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1 I n t r o d u c t i o n 

In a sequence of trials we are required to pick hypotheses j/i, 2/2? • • • ̂  After we choose 
yt, the correct answer is revealed in the form of a convex expected-loss function it(yt)-1 

Just before seeing the t t h example, our total loss is therefore 

L t = J > ( w ) 
i=i 

If we had predicted using some fixed hypothesis y instead, then our loss would have been 
Si= i £i(y)- We say that our total regret at time t for not having used y is the difference 
between these two losses: 

t-i 
Pt(y) = Lt-1£fei(y) 

i=i 
Positive regret means that the loss for y is smaller than our actual loss—that is, we would 
rather have used y. Our overall regret is our regret for not having used the best hypothesis 

pt = sup pt(y) 
yey 

No-regret algorithms are a popular class of learning rules which always have small regret no 
matter what sequence of examples they see. This no-regret property is a strong guarantee: 
it holds for all comparison hypotheses y G even though we are choosing which y to 
compare ourselves to after seeing it for all t. And, it holds even if the loss functions it are 
statistically dependent from trial to trial; such dependence could result from unmeasured 
covariates, or from the action of an external agent. 

Unfortunately, many no-regret algorithms assume that the predictions yt are proba­
bility distributions over a small, discrete set. This assumption limits their applicability: 
in many interesting prediction problems (such as finding the best pruning of a decision 
tree, playing poker, balancing an online binary search tree, and planning paths with an 
adversary) the predictions have some internal structure. For example, in a game of poker 
(see Section 10 below), the prediction must be a valid poker strategy which specifies how 
to play during the next hand. 

So, we consider prediction problems where y is a larger set with internal structure, and 
derive new learning rules—the Lagrangian Hedging algorithms—which take advantage of 
this structure to provide tighter regret bounds and run faster. The LH algorithms are a 

1Many problems use loss functions of the form £t{yt) = £(yt,y\TUe), where £ is a fixed function such as 
squared error and y \ T n e is a target output. The more general notation allows for problems where there 
may be more than one correct prediction. 

1 



direct generalization of known no-regret learning rules like weighted majority and external-
regret matching, and they reduce to these rules when choosing from a small discrete set 
of predictions. 

2 Structured prediction problems 
2.1 P r o b l e m definit ion 

Our algorithm chooses its prediction at each round from a hypothesis set y. We assume 
that y is a compact subset of Rd that has at least two elements. 

In classical no-regret algorithms such as weighted majority, 3̂  is a simplex. The corners 
of y represent pure actions, the interior points of y represent probability distributions 
over pure actions, and the number of corners n is the same as the number of dimensions d. 
In a structured prediction problem, on the other hand, y may have many more extreme 
points than dimensions, n^> d. For example, y could be a convex set like 

{y\Ay = b,y>0} 

for some matrix A and vector b (in which case the number of extreme points can be 
exponential in d), or it could be a sphere (which has infinitely many extreme points), or 
it could be a set of discrete points like the corners of a hypercube. 

The shape of y captures the structure in our structured prediction problem. Each 
point in y is a separate hypothesis, but the losses of different hypotheses are related to 
each other because they are all embedded in the common representation space R d . This 
relationship gives us the ability to infer the loss of one hypothesis from the losses of others. 
For example, consider two Texas Hold'Em strategies which differ only in how aggressively 
they bet after seeing a particular sequence of play like "Q3 down, no bets, 557 flopped": 
these strategies will have very similar expected payoffs against any opponent, despite being 
distinct hypotheses. 

It is important to take advantage of available structure in y. To see why, imagine 
running a standard no-regret algorithm such as weighted majority on a structured y: to 
do so, we must give it hypotheses corresponding to the extreme points c\... Cn of y. Our 
running time and regret bounds will then depend on the number of extreme points n. If 
n is exponential in d (as for sets of the form {Ay = 6, y > 0}), we will have difficulty 
keeping track of our past loss functions in a reasonable amount of time and space, and our 
regret bounds may be larger than necessary. If n is infinite (as for spheres), the situation 
will be even worse: it will be impossible to remember our loss functions at all without 
some kind of trick, and our regret bounds will be vacuous. 
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2.2 Reduct ions which simplify notation 

If y is convex, there will never be any need for our algorithm to randomize: for any convex 
loss function I, we have £(E(y)) < E(£(y)) by Jensen's inequality, so we can replace any 
distribution over y by its expectation without hurting our performance. On the other 
hand, if 3̂  is not convex our algorithm may need to randomize to achieve low regret: for 
example, if y — {0,1}, it is impossible for a deterministic algorithm to guarantee less than 
Q(t) regret in t trials. 

To build a randomized algorithm we will allow ourselves to pick hypotheses from the 
convex hull of y. We will interpret a point in conv y as a probability distribution over 
the elements of y by decomposing y = YliPiVii where yi G J7, p% > 0, and S i P i = 1-
(In fact, there will usually be several such representations of a given y; different ones may 
yield different regrets, but they will all satisfy our regret bounds below.) For convenience 
of notation we will take 3̂  to be a convex set in the remainder of this paper, with the 
understanding that some elements of y may be interpreted as randomized actions. 

Our algorithms below are stated in terms of linear loss functions, £t(y) = ct - y. If 
£t is nonlinear but convex, we have two options: first, we can substitute the derivative 
at the current prediction, d£t(yt), for ct, and our regret bounds will still hold [1, p. 54]. 
Or, second, we can apply the standard convex programming trick of adding constraints to 
make our objective linear: for example, if our losses are KL-divergences 

et(y) = y\n^ + (l-y)\n^-
Pt l-Pt 

we can add a new variable z and a new constraint 

z > ylny + (I - y) ln(l - y) 

resulting in a new feasible region yf? We can then write an equivalent loss function which 
is linear over y'\ 

£t(y, z) = z- ylnpt - (1 - y) ln(l - pt) (y, z) G yf 

In either case we will assume in the remainder of this paper that the loss functions are 
linear, and we will write C for the set of possible gradient vectors c$. 

3 Related work 
A large number of researchers have studied online prediction in general and online convex 
programming in particular. From the online prediction literature, the closest related work 

technically, we must also add a vacuous upper bound on z to maintain our assumption of a bounded 
feasible region. 
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is that of Cesa-Bianchi and Lugosi [2], which follows in the tradition of an algorithm and 
proof by Blackwell [3]. Cesa-Bianchi and Lugosi consider choosing predictions from an 
essentially-arbitrary decision space and receiving outcomes from an essentially-arbitrary 
outcome space. Together a decision and an outcome determine how a marker Rl £ R d 

will move. Given a potential function G, they present algorithms which keep G{Rt) from 
growing too quickly. This result is similar in flavor to our Theorem 5, and both Theorem 5 
and the results of Cesa-Bianchi and Lugosi are based on Blackwell-like conditions. 

The main differences between the Cesa-Bianchi-Lugosi results and ours are the re­
strictions that they place on their potential functions. They write their potential func­
tion as G(u) = /($(?/)); they require $ to be additive (that is, $(u) = Ylifciv*) f ° r 

one-dimensional functions fa), nonnegative, and twice differentiable, and they require 
/ : R+ K-> R+ to be increasing, concave, and twice differentiable. These restrictions rule 
out many of the potential functions used here. The most restrictive requirement is that 
$ be additive; for example, unless the set y can be factored as yi x J>2 x • • • x VN for 
one-dimensional sets 3 \ , 3^ 5 • • • •> JW> potential functions defined via Equation (7) are gen­
erally not expressible as f($(u)) for additive The differentiability requirement rules 
out potential functions like which is not twice differentiable at x = 0. 3 

Our more general potential functions are what allow us to define no-regret algorithms 
that work on structured hypothesis spaces like the set of paths through a graph or the set 
of sequence weights in an extensive-form game. Ours is the first result which allows one 
to construct such potential functions easily: combining any of a number of well-studied 
hedging functions (such as negentropy, componentwise negentropy, or squared Lp norms) 
with an arbitrary compact convex hypothesis set, as described in Section 6, results in a no-
regret algorithm. Previous results such as Cesa-Bianchi and Lugosi's provide no guidance 
in constructing potentials for such hypothesis sets. 

In the online convex programming literature, perhaps the best known recent related 
papers are those of Kalai and Vempala [4] and Zinkevich [5]. The online convex program­
ming problem has a much longer history, though: the first description of the problem and 
the first algorithm of which we are aware were presented by Hannan in 1957 [6], although 
Hannan didn't use the name "online convex programming." And, the current author's 
Generalized Gradient Descent algorithm [1,7] solves a generalization of the online convex 
programming problem, although it was not originally presented in those terms: if each of 
GGD's loss functions £t(y) for £ > 1 is of the form ct • y + I(y), where 7 is 0 inside the 
feasible set and oo outside, then GGD solves online convex programs. If in addition GGD's 
prior loss £o(y) is proportional to HylH? then GGD acts like Zinkevich's lazy projection 
algorithm with a fixed learning rate [8]. 

3Cesa-Bianchi and Lugosi claim (p. 243) that their results apply to </>(x) = [x] + with p > 2, but this 
appears to be a slight error; the Taylor expansion step in the proof on p. 242 requires twice-differentiability 
and therefore needs p > 2. My thanks to Amy Greenwald for pointing this fact out to me. 
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Compared to the above online convex programming papers, the most important con­
tributions of the current paper are the flexibility of its algorithm and the simplicity and 
generality of its proof. Ours is the first algorithm based on general potential functions 
which can solve arbitrary online convex programs.4 And, our proof contains as special 
cases most of the common no-regret bounds, including for example those for Hedge and 
weighted majority: while our overall algorithm is new, by choosing the appropriate poten­
tial functions one can reduce it to various well-known algorithms, and our bounds reduce 
to the corresponding specific bounds. 

The flexibility of our algorithm comes from our freedom to choose from a wide range 
of potential functions; because of this freedom we can design algorithms which force their 
average regret to zero in a variety of ways. For example, if we define the safe set S as 
in Section 4, we can try to decrease two-norm, max-norm, or one-norm distance from 
S as rapidly as possible by choosing hedging functions based on |J2/II2̂  negentropy, or 
componentwise negentropy respectively. The simplicity of the proof results from our use 
of Blackwell-style approachability arguments; our core result, Theorem 5, takes only half 
a dozen short equations to prove. This theorem is the first generalization of well-known 
online learning results such as Cesa-Bianchi and Lugosi's to online convex programming, 
and it is the most general result of this sort that we know. 

More minor contributions include: our bounds are better than those of previous algo­
rithms such as that of Kalai and Vempala, since (unless p = 1 in Theorem 3) we do not 
need to adjust a learning rate based on prior knowledge of the number of trials. And, we 
are not aware of any prior application of online learning to playing extensive-form games. 

In addition to the general papers above, a number of no-regret algorithms for specific 
online convex programs have appeared in the literature. These include predicting nearly 
as well as the best pruning of a decision tree [9], reorganizing a binary search tree online 
so that frequently-accessed items are close to the root [4], and picking paths in a graph 
with unknown edge costs [10]. 

4 Regret vectors and safe sets 

Lagrangian Hedging algorithms maintain their state in a regret vector. This vector contains 
information about our actual losses and the gradients of our loss functions. Given a loss 
function £t(y) = Cf y as described in Section 2, we can define the regret vector St by the 
recursion: 

*t+i =st + (yt • ct)u - ct (1) 
4The current author's GGD and MAP algorithms [1, 7] can both handle a general class of convex 

potential functions and feasible regions, but they depend either on an adjustable learning rate or on the 
degree of convexity of the loss functions £ t to achieve sublinear regret. 
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Theorem 1 The LH algorithm is well-defined: given a closed convex hypothesis set y 
and a vector u with u • y = 1 for all y € y, define S as in (2) and fix a convex potential 
function F which is everywhere finite. If F(s) < 0 for all s G S, then the LH algorithm 
with potential F picks hypotheses yt € ^ for all t. 

We can also define a version of the LH algorithm with an adjustable learning rate: if 
we use the potential function F(rjs) instead of F(s), the result is equivalent to updating 
St with a learning rate r\. Below, the ability to adjust our learning rate will help us obtain 
regret bounds for some classes of potential functions. 

6 The optimization form 
Even if we have a convenient representation of our hypothesis space 3 ,̂ it may not be easy 
to work directly with the safe set S. In particular, it may be difficult to define, evaluate, 
and differentiate a potential function F which has the necessary properties. 

For example, a typical choice for F is "squared Euclidean distance from <S." If S is 
the negative orthant (as it would be for standard experts algorithms), then F is easy to 
work with: we can separate F into a sum of d simple terms, one for each dimension. On 
the other hand, if S is the safe set for a complicated hypothesis space (such as y = {y > 
0 | Ay + 6 = 0} for some matrix A and vector 6), it is not obvious how to compute <S, 
F(s), or dF(s) efficiently: F can have many quadratic pieces with boundaries at many 
different orientations, and there is generally no way to break F into the sum of a small 
number of simple terms. For the same reason, it may also be difficult to prove that F has 
the curvature properties required for the performance analysis of Theorem 3. 

To avoid these difficulties, we can work with an alternate form of the Lagrangian 
Hedging algorithm. This form, called the optimization form, defines F in terms of a 
simpler function W which we will call the hedging function. On each step, it computes F 
and OF by solving an optimization problem involving W and the hypothesis set y. In our 
example above, where F is squared Euclidean distance from <S, the optimization problem 
is minimum-Euclidean-distance projection: we split s into two orthogonal components, 
one in y and one in S. This optimization is easy since we have a compact representation 
of y. And, knowing the component of s in S tells us which quadratic piece of F is active, 
making it easy to compute F(s) and an element of dF(s). 

For example, two possible hedging functions are 

Wi(y) = < . (5) I oo otherwise 

and 
W2(y) = ^2yf/2 (6) 
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If y is the probability simplex in R d (so that S is the negative orthant in Rd and we can 
choose u = [ 1 ,1 , . . . , 1] T), then W^y/rj) and W2(y) correspond to the potential functions 
Fi and F2 from Section 5 above. So, these hedging functions result in the weighted 
majority and external-regret matching algorithms respectively. In these examples, since 
F\ and F2 are already simple, W\ and W2 are not any simpler. For an example where 
the hedging function is easy to write analytically but the potential function is much more 
complicated, see Section 9 below. 

For the optimization form of the LH algorithm to be well-defined, W should be convex, 
domiy fl y should be nonempty, W(y) > 0 for all y, and the sets {y \ W(y) + s • y < k} 
should be compact for all s and k. (The last condition is equivalent to saying that W is 
closed and increases strictly faster than linearly in all directions.) Theorem 2 below shows 
that, under these assumptions, the two forms of the LH algorithm are equivalent. We will 
impose additional requirements on W later for our regret bounds. 

We can now describe the optimization problem which allows us to implement the LH 
algorithm using W and y instead of the corresponding potential function F. Define y as 
in (3). Then F is defined to be 5 

F(s) = sup(s-y-W(y)) (7) 
yey 

We can compute F(s) by solving (7), but for the LH algorithm we need dF instead. As 
Theorem 2 below shows, there is always a y which achieves the maximum in (7): 

y € arg max (s • y - W(y)) (8) 
yey 

and any such y is an element of dF] so, we can use Equation (8) with s = St to compute 
yt in line (*) of the LH algorithm (Figure 2). 

To gain an intuition for Equations (7-8), let us look at the example of the external-
regret matching algorithm in more detail. Since y is the unit simplex in R d , y is the 
positive orthant in Rd. So, with W2(y) = H2/H2/2, the optimization problem (8) will be 
equivalent to 

y = arg min -| |a-y||2 

That is, y is the projection of s onto by minimum Euclidean distance. It is not hard 
to verify that this projection replaces the negative elements of s with zeros, y = [s] + . 

5This definition is similar to the definition of the convex dual W* (see Appendix E), but the supremum 
is over yey instead of over all y. As a result, F and W* can be very different functions. As pointed out 
in Appendix B, F can be expressed as the dual of a function related to W: it is F = (Iy -f W)*\ where 
Iy is 0 within y and 0 0 outside of y. We state our results in terms of W rather than F* because W will 
usually be a simpler function, and so it will generally be easier to verify properties of W. 
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Substituting this value for y back into (7) and using the fact that s • [s]+ = [s]+ • the 
resulting potential function is 

F2(s) = s • [s}+ - J > ] V 2 = S < / 2 
i i 

as claimed above. This potential function is the standard one for analyzing the external-
regret matching algorithm. 

Theorem 2 Let W be convex, domWny be nonempty, and W(y) > 0 for all y. Suppose 
the sets {y \ W(y) + s • y < k} are compact for all s and k. Define F as in (7). Then 
F is finite and F(s) < 0 for all s G «S. And, the optimization form of the LH algorithm 
using the hedging function W is equivalent to the gradient form of the LH algorithm with 
potential function F. 

The proof of Theorem 2 is given in Appendix C. 

7 Theoretical results 
Our main theoretical results are regret bounds for the LH algorithm. The bounds depend 
on the curvature of our potential function F , the size of the hypothesis set y, and the 
possible slopes C of our loss functions. Intuitively, F must be neither too curved nor too 
flat on the scale of the updates to St from Equation (1): if F is too curved then dF will 
change too quickly and our hypothesis yt will jump around a lot, while if F is too flat 
then we will not react quickly enough to changes in regret. 

7.1 Gradient form 

We will need upper and lower bounds on F. We will assume 

F(s + A) < F(s) + A • f(s) + C\\Af (9) 

for all regret vectors s and increments A, and 

[F(s) + A}+>MB\\s-sT (10) 

for all 5. Here || • || is an arbitrary finite norm, and A > 0, B > 0, C > 0, and 1 < p < 2 are 
constants.6 Equation (9), together with the convexity of F , implies that F is differentiable 

6 The number p has nothing to do with the chosen norm; for example, we could choose p = 1.5 but use 
Euclidean distance (the 2-norm) or even a non-Lp norm. 
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and that / is its gradient; the LH algorithm is still applicable if F is not differentiate, 
but its regret bounds are weaker. 

We will bound the size of y by assuming that 

IMIo < M (11) 

for all y in y. Here, || • || 0 is the dual of the norm used in Equation (9). (See Appendix E 
for more information about dual norms.) 

The size of our update to St (in Equation (1)) depends on the hypothesis set y, the 
cost vector set C, and the vector u. We have already bounded y-, rather than bounding C 
and u separately, we will assume that there is a constant D so that 

E(\\st+l - st\\2 \ st) < D (12) 

Here the expectation is taken with respect to our choice of hypothesis, so the inequality 
must hold for all possible values of ct. (The expectation operator is only necessary if 
we randomize our choice of hypothesis, as would happen if y is the convex hull of some 
non-convex set. If 3̂  was convex to begin with, we need not randomize, so we can drop 
the expectation in (12) and below.) 

Our theorem then bounds our regret in terms of the above constants; see Appendix A 
for a proof. Since the bounds are sublinear in t, they show that Lagrangian Hedging is a 
no-regret algorithm when we choose an appropriate potential F. 

Theorem 3 Suppose the potential function F is convex and satisfies Equations (4), (9) 
and (10). Suppose that the problem definition is bounded according to (11) and (12). Then 
the LH algorithm (Figure 2) achieves expected regret 

E(pt+i(y)) < M((tCD + A)/B)V* = 0{t1^) 

versus any hypothesis y €y. 
Ifp = l the above bound is 0(t). But, suppose that we know ahead of time the number 

of trials t we will see. Define G(s) = F(r}s), where 

rj = y/A/(tCD) 

Then the LH algorithm with potential G achieves regret 

E(fH+i(y)) < (2M/B)ViACD = 0(y/i) 

for any hypothesis y G 3̂ -
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Figure 3: Given two functions F (dashed line) and G (dash-dot), we can define 
conv min(F, G) (solid line) to be the pointwise greatest convex function H such that 
H(y) < min(F(y), G(y)) for all y. 

7.2 Optimization form 

In order to apply Theorem 3 to the optimization form of the LH algorithm, we will show 
how to transfer bounds on the hedging function W to the potential function F. An upper 
bound on W will lead to a lower bound on F , while a lower bound on W will yield an 
upper bound on F. The ability to transfer bounds means that, in order to analyze or 
implement the optimization form of the LH algorithm, we never have to evaluate the 
potential function F or its derivative explicitly. Since W and related functions may not 
be differentiable, we will use the notation of convex analysis to state our bounds; see 
Appendix E for definitions. 

For our upper bound on F , instead of (9) we will assume that for all unnormalized 
hypotheses yo € 3̂  H domdW, for all s e dW(yo), and for all y € y, 

W(y) > W(yo) + (y-yo)-s + (l/4C)||y - yo\\l (13) 

Here C is the same constant as in Equation (9) and || • || 0 is the dual of the norm 
from Equation (9). We will also assume that 3̂  H rel intdomW is nonempty; since 
rel intdom W C domcW, this last assumption guarantees that (13) isn't vacuous. 

For our lower bound on F , instead of (10) we will assume 

conv xmn(W(y) -A + Iy(y), 70(y)) < B\\y/B\\l Vy € y (14) 

Here A and B are the same constants as in (10), || • || 0 is the dual of the norm from 
Equation (10), and Ixiy) is 0 when y is in the set K and oo otherwise. The operation 
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conv min(F, G) is illustrated in Figure 3. The constant q is defined by ^ + ^ = 1 where p 
is the constant from (10). Note that, since 1 < p < 2, we have 2 < q < oo. As is typical, 
we will follow the convention 

M00 =/[_!,!] (X) 
So, when p = 1, Equation (14) is equivalent to 

conv mm(W(y) - A + Iy(y), I0{y)) < 0 Vy G £ with ||y||0 < B 

Our main theoretical result about the optimization form of the LH algorithm is that the 
above bounds on W imply the corresponding bounds on F. 

Theorem 4 Suppose that the hedging function W is closed, convex, nonnegative, and 
satisfies Equations (13) and (14) with the constants A, B, C, and 2 < q < oo and the 
finite norm || • ||Q. Suppose the set y D rel intdomVT is nonempty. Define p so that 
i + i = 1. Define F as in (7). Then the optimization form of the LH algorithm using 
hedging function W is equivalent to the gradient form using potential function F, and F 
satisfies the assumptions of Theorem 3 with constants A, B, C, andp and the norm || • ||. 

Theorem 4 follows directly from Theorems 2 and 9 (proven in Appendices B and C). 
As an immediate corollary we have that the optimization form satisfies all of the same 
regret bounds as the gradient form; for example, if the problem definition is bounded 
by (11) and (12) with constants M and D, Theorem 3 shows that our expected regret is 
bounded by 

E(pt+i(y)) < M((tCD + A)/B)1'P = 0{t^) 
after t steps versus any hypothesis y G 3^ 

One result which is slightly tricky to carry over is the use of learning rates to achieve 
no regret when p = 1. The choice of learning rate and the resulting bound are the same 
as in Theorem 3, but the implementation is slightly different: to set a learning rate rj > 0, 
we want to use the potential 

G(s) = F(TJS) = sup(rjs-y- W{y)) 
yey 

Using the substitution y \-+ yjr), we have 

G(s) = sup (s • y - W(y/r))) 
yey 

since y/rj G y whenever y G y. So, to achieve a learning rate 77, we just need to replace 
W(y) with W(y/r]). 
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8 Examples 
8.1 Matrix games and expert advice 

The classical applications of no-regret algorithms are learning from expert advice and 
learning to play a repeated matrix game. These two tasks are essentially equivalent, since 
they both use the probability simplex 

y = iv I y > o, Ei» = i> 
for their hypothesis set. This choice of y has no difficult structure, but we mention it to 
point out that it is a special case of our general prediction problem. Standard no-regret 
algorithms such as Freund and Schapire's Hedge [11], Littlestone and Warmuth's weighted 
majority [12], and Hart and Mas-Colell's external-regret matching [13, Theorem B] are all 
special cases of the LH algorithm. 

For definiteness, we will consider the case of repeated matrix games. On step t we 
choose a probability distribution yt over our possible actions. Our opponent plays a 
mixed strategy zt over his possible actions, and we receive payoff £t(yt) = ztTMyt — ct-yt 
where M is our payoff matrix. Our problem is to learn how to play well from experience: 
since we do not know our opponent's payoff matrix, we wish to adjust our own play to 
achieve high reward against the actual sequence of plays z\, • • • that we observe. 

8.1.1 External-regret matching 

Perhaps the simplest no-regret algorithm for matrix games is the one we get by taking 
W(y) = H2/H2/2, which leads to F(s) = || [s]+||2/2 as described above. The derivative of 
F i s 

so at each step we take the positive components of our regret vector, renormalize them to 
form a probability distribution, and play according to this probability distribution. 

Using the Euclidean norm || • H2, it is easy to see that our choice of W satisfies Equa­
tion (13) with C = 1/2 and Equation (14) with A = 0, B = 1/2, and p = q = 2. All 
elements of the probability simplex y are bounded by H2/H2 < 1, so M = 1 in Equation (11). 
And, if our payoff matrix is bounded so that so that 0 < < 1, then ct E [0, l]d and 
yt • ct G [0,1] in (1), so our regret updates are in [-1, l]d. That means that we can take 
D = d in Equation (12). 

Substituting in the above constants, Theorem 3 tells us that the external-regret match­
ing algorithm has regret 

E(Pt+i{y)) < Vid 

for any comparison hypothesis y € y. 
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8.1.2 Hedge 

Another well-known no-regret algorithm for matrix games is Hedge [11]. To reproduce 
this algorithm, we can use the potential function 

F(s) = l n ^ e S i - l n d 
i 

in the gradient form of the LH algorithm. The gradient of F is 

/.(«) = e * / £ i ^ 

So, at each step we exponentiate the regrets and then renormalize to get a probability 
distribution. This is exactly the Hedge algorithm: the usual formulation of Hedge says to 
exponentiate the sum of the loss vectors instead of the regret vector, but since the regret 
differs from the sum of the losses by a multiple of u = ( 1 , 1 , . . . , 1 ) T , the difference gets 
canceled out in the normalizing constant. 

For the generalizations of Hedge which we will examine below, it will be helpful to 
prove our bounds using the optimization form of the LH algorithm. In the optimization 
form, Hedge uses the entropy hedging function shown in Equation (5). This choice of W 
is finite only inside y = R+, so the optimization (7) just computes W*(s); it is a standard 
result that the F given above is equal to W*. 

Using the L\ norm || • ||i, our choice of W satisfies Equation (13) with C = 1/2 and 
Equation (14) with A = hid, i? = 1, p = 1, and q = oo. For a proof, see Lemma 10 
in Appendix D. All elements of the probability simplex y are bounded by ||y||i < 1, so 
M = 1 in Equation (11). Finally, our regret updates are in [— 1, l]d and so have max norm 
no more than 1; so, we can take D = 1 in Equation (12). 

Substituting in the above constants, Theorems 3 and 4 tell us that the Hedge algorithm 
with learning rate 77 = 1 has 

E(fH+i{v))<t/2 + ]nd 

for any comparison hypothesis y. If we pick instead 77 = y/(2]nd)/t, the bound becomes 

E(pt+i(y)) < y/2t\nd , 

This result is similar to well-known bounds on Hedge such as the one obtained by Freund 
and Schapire [11, section 2.2]. Translated to our notation, Freund and Schapire chose a 
learning rate of 

77 = ln(l + y/(2)nd)/t) 

which is slightly slower than our learning rate. They used this learning rate to prove a 
regret bound of 

v/(21nd)/t + (lnd)/t 
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Figure 4: Synthetic example of a structured prediction problem. Left: domain of x. Right: 
domain of y. 

per trial, which is slightly weaker than our bound since it adds a term depending on 1 ft. 
As t —• oo, the difference in learning rates approaches zero and the 0(1 /t) term becomes 
irrelevant, so the two bounds become equivalent.7 

8.2 A simple synthetic example 

This subsection presents a simple synthetic example of a structured prediction problem 
and an LH algorithm which solves it. Unlike the examples in the previous subsection, 
there is no obvious way to select a potential function for this problem without either 
using the techniques described in this paper or moving to a less efficient representation 
(such as the one where each corner of y has a separate regret). In addition, this example 
demonstrates how to apply the LH algorithm to regression or classification problems: in 
these problems, each example consists of an input vector xt together with a target output 
zt, and our hypothesis space is a set of functions y which map inputs to outputs. 

In our synthetic problem, the input examples xt are drawn from the pentagon X shown 
at the left of Figure 4, and the target outputs zt are either +1 or —1. Our predictions are 
linear functions which map X into the interval [—1,1]; the set y of such functions is the 
geometric dual of X, which is the pentagon shown on the right of Figure 4. We will use 
the absolute loss 

or more compactly £t(y) — —ztxt • y. 
Specifying 3̂  and it completely describes our prediction problem. The set y is not 

particularly complicated, but it does not match the hypothesis sets for any of the standard 
7The extra term in Preund and Schapire's bound appears to be due to the fact that they write the 

recommended distribution of actions as /3~s jZ rather than exp(r)S)/Z, requiring an extra linearization 
step ln(l + (3) < (3 in their proofs. 
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Figure 5: Hypothesis space y after including constant component, together with the cone 
y containing y. 

no-regret algorithms. So, we will design a Lagrangian Hedging algorithm instead. 
In order to construct an LH algorithm we need a vector u with u • y = 1 for all y G 3̂ -

Since such a vector doesn't exist for the y shown in Figure 4, we will add a dummy 
dimension to the problem: we will set the third element of y to be 1 for all y G y, and add 
a corresponding third element of 0 onto each x so that the predictions remain unchanged. 
The modified y is shown in Figure 5 as a horizontal pentagon. Figure 5 also shows the 
boundaries of a cone extending from the origin through y; this cone is y. 

With our modified y we can take u — (0,0,1) T . So, the only thing left to specify in our 
LH algorithm is our hedging function W. For simplicity we will pick squared Euclidean 
norm, H2/H2/2. Having chosen a hedging function we can now apply the optimization form 
of the LH algorithm. The algorithm starts with s\ = (0,0,0) T , then, for each t, executes 
the following steps: 

• Project St onto y by minimum Euclidean distance; call the result y . 

• Normalize y to get y = y/{y • u). (If y • u = 0 we can choose y Gy arbitrarily.) 

• Predict zt = y - xt and then find out the true Zf. 

• Update st+i <- st + ztxt - zt(xt • yt)u. 

To apply Theorem 3 to our algorithm we need to evaluate the constants in our bounds. 
We are using the same hedging function as in external-regret matching, so the constants 
A = 0, B = C = l /2, and p = q = 2 remain the same, as does the choice of the Euclidean 
norm. To determine M we need the longest vector in the augmented y. This vector has 
length 1.5: the size of the unaugmented 3̂  is \/5/2, and adding a constant component of 
1 yields vectors of length up to y/l + 5/4 = 1.5. For D we need the squared length of the 
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largest possible update to st. Since ztxt has length at most y/E/2 and zt(xt • yt) € [-1,1], 
the update has length at most 1.5, and we can take D = 2.25. Putting all of these values 
together, our final bound is 

E(pt+i) < 2.2bVi , 

8.3 Other applications 

A large variety of online prediction problems can be cast in our framework. These problems 
include online convex programming [1,4,5], p-norm perceptrons [2], path planning when 
costs are chosen by an adversary [10], planning in a Markov decision process when costs 
are chosen by an adversary [14], online pruning of a decision tree [15], and online balancing 
of a binary search tree [4]. In each case the bounds provided by the LH algorithm will be 
polynomial in the dimensionality of the appropriate hypothesis set and sublinear in the 
number of trials. Rather than re-proving all of the above results in our framework, we will 
illustrate the flexibility of the LH algorithm by turning now to a learning problem which 
has not previously been addressed in the literature: how to learn to play an extensive-form 
game. 

9 Extensive-form games 
Extensive-form games such as poker or bridge are represented by game trees with chance 
moves and incomplete information. A behavior strategy for a player in an extensive-form 
game is a function which maps an information state (or equivalently a history of actions 
and observations) to a distribution over available actions. The number of distinct behavior 
strategies can be exponential in the size of the game tree; but, by using the sequence form 
representation of a game [16], we can design algorithms which learn behavior strategies 
against unknown opponents, achieve O(Vi) regret over t trials, and run in polynomial 
time. The algorithms described below are the first with all of these properties. 

The regret bounds for our algorithms imply that, in the long run, our learner will 
achieve average cost no worse than its safety value, no matter what strategies our oppo­
nents play and without advance knowledge of the payoffs. (Depending on the motivations 
of our opponents, we may of course do much better.) The proof of this property is identical 
to the one given for matrix games by Freund and Schapire [11]; our work is the first to 
demonstrate this property in general extensive-form games. 

We assume that our algorithm finds out, after each trial, both its cost yt • ct and the 
gradient of its cost Q . Dealing with reduced feedback would be possible, but is beyond 
the scope of this paper. (For more information, see for example [17,18].) 
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9.1 The sequence form 

We want to learn how to act in an extensive-form game through repeated play. To phrase 
this task as a structured prediction problem, we can set our feasible set y to be the set 
yieq °f valid sequence weight vectors for our player. A sequence weight vector y for player 
i will contain one sequence weight ySi<li for each pair (s^a;), where Si is an information 
state where it is i's turn to move and a* is one of i's available actions at Si. All weights 
are nonnegative, and the probability of taking action a{ in state Si is proportional to ySiCLi. 
The set y is convex, and the payoff for a strategy y G J*7 is a linear function of y when we 
hold the strategies of the other players fixed. 

In more detail, we can represent player i's information state just before her fcth move 
by a sequence of alternating observations and actions, ending in an observation: 

A (A A A A A \ 

s — yz^, a 1 ? z 2 , a 2 , . . . , zk) 
An edge x in the game tree is uniquely identified by the most recent sequences and actions 
for all players, x = (s 1 , a 1 , s 2 , a 2 , . . . ) . 

Player i's policy can be represented by a weight ys%al for each of her state-action pairs 
(s*,az), defined as 

ysiai = P(a\ | s\)P(4 | 4 ) . . . P ( a { | 4 ) (15) 

Here k is the length of s1, and is the subsequence of sl ending with zj, so for example 
s\ = sl. We have written P(a*- | Sj) for the probability that player i will choose action a*-
after having observed s*-. 

The valid sequence weight vectors satisfy a set of linear constraints: for any state sl, 
the weights y s % a % for different actions a1 share all terms in the product (15) except for the 
last. So, if we sum these weights, we can factor out the first k — 1 terms and use the fact 
that probabilities sum to 1 to get rid of the fcth term. If k = 1, there was only one term 
in the product to begin with, so we have: 

On the other hand, for k > 1, the first k — 1 terms in (15) are just a sequence weight from 
the (k — l)st move, so we have: 

^ y 4 ° l = y4-l<4-l 

Together with the requirement of nonnegativity, we will write these constraints as 

3&q = iv > 0 I A^y = b^} 
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for a matrix A*^ and vector 6*eq. Note that the total number of nonzero entries in the 
matrices Aleq and 6*seq for all i is linear in the size of the original game tree. Also note 
that any vector y G 3 4 q corresponds to a valid strategy for player i: the probability of 
choosing action a given history sl is 

P{a\si) = ysia I ] T y 4 4 

To conclude this subsection we will show that a player's expected cost is linear in her 
sequence weights. Given an edge a: in a two-player game tree, determined by the sequence-
action pairs {sl,a}) and ( s 2 , a 2 ) which the players must play to reach x, the probability 
of getting to x is just the product of the conditional probabilities of all of the actions 
required to reach x: 

P(x) = P{a\\8\)P(al\*l)P(4\8l)P(aZ\4)... 

If we group together all of the terms for player l's actions, we get a sequence weight for 
player 1, and similarly for player 2: 

P(x) = [P(al\s\)P(al\sl)...][P(al\sl)P(al\sl)...] 

= y s i ° y 2 a 2 

Similarly, in an n-player game, the probability of reaching the edge 

x = (s1,a1,s2,a2,...,sn,an) 

P(x) = ysWys2a2 ...ysnan 

If the cost to player i for traversing edge x is c x , then z's total expected cost is 

£ 4 P(x) = 53 4 2 / s l ° y 2 a 2 • • • ysnan (17) 
xGedges x—(sl ,ax,... ,sn ,an) Eedges 

which is linear in player i's sequence weights if we hold the weights for the other players 
fixed. 

9.2 Algorithms 
As noted above, if we are controlling player i, our algorithms will choose strategies y E y = 
^seq- They will receive, after each turn, a vector ct which is the gradient with respect to y 
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of the expected total cost to player i. (We can compute ct easily by differentiating (17).) 
The algorithms will then update their regret vector 

t-i t-i 
st = u^2yt-ct-^2ct (18) 

i=i i=i 

Here u is a vector with u • y = 1 for all y G 3^eq- For example, u can be zero everywhere 
except for Is in the components s, a corresponding to some initial state s and all actions 
a. (Equation (16) guarantees that this choice of u satisfies u • y = 1.) 

Given st, our algorithms will choose yt by an optimization involving St, and a 
hedging function W. We can specify different no-regret algorithms by choosing various 
hedging functions. Good choices include quadratic and entropy-based hedging functions; 
these result in extensive-form versions of the external-regret matching and Hedge algo­
rithms. 

For example, the EF external-regret matching algorithm runs as follows: given the 
regret vector St from (18), solve the optimization problem 

y = arg max (st-y- \\y\\l/2) (19) 

and normalize y to get a feasible sequence weight vector yt G The set 3^eq can be 
written 

yLq = {y > o 14e qy = a&U' A ^ °> 
Since j ^ e q can be described by linear equalities and inequalities, the optimization prob­
lem (19) is a convex quadratic program and can be solved in polynomial time [19]. 

The EF Hedge algorithm solves instead the optimization problem 

y = arg max (st • y - Wi(y)) 
yeyLq 

where W\ is defined in Equation (5). Equivalently, we can solve 

maximize z 
subject to z < st • y - ^ yi In y{ 

Z^i = i ( 2 0 ) 

y € yi

seq 

Because this optimization problem is convex, with a polynomial number of linear con­
straints and a single simple nonlinear constraint, we can use a number of algorithms 
to solve it efficiently starting from a feasible point y°. (We can get such a y° by, e.g., 
renormalizing the sequence weights for the strategy which chooses actions uniformly at 
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random.) For example, there is a fast separation oracle for the constraints in (20), so we 
can find a near-optimal y in polynomial time using the ellipsoid algorithm. Or, for better 
practical performance, we could use a log-barrier algorithm such as the one described in 
Boyd and Vandenberghe's text [19]. 

9.3 Regret bounds 

By evaluating the constants in Theorem 3 we can show regret bounds for the extensive-
form algorithms. The bound for extensive-form external-regret matching is 

E(pt+i{y)) < dy/td (21) 

And, the bound for extensive-form Hedge is E(pt+i(y)) < 2dt + dind for 77 = 1; choosing 
77 = \/(ln d)/2t yields regret 

E(pt+i(y)) < 2dV2tlnd (22) 

So, extensive-form external-regret matching and extensive-form Hedge are both no-regret 
algorithms. 

In more detail, the only change in regret bounds when we move from the original Hedge 
and external-regret matching algorithms to their extensive-form versions is that, since we 
have changed the hypothesis space from the probability simplex to the more complicated 
set ŝeq* the constants D and M are different. 

For the quadratic hedging function, the constants A = 0, B = C = 1/2, and p = q = 2 
remain unchanged from the analysis of the original external-regret matching algorithm. 
M is the size of a 2-norm ball enclosing ^ e q . This constant depends on exactly which 
game we are playing, but it is bounded by the dimension d of the sequence weight vector 
since each sequence weight is in [0,1]. 

The bound D on the size of the regret update depends similarly on exactly which game 
we are playing. We will we assume that the individual edge costs are in [0,1] and that the 
total cost along any path is no more than 1. The first assumption means that our cost 
vector ct is in [0, l]d: according to (17), a sequence weight ySi<Xi affects the total cost only 
through terms which correspond to the game tree edges that are consistent with player 
i playing the actions specified in S{ and a*. The weight, of ySiai in each of these terms is 
the product of the cost of the corresponding edge with the conditional probability that we 
will reach the edge given that player i plays her prescribed actions and the other players 
follow their given policies. Since these conditional probabilities sum to no more than 1 
and since the costs are in [0,1], the gradient with respect to ySiai will be in [0,1]. Finally, 
u is in [0, l]d and yt • ct G [0,1], so the regret update is in [—1, l]d. The 2-norm radius of 
[—1, l]d is d, so we can take D = d. Applying Theorem 3 to the above set of constants 
yields the bound in Equation (21). 
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Figure 6: Performance in self-play (left) and against a fixed opponent (right). 

For the entropy hedging function, M is the size of a 1-norm ball enclosing y, so we can 
take M = d. And, D is the size of a max-norm ball enclosing our regret updates, which 
is D = 1. The constants A = Ind, B = 1, C = 1/2, p = 1, and q = oo remain unchanged 
from ordinary Hedge. Applying Theorem 3 to the above set of constants yields the bound 
in Equation (22). 

10 Experiments 
To demonstrate that our theoretical bounds translate to good practical performance, we 
implemented the extensive-form external-regret matching algorithm of Section 9 and used 
it to learn policies for the game of one-card poker. In one-card poker, two players (called 
the gambler and the dealer) each ante $1 and receive one card from a 13-card deck. The 
gambler bets first, adding either $0 or $1 to the pot. Then the dealer gets a chance to bet, 
again either $0 or $1. Finally, if the gambler bet $0 and the dealer bet $1, the gambler 
gets a second chance to bring her bet up to $1. If either player bets $0 when the other has 
already bet $1, that player folds and loses her ante. If neither player folds, the higher card 
wins the pot, resulting in a net gain of either $1 or $2 (equal to the other player's ante 
plus the bet of $0 or $1). As mentioned earlier, in contrast to the usual practice in poker 
we assume that the payoff vector ct is observable after each hand; the partially-observable 
extension is beyond the scope of this paper. 

One-card poker is a simple game; nonetheless it has many of the elements of more 
complicated games, including incomplete information, chance events, and multiple stages. 
And, optimal play requires behaviors like randomization and bluffing. The biggest strate­
gic difference between one-card poker and larger variants such as draw, stud, or hold-em 
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Figure 7: Minimax one-card poker strategies learned by self-play. Left: gambler bet 
probabilities holding different cards. First round in blue, second round in green. Right: 
dealer bet probabilities. Probability after hearing gambler pass in blue, after hearing 
gambler bet in green. 

is the idea of hand potential: while 45679 and 24679 are almost equally strong hands in a 
showdown (they are both 9-high), holding 45679 early in the game is much more valuable 
because replacing the 9 with either a 3 or an 8 turns it into a straight. 

Figure 6 shows the results of two typical runs: in both panels the dealer is using our 
no-regret algorithm. In the left panel the gambler is also using our no-regret algorithm, 
while in the right panel the gambler is playing a fixed policy. The x-axis shows number of 
hands played; the y-axis shows the average payoff per hand from the dealer to the gambler. 
The value of the game, —$0,064, is indicated with a dotted line. The middle solid curve 
shows the actual performance of the dealer (who is trying to minimize the payoff). 

The upper curve measures the progress of the dealer's learning: after every fifth hand 
we extracted a strategy y* v s by taking the average of our algorithm's predictions so far. 
We then plotted the worst-case value of y^ v g . That is, we plotted the payoff for playing 
y ^ v g against an opponent which knows y^ v g and is optimized to maximize the dealer's 
losses. Similarly, the lower curve measures the progress of the gambler's learning. 

In the right panel, the dealer quickly learns to win against the non-adaptive gambler. 
The dealer never plays a minimax strategy, as shown by the fact that the upper curve 
does not approach the value of the game. Instead, she plays to take advantage of the 
gambler's weaknesses. In the left panel, the gambler adapts and forces the dealer to play 
more conservatively; in this case, the limiting strategies for both players are minimax, as 
shown in Figure 7. (Note that there are many minimax strategies for one-card poker, so 
these plots are different from the ones reported in, e.g., [16].) 
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The curves in the left panel of Figure 6 show an interesting effect: the small, damping 
oscillations result from the dealer and the gambler "chasing" each other around a minimax 
strategy. One player will learn to exploit a weakness in the other, but in doing so will open 
up a weakness in her own play; then the second player will adapt to try to take advantage 
of the first, and the cycle will repeat. Each weakness will be smaller than the last, so the 
sequence of strategies will converge to a minimax equilibrium. This cycling behavior is a 
common phenomenon when two learning players play against each other. Many learning 
algorithms will cycle so strongly that they fail to achieve the value of the game, but our 
regret bounds eliminate this possibility. 

11 Discussion and related work 
We have presented the Lagrangian Hedging algorithms, a family of no-regret algorithms 
which can handle complex structure in the set of allowable predictions. We have proved 
regret bounds for LH algorithms and demonstrated experimentally that these bounds lead 
to good predictive performance in practice. The regret bounds for LH algorithms have 
low-order dependences on d, the number of dimensions in the hypothesis set y. This 
low-order dependence'means that the LH algorithms can learn well in prediction problems 
with complicated hypothesis sets; these problems would otherwise require an impractical 
amount of training data and computation time. 

Our work builds on previous work in online learning and online convex programming. 
Our contributions include a new, deterministic algorithm; a simple, general proof; the 
ability to build algorithms from a more general class of potential functions; and a new 
way of building good potential functions from simpler hedging functions, which allows us 
to construct potential functions for arbitrary convex hypothesis sets. Future work includes 
a no-internal-regret version of the LH algorithm, as well as a bandit-style version. The 
former will guarantee convergence to a correlated equilibrium in nonzero-sum games, while 
the latter will allow us to work from incomplete observations of the cost vector (e.g., as 
might happen in an extensive-form game such as poker). 
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A Proof of main results—I 
This appendix contains the proof of Theorem 3. The result as given in Section 7 is a 
straightforward combination of Theorems 7 and 8, stated and proved below. 

Our proof proceeds in three steps: first we will prove a general result about gradient 
descent (Theorem 5 below) which uses our upper bound on F , together with the assump­
tion that E(st+i — st) never points in the same direction as the gradient of F , to bound the 
rate of increase of F(st). Then we will show that the LH algorithm's choice of hypothesis 
means that st+i — st satisfies our descent assumption. Finally, we will combine the above 
results with our lower bound on F to show that st itself cannot grow too quickly. 

A . l Bounding the growth of F(st) 

In order to prove our regret bounds we will need our potential function F to have bounded 
curvature. More precisely, we will require that there exist a function / , a seminorm || • ||, 
and a constant C so that Equation (9) on p. 10 holds for all s and A. 8 

We also need a condition on our updates to sf. we need them never to point in the 
same direction as the gradient of F(st). That is, we need 

E((st+i - st) • f(st) | st) < 0 (23) 

We will call Equation (23) the generalized Blackwell condition since it is similar to one 
of the conditions of Blackwell's approachability theorem [3]. Our first theorem proves a 
general bound on the growth rate of F(st) using conditions (9) and (23). 

Theorem 5 (Gradient descent) Let F(s) and f(s) satisfy Equation (9) using the semi-
norm || • || and the constant C. Let XQ,X\, . . . be any sequence of random vectors. Write 
st — Si=o x ^ and ^(llx*ll2 I 8t) ^ D for some constant D. Suppose that, for all t, 
E(xt • f(st) | st) < 0. Then for all t, 

E{F(st+i)\s{)-F{s{)<tCD 

PROOF: The proof is by induction. For t = 0 we have 

F(si) - F(sx) < 0 

For £ > 1, assume that 

E(F(st) | a i ) < F ( s i ) + ( t - l ) C I > 
8 The text around Equation (9) specifies that F is convex and that || • || is a finite norm, but Theorem 5 

holds in the more general case when F may be non-convex and may be oo or 0. If || • || is a norm and 
F is convex (as will be the case in our application of Theorem 5 below), then Equation (9) implies that F 
is differentiate everywhere and that / is its gradient. 
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Then: 

F(sM) = F(8t+xt) 
< F(st)+Xff(st) + C\\xt\\2 

E(F(sM) \ st) < F(st) + CD 
E(F(st+i) \ < E(F(st)\si) + CD 
E(F(sw)\sl) < F ( S l ) + ( t - l ) C D + CL> 

which is the desired result. The first line above follows from the definition of st+i; the 
second, from Equation (9); the third, from taking E( • | st) on both sides, then using 
the generalized Blackwell condition and our assumption about ||xt|| to bound the last 
two terms; the fourth, from taking E( • | s\) on both sides and using the law of iterated 
expectations; and the last, from the inductive hypothesis. • 

A.2 The expected change in st 

We would like to apply Theorem 5 to bound the regret of the Lagrangian Hedging algo­
rithm. To do so, we need to show that the LH algorithm produces a sequence of regret 
vectors st that satisfies the necessary assumptions. We have already assumed, in Equa­
tion (12), that i?(||st+i — st\\2 | st) < D. So, we only need to prove that the sequence st 
satisfies the generalized Blackwell condition, Equation (23). The following lemma does so: 

Lemma 6 The Lagrangian Hedging algorithm produces a sequence of regret vectors st 
which satisfies 

E((st+i - st) -ft\st)<0 
for all t} where ft G dF(st). 

PROOF: We will choose ft to be equal to the variable yt from Figure 2. This choice means 
that the variable yt from Figure 2 satisfies kyt = ft where k = (yt • ut) > 0: in the then 
clause of Figure 2 we have yt - u > 0 so we can just multiply through. In the else clause, 
yt - u = 0. This means yt = 0: since yt G y, we can write yt = Xy for some y G y and 
A > 0. Dotting with u gives us 

u-yt = Xuy 

or 
0 = A 

since u • y = 1 for any y e y by the definition of u. So, yt = 0 = kyt. 
Now, Equation (1) tells us that the expected change in the regret vector is 

E(st+i - st | st) = (ct • yt)u - ct 
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where ct is chosen by the opponent but must be independent of yt. Taking the dot product 
with yt yields 

E((st+i - st) • yt | st) = (ct • yt)(u -y^-ct-yt^O 
since u • yt = 1. Note that this expected value does not depend on ct: the opponent can't 
influence the expected component of — st along yt. Multiplying both sides by k and 
using the identity kyt = ft inside the expectation, we have 

E({st+i - st) - ft \st) = 0 

which proves the desired result. • 

A.3 Bounds on the gradient form 

In addition to the upper bounds in Equation (9), we will need a lower bound on the growth 
of F(s) as s gets far away from the safe set S: without such a bound, we would be able to 
show that F(st) doesn't grow too fast, but we would not be able to translate that result 
to a bound on st itself. 

Depending on how strong a lower bound we can prove on F, we will get different results 
about the regret of our algorithm. The strongest results (showing that our average regret 
decreases as 0(1 /y/t)) will hold if we can show a quadratic lower bound on F. The bounds 
will get progressively weaker as our bounds on F get looser, until the weakest possible 
lower bound on F (a linear growth rate) gives us the weakest possible upper bound on 
regret. (Adjusting our learning rate, as described below in Section A.4, will allow us to 
improve some of these bounds.) 

To collect all of these results into a single theorem, we will parameterize our lower 
bound on F by an exponent 1 < p < 2, as shown in Equation (10) on p. 10. To make (10) 
be a non-vacuous lower bound, we will require || • || to be a norm rather than a seminorm. 
(That is, we will require (||x|| = 0) (x = 0). Note that || • || must be finite since F is 
finite.) With our lower bound we have the following theorem: 

Theorem 7 Suppose the potential function F is convex and satisfies Equations (4), (9), 
and (10) for constants A, B, C andp and a norm || • ||. Suppose that the problem definition 
is bounded according to (11) and (12) for constants M and D. Then the LH algorithm 
(Figure 2) achieves expected regret 

E(Pt+i(y)) < M((tCD + A)/B)Vr = 0(t^) 

versus any hypothesis y €.y. 
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PROOF: Equations (9) and (12) together with Lemma 6 show that F , / , and the update 
st+i — st satisfy the assumptions of Theorem 5. So, 

E(F(st+l) | ai) - F{sx) < tCD 

Since s\ is a fixed constant we can discard the conditioning, and since s\ € S we have 
F(si) < 0 by Equation (4). So, 

E(F(st+i)) < tCD 

Since F is convex, Jensen's inequality tells us that F(E(st+i)) < E(F(st+i)). So, writing 
s = E(st+i), we have 

F(S) < tCD 
Adding A on both sides and using the fact that tCD + A > 0, we also have 

[F(s) + A]+<tCD + A 

Now, applying (10) shows that 

B inf ||s - s\\p < tCD + A (24) 

The function x1^ is monotone on M+; so, we can apply it to both sides of Equation (24) 
and then move it inside the inf operator on the left-hand side: 

B1/? inf \\s - s\\ < (tCD + A)1/? (25) 

Now pick any y G y and s G S. Our expected regret versus y is 

E(pt+i{y)) = s-y<(s-s)'y 

since s • y < 0. So, for any y € J 7 and s G <S, 

£(p*+i(y)) < (« - a) • y < ||5 - s|| ||y||o < M||5 - «|| (26) 

by Holder's inequality and bound (11). Since s € <S was arbitrary, we will pick the s which 
makes our bound tightest: 

E(pt+1(y)) < M mi \\s - s\\ 
ses 

Finally, substituting in Equation (25) gives us 

E(pt+i(y)) < M((tCD + A)/B)l/*> 

which is the desired result. • 
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A.4 Adjusting the learning rate 

Theorem 7 shows that the LH algorithm is no-regret so long as p > 1. Some algorithms 
(for example, weighted majority) need p = 1 in their analysis; when p = 1, we can use 
the standard trick of an adjustable learning rate, together with prior knowledge of the 
number of trials, to achieve regret which is sublinear in t. For generality we will calculate 
the effect of adjusting the learning rate for 1 < p < 2, although in practice the p = 1 case 
is the most important. 

As described in Section 5, we can add a learning rate rj to the LH algorithm by replacing 
F(s) with G(s) = F(r]s). If F satisfies Equations (9) and (10) with constants A, J3, C, 
and p, then G satisfies them as well but with different constants: since dG(s) = rjdF(r}s), 

G(s + x) = F(r)s + r)x) 
< F(TIS) + TIX- f(r)s) + C\\r)x\\2 

< G(s)+x-G(8) + TT2C\\x\\2 

And, since rjs' € S sf € 5 , 

[G(8) + A)+ = [F{T,8) + A]+ 

> i n f B | | ^ - 3 ' f 
s ' e s 

= ini BWrjs-rjsT 
s f e s 

= i n f i l l * 
s'es 

So, using a learning rate r\ changes the constants for Equations (9) and (10) according to 
A *-> A, B »-> rfB, C rj2C, and p ^ p. By setting rj to optimize these constants we can 
now prove the following theorem: 

Theorem 8 Suppose that F is convex and satisfies Equations (9) and (10) with constants 
A, B, Cj and 1 < p < 2 and the norm || • ||. Suppose our problem definition has constants 
M and D in Equations (11) and (12). Lett be the anticipated number of trials, and define 
G(s) = F(7]s), where 

v=y/pA/(tCD(2-p)) 

Then the LH algorithm with potential G achieves regret 0(y/i). In particular, ifp = 1, we 

have 
T) = y/A/tCD 

and 
E(Pt+i(y)) < (2M/B)VtACD 

for any hypothesis y & y. 
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PROOF: Theorem 7 shows 

E(pt+1(y)) < M((tV

2CD + A)/{rfB))^ 

or equivalently 
E(Pt+i(y)) < M{{tr,2-pCD + Ar,-p)/B)1/p (27) 

Minimizing the above bound with respect to r? is equivalent to solving 

Since 0 < p < 2, differentiating yields 

(2 - p^-PCD = pAr)-p-1 

and therefore 
r1

2=pA/(tCD(2-p)) 

which is the learning rate given in the theorem. Substituting this value of 77 back into our 
bound gives 

E(pt+i(y)) < M((tv

2CD + A)/B)Vt>/rt ^ 
= M{{pA/{2 -p) + A)/B)ll^tCD{2-p)/(pA) 
= o(Vt) 

as required. When p = 1, the learning rate simplifies to yjA/(tCD) and the regret bound 
simplifies to (2M/B)y/tACD. • 

Note that in order to achieve sublinear regret for p = 1 we needed advance knowledge of 
the number of trials. 9 This sort of dependence on p is typical of results in the literature: 
when our potential function is superlinear the algorithm can in effect choose its own 
learning rate, while if the potential is merely linear in some direction leading away from 
S we need to select a learning rate based on external knowledge. 

As A I 0, the recommended learning rate gets smaller and smaller. If A were 0 the 
recommendation would be 77 = 0, which seems like a contradiction. But, it is not possible 
to have p < 2 and A = 0: take A > 0 and A £ S with /(0) • A < 0. (Since /(0) G 3>, such 
a A always exists: S is contained in any halfspace whose normal is in 3^, and since we 
have assumed 3^ has at least two distinct elements the containment must be strict.) Then 
Equation (9) at regret vector 5 = 0 and increment AA requires 

F(AA) < F(0) + AA • /(0) + C||AA||2 < C\\AA||2 

9 At the cost of some complexity we could have used a decreasing sequence of learning rates to sidestep 
this requirement. 
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since F(0) < 0 (because 0 G <S). And, Equation (10) requires 

F(AA) > B inf ||AA - s'\\p 

These two bounds are inconsistent: combined, they require 

A2 • constant > Xp • constant 

with both constants strictly positive, which cannot hold as A j 0 since p < 2. 
As p | 2, the recommended learning rate gets larger and larger. If p = 2, the rec­

ommended learning rate will be rj = oo (unless A = 0, in which case Equation (27) is 
independent of rj): while the analysis in the proof of Theorem 8 doesn't apply, it is easy 
to see that increasing rj doesn't alter the ratio C/B in Equation (27) and decreases A/B, 
thereby improving the bound. In practice, if p is near or equal to 2 and A > 0, we would 
recommend setting 77 as large as is practical. 

B Proof of main results—II 
Theorems 7 and 8 bound the regret of the gradient form of the LH algorithm in terms 
of properties of F. For the optimization form we are not given the potential function 
F directly, so we cannot check the conditions of these theorems. Instead we define F in 
terms of the hedging function W using Equation 7. Unlike F , there is no need for W to 
be differentiate, so long as it satisfies the required assumptions. 

In this section we describe how to transfer bounds on the hedging function W to the 
potential function F . An upper bound on W leads to a lower bound on F , while a lower 
bound on W yields an upper bound on F . The ability to transfer bounds means that, 
when we analyze or implement the optimization form of the LH algorithm, we never have 
to evaluate the potential function F or its derivative explicitly. 

Our bounds on W are detailed above, in Section 7. With these bounds on W, we can 
prove the required bounds on the potential function F : 

Theorem 9 Suppose that the hedging function W is closed, convex, nonnegative, and 
satisfies Equations (13) and (14) with the constants A, B, C, and 2 < q < 0 0 and the 
finite norm \\ • ||0. Suppose the set y fl rel intdomW is nonempty. Define p so that 
i + i = 1. Then the function F defined by Equation (7) is closed and convex and satisfies 
Equations (4), (9), and (10) with constants A, B, C, andp and norm \\ • ||. 

Since W and related functions may not be differentiable, we will use the notation of 
convex analysis to prove our bounds; see Appendix E for definitions. In this notation 
Equation (7) is equivalent to 

F = (Iy + W)* (28) 
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Figure 8: Illustration of how to transfer bounds between a function and its dual. On the 
left, the negentropy function and a quadratic lower bound; on the right, ln(l + ex) and 
the dual quadratic upper bound. 

Here ly represents the feasible region of the optimization in (7), while W is the nonlinear 
part of the objective. (The linear part of the objective corresponds to the argument of F.) 
By moving the duality operator inside the parentheses, we can see that Equation (28) is 
also equivalent to 

F = Is • (29) 
since infimal convolution is dual to addition and Is is dual to ly. 

Our bounds on F follow from the simple observation that the duality operator reverses 
inequalities between functions, as illustrated in Figure 8: for closed convex functions F 
and G, if F*(y) > G*(y) for all y, then G(s) > F(s) for all s. This fact is a direct 
consequence of the definition of duality: 

G(s) = sup [s • y - G*(y)] > sup [s • y - F*(y)] = F(s) (30) 
y y 

where the inequality holds because substituting F* for G* reduces the expression in square 
brackets at every value of y, and therefore reduces the supremum. 

We can use the inequality (30) almost directly to turn our upper bound on W into a 
lower bound on F: all we will need to do in our proof below is add ly to both sides of 
Equation (14) and take the dual. To prove our upper bound on F , on the other hand, 
requires a slightly more complicated argument. 

Returning to Figure 8, notice that the bound on the left is tangent to F*(y) at the 
input yo = 0.7 with slope SQ « 0.85, while the dual bound on the right is tangent at to 
F(s) at the input SQ with slope yo- This sort of correspondence holds in general: the slope 
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of a function translates to the argument of its dual, and vice versa. So, if we start with a 
lower bound on F* of the form we could imagine deriving from Equation (13) 

F*(v) > ^bound(y) = F*(y0) + (y- yo) • *o + L\\y - yQ\\l/2 ( 3 1 ) 

which is tangent at y — yo with slope SQ, we end up with an upper bound on F(s) which 
is tangent at s = SQ. To prove (9), we need to produce bounds on F which are tangent at 
every possible input so; so, we need to start from bounds on F* which have every possible 
slope so at their tangent points. The proof below demonstrates how to construct such 
bounds from Equation (13). 
PROOF (of Theorem 9): It is immediate that F is closed and convex, since F is defined 
as the dual of another function and the output of the duality operator is always closed 
and convex. Equation (4) is also immediate: in (7), 

s-y- W(y) < s-y 

since W(y) > 0; so, since s • y < 0 for all s G S and y G y, F(s) < 0 for all s G S. 
Let us now prove the lower bound on F , Equation (10). We have assumed (Equa­

tion (14)) that 

conv min(W(y) — A + Iy(y), I0(y)) < B\\y/B\\l Vy G y 

Adding ly to both sides yields 
conv wm(W(y) - A + Iy(y), I0(y)) < B\\y/B\\% + Iy(y) (32) 

The left-hand side was already infinite for y g y, so adding ly had no effect. Note that 
we have dropped the qualifier Vy G y since (32) is clearly true if y &y. 

We will next take duals on both sides of (32). For any two functions X and Y, the 
dual of conv min(X, Y) is max(X*, Y*) and the dual of X + Y is X* • Y*. The dual of 
the indicator function for a cone is the indicator function for the dual cone; for example, 
the dual of Jo is JKd = 0. So, writing s for the dual variable, we have 

max((W(y) - A + Iy{y))*(s), 0) > ( f l | | y / £ | | « ) * ( « ) • Is(s) 

Since F* = W + ly, we can simplify the first argument of the max: 

max(F(s) + A, 0) > (B\\y/B\\i)*(s) • Is(s) 

The dual of || • ||? is || • || p, and for any function X the dual of aX(y) is aX*(s/a), so the 
dual of B\\y/B\\i is B\\s\\p. That gives us 

max(F(5) + A,0)> B\\s\\p • Is(a) 
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which is equivalent to Equation (10) as desired. 
For the upper bound on F , Equation (9), we can use some simple identities to compute 

the dual of a function of the form F £ o i m d given in (31): first, the dual of any multiple of 
a squared norm is a multiple of the squared dual norm. 

(L||.||a/2r = (l/L)||-.||2/2 (33) 
Second, adding a linear function to an arbitrary convex function G just shifts the dual of 
G without changing its basic shape: 

(a • s + b + G(s))* = G* (y - a) - 6 (34) 

Finally, if we have a point (yo, G*(yo)) where there is a tangent to G* of slope so, then 
the function G*(y) — y • so has a tangent of slope 0 at y = yo. So, yo is a minimum of 
G*(y) - V ' so, and 

G(s0) = sup (ys0- G*(y)) = y0'S0- G*(y0) (35) 
y 

Combining the identities (33) and (34), the dual of 

L\\y\\l/2 + 80.y + F*(y0) 

IS 

(l/L)\\s-s0\\2/2-F*(y0) 
Using Equation (34) again (in the opposite direction) for the substitution y y-> (y — yo) 
tells us that the dual of F £ o u n d is 

F b o u n d W = (l/L)\\a - 5 0 | | 2 / 2 - F*{yo) + s • y0 

Adding and subtracting so • yo and using (35) gives us 

^boundOO = F(s0) + (s - s 0 ) * yo + (l/L)\\s - 5 0 | | 2 / 2 (36) 

As mentioned above in the main text, Fbound(^o) = F(so) and by Equation (30) we have 
Abound (s) > F(s) for all s. So, to prove our result we need to be able to construct an 
appropriate F £ o u n d from Equation (13) for any desired slope so-

First we will show that F must be finite everywhere. We have assumed that there 
exists a point yo e y D rel intdom W C domdW. Write so for an arbitrary element of 
dW(yo). Now Equation (13) tells us that 

F(s) = 8up(y-s-W(y)) 
yey 

< sup (y • a - W(y0) - s0 • (y - yo) - (l/4C)||y - y 0 | | 2 ) 
yey 

< oo 
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because the expression inside the supremum is bounded above (along every line through 
yo it is concave and quadratic, with bounded slope at yo). 

Since F is finite everywhere, dF is nonempty everywhere. So, given a desired so, pick 
yo G dF(so); we will build an F£ o u n ( j function of the form given in Equation (31) using 
this choice of yo-

By duality we have so G #F*(yo). Since F* = Iy + W we have so = s\ + S2 with 
si G dly(y0) and s2 G dW(y0) by Theorem 23.8 of [20, p. 223]. Theorem 23.8 applies 
because we have assumed that y fl rel int dom W is nonempty. 

The existence of s\ tells us that yo G y, and similarly the existence of s2 tells us that 
yo G domdW. So by assumption Equation (13) holds for yo and 5 2 : 

W(y)>W(yo) + {y-Vo)-82 + {l/4C)\\y-yo\\2

0 Vy 

And by definition of subgradient, 

iy{y) > i(vo) + {y- yo) • *i Vy 

Adding these two inequalities yields 

F*(y) > F*(yQ) + (y - yo) • s0 + (l/4C)||y - y0\\2

o Vy (37) 

Picking L = 1/2C, we can identify Equation (37) with Equation (31). So, taking the dual 
of both sides, we have 

F(s) < F(s0) + (s - so) • yo + C\\s - s0\\2 Vs 

as we derived in Equation (36). Since so was arbitrary, we have now shown that F 
satisfies (9), which finishes the proof of our theorem. • 

C Additional proofs 
In this section we will prove that the two forms of the LH algorithm are well-defined and 
that the optimization form is a special case of the gradient form. 
PROOF (of Theorem 1): Define y as in Equation (3). If we can show that yt G 3> then 
we are done: if yt = Ay, then yt • u = A. Either A > 0, in which case the then clause in 
Figure 2 will pick yt = y G y, or A = 0, in which case the else clause will pick yt G y. 

By convexity, since yt G dF(st), 

F(s) > F(st) + {s - st) • yt 

For all s G S we have F(s) < 0, so 

0 > F{st) + {s- st) -yt Vs G 5 
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or, rearranging terms, 
st'Vt- F(st) >s-yt Vs G <S 

Since as G S for all a > 0, we also have 

st'Vt- F(st) > as-yt 

(st - yt - F(st))/a > s-yt 

0 > s-yt (38) 

for all s G <S, where the last line follows because we can make a arbitrarily large. 
Now, 5 was defined as y-1, or equivalently y1-. y is a closed convex cone, since 3̂  is 

closed and convex; so, saying S = y1- is equivalent to saying y = S1. But, S1- is exactly 
the set of vectors y with s • y < 0 for all s G 5; so, inequality (38) shows that yt G 3̂ - n 

P R O O F (of Theorem 2): To show F(s) < 0 for all s G 5, recall that s-y < 0 for all s G 5 
and y G 3̂ . Since W(y) > 0, that means that both terms inside the supremum in (7) are 
nonpositive for all feasible y when s G S. Since there is at least one feasible y, the value 
of the supremum must also be nonpositive. 

To show equivalence, consider any y which achieves the supremum in (7). Such a y 
must exist, since W(y) + Iy(y) — s • y is closed, convex, not everywhere infinite, and has 
no directions of recession (see [20, Theorem 27.1(d), p. 265]). For this y, 

F(s + A) = sup ((5 + A) • y' - W(y')) 
y'ey 

> (s + A ) - y - W ( y ) 
= A-y + (8>y-W(y)) 
= A - y + F(s) 

So, y G dF(s), which is what was required. • 

D Analysis of the entropy function 

This section derives the constants required for using the entropy function in the bounds 
of Theorems 3 and 4. 

Lemma 10 Ifyis the d-dimensional probability simplex and 

W(y) = lnd+y52yilnyi+Iy(y) 
i 

then Equation (13) holds using the norm \\-\\\ and C = 1/2. And, Equation (14) holds 
with A = lnd, B = 1, p = 1, and q = 0 0 . 
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PROOF: We will verify Equation (13) first. Write 

W0(y) = Ind + ^Tyilnyi 
i 

We have WQ = W inside y, and since Wo is differentiate in all of R + + it will be easier to 
work with. Pick a hypothesis y G rel int̂ V = domdW and a direction A with ||A||i = 1. 
Define 

WyA(\) = W0(y + \A) 
Assume without loss of generality that J2i A* = 0 (since Equation (13) holds trivially for 
y + AA if At ^ 0). Now, Equation (13) with C = 1/2, evaluated at hypothesis y and 
increment A A, becomes 

W(y + AA) > W(y) + AA • s + X2/2 Vs G dW(y) 

Since A* = 0, we may without loss of generality take s = WQ(JJ). That means that, 
since W^A(A) = A • W$(y + AA), we need to show 

WyA(X) > WyA(0) + AW; A(0) 4- A 2/2 (39) 

Equation (39) holds if W£'A(A) > 1 for all A such that y + AA G rel in ty . To check this 
condition, we can calculate derivatives of WyA with respect to A. The first derivative is 

The second derivative is 

or, writing x = y + AA, 

^ W ^ ( A ) = i;^/(w + AAi) 

^WyA{\) = YJ^/*i (40) 
i 

We want to verify that the second derivative is always at least 1, so we will find the 
x G K | which makes (40) as small as possible. Since (40) is a convex function of x which 
approaches oo as any component of x approaches 0, 1 0 the second derivative is smallest 

1 0Unless A» = 0 for some i, in which case we can fix Xi = 0 and apply the rest of our argument to the 
remaining components of x. To see why, consider any j such that A^ > 0. To reduce (40) we want to 
make Xj as large as possible. If Xi were positive, we could increase Xj by reducing Xi\ so, x% cannot be 
positive at the minimum. 
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Figure 9: The function W. W — lnd is the negentropy function, shown as the solid curve 
extending downward from (0,1,0) and (1,0,0), while W is the shaded surface. A contour 
plot of W is shown projected on the xy plane. W is the greatest convex function which 
satisfies the conditions (a) W(0) = 0 and (b) whenever W(y) is finite, W(y) = W(y)—lnd. 

when the gradient of (40) with respect to x is orthogonal to the constraint Ylixi = 1-
This happens when there is some constant k > 0 such that 

A?/*? = k 

or equivalently Xi = \/fc|Aj|. Since X) i |Ai | = 1 and -J^Xj = 1» w e have k = 1 and 
Xi = |Aj|. Substituting back into (40), that means 

i i 
for all A. Since y and A were arbitrary, we have now verified that W satisfies (13). 

For the second part: when y is the probability simplex, y is the positive orthant. 
Outside the positive orthant, (14) holds trivially. Within the positive orthant, the left-
hand side of (14) is 

conv min(Wr — hid + ly, 1$) = W 
which is plotted in Figure 9. W is negative when Yl%Vi ^ while the right-hand side 
of (14) is which is zero when J2%Vi ^ 1- B o t h t h e left-hand and right-hand 
sides are infinite when j/i > 1. • 
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Function Dual | 

I V L 

\ x \ p / P \y\Vq ( A + $ = 1»P>9>1) 
XP/p + I\0,oo)(x) WJq ( i + I = l , P , 9 > l J 

Vl + x 2 -y/i - y 2
 ( - 1 < y < i) 

- l n x (x > 0) l - l n ( y ) ( y > 0 ) 
e x y l n y - y (y > 0) 

aF(x) aF*(y/a) (a ^ 0) 
F(ax) F*(y/aj ( o # 0 ) 

F{x) + k F*(y) - k 
F(x + k) F*{y)-ky 

F{x) + G(x) (F* • G*)(y) 
max(F(x), G(x)) conv min(F*(y), G*(y)) 

Figure 10: Convex functions and their duals (adapted from [20,21]). 

E Convex duality 
This appendix provides some standard notation and results from convex duality which are 
used in the rest of the paper. For more information on convex duality, Rockafellar's text­
book [20] is a good resource; an introduction with a focus on optimization is in Chapters 
2-5 of Boyd and Vandenberghe's textbook [19]. 

A set of points is called convex if it contains all weighted averages of its elements, and 
it is called closed if it contains all limits of sequences of its elements. Given a function 
F(x), define the set 

epi(F) = {(*,*) \z>F(x)} 
which contains the graph of F and the area above that graph. The set epi(F) is called the 
epigraph of F. We will say that the function F is convex iff epi(F) is convex, and closed 
iff epi(F) is closed. F(x) is allowed to be infinite, in which case epi(F) has no elements of 
the form (x, z) for any z. The set {x \ F(x) < oo} is called the domain of F , domF. 

Given a function F(x), its convex dual is defined as 
F*(y) = sup(x-y-F(x)) (41) 

x 

F* is guaranteed to be closed and convex, and if F is closed and convex then F** = F . 
Any yo which satisfies 

F(x) > F(x0) + (x- x0) - yo Vx (42) 
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is called a subgradient of F at xo, written yo G dF(xo)- The subgradient exists almost 
everywhere that F is defined: for example, if XQ is in the relative interior of dom F, then 
dF(xo) is nonempty. The subgradients of a differentiable convex function are just its 
gradients. For any closed convex function F , xo G dF(yo) iff yo G dF*(xo); that is, the 
subgradients of F and F* are inverses of one another. 

Convex duality is related to geometric duality: if F(x) — Ic(x) is the indicator function 
of a cone C, then the dual of F is F*(y) = Ic±(y), where CL is the dual or polar cone to 
C. The indicator function Ic of a set C is defined by Ic(x) = 0 for x G C and Ic(x) — 0 0 

for x £ C. 
Convex duality is also related to duality of seminorms. Let || • || and || • ||Q be dual 

seminorms. Let <f> : R 1—> R be a convex function with <j)(x) — 4>(—x), and suppose <j> is 
monotone nondecreasing on [0, 00). Then the two functions 

* ( I W I ) * ' ( l l y | l » ) 

are dual to each other. (For a proof of the above result, see [20], particularly p. 110 and 
Theorem 15.3.) As an example, the norms ||x||i = |x*| and || 

^ | | o o — max^ \xi\ are dual 
to each other, and we could take </>(x) = x 2 / 2 . In this case, we would have that | |x| |f/2 
and Hy l l ^o /2 are duals. 

Figure 10 lists some examples of functions and their duals, including some algebraic 
rules for computing duals. In the figure, the notation FOG means the infimal convolution 
of F and G, 

(FDG)(y) = mi(F(y-z) + G(z)) 

Infimal convolution is interesting because it is the dual of addition: 
(F + G)* = F* • G* 

As an example, if we take F(x) = | |x||f and G(x) = Ic(x) for a cone C, then (F + G)*(y) 
is the squared distance of y from CL using the norm || • | | o o . 

A final useful fact is that the convex duality operator reverses inequalities between 
functions: for example, if F(x) > G(x) for all x, then F*(y) < G*(y) for all y. 
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