first:First),

cat> (vowel,Vowel),
cat> (coda,

segments:Segs2,
last:Last),

goal> append(Segsl, [VowelISegs2],Segs) .

consonant_cluster_base rule

(consonant.cluster,
segments:[Consonant],
first:Consonant,
last:Consonant)

cat> (consonant,Consonant).

onset rule
(onset,

segments: [Consonant 11 Consonants] ,
first:Consonant1,
last:Consonant3)

cat> (consonant,Consonant1),
cat> (onset,

segments:Consonants,
first:Consonant2,
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last:Consonant3),
goal> less.sonorous (Consonant l,Consonant2) .

coda rule
(coda,
segments: [Consonant 11 Consonants] ,
first:Consonant1,
last:Consonant3)

cat> (consonant,Consonant 1),
cat> (coda,

segments:Consonants,
first:Consonant2,
last:Consonant3),

goal> less.sonorous(Consonant2,Consonant 1) .

'/• Lexicon
•/. =======

p > p.
t — > t.
k > k.
b — > b.
d > d.
g > g.
s > s.
z —> z.
n > n.
m > m.
1 > 1.
r — > r.
y > y.
w > w.
a > a.
e — > e.
i — > i.
o > o.
u > u.

7. Definite Clauses
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less_sonorous_basic(sibilant,obstruent) if true.
less_sonorous_basic(obstruent,nasal) if true.
less_sonorous_basic(nasal,liquid) if true.
less_sonorous_basic(liquid,glide) if true,
less.sonorous.basic(glide,vowel) if true.

less_sonorous(Ll,L2) if
less_sonorous_basic(Ll,L2).

less_sonorous(Ll,L2) if
less_sonorous_basic(Ll,L3),
less.sonorous(L3,L2).

append([],Xs,Xs) if true.
append([X|Xs],Ys,[X|Zs]) if

append(Xs,Ys,Zs).
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Categorial Grammar with Cooper Storage

7. Signature

bot sub [cat ,synsem,syn,sem_obj , list .quant] .
cat sub []

intro [synsem: synsem,
qstore:list_quant].

synsem sub [functional, basic],
functional sub [forward,backward]

intro [arg:synsem,

res:synsem].
forward sub [] .
backward sub [] .

basic sub []
intro [syn:syn, sem:sem_obj] .

syn sub [np,s,n].
np sub [] .
s sub [] .
n sub [] .

sem_obj sub [individual, proposition, property].
individual sub [j,m].
j sub [].
m sub [] .

property sub []

intro [ind:individual,
bodyrproposition] .

proposition sub [logical,quant,run,hit,nominal] .
logical sub [and,or].
and sub []

intro [conj1:proposition,
conj2:proposition].

or sub []
intro [disj1:proposition,

disj2:proposition].
quant sub [every,some]

intro [var:individual,
restr:proposition,
scoperproposition].

every sub [] .
some sub [] .
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run sub []
intro [runner:individual].

hit sub []
intro [hitter:individual,

hittee:individual] .
nominal sub [kid,toy,big,red]

intro [argl:individual] .
kid sub [] .
toy sub [] .
big sub [] .
red sub [] .

list.quant sub [e_list, ne.list.quant].
e.list sub [] .
ne.list.quant sub []

intro [hd:quant,
tl:list.quant] .

'/• Lexicon
*/• =======

kid >
« en (kid) .

toy >
Q cn(toy).

big >
3 adj(big).

red —->
Q adj(red) .

every >
Q gdet(every).

some >
Q gdet(some).

John >
9 pn(j) .
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runs >
© iv((run,runner:Ind) ,Ind)

hits >
0 tv(hit).

*/. Grammar
•/. =======

forward.application rule
(synsem:Z,
qstore:Qs)
===>

cat> (synsem:(forward,
arg:Y,
res:Z),
qstorerQsl),

cat> (synsem:Y,
qstore:Qs2),

goal> append(Qsl,Qs2,Qs).

backward.application rule
(synsem:Z,
qstore:Qs)
===>

cat> (synsem:Y,
qstore:Qsl),

cat> (synsem:(backward,
arg:Y,
res:Z),
qstore:Qs2),

goal> append(Qsl,Qs2,Qs).

s_quantifier rule
(synsem:(syn:s,

sem:(Q,
scope:Phi)),

qstore:QsRest)
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cat> (synsem:(syn:s,
sem:Phi),

qstore:Qs),
goal> select(Qs,Q,QsRest).

% Macros
*/• ======

cn(Pred) macro
synsem:(syn:n,

sem: (body:(Pred,
argl:X),

ind:X)),
<8 quantifier . free .

gdet(Quant) macro
synsem:(forward,

arg: 0 n(Restr,Ind) ,
res: 0 np(Ind)),

qstore: [Q quant (Quant, Ind, Restr) ] .

quant (Quant, Ind,Restr) macro
(Quant,
var:Ind,
restr:Restr).

adj(Rel) macro
synsem:(forward,

arg: Q n(Restr,Ind),
res: Q n((and,

conjl:Restr,
conj2:(Rel,

argl:Ind)),
Ind)),

0 quantifier.free.

n(Restr,Ind) macro
syn:n,
sem:(body:Restr,
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ind:Ind).

np(Ind) macro
syn:np,
sem:Ind.

pn(Name) macro

synsem: Q np(Name),
® quantifier.free.

iv(Sem,Arg) macro
synsem:(backward,

arg: Q np(Arg),
res:(syn:s,

sem:Sem)),
® quantifier.free.

tv(Rel) macro
synsem:(forward,

arg:(syn:np,
sem:Y),

res:(backward,

arg:(syn:np,
sem:X),

res:(syn:s,
sem:(Rel,

hitter:X,
hittee:Y)))),

Q quantifier.free.

quantifier.free macro
qstore: [] .

•/. Definite Clauses

append( [] ,Xs,Xs) if
true.

append([X|Xs],Ys,[X|Zs]) if
append(Xs,Ys,Zs).
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select([Q|Qs],Q,Qs) if
true.

select([qi|Qsl],q,[qi|qs2]) if
select(Qsl,Q,Qs2).
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Error and Warning Messages

Error Messages

subtyping cycle at T

The subsumption relation specified is not anti-symmetric. It can
be inferred that the type T is a proper subtype of itself.

consistent T\ and T-i have multiple mgus Ts

Types Ti and Ti have the non singleton set Ts as their set of most
general unifiers.

feature F multiply introduced at Ts

The feature F is introduced at the types in Ts, which are not
comparable with one another.

incompatible res tr ic t ions on feature F at type T are Ts

The inherited restrictions, consisting of types Ts, on the value of
F at type T are not consistent.

no l e x i c a l entry for W

Expression W is used, but has no lexical entry.

unsat isf iable l ex ica l entry for W

Word W has a lexical entry which has no satisfying feature struc-
ture.

invalid line <j> in rule
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A line of a grammar rule is neither a goal nor a category description.

description uses unintroduced feature F

A description uses the feature F which has not been defined as
appropriate for any types.

undefined macro M used in description

A description uses a macro which is not defined.

undefined type T used in description

A description uses a type T which is not defined.

undefined feature F used in path 7r

A path 7T of features uses undefined feature F in a description.

subtype 7\ used in T<i undeclared

Undefined type Z\ declared as subtype in definition of T2.

T\ used in appropriateness definit ion of T2 undefined

Undefined type I\ used as value restriction in definition of T2.

T multiply defined

There is more than one definition of type T.

multiple specif icat ion of F in definit ion of T

More than one restriction on the value of feature F is given in the
definition of type T.

appropriateness cycle following path -K from T

There is a sequence of features TT which must be defined for objects
of type T where the value must be of type T.

rule R has no ;cat>' specif ication

The grammar rule named R is empty in that it does not have any
daughter specification.
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Warning Messages

unary branch from 2\ to T2

The only subtype of I \ is r2. In this situation, it is usually more
efficient to elimate 7\ if every instance of 3\ is a T2.

no features introduced

There are no appropriate features for any types.

homomorphism condition f a i l s for F in T\ and T2

It is not the case that the appropriateness restriction on the type
T = T\ + T2 is the unification of the appropriateness restrictions
on Ti and T2.

no lexical rules found

There were no lexical rules specified in the program.

no lexicon found

There were no lexical entries specified in the program.

no phrase structure rules found

There were no phrase structure rules specified in the program.

no definite clauses found

There were no definite clause rules specified in the program.
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BNF for ALE Programs

The following is a complete BNF grammar for ALE programs.

<desc> : : - <type>
<variable>
(<feature>:<desc>)
(<desc>,<desc>)
(<desc>;<desc>)
<0 <macro_spec>

<macro_def> ::= <macro_head> macro <desc>.

<macro_head> ::= <macro_name>
I <macro_name>(<var_seq>)

<macro_spec> ::= <macro_name>

I <macro_name>(<desc.seq>)

<clause> ::= <l i teral> if <goal>.

<literal> ::= <pred_sym>
I <pred-sym>(<seq(<desc>)>)

<goal> ::= true
<l i teral>
(<goal>,<goal>)

(<goal>;<goal>)

(\+ <goal>)

<lex.entry> ::= <word> > <desc>.
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<mle> ::= <rale_name> rule <desc> ===> <rule_body>.

<rule_body> ::= <rule_clause>
I <rule_clause>, <mle_body>

<rule_clause> ::= cat> <desc>
I goal> <goal>

<lex_rule> ::= <lex.rule.name> lex .rule <lex_revrite>
morphs <morphs>.

<lex.rewrite> ::= <desc> **> <desc>
I <desc> •*> <desc> if <goELl>

<morphs> ::= <morph>
I <morph>, <morphs>

<morph> ::= (<string_pattern>) becomes (<string_pattern>)
I (<string_pattern>) becomes (<string_pattern>)

when <prolog_goal>

<string_pattern> : : - <atomic.string.pattern>
I <atomic.string.pattern>, <string.pattern>

<atomic.string.pattern> : : - <atom>
I <var>
I <list(<var_char>)>

<vax_char> ::- <char>
I <var>

<seq(X)> ::= X
I X, <seq(X)>

<empty.prod> ::= empty <desc>.

<type_spec> ::= <type> sub <list(<type>)>
I <type> sub <list(<type>)>

intro <list(<feat>:<type>)>

<prog> ::= <prog.line>
I <prog_line> <prog>
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<prog_line> ::- <type_spec>
I <macro_def>
I <empty.prod>
I <clause>
I <rule>
I <lex_entry>
I <lex.mle>


