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1 I n t r o d u c t i o n 

Latent variables are everywhere in science. Concepts such as gravitational fields, subatomic 
particles or various classes of antibodies are essential building blocks of models of great 
practical impact, and yet such entities are unobservable. Sometimes there is overwhelming 
evidence that hidden variables are actual physical entities, and sometimes they are useful 
abstractions to be added to the scientific vocabulary to make the description of Nature more 
tractable. 

For instance, focusing in our particular interest of artificial intelligence (AI), it is hard 
to conceive a robot or any kind of intelligent agent seemly integrated to its environment if 
such agent is not able to reason with latent variables. Consider a futuristic version of Pearl, 
the nursing robot described in (Pineau et al., 2003). Imagine the task of autonomously 
attempting to diagnostic and reduce stress or depression levels of a patient, considering that 
someone suffering from depression will not in many cases ask for help. If the robot detects 
the patient is feeling too stressed, it could remotely contact healthcare professionals to come 
over and properly treat the patient. This would be especially useful if he or she is an elderly 
person living alone. 

However, "stress" is not an easily describable concept: unlike "height" and "weight", 
there is no simple scale for it. Instead, one can measure stress through a varied set of 
indicators such as blood pressure, amount of hours slept by day, cold and sweaty hands, and 
so on. By using such indicators obtained from physical sensors, an agent is able to reason 
about a latent concept and do the proper intervention in the world. In either way, latent 
variables play a major role in the process of scientific modeling and discovery, and any tool 
that could aid the discovery of latent variables would be of great interest. 

This is the goal of this paper. We introduce a machine learning algorithm to discover 
possible hidden common causes of a set of observed variables in a causal graphical model 
framework. Unlike factor analysis, there is no need to rely on arbitrary rotations of the latent 
space. Unlike general hill-climbing algorithms over directed acyclic graphs (DAGs) with 
latent variables, our approach provides an equivalence class of models that are empirically 
indistinguishable. Moreover, a proof of consistency of the algorithm is given on the limit of 
infinite data. That is, given the constraints that hold in the population over the measured 
variables, and a set of assumptions we make explicit in Section 3 below, the algorithm will 
output an equivalence class that includes the correct latent variable measurement model. 

Our assumptions are described in detail. The most important assumption is that observed 
variables are measures of a set of unknown latent variables. In graphical model terminology, 
it means that no observed variable is an ancestor of a latent variable, but direct connections 
among observed variables are allowed. A stronger variation of this assumption is widely used 
in other latent variable discovery methods such as exploratory factor analysis. The graphical 
structure of the latent nodes is free to take any form: an arbitrary DAG, a DAG with other 
hidden common causes, cyclic graphs. 

In this work, we will not discuss how to learn the structure among latent variables. In­
stead, we will provide an algorithm to learn a graphical structure describing which latent 
variables are parents of which observed variables, i.e., a measurement model The procedure 
is an exploratory data analysis, or data mining, method to discover latent concepts that can 
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be useful for AI applications and in a variety of scientific models. The measurement model 
obtained can then be fixed such that another learning procedure is applied to search for a 
structure among latents, as done in Silva (2002), but such problem can be treated indepen­
dently and will not be further discussed to provide a better focus on learning measurement 
models. 

This paper is organized as follows: 

• Section 2: Related work is a brief overview of other approaches directly or indirectly 
related to the task of building a measurement model from data; 

• Section 3: Problem statement and assumptions formally defines the problem and 
introduces which assumptions are considered in order to provide a rigorous interpreta­
tion of our models. Such assumptions will be essential when proving the consistency 
of our procedure; 

• Section 4: Learning measurement models is the main section, describing the stan­
dard algorithm for learning a representation of a set of measurement models consistent 
with the data. This section considers the learning problem assuming the population 
joint distribution is known. Later sections will treat the problem of learning with finite 
samples; 

• Section 5: Purification and identifiability describes a specific class of measure­
ment models that in practical applications will be the representation of choice due to 
theoretical and practical reasons; 

• Section 6: Statistical learning and practical implementations details how to 
use the given algorithms when the population joint density is not known and which 
heuristics can be used to improve robustness to sample variability, and how how to 
deal with the computational complexity of this procedure; 

• Section 7: Empirical results discusses series of experiments with simulated data 
and three real-world data sets, along with criteria of success; 

• Section 8: Conclusion wraps up the contributions of this paper. 

2 R e l a t e d work 
Arguably, the most traditional framework for discovering latent variables is through factor 
analysis (see, e.g., Johnson and Wichern, 2002). A number of factors is chosen based in 
some criterion such as the minimum number of factors that fit the data at a given level or 
the number that maximizes a score such as BIC. After fitting the data, usually assuming a 
Gaussian distribution, different transformations to the latent covariance matrix are applied 
in order to satisfy some criteria of simplicity. Latents are interpreted based on the magnitude 
of the loadings (the coefficients relating each observed variable to each latent). 

This method can be quite unsatisfactory due to the underterminacy of the solution in 
the Gaussian case. Rotation methods used to transform the latent covariance matrix have 
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no formal justification. For non-Gaussian cases, variations such as independent component 
analysis and independent factor analysis (Attias, 1999) or tree-based component analysis 
(Bach and Jordan, 2003) do little to contribute to solve the problem of learning measurement 
models: by severely constraining latent relationships through marginal independencies or at 
most pairwise dependencies, the goal is to obtain good joint density estimation or to perform 
blind source separation, but not model interpretation or latent concept discovery. 

In constrast, Zhang (2004) does provide a sound representation for measurement models 
for discrete observed and latent variables with a multinomial probabilistic model. The model 
is constrained to be a tree, and every observed variable has one and only (latent) parent and 
no child. Therefore no observed variable can be a child of another observed variable or a 
parent of a latent. To some extent, an equivalence class of graphs is described, which limits 
the number latents and the possible number of states each categorical latent variable can 
have without being empirically indistinguishable from another graph with less latents or 
less states per latent. Under these assumptions, the set of possible latent variable models 
is therefore finite. Besides being useful to model joint probability distributions, Zhang also 
points out that such model can be used to cluster analysis, generalizing standard one-latent 
approaches for clustering such as AutoClass (Cheeseman and Stutz, 1996). However, as 
pointed out by Zhang, this choice of representation does not guarantee that every joint 
distribution can be modeled well. 

A related approach is given by Elidan et al. (2000) where latent variables are introduced 
into dense regions of a DAG learned through standard algorithms. Once one latent is intro­
duced as the parent of a set of nodes originally strongly connected, the standard search is 
executed again and the process is iterated. They provide several results where this procedure 
is effectively able to increase the fit over a latent-free graphical model, but little is discussed 
about how to interpret the output. No equivalence classes are given, and all examples de­
scribed in Elidan et al. (2000) and Elidan and Friedman (2001), comparing an estimated 
structure against a true model structure known by simulation, use as starting points graphs 
that are very close to the true graph. The main problem of using this approach for model 
interpretation and causal analysis is thè lack of a description of which graphs are empirically 
indistinguishable. 

Silva et al. (2003) provide the foundations of the work here described. In the next 
sections, we discuss how we generalize the previous approach and which new heuristics are 
applied. The present work itself is inspired by the approaches introduced in Glymour et al. 
(1987), where measurement models are modified based on an initial model where all latents 
are given, not discovered. More discussion about related work is also given in Silva et al. 
(2003). 

3 P r o b l e m s t a t e m e n t a n d a s s u m p t i o n s 
The goal of learning measurement models is identifying unmeasured concepts ("factors") 
that causally explain the associations measured over a set of observable random variables. 
The framework of causal graphical models will be used as a formal language to describe our 
approach. Concepts such as graphs, paths, causal graphs, d-separation and causal Markov 
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condition will be used. Unless otherwise specified, references such as Pearl (1988, 2000) and 
Spirtes et al. (2000) contain all the necessary definitions in full detail. 

The following definitions introduce the families of measurement models and graphical 
models of interest. We begin by our particular definition of latent variable graph. 

Definition 1 (Latent variable graph) A latent variable graph G is a graph with the fol­
lowing characteristics: 

1. there are two types of nodes: observed and latent; 

2. no observed node is an ancestor of any latent node; 

3. each observed node is a child of (measures) at least one latent node; 

4. there are no cycles involving an observed variable; 

The notation G(O) will sometimes be used to denote a latent variable graph G with 
a set of observed variables O. The second assumption, which we call the measurement 
assumption, cannot in general be tested empirically. Nevertheless, its use is justified in 
several applications (e.g., Bartholomew et al., 2002). It is also the core assumption of all 
procedures with goals similar to factor analysis, even when it is not made explicit. See Silva 
et al. (2003) for more on this topic. Also important, it partitions the graph in two main 
parts, one of them composed of latent variables only. We can explore this modularization 
when defining a parameterization of the latent variable graph in order to avoid making 
unnecessary assumptions about the causal structure of the unobserved variables. 

In the next section, we define which types of models our latent variable graphs can 
represent. We then introduce a particular useful equivalence class of models and formally 
state the problem of learning measurement models under the given setup. 

3.1 Interpretat ion and parameter izat ion 

We assume that a latent variable graph G is quantitatively instantiated as a semi-parametric 
model with the following properties: 

1. G satisfies the Causal Markov condition (Spirtes et al., 2000; Pearl, 2000); 

2. each observed node is a linear function of its parents plus an additive error term of 
positive finite variance which is independent of every other error term; 

3. the marginal distribution over latent variables has finite second moments, positive 
variances and all correlations in the open interval (-1, 1). 

We call such an object a semilinear latent variable model. If the relationships among 
the latent variables are also linear, that is, if each latent variable is a linear function of its 
parents plus additive noise, then we call it a linear latent variable model, an instance of a 
structural equation model (Bollen, 1989). For simplicity, we will assume that all variables 
have zero mean. Unless otherwise specified, all latent variable models that we refer to in 
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this report are semilinear models. Sometimes we will call the graph for a semilinear model 
as semilinear latent variable graph. A linear latent variable graph is defined analogously. 

The linearity assumption linking the parents of an observed variable to itself is one 
way of constraining the classes of models represented by latent variable graphs. We call such 
assumption linearity of measurement. With arbitrary functional relationships among children 
and parents and arbitrary structure, any data can fit some latent variable model (Suppes 
and Zanotti, 1981). For instance, to be able to introduce an useful, constrained latent 
variable model, Zhang (2004) assumes that the latent variable graph has a tree structure, 
and variables are discrete. He does not assume linearity of measurement. 

However, our work concerns graphical causal modeling: representing causal processes as 
directed graphs. Assuming the true (and unknown) processes in nature that generate our 
data to have the graphical structure of a tree is not very interesting in most cases, considering 
the bulk of applications of latent variable models in many sciences such as econometrics, 
social sciences and psychometrics (e.g., Bollen (1989)), all of which share many points in 
common with AI modeling. We prefer to allow the graphical structure over the latent nodes 
to be entirely unrestricted: an arbitrary DAG, a DAG with other hidden common causes, a 
cyclic graph, etc. Linearity of measurement might seem restrictive, but it is often explicitly 
designed into econometric, psychometric, and social scientific studies. Althought the linearity 
of measurement assumption is not sufficient to guarantee full identifiability of a graph as we 
will see later, it is still useful to distinguish a variety of features that only some graphs can 
share for a given distribution. 

Notice also that requiring linear direct effects from latents into observed variables can 
be interpreted just as a change of latent space. For instance, suppose we have the graphical 
model depicted in Figure 1(a), in which for simplicity we do not consider error terms. Vari­
able 7] has a linear direct effect in three variables, and a nonlinear effect in the remaining 
three. The same model can be represented as in Figure 1(b), where the latent space is split 
into two latent variables with a linear measurement model1. The process r/i —• 772 is a vari­
able equivalent to 77 and the fact that we can break it down into two simpler hidden common 
causes might actually improve the interpretation of the model. The assumption about linear 
latent effects on observed variables is therefore weaker than it might seem in principle: it 
is basically a way of defining which latent variables can be considered direct causes of the 
observed variables. 

Given the definition of latent variable model, we can now introduce the following key 
definition: 

Definition 2 (Measurement model) LetG(0) be a latent variable model. The submodel 
containing the complete set of nodes of G, and all and only those edges that point into 0 ; is 
called the measurement model of G. 

Under this context, observed variables are also called indicators. Therefore, the graphical 
representation of the measurement model of a latent variable model is just its subgraph when 

1 Notice however that we might not be able to define an intervention for variables {Yi, Y2, Y3} that does 
not affect variables {X\, X2, Xz}. In our causal framework, it means that latent 772 is a variable that cannot 
be manipulated. 
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(a) (b) 

Figure 1: (a) A single latent explains the association of random variables {XiyYi} through 
non-linear direct effects (for simplicity, assuming no random noise is added to indicators), 
(b) This variable can be written as two different events associated by a directed edge, where 
now all direct effects on the indicators are linear. 

we remove all edges that might exist among latent variables. Notice that graphically the 
measurement model is a DAG. Also, a DAG submodel containing a subset of the observed 
nodes of G, their latent parents, and all and only those edges that point into these observed 
nodes, is called a measurement submodel. In an abuse of notation, sometimes we refer to the 
graphical representation of the measurement model (i.e., the measurement model graph) as 
simply "measurement model". 

The remaining edges of G, along with the respective latent nodes, form the complemen­
tary structure defined below: 

Definition 3 (Structural model) Let G(0) be a latent variable model. The submodel 
containing only the latents of G, and all and only the edges between latents, is called the 
structural model of G. 

Therefore, the union of a measurement model and a structural model with the same set of 
latents forms a latent variable model. As hinted before, we will not discuss here how to learn 
a structural model. Still, these two tasks are related according to this loose formulation of 
our discovery problem: assuming that the true model is a latent variable model, given a data 
set with variables O, find the set of measurement models over O that are indistinguishable 
under a certain class of constraints on the observed marginal, and that will facilitate finding 
the Markov equivalence class, or the Partial Ancestral Graph of the structural model (Spirtes 
et. al, 2000). 

Later in this report, we briefly describe which other assumptions could be used to support 
discrete variables. However, we do need two extra assumptions for any result in this report 
that requires the true model G to be a linear measurement model instead of the more general 
semilinear model: 
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1. G satisfies the Faithfulness assumption (Spirtes et al., 2000), called stability in Pearl 
(2000). That is, a any conditional independence is entailed in G by the causal Markov 
condition if and only if it holds in the probability distribution over the variables rep­
resented in the graph 

2. G is acyclic; 

3.2 T h e t e t rad equivalence class 

In order to be able to distinguish among different measurement models that might have 
generated our observed joint probability distribution, we need to report those models that 
are compatible with observed constraints of the joint. A measurement model is compatible 
if it entails only observed constraints: 

Definition 4 (Constraint entailment) A latent variable graph G entails a constraint if 
and only if the constraint holds in every distribution parameterized by the pair (Pq, O), where 
Pq is a probability distribution over the latent variables that satisfies the Markov condition 
for the structural model in G, and © is the set of linear coefficients and error variances for 
the observed variables. The measurement model of G entails a constraint if and only if the 
constraint holds in every distribution parameterized by the pair (Pq, 6 ) , where Pq is any 
probability distribution among the latents. (Pq and Pq have also to satisfy the assumptions 
on latent variable models about first and second moments.) 

We are interested in a specific class of constraints. Given the covariance matrix of four 
random variables {A, B, C, D}, we have that zero, one or three of the following constraints 
may hold: 

& AB&CD = &AC&BD 

&AC&BD = &AD&BC 

&AB&CD — VAD&BC 

where g x y represents the covariance of X and Y. 
Like conditional independence constraints, different latent variable graphs might entail 

different tetrad constraints. Therefore, a given set of observed tetrad constraints will restrict 
the set of possible latent variable graphs that are compatible with the data. We restrict 
our algorithm to search for measurement models that entail the observed tetrad constraints 
and vanishing partial correlations judged to hold in the population. Since these constraints 
ignore any information concerning the joint distribution besides its second moments, this 
might seem an unnecessary limitation. What can be learned from these constraints can be 
substantial, however, and attending to only the lower order moments makes the algorithm less 
prone to statistical errors. The empirical results discussed in Section 7 support this tradeoff. 
Assuming that the correct model entails all such constraints in the marginal probability 
distribution is a restricted version of the Faithfulness assumption discussed in (Spirtes et al., 
2000). 

In the particular case of linear models, tetrad constraints have a well-defined graphical 
implication. First, we need to introduce a few more definitions: 
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• in a graphical model, a collider on a path is a pair of consecutive directed edges on 
this path such that both edges point to the same node; 

• a trek between a pair of nodes X and Y is an (undirected) path that does not contain 
any collider; 

• a choke point for two sets of nodes X and Y is a node that lies on every trek between 
an element of X and an element of Y 2 

A graphical characterization of tetrad constraints for linear graphs is known under the 
Faithfulness assumption: 

Theorem 1 (The Tetrad Representation Theorem) Let G be a linear graph, and let 
h,l2,Ji,J2 be four variables in G. Then o'j1j1ai2j2 = crj^aj^ if and only if there is a 
choke point between {/j,^} and {Ji, J2}. 

Proof: See Shafer et al. (1993) and Spirtes et al. (2000). • 

One can see how tetrad constraints are useful for learning the structure of latent variable 
graphs in the linear case: for instance, if one is given a linear latent variable graph as a 
starting point, this graph will entail several tetrad constraints that may hold or not among 
observed variables, and various modifications can be suggested to the current structure in 
order to make it entail more of the tetrad constraints that hold in the probability distribution 
and less of the constraints that do not hold. This is explored in Glymour et al. (1987) and 
Spirtes et al. (2000). 

In this work, we explore principled approaches to reconstruct several features of the 
graphical structure of an unknown measurement model based on the covariance matrix of 
the observed variables, where no starting graph is required and the true model can be 
semilinear. It is an extension of the work of Silva et al. (2003) with relaxed assumptions. 
The principle continues to be matching entailed tetrad constraints to observed ones. 

However, since there is no known graphical criterion of tetrad entailment for arbitrary 
semilinear latent variable graphs (or even for vanishing partial correlations, which will also 
be useful) such as the d-separation calculus for conditional independencies, we have to rely 
on the Definition 4, which is not purely graphical. It is basically a criterion of invariance with 
respect to the parameters of the measurement model. Invariance with respect to parameters 
is the key property of what is sometimes called a "structural" constraint (e.g., as in Shafer 
et al., 1993) and we claim nothing is lost in causal analysis by defining entailment in a causal 
graph where the causal features that are not of immediate interest are not parameterized (in 
our case, the structural model). We will show several results that hold only with probability 
1 with respect to a Lebesgue measure taken over G, the linear coefficients and error variances 
in such graphs, but in practice this is no stronger than assuming the Faithfulness condition, 
which is known to fail for a set of parameters that has measure zero (Spirtes et al., 2000) for 
linear models. 

2This is actually the definition of weak choke point as explained in Shafer, Kogan and Spirtes (1993), but 
it will suffice for our exposition. Since we do not make use of the definition of choke point except in some 
proofs in the appendix, and such definition requires a more detailed explanation, we defer the presentation 
of the full definition to the appendix to avoid interrupting the flow of the text. 
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Figure 2: In this model, different choices of covariance matrix for latents {Li,L2,L^} will 
make three or only one tetrad constraint for variables {Xi,X 2 , Yi, Y2} hold. 

In order to understand the difference between entailment by a latent variable graph 
and entailment by its respective measurement model, one can look at the example given in 
Figure 2. Latent L2 is a choke point (Xi, X2) x (Yi, Y2) and will imply the tetrad constraint 
vxiYiVx2y2 — ^XiY2

crx2Yi independently of the model being linear or semilinear. However, 
the other possible tetrad cyxxx2^Y{Y2

 = ax1Y1orx2Y2 will hold if and only if cr^a^Ls — &l2<7l3, 
i.e., the partial correlation of L2 and L3 conditioned on L\ being zero, which is true for all 
probability distributions that are Markov relative to the latents in this graph, but not for an 
arbitrary latent covariance matrix. Therefore, this particular tetrad is not entailed by the 
measurement model. We need to distinguish between the two forms of entailment because 
we want to learn about measurement models independently of the possible structural model 
of the true latent graph. They will therefore form equivalence classes. 

Definition 5 (Tetrad equivalence class) A tetrad equivalence class T(C) is a set of la­
tent variable graphs T all of whose measurement models entail the same set of tetrad con­
straints and vanishing partial correlations C among the measured variables. An equivalence 
class of measurement models M(C) for C is the union of the measurement models in T(C). 

To summarize, we assume that the true model is a latent graphical model with the prop­
erties described in this Section. Under this condition, several results will be proved in the 
next sections. The goal is not identifying the exact true measurement model, because in 
general our assumptions are still strong for such task. The general problem can then be 
reformulated as follows: assuming the true model is a latent variable model, given a data 
set with variables O, return all possible measurement models over O that are indistinguish­
able under the class of tetrad constraints and vanishing partial correlations on the observed 
marginal. We will show this is possible to some extent. 

An interesting question is if it makes a difference assuming the true graph is linear instead 
of semilinear, i.e.: if, for some set C of tetrad and vanishing partial correlation constraints and 
a fixed latent probability distribution PG faithful to a linear model, the set of possible linear 
latent models conditioned on PG that entail C is strictly smaller than the set of semilinear 
models. The answer for this question and the reason we are interested in results for a fixed 
marginal distribution for the latents will be discussed in Section 4.2. 
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4 Lea rn ing m e a s u r e m e n t mode l s 
In this section, we introduce different criteria for learning features common to all possible 
latent variable graphs that generated the observed tetrad constraints and vanishing partial 
correlations. Sections 4.1, 4.2 and 4.3 describe which constraints are used and which struc­
tural features can be discovered. Section 4.4 will introduce an algorithm that uses those 
constraints to output measurement models compatible with the observed covariance matrix. 

4.1 Locally sound constraint se ts 

There is a specific class of sets of probabilistic constraints of practical interest which we will 
denominate locally sound constraint sets. A locally sound constraint set is a collection of 
constraints on the joint distribution of k observed variables, where k is a constant that does 
not grow with the total number of given variables. The variables used in the constraint set 
are called the domain of the constraint set. When such constraint set holds, then it should 
be sound (as defined in the next paragraph) to infer some particular feature of the unknown 
graph of interest. For instance, algorithms such as the P C S E A R C H (Spirtes et al., 2000) and 
GES (Meek, 1997) test constraints that can refer to up to all variables in the domain, and 
therefore can not be considered "local" in the sense given here. However, anytime variations 
of the same idea such as the A N Y T I M E FCI algorithm of Spirtes (2000) fixes the size of the 
largest number of variables on which tests of conditional independence are evaluated, and 
therefore such constraints can be considered locally sound constraints under that context. 

Let the true latent variable model G be parameterized by a pair (P<?,G), where PG 

is a joint distribution over its latents that is Markov relative to G and © is the set of 
coefficients and error variances for the respective measurement model. We define soundness 
of a constraint set in the context of latent variable models as follows: if a constraint set 
establishes that certain feature should hold in G, then the probability of failure is zero with 
respect to a Lebesgue measure over G. That is, for some set of values of G, an inference rule 
using the constraint set is allowed to fail, as long as this set has measure zero. However, this 
constraint should hold for every PG. The reason is we do not know how to quantify if the 
set of distributions PG in which the constraint set rule erroneously applies is a "small" set 
in some measurable sense since PG might be a result of the Markov condition applied to the 
unknown functional relationships among latents in G, and we do not make assumptions on 
how the parameterization of such functions is done. As discussed before, allowing a chance 
of error with probability zero is not stronger than assuming the Faithfulness condition in, 
say, linear DAGs. 

The computational cost is not the only attractive feature of locally sound constraint sets: 
it is a reasonable idea not to rely on constraints with a large number of variables because 
statistical decisions are less reliable. The theoretical results should then be constructed 
with this self-imposed limitation in mind, making the theory more relevant for practical 
applications. 

There are two main structural features of measurement models that can be discovered 
by our method: 

• instances where two given observed variables cannot have a common parent in any 
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latent variable graph entailing the observed tetrad constraints and vanishing partial 
correlations (Section 4.2); 

• instances where a given observed variable cannot be an ancestor of another given 
observed variable in any latent variable graph entailing the observed tetrad constraints 
and vanishing partial correlations (Section 4.3); 

For the first situation, we will make use of constraint sets of k = 6. The reasons are 
simple: first, because of its practical use, as illustrated in the empirical examples described 
later in this report. Second, because they are the simplest constraint sets that can be used, 
as given by the following result: 

Theorem 3 There is no locally sound tetrad constraint set of domain size less than 6 for 
deciding if two nodes A and B do not have a common parent in a latent variable graph G, if 
PxiX2.xz 7^ 0 a n d PXiX2 0 for aM { - ^ I > - ^ 2 } in the domain of the constraint set and observed 
variable X 3 . 

All of our non-trivial constraint sets require partial correlations to be nonzero, and it can 
be argued that there might be combinations of vanishing partial correlations and vanishing 
tetrads that could be used instead. We claim this combination is not likely to be useful. 
We are mostly interested in tetrad constraints that arise because of some latent choke point, 
and if such node exists, then no correlations and partial correlations over those variables will 
vanish. On the other hand, if the choke point is an observed variable, the we can use directly 
the observed vanishing partial correlations to infer that some nodes cannot share a parent 
without using tetrad constraints. 

It is certainly possible to use vanishing partial correlations only in order to detect some in­
stances where two nodes cannot have a latent common parent: the FCI algorithm described 
in Spirtes et al. (2000) does it even for some situations where pairs of variables are dependent 
conditioned in any subset of the others. In a more restricted sense, conditional independen­
cies can be used to rule out hidden common causes among pairs of variables as suggested in 
Heckerman (1998) (and tested empirically in a few cases by Elidan et al., 2000). However, in 
this work we try to avoid conditional independencies as much as possible: their identification 
in finite samples becomes unreliable based on the size of the conditioning set and there are 
other theoretical issues on the reliability of conditional independence constraints in causal 
analysis even when variables are strongly independent (Robins et al., 2003). This becomes 
especially relevant in our case, which is biased toward models where all variables have hidden 
common causes. In Section 4.4 we discuss the use of partial correlations in the context of 
the full algorithm. 

4.2 Constraints for non-overlapping parent sets 

In this section, we describe a series of constraints for deciding when two nodes cannot have 
a common (latent) parent in a latent variable graph G ( 0 ) . We start by a constrain set rule 
(CS1) given as follows: 
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For variables S = {XlìX2ìX3,YXìY2ìY3} C O, if 
Pab ? ^Pab.c ± 0, for all {A,B} c S , C G O 

<?X1Yi<rX2Xz = ^XiX2̂ X3Vi = VX1X3

<JX2Y1 

VXXYX°Y2Y3 = CTXiy2̂ yiy3 = °XXY3°YXY2 

GXxX2GY\Y2 VXiY2&X2Yi 
then X\ and Yi cannot have a common parent in a latent variable model 

The correctness of such rule is given by the following lemma: 

Lemma 3 Let G(0) be a semilinear latent variable model Assume {Xx, X2, X$, Yi, Y2, F 3 } C 
O and VxxYx°X2X3 ~ GXXX2<*X3YX = VXXX3°X2YX, VXXYX°Y2Y3 — GXXY2^YXY3 = VXXY3&YXY2, 
vxxx2°yxy2 + <yxxY2°x2Yx and that for all triplets {A, B, C}, {A, B} C {XXjX2j X 3 j Yi, Y2, Y 3}, 
C € O, we have pab ®i Pab.c 7̂  0. Then X\ and Yi do not have a common parent in G 
with probability 1 with respect to a Lebesgue measure over the coefficient and error variance 
parameters. 

The proofs for this lemma and for many other results in this report are given in the 
Appendix. 

Let the predicate Fx (X, Yy G) be true if and only if there exist two observed nodes W and 
Z in latent variable graph G such that (Txy&wz •= QxwGyz — <?xz&yw holds, all variables 
in {W, Xy Y, Z} are correlated, and there is no observed C in G such that Pab.c = 0 for 
{A,B} C {WjX^YjZ}. A second constraint set rule, CS2, is as follows: 

For variables S = {XUX2,Xz,YUY2,Y3}, if 
Xi is not an ancestor of X 3 and Yi is not an ancestor of Y3 

FX(XUX2,G) = true and F^Y^G) = true 
Pab ± 0, pAB.c ± 0, for all {A, B} C S, C € O 

OXxYx°X2Y2 = VXXY2&X2YX 

^X2YX^Y2Y3 ~ aX2Y3^Y2Yx 

&XxX2&X3Y2 = &XXY2GX3X2 

VXxX2VYxY2 7̂  °XxY2OX2Yx 

then X\ and Yi cannot have a common parent in a linear latent variable model 

The correctness of such rule is given by the following lemma: 

Lemma 5 Let G(0) be a linear latent variable model. Assume {Xi,Xz,X3,Yi, Y2, Y3} C 
0 ; X\ is not an ancestor of X$, Yi is not an ancestor of Y 3 ; F i (Xi ,X 2 ,G) = true, 
F^YijY^G) = 1 and (Jxxyx°x2y2 = oxxy2vx2yx, vx2yx&y2y3 = &x2y3vy2yx, &xxx2&x3y2 = 
vxxy2vx3x27 °xxx2oyxy2 ^ °xxy2ox2yx and that for all triplets {A, B,C},{A,B) C {XXlX2, 
X3, Yi, Y2, y 3 } , C € O, we have pab 0> Pab.c 0- Then Xi and Yi do not have a common 
parent in G. 
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In the next section we will show empirical ways of testing the premises of CS2 concerning 
ancestral relations. A third constraint set rule, CS3, is as follows: 

For variables S = {XUX2,X3,YUY2,Y3}, if 
Pab ± 0, pab.c ± 0, for all {A, B} c S, C G O 

VX1Y1VY2Y3 = VX^VYiYz = ^XiY3^YxY2 

&X1Y2aX2X3 = OXxX2aY2Xz = ^XXX3^X2Y2 

VXiYz&X2Xz — VXiX2<7YzX3 = ^X1X3

aX2Y3 

&XiX2VY2Y3 7̂  GXxY2OX2Y3 

then X\ and Yi cannot have a common parent in a linear latent variable model 

The correctness of such rule is given by the following lemma: 

Lemma 6 Let G(0) be a linear latent variable model. Assume {Xi,X2,X3, Y^Y^, Y3} Q 

O and (JxxYxVY2Y3 = ^XxY2^YiY3 = vxxy3vyxy2, &XIY2VX2X3 = cfxxx2^y2x3 = ^XXX3^X2Y2J 

^X!Y3ctx2x3 = ^ 1 X 2 ^ 3 X 3 = ^XiX3^x2y3; ^XiX2cry2y3 °xxy2vx2y3 and that for all triplets 
{ i , B , C } , { A B } C {Xi,X2,Xz,Yi,Y2,Yz},C G O, we have pAB ± 0 i P a b . c 0. Then Xx 

and Yi do not have a common parent in G. 

CS3 has an important difference with respect to the others: one can show that the as­
sumption of full linearity is necessary. 

Lemma 7 CSS is not sound for semilinear latent variable models. 

We are now able to give an to the question presented at the end of Section 3.2. Let E 
be an observable covariance matrix, and LT(£) the set of all linear latent variable graphs 
that entail all and only the tetrad and vanishing partial correlation constraints in E, and let 
ST(E, E l ) the set of all semilinear latent variable graphs with latent covariance matrix Ex, 
that entail all and only the tetrad and vanishing partial correlation constraints in E. We say 
that G G LTm(E) if the measurement model of G is the measurement model of some graph 
in LT(E), and a similar definition describes 5Tm(E, E l ) . We have the following theorem as 
a direct result from the previous two lemmas: 

Theorem 2 There is some E^ such that ZJm(E) and STm(E ,£l) are not equal. 

Therefore, we can gain more discriminative power if we assume that the true graph is a 
linear latent variable graph in the class of tetrad constraints. However, we only know one 
rule that is provably not valid for semilinear graphs, and it is the most constrained of all, 
which makes the extra assumption of full linearity not particularly attractive. Still, it holds 
for multivariate normal distributions, a very important pratical case. More importantly from 
the point of view of causality discovery, the known methods for learning a structural model 
(Silva, 2002) require full linearity. 

Before we move to the next section, it is interesting to state the following: 
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Figure 3: Three examples with two main latents and several independent latent common 
causes of two indicators (represented by double-directed edges). In (a), CS1 applies, but not 
CS2 nor CS3 (even when exchanging labels of the variables); In (b), CS2 applies (assuming 
the necessary F\ conditions hold), but not CS1 nor CS3. In (c), CS3 applies, but not CS1 
nor CS2. 

Proposition 1 CSlj CS2 and CSS are logically independent. 

In other words, the rules presented in this section are not redundant. Figure 3 depicts 
three situations where only one of each rule can be applied. 

4 . 3 D i s c o v e r i n g o t h e r f e a t u r e s o f l a t e n t v a r i a b l e g r a p h s 

It is possible in many cases to tell if an observed node is not an ancestor of another. 

Lemma 1 Let G(0) be a semilinear latent variable graph. For some set O' = {A, B, C, D} C 
O, if (JabVcd = vac<*bd = vad°bc and for all triplets {X,Y,Z}, {X,Y} C O',Z G O, 
we have Pxy.z 0 and Pxy 0; then no element in X € O' is an ancestor of any element 
in Of\X in G with probability 1 with respect to a Lebesgue measure over the coefficient and 
error variance parameters. 

There are certainly other features of interest in a measurement model, such as which 
nodes do have a common parent, how many parents are common, and if a node is a parent of 
another. However, tetrad constraints are quite limited with respect to these other features: 
going back to the linear case and the Tetrad Representation Theorem, one can see that the 
lack of a choke point can be explained in many different ways, from the existence of multiple 
common parents to even the fact that one node is a parent of another observed node. There 
is very little that can be done for these other features within a tetrad equivalence class, but 
there are two alternatives. 

The first one is to use tetrad constraints only to initialize a model by excluding common 
parents and possible observed ancestors where we know they should not exist. Then, pro­
ceed with a standard algorithm for learning Bayesian network structures. There are many 
heuristic search algorithms that can work reasonably well in practice when the starting point 
is close to the true graph (e.g., Elidan et al., 2000). However, no theoretical guarantees of 
consistency are known. 
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A second alternative is to select a subset of variables where there are no other major 
features to be discovered, i.e.: for every pair of nodes we know if they share exactly one 
parent or none, and observed nodes cannot be parents of another observed nodes. Under the 
given constraints, we can cluster all variables into groups that share a single or no common 
parent. This process is called purification and can be done entirely under a tetrad equivalence 
class with theoretical guarantees. This alternative will be explored in detail in Section 5. 

4 . 4 A l g o r i t h m 

We now use the information that can be obtained by tetrad constraints and vanishing partial 
correlations in a learning algorithm. First, one has to notice that it is difficult to design a 
principled score-based algorithm for learning measurement models because in general there is 
no known notion of score equivalence, i.e., how to describe which structures will correspond 
to the same score. So far, we do not have a characterization of which measurement models 
will be score equivalent for any kind of score function based on the likelihood or posterior 
distribution of latent graphs. In this work, we will focus mainly in constraint-based search 
algorithms that has the property of Fisher consistency: given infinity data, the output is 
guaranteed to have specific properties. 

Assume for now that the population covariance matrix E is known. Let C be the set 
of tetrad and vanishing partial correlation constraints in E, and M(C) the measurement 
model equivalence class for C. We define a generalized measurement pattern, or GMP(C), to 
be a graphical object representing features of the equivalence class M(C). The only edges 
allowed in a GMP are directed edges from latents to observed nodes, and undirected edges 
between observed nodes. Every observed node in a GMP has at least one latent parent. If 
two observed nodes X and Y in a GMP(C) do not share a common latent parent, then X 
and Y do not share a common latent parent in any member of M(C). If X and Y are not 
linked by an undirected edge in GMF(C), then X is not an ancestor of Y in any member of 
M(C). 

Let F I N D P A T T E R N be the algorithm described in Table 1. Then: 

Theorem 4: The output of F I N D P A T T E R N is a generalized measurement pattern GMP(C) 
with respect to the tetrad and vanishing partial correlation constraints o /E. 

A measurement pattern also provides lower bounds on the number of underlying latent 
variables: a bound can be obtained from the size of any clique in the complement of graph 
C as defined in Table 1. 

Proposition 2 Let C be the complement of graph C obtained at the end of Step 3 of algo­
rithm F I N D P A T T E R N , and let d be the size of any clique in C. Then, there are at least d 
latents in the unknown latent variable graph. 

Proof: Follows directly from the fact that two neighbors in C correspond to two observed 
variables that do not share a common parent, by the soundness of CS1, CS2 and CS3. Since 
no two elements have a common parent in the clique, there is at least one latent for each 
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Algorithm F I N D P A T T E R N 

Input: a covariance matrix E 

1. Start with a complete graph C over the observed variables. 

2. Remove edges of pairs that are marginally uncorrelated or uncorrelated conditioned on 
a third variable. 

3. For every pair of nodes linked by an edge in C, apply successively rules CS1, and 
CS2/CS3, if wanted. Remove an edge between every pair corresponding to a rule that 
holds. Stop when it is not possible to apply any rule. 

4. Let G be a graph with no edges and with nodes corresponding to observed variables. 

5. For each maximal clique on C, add a new latent to G and make it a parent to all 
corresponding nodes in the clique. 

6. For each pair of nodes (A, B), if there is no other pair (C,D) such that oab^bd = 

&AC&BD = <7ad&bCI add an undirected edge between A and B. 

7. Return G. 

Table 1: Returns the generalized measurement pattern of a latent variable graph. 

element in the clique. • 

Notice we only use partial correlations with up to 1 variable in the conditioning set. In 
principle, the algorithm can start with a DAG obtained from a standard structure learning 
algorithm (again, this is how the heuristic given in Heckerman (1998) works), but we choose 
to ignore this extra information to avoid extra statistical decisions. Since we are assuming 
that observed variables are heavily connected by hidden common causes, there is little to 
be gained from conditional independence constraints. Also, since a DAG over the observed 
variables should be very dense under such assumptions, the computational cost of testing all 
necessary partial correlations might be prohibitive. 

Even though the measurement pattern is limited in information, it is still useful for data 
mining purposes: it provides an indication of possible underlying latent concepts. However, 
a more informative graph can be obtained if we are willing to select only a subset of the 
variables given as input. Next section discuss what purified patterns are, and which desirable 
properties they have. 

5 Pur i f ica t ion a n d identif iabil i ty 
In Spirtes et al. (2000) and Silva et al. (2003) we discuss a special class of measurement 
models called pure measurement models. 
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Definition 6 (Pure measurement model) Let G be a latent variable graph. A pure mea­
surement model for G is a measurement submodel of G in which each observed variable is 
d-separated from every other variable conditional on one of its latent parents, that is, it is a 
tree beneath the latents. 

Therefore, in pure measurement models, observed variables should have one and only 
(latent) parent. Pure measurement models are shown to be useful in Silva (2002) as a 
principled way of testing conditional independence among latents. Also, Silva et al. (2003) 
designed an algorithm for learning measurement models from data that allows one to identify 
every latent in the true unknown latent graph that generated the data, as well as at least 
three of the indicators of each latent, as long as the measurement model is pure. This is done 
by selecting a subset of the given observed variables. Also important, as observed by Silva et 
al. (2003), learning a pure measurement model of the latents is a task much more robust to 
sample variability then attempting to learn the less constrained measurement pattern. We 
concluded that is better to learn a submodel (i.e., using only a subset of the given variables) 
that is more reliable than trying to learn a more complete model that is more prone to be 
the result of several statistical mistakes. 

However, as discussed in Section 2, we do not want to make the same assumptions3 as 
in Silva et al. (2003). Because of that, we will lose the ability of identifying each latent in 
the true unknown graph, and the latents appearing in the final output of our algorithm may 
also correspond to more than one latent in the true graph. As important advantages, this 
approach not only relies on less untestable assumptions, but also has desirable properties of 
anytime computation, i.e., it gives you results even when computation is interrupted before 
the end. The anytime properties of our algorithm will be discussed in the next section. 

Consider the following algorithm for creating a pure model from a GMP found by F I N D -

P A T T E R N : make it pure by removing all nodes that have more than one latent parent or are 
adjacent to another observed variable. This improves what we know about the measurement 
model in the true graph G among the variables now remaining. For example, we know that 
each remaining measured variable is d-separated from all other remaining measured variables 
given its latent parents in the true graph G, which is crucial for discovering features of the 
structural model in G (Spirtes et. al, 2000, Chapter 12). Even a purified GMP is not, how­
ever, necessarily complete with respect to features of the measurement model equivalence 
class. Two observed variables that share a parent in the purified GMP might not share a sin­
gle latent parent in the true latent variable graph. Therefore, this GMP cannot parameterize 
a measurement model where observed variables are linear functions of their parents. 

We have not defined, however, how a GMP does or does not entail a constraint. Instead 
of doing so directly, we introduce the concept of an l-interpretation ("latent interpretation"), 
in order to parameterize the measurement model given in a purified GMP. The constraints 
entailed by the l-interpretation are a subset of the constraints entailed by the measurement 
model of the true latent variable graph G, a variant of I-maps (Pearl, 2000) for tetrad 
constraints: 

3Silva et al. assume that the true model has a pure submodel with at least three indicators for each 
latent, a much stronger assumptions 
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Algorithm B U I L D P U R E C L U S T E R S 

Input: a covariance matrix E 

1. G < - F I N D P A T T E R N ( E ) . 

2. Choose a set of latents in G. Remove all other latents and all observed nodes that are 
not children of the remaining latents. 

3. Remove all nodes that have more than one latent parent in G. 

4. For all pairs of nodes linked by an undirected edge, remove one element of each pair. 

5. If for some set of nodes {A, J3,C}, all children of the same latent, there is a fourth 
node D in G such that (Jab^cd = vac&bd — gad°bc is not true, remove one of these 
four nodes. 

6. If for some pair of nodes {A, B}, both children of the same latent, and another pair of 
nodes {C, D} we have cfac^bd vad&bCI remove one of these four nodes. 

7. Remove all latents with no children. 

8. Return G. 

Table 2: An algorithm for obtaining a pure 1-interpretation. 

Definition 7 Given a latent variable graph G(0) whose measurement model entails a set 
of constraints C, an 1-interpretation I(Of) of G for O ' C O is a latent variable graph such 
that the measurement model ofX entails only constraints in C. 

B U I L D P U R E C L U S T E R S , an algorithm to create a 1-interpretation for the unknown true 
graph, is given in Table 2. The output is a pure generalized measurement pattern, or simply 
a pure measurement model. It does not specify how choices in specific steps are made (e.g., 
which latents should be chosen in Step 2), and implementation details will be postponed to 
Section 6.4. It is clear that a generalized measurement pattern becomes a pure measurement 
model when we remove all nodes that have more than one parent and some observed neigh­
bor. And of course there are trivial 1-interpretations, such as complete graphs. However, 
not all 1-interpretations are pure generalized measurement patterns. The following theorem 
states that both properties hold for the output of B U I L D P U R E C L U S T E R S : 

Theorem 5 Let G(0) be a latent variable graph. Then the output of B U I L D P U R E C L U S ­

T E R S is a valid l-interpretation for G in the family of tetrad and vanishing partial correlation 
constraints and a pure generalized measurement pattern. 

One can also show that: 

Lemma 16 Let G(0) be a latent variable graph with latent covariance matrix E^. For 
any set {A, B, C, D} = O' Ç O, if (Jab^cd = vacGbd = °ad°bd and for every set 
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{X, Y} C O', Z G O we have pxy.z ^ 0 and pxy ^ 0, then if A and B have a common latent 

parent L\ in G, B and C have a common latent parent L2 in G, we have L\ = L2 with proba­

bility 1 with respect to a Lebesgue measure over the coefficient and error variance parameters. 

The 1-interpretation output by B U I L D P U R E C L U S T E R S can, in some circumstances, tell 
us a lot about the true latent variable graph. Let O' be the set of observed nodes in the 
pure measurement pattern P obtained by applying B U I L D P U R E C L U S T E R S to the covariance 
matrix generated by a true latent variable graph G. Let a cluster be a set of nodes that are 
children of the same latent parent in P . We can infer the following graphical features of G 
from P : 

• Nodes in different clusters in P do not have a common parent in G 

• For all pairs {X, Y} E O', X cannot be an ancestor of Y in G\ 

• Let C 0 be a cluster of P with at least 3 elements, and assume P has at least four 
observed variables. Then if any subset of C 0 share a common parent in G, then this 
subset has an unique common parent in G. 

Thus, P forms a clustering that may be coarser than the one in G. That is, when a set of 
variables has a single common cause in F , then G may partition the variables in the cluster 
having separate latent common causes. How far could we refine the clustering in P is a topic 
for future research. Silva et al. (2003) describe a set of assumptions sufficient to obtain 
a 1-to-l correspondence between each latent in P and each latent in G; the assumptions 
include the requirement that a sub-model of G has a pure measurement model with at least 
3 indicators per latent. 

As a final note, notice it is possible that some tetrad constraints exist in the population 
but are not represented in the purified output. For instance, if there is a triplet of fully 
connected latents L2, £ 3 } such that Pl2lz^l1 = 0, then there will be one tetrad contraint 
with one indicator of L2, one of L 3 and two from L \ that, by the definition of entailment in 
measurement models, will not be entailed by the output graph (since the definition requires 
that any entailed constraint should hold for any choice of latent covariance matrix). However, 
this is of no importance as far as learning 1-interpretations goes. 

6 S ta t i s t i ca l l ea rn ing a n d p rac t i ca l i m p l e m e n t a t i o n s 
There are computational and statistical issues with the theoretical specification of B U I L D ­

P U R E C L U S T E R S that have to be approached in a practical implementation. The computa­
tional cost of the procedure is apparently excessive, there are steps that are not fully specified 
(such as Step 2 of B U I L D P U R E C L U S T E R S ) and one has to define how to deal with statistical 
issues since only a sample covariance matrix will be available. 

In the next section, we will first describe the anytime properties of the general algorithms 
described in Sections 4.4 and 5. We then brief explain how to adapt our method to model 
discrete distributions. This is followed by a discussion on statistical learning of graphical 
models using constraint-satisfaction and model scoring and how it is related to the problem 
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of learning within the tetrad equivalence class. We conclude our discussion about practical 
implementations by describing in full detail an algorithm that can be readily implemented 
with heuristics that we believe to be useful in real-world applications. 

6.1 A n y t i m e propert ies 

The algorithm in Silva et al. (2003) had the property of being able to identify all and only 
the latents in the true unknown measurement model, given the assumptions and the true 
covariance matrix. This is a stronger claim than the one given in Theorem 5, which concerns 
1-interpretations and and generalized measurement patterns, and might not only collapse 
different latents into one, but also throw away some of the latents found in the true graph. 

However, in order to learn a measurement model with such guarantees, besides the 
stronger assumptions the algorithm of Silva et al. (2003) also required the enumeration 
of all maximal cliques of graph C (as described in Table 1). The number of maximal cliques 
can be quite large, especially if data are noisy and many edges of C are erroneously removed 
or kept. Moreover, an auxiliary graph has to be built, where each node corresponds to a 
clique in C. A maximum clique has to be found in this new graph, which is a well-known 
NP-hard problem without any efficient approximation algorithm. In constrast, the weaker 
features of a 1-interpretation allow a formal description on how to interpret the output when 
only partial information is provided. 

There is a stage in FlNDPATTERN where finding all maximal cliques of a graph seems 
to be necessary. In fact, it is not. Identifying more cliques will only increase the chance 
of having a larger output by the end of the algorithm (which is good). As hinted by the 
freedom of choice in Step 2 of B U I L D P U R E C L U S T E R S , stopping Step 5 of F I N D P A T T E R N 

after a given amount of time will not affect the result estabilished by Theorem 5. Another 
concern are the 0(Ne) loops on Step 3 of F I N D P A T T E R N , N being the number of variables. 
Still, computing this set of loops is not a fundamental limitation if there is not enough com­
putational resources to accomplish it. One can stop Step 3 at any time at the price of losing 
information, but not the theoretical guarantees of Theorem 5. This is summarized by the 
following corollary: 

Corollary 1 Let G(0) be a latent variable graph. Then the output of B U I L D P U R E C L U S ­

T E R S is a l-interpretation for G in the family of tetrad and vanishing partial correlation 
constraints even when rules CS1, CS2 and CSS are applied an arbitrary number of times in 
F I N D P A T T E R N for any arbitrary subset of nodes and an arbitrary number of maximal cliques 
is found. 

In other words, one can stop the loop at Step 3 of F I N D P A T T E R N at any moment, as well 
as the one at Step 5, and still get a theoretical guarantee of consistency. There is a clear 
trade-off in this procedure: the longer one keeps such loops running, the more likely there 
will be more nodes in the final purified pattern, and the more informative it will be since 
nodes of different latents that in principle can be separated might not be if the proper test 
was not applied. 
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6.2 Discre te m o d e l s 

Although we do not perform any experiments with discrete models in this report, it is worthy 
mentioning that there are relatively straightforward ways of adapting the algorithms here 
discussed to discrete distributions. We can build on the same ideas used in discrete factor 
analysis. The closest framework is the underlying variable approach, where observed vari­
ables are assumed to be discretizations of some unobserved underlying continuous variable. 
The underlying variables are then indicators of another set of latents, in the same way our 
observed continuous variables are associated by a layer of hidden common causes. Tetrad 
constraints will hold for some sets of underlying variables, basically carrying on the same 
algorithm for another level of unobserved variables. 

In order to test tetrad constraints among underlying variables, one needs to assume a 
probabilistic model for latent variables, where the probability mass of an underlying variable 
in a given range will correspond to the observed probability of a discrete variable assuming 
some value. To test a set of tetrad constraints, one will need to fit a particular submodel 
that entails those tetrads. This is computationally expensive, since it will require numerical 
integration over the respective ranges that each underlying variable spam for each combina­
tion of values of the observed discrete variables. Bartholomew and Knott (1999) describe 
discrete factor analysis in detail. 

As an alternative, one could assume that latent and observed variables are binary. In 
this situation, tetrad constraints will still hold (Pearl, 1988). However, in our preliminary 
experiments with simulated models, statistical tests of binary tetrad constraints failed to be 
reliable. 

6.3 Stat is t ical learning 

Silva et al. (2003) argue that estimating measurement patterns from data can be a very 
difficult task: in simulations, the outcome was that the empirical patterns had considerably 
more induced latents than the synthetic models from which we sampled. The purified mea­
surement models obtained from such patterns were quite close to the true ones, even in cases 
where the statistical model was wrong (i.e., assuming Gaussian distributions where data 
were not Gaussian). Since in this work we are allowing even less constrained measurement 
models, we will still focus on the estimation of pure measurement models only. Patterns will 
be estimated as an intermediate step, but our goal in the algorithms here described is to 
reliably learn pure measurement models from data. 

Given a sample covariance matrix, one cannot expect that any tetrad constraints will 
hold exactly, but they will hold approximately. In order to test the statistical significance 
of such constraints, Spirtes et al. (2000) use a normal approximation for each sample tetrad 
difference rjjrKL—riLrjK, where rXy is the sample correlation coefficient of X and Y. Mean 
and variances for such statistics are described in Wishart (1928). Bollen (1990) describes 
an asymptotically distribution free test of vanishing tetrads. The computational cost of the 
later test may slow down the procedure considerably, since Bollen's procedure requires the 
fourth moments of the data set. Concerning vanishing partial correlations, Spirtes et al. 
(2000) also discuss possible tests. 

Therefore, in F I N D P A T T E R N and B U I L D P U R E C L U S T E R S one could plug-in those tests 
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in order to verify which constraints are significant. This would be a typical "constraint-
satisfaction" approach for causality discovery in graphical models, in constrast to "score-
based" approaches that defines a score function for a model and a set of operators that 
generates new candidates from the current one. There is a clear advantage in using the score-
based method, in a sense that each model is scored as a whole and, therefore, uses a more 
robust account of the quality of a candidate graph. In constrast, a constraint-satisfaction 
method scores parts of a model independently. 

However, it is often much easier in latent variable models to define a consistent search 
space for constraint-satisfaction approaches, since it is possible to control which particular 
constraints are going to be used. While a typical score function used in score-based search is 
a function of the posterior distribution of the graph given the data, for general latent variable 
models it is not obvious how to characterize score-equivalent models, a necessary first step 
to even start considering the design of consistent algorithms. Even if such equivalence is 
proven, there is still a major problem of designing a computational practical algorithm for 
consistent estimation of the true graph. Zhang (2004) does describe score-equivalent groups 
of latent variable models, but does not give a prove of consistency for his hill-climbing search 
procedure. 

In our preliminary experiments in learning pure measurement models, it is often the 
case that finding out which indicators should not be clustered together is a quite robust 
step (under the implementation we describe in the next section). However, purification 
is a more sensitive step: at least for a fixed p-value and using false discovery rates to 
control for multiplicity of tests, purification by constraint-satisfaction often throws away 
many more indicators than necessary when the number of variables is relative small, and 
does not eliminate many impurities when the number of variables is too large. 

Instead, we will adopt a hybrid constraint-satisfaction/score-based approach. The first 
stage consists of an algorithm to cluster variables based on a modification of F I N D P A T T E R N . 

An implementation of a modified purification (Steps 5 and 6 of B U I L D P U R E C L U S T E S ) is 
also described, which will be based on a greedy hill-climbing score-based search that first 
heuristically identify extra paths among indicators that are not intermediated by latents. 
Details of such algorithms will be covered in the next section. In the rest of this subsection, 
we discuss how to score a measurement model and fit its parameters to a given data set. 

For our algorithms we use the Bayesian Information Criterion (BIC) as a score function 
under a multivariate Gaussian distribution. Althought one can claim that such representa­
tion requires strong assumptions about the joint distribution of the data, it is still largely used 
as the parametric family of choice for measurement models (Bollen, 1989). Such assump­
tions might not too harmful considering that only the second moments of the distribution 
are important for our algorithms. Section 7 shows a few simulation results when the true dis­
tribution is far from normal. Also, the essence of the main algorithm as discussed in Section 
6.4 is not affected by the choice of probability model, althought the estimation procedures 
as discussed next will need to be modified if one wants to adopt a different model. 

Another concern could be the choice of BIC as score function: it is known that BIC is not 
a consistent approximation of the posterior of a latent variable model (Rusakov and Geiger, 
2004). BIC is used in our framework for its many computational advantages, especially 
when used with Structural EM (Friedman, 1998). More important, we will show through 
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simulations in Section 7 that BIC is still a useful approximation to use in our problem. 

6.3.1 Parameterization and scoring 

For our Gaussian probability models, first we will assume that variables are centered on their 
means, and therefore we only have to define the implied covariance matrix of the distribution 
as a function of the model parameters. Let 77 be the vector representing the latent variables 
in the model and y the vector of observed variables. All relationships will be linear under 
this distribution, with additive error terms. Let e represent the error terms associated with 
observed variables, and £ the error terms of latent variables. We parameterize the direct 
effect of parents on the respective children as follows: 

y = Ayy + A ^ + e 
7? = B77 + C 

Matrices Ay and Av can be very sparse: for instance, there will be a non-zero entry for 
A y o n l y if j/j is a parent of j/* in our model. On the other hand, matrix B will be a bottom 
triangular matrix with zeroes along the diagonal and above it, and no other zero entries. This 
is equivalent to a fully connected subgraph of latent variables, representing the irrelevance 
of the actual latent structure for our task. Matrix £ is diagonal. Notice this is just one way 
of enconding an arbitrary positive semidefinite matrix. 

Let © = {A y , A^B, be the parameter set of our model, where $ = J5[€cT], the 
covariance matrix of the error terms of observed variables, and \I> = E[CCT]- We will denote 
by E r 7 7 ?(0) the implied covariance matrix of 77, which can be shown to be as follows: 

s w ( e ) = ( i - B ) - 1 * ( i - B ) - T 

where I is the identity matrix. 
Analogously, the implied covariance matrix of y will be given by 

E w ( 9 ) = (I - A y ) - 1 [A , S I T O ( e )A , T + *](I - A y ) ~ T 

Let © be the maximum likelihood estimator of ©. Let d be the number of parameters in 
© and let S be sample covariance matrix of the observed variables and N the sample size. 
Then the BIC score of a measurement model, up to additive constants, will be given by 

BIC = - Z o 5 | S w ( 0 ) | - *r(SE^(e)) - *log(N) (1) 

where tr(M) denotes the trace of matrix M and |M| its determinant. 

6.3.2 Estimation 

In order to score a model, one has to find the maximum likelihood estimator of the para­
meters. There are a variety of methods for accomplishing this, including gradient based 
methods and expectation-maximization variations. However, when choosing a method one 
has to consider it will be used inside a computationally expensive search method to find a 
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good fitting model. Since Structural EM (Friedman, 1998) is a natural choice for efficient 
hill-climbing search among latent variable models which we adopt in the algorithm described 
in Section 6.4, an EM estimator will be used. 

We generalize the results of Rubin and Thayer (1982) in order to allow direct effects of 
observed variables on other observed variables. Also, we will allow correlated error terms 
of observed variables, i.e., $ will be allowed to be an arbitrary symmetric positive definite 
matrix. 

Since given © the distribution is jointly normal, from standard results in linear regression, 
the conditional distribution R) given y can be obtained from E y y ( 9 ) , TTYZ(Q) and E 2 2 (©), 
where it can be shown that 

E y z ( e ) = ( i - A , ) - 1 A ^ ( e ) 

and the conditional distribution of 7? given y is a multivariate normal with mean 6y and 
covariance A given by: 

6 = ^ ( 6 ) 5 ^ . ( 0 ) 
A = £ w ( 0 ) - £ £ ( e ) * 

Therefore, the expectation step of the algorithm is reduced to 

£[E y 2 / |S ,0] = S 
E[XYZ\S,G] = SS 
£?[E„|S,6] = 8TS8 + A 

where S is the sample covariance matrix. 
Once a full correlation matrix of observed and latent variables is obtained, we need to 

estimate the parameters of the model. Non-zero non-diagonal entries in the error covariance 
matrix are represented by bidirected edges in the graph to indicate extra hidden common 
causes of a pair of variables that are independent of the other latents. We apply the algo­
rithm of Drton and Richardson (2003) using the joint expected covariance matrix of latents 
and observed variables. We do not use straightforward maximum likelihood estimation, e.g., 
gradient-based methods or closed-formula regressions, because of the bidirected edges: un­
constrained maximization might result in non-positive definite implied covariance matrices, 
since no constraints are enforced in the parameterization of bidirected edges. Drton and 
Richardson's algorithm explicitly takes into account bidirected edges, and it is guaranteed 
to converge to a local maximum. 

6 .4 A c t u a l i m p l e m e n t a t i o n 

The main problem of applying F I N D P A T T E R N directly by using statistical tests of tetrad 
constraints is the number of false positives: accepting a rule (CS1, CS2, or CS3) as true 
when it does not hold in the population. One can see that might happen relatively often 
when there are large groups of observed variables that are pure indicators of some latent: 
for instance, assume there is a latent L 0 with 10 pure indicators. Consider applying CS1 
to a group of six pure indicators of LQ. The first two constraints hold in the population, 
and so assume they are correctly identified by the statistical test. The last constraint, 
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0"XiX20Yiy2
 ax1Y2vx2Y1i should not hold in the population, but will not be rejected by 

the test with some probability. Since there are 10!/(6!4!) = 210 ways of CS1 being wrongly 
applied due to a statistical mistake, we might get many false positives. The problem gets 
worse if there is a pure submodel of the true graph with many latents and many indicators 
per latents since the same situation can happen using indicators of not only one latent, but 
multiple ones, and this can be observed in simulations. 

We propose here a modification to increase the robustness of F I N D P A T T E R N , described 
in detail in Table 3 - the R O B U S T B U I L D P U R E C L U S T E R S algorithm: add a first step, FiN-
D I N I T I A L S E L E C T I O N (Table 4), where we decide that two variables Xi and Yi do not have 
common parents only when there are sets X and Y, X\ € X, Y\ G Y where the same holds 
for every pair in X x Y. In this case, we use sets of size three, since we have to have at least 
six variables in order to make a local decision of nodes not sharing a same parent. Since the 
number of constraints tested in this situation is much higher, there is a considerably smaller 
chance of an acceptance happening by statistical coincidence. 

Once we generate maximal cliques from C (as defined in Table 4) in F I N D I N I T I A L S E L E C -

T I O N using this restricted condition, we generate an intermediate graph H where each clique 
from C is represented by a node in H. For each pair {Mi, Mj} of nodes in H, we check again 
if there is a group X of nodes in the clique represented by Mi and a group Y of nodes in the 
clique represented by Mj such that every pair in X x Y satisfies the condition of disjoint 
parents. An edge between a pair Mi and Mj will be added only if such condition is satisfied. 
Finally, a maximal clique of nodes in H is selected and purified. The final purified model is 
used as a seed for the next step. 

The actual test D I S J O I N T G R O U P ( X I , X 2 , X 3 , Yi,Y 2 ,y 3; £) used in F I N D I N I T I A L S E L E C -

T I O N is an application of CS1 for all pairs in { X i , X 2 , X 3 } x {Yi,Y 2 ,y 3} using only nodes 
from this set. Also, we add an extra constraint: for every pair {X^Xj) C {Xi1X2,Xs} 
and every pair {Y P ,YJ C {Yi,Y 2,Y 3} we also require that aXiYp^XjYq = v x ^ x ^ The 
motivation is that we are looking for two sets of three indicators each from two different 
latent variables, where these constraints will hold. The extra redundancy will then help to 
reduce the number of false positives. Notice also that in D I S J O I N T G R O U P we do not test for 
vanishing correlations: it is verified as part of the graphical structure of Co. In the experi­
ments in the next section, we actually do not make use of the vanishing partial correlations 
of first order, reducing the set of statistical decisions. We are implicitly assuming that no 
observable conditional d-separations exist in the true model. 

Looking for triplets of indicators of two distinct latents is also a motivation for defining 
yellow edges in F I N D I N I T I A L S E L E C T I O N . If two nodes cannot be separated but also cannot 
be in the same cluster in a purified 1-interpretation with two latents and three indicators 
each (which would entail the constraints in D I S J O I N T G R O U P ) , then it is of no use to add 
both to our initial selection. 

F I N D M A X I M A L C L I Q U E S can be any algorithm for finding maximal cliques. We used the 
one described in Bron and Kerbosch (1973). A different matter is C H O O S E C L U S T E R I N G -

C L I Q U E which we will describe as follows: since the number of cliques (maximal or not) in 
H can be large, we will be interested only in the clustering that satisfies a given optimality 
condition (where a clustering is a set of clusters, i.e., a set of sets of indicators which in the 
end will correspond to a pure model). Such condition should be associated with the number 
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of indicators that remain in the model after purification. We will search for a good clustering 
greedily without enumerating all cliques. First, we define the size of a clustering Hcandidate 

(a set of nodes from H, which means a set of sets of nodes in O, where each node in H 
is a cluster) as the number of indicators that remain according to the following elimination 
criteria: 1. eliminate all indicators that appear in more than one cluster inside Hcandidate] 2. 
for each pair of indicators {/1, /2} such that I\ and I2 belong to different clusters in Hcandidate, 

if there is an edge I\ — I2 in C, then we remove one element {hjh} from Hcandidate (i-e., 
guarantee that no pair of indicators from different clusters which were not shown to have 
any common latent parent will exist in Hcandidate)- We eliminate the one that belongs to 
the largest cluster, unless the smallest cluster has less than three elements to avoid extra 
fragmentation; 3. eliminate clusters that have only one indicator. 

The optimality condition will be finding a clustering of largest size. The assumption is 
that a model with a large size will have a large number of indicators after purification. Our 
suggested heuristic to be implemented as C H O O S E C L U S T E R I N G C L I Q U E is trying to find a 
good model using a very simple hill-climbing algorithm that starts from an arbitrary node 
in H and add new clusters to the current candidate according to the one that will increase 
its size mostly while still forming a maximal clique in H. We stop when we cannot increase 
the size of the candidate. This is calculated using each node in H as a starting point, and 
the largest candidate is returned by C H O O S E C L U S T E R I N G C L I Q U E . 

The next steps in R O B U S T B U I L D P U R E C L U S T E R S are basically the F I N D P A T T E R N of 
Table 1 with a final purification. The main difference is that we do not check anymore if 
pairs of nodes in the initial clustering given by Selection should be separated. The intuition 
explaining the usefulness of this implementation is as follows: if there is a group of latents 
forming a pure subgraph of the true graph with a large number of pure indicators for each 
latent, then the initial step should identify such group. The consecutive steps will refine this 
solution without the risk of splitting the large clusters of variables, which are exactly the ones 
most likely to produce false positive decisions with constraint sets {CS1, CS2, CS3}. R O ­
B U S T B U I L D P U R E C L U S T E R S has the power of identifying the latents with large sets of pure 
indicators and refining this solution with more flexible rules, therefore generating the smaller 
clusters. The function C H O O S E C L U S T E R I N G is identical to C H O O S E C L U S T E R I N G C L I Q U E , 

but now we do not worry about which pairs of nodes from our new H are linked. 
Notice that F I N D I N I T I A L S E L E C T I O N is very similar to the F I N D M E A S U R E M E N T P A T -

T E R N algorithm of Silva et al. (2003). An essential difference is that we are not concerned 
about finding a pure model with three indicators per latent: for instance, it might be the 
case that one of the latents chosen before purification will be discarded if all of its measures 
were removed by the R O B U S T P U R I F Y algorithm. 

To give an idea of how the later steps of refinement are essential for the sucess of Ro-
B U S T B U I L D P U R E C L U S T E R S , we ran some simulations with models that according to the 
experiments analyzed in Silva et al. (2003) were the most challenging for F I N D M E A S U R E -

M E N T P A T T E R N : models where the largest pure subgraph of the true graph has exactly three 
pure indicators per latent. We generated 20 different data sets with 1,000 instances, each 
one sampled from a different random parameterization4 of a pure measurement model with 
a fully connected latent structure, 5 latents and 3 indicators per latent. We got an aver-

4In the next section, we explain how we generate parameters for our simulated models. 
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Algorithm R O B U S T B U I L D P U R E C L U S T E R S 

Input: E, a sample covariance matrix of a set of variables O 

1. (Selection, C, C0) < — F I N D I N I T I A L S E L E C T I O N ( E ) . 

2. For every pair of nonadjacent nodes {N\,N2} in C where at least one of them is not 
in Selection and an edge N\ — N2 exists in Co, add a RED edge JVi — N2 to C. 

3. For every pair of nodes linked by a RED edge in C, apply successively rules CS1, CS2 
(and CS3, if wanted). Remove an edge between every pair corresponding to a rule that 
holds. Stop when it is not possible to apply any rule or till we run out of time. 

4. Let H be a graph where each node corresponds to a maximal clique in C. Make H a 
complete graph. 

5. FinalClustering <- C H O O S E C L U S T E R I N G ( H ) . 

6. Return ROBVSTP\JRlFY(FinalClustering,C,T,). 

Table 3: A modified B U I L D P U R E C L U S T E R S algorithm that starts from an initial pure model 
and ends with another purification. See the text for the definition of C H O O S E C L U S T E R I N G 

and the next tables for the definition of the other functions. 

age number of 1.89 latents missing with F I N D M E A S U R E M E N T P A T T E R N (standard deviation 
of 0.87), where "missing latents" are counted as follows: there are none of its indicators 
(known from the simulated graph) in the outcome; or there is one indicator, but it is clus­
tered with indicators of other latents. In contrast, we got an average of 0.4 missing latents 
with R O B U S T B U I L D P U R E C L U S T E R S (standard deviation of 0.6). 

F I N D M E A S U R E M E N T P A T T E R N got an average number of 0.37 indicators misplaced in a 
wrong cluster, where "misplaced indicators" are counted as follows: for a given cluster in 
the outcome of the algorithm, the misplaced indicator is the only one from a different true 
cluster5. R O B U S T B U I L D P U R E C L U S T E R S got an average of 0.1. Finally, F I N D M E A S U R E ­

M E N T P A T T E R N got an average number of 6 missing indicators with respect to the maximum 
possible pure graph (standard deviation of 3), which has all 15 indicators. R O B U S T B U I L D ­

P U R E C L U S T E R S got a much smaller average of 2.85 (standard deviation of 2.41)6. 
In contrast, given data generated from pure models with 5 indicators per latent, F I N D ­

M E A S U R E M E N T P A T T E R N almost always get the correct number of clusters (see experiments 
in Silva et al., 2003). However, running R O B U S T B U I L D P U R E C L U S T E R S without F I N D I N I -

TIALSELECTION resulted in an average of 1.3 clusters that were split (in half) with a high 
standard deviation of 1.03, indicating that it was not unlikely that in some runs of this 
experiment we got 3 true clusters that were split in half. Only in 25% of these 20 trials we 
got a perfect number of clusters. Therefore, F I N D I N I T I A L S E L E C T I O N can be of great value. 

5In only one case, we got two indicators from one cluster grouped together with two indicators from 
another true cluster in the same outcome cluster. This happened in both algorithms. 

6Notice that such deviations are high because of the small number of trials and variables 
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Algorithm F I N D I N I T I A L S E L E C T I O N 

Input: E, a sample covariance matrix of a set of variables O 

1. Start with a complete graph C over O. 

2. Remove edges of pairs that are marginally uncorrelated or uncorrelated conditioned on 
a third variable. 

3. C0 <- C. 

4. Color every edge of C as BLUE. 

5. For all edges Nx — N2 in C, if there is no other pair {N3, N4} such that all three tetrads 
constraints hold in the covariance matrix of {NX,N2,N3,N4}, change the color of the 
edge Nx - N2 to GRAY. 

6. For all pairs of variables {^1,^2} linked by a BLUE edge in C 

If there exists a pair {iV3,JV4} that forms a BLUE clique with Nx in C, and a 
pair {AT5, Ne} that forms a BLUE clique with N2 in C, all six nodes form a clique 
in Co and D L S J O L N T G R O U P ( i V i , N3, N4, N2, i\T5,7V6; E) = true, then remove all edges 
linking elements in {Nx, JV3, N4} to {N2, JV5, N6}. 

Otherwise, if there is no node JV3 that forms a BLUE clique with {NX,N2} in 
C, and no BLUE clique in { N 4 , ^ 5 , iV6} such that all six nodes form a clique in Co 
and D L S J O I N T G R O U P ( i V i , N 2 j N 3 j N 4 , N 5 , N 6 ; T > ) = true, then change the color of the 
edge Nx - N2 to YELLOW. 

7. Remove all GRAY and YELLOW edges from C. 

8. Listc ^ F I N D M A X I M A L C L I Q U E S ( C ) . 

9. Let H be a graph where each node corresponds to an element of Listc and with no 
edges. Let Mi denote both a node in H and the respective set of nodes in Listc-

10. Add an edge Mx -M2toH only if there exists {NXjN2, AT3} C Mx and {iV4, iV5, N6} C 
M2 such that D I S J O I N T G R O U P ( A T 1 , N2, N3, N4, N5, AT6; E) = true. 

11. Hchoice ^ - C H O O S E C L U S T E R I N G C L I Q U E ( I F ) . 

12. Let Hdusters be the corresponding set of clusters, i.e., the set of sets of observed vari­
ables, where each set in Hdusters correspond to some Mi in HChmce-

13. Selection ^-RoBUSTPuRiFY(.ffc/n s t e r s, C, E). 

14. Return (Selection, C, Co). 

Table 4: Selects an initial pure model. 
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Notice that the order by which tests are applied might influence the outcome of FlN-
D I N I T I A L S E L E C T I O N , since if we remove an edge X — Y in C at some point, then we are 
excluding the possibility of using some tests where X and Y are required (e.g., when search­
ing to separate P and Q, we will not consider D I S J O I N T G R O U P ( P , X, Y, Q, , ), for instance). 
Imposing such restriction reduces the overall computational cost and also reduces the num­
ber of statistical tests that are performed. Consequently, the number of statistical mistakes 
is also reduced. To minimize the ordering effect, an option is to run the algorithm multi­
ple times and select the output with the highest number of nodes. The more different is 
the true model from a pure model, the more variety will be observed among different runs. 
Purification also introduces variability: if two variables are linked to the same number of 
impurities, we remove the first one according to the ordering given. In our experiments, 
we actually do not avoid tests if the required BLUE cliques do not exist as proposed by 
Step 6 of F I N D I N I T I A L S E L E C T I O N (with the exception of those that resulted from vanishing 
correlations, since they introduce undesirable vanishing tetrads). This reduces the effect 
of variability, but different choices of ordering of variables will in many cases still result in 
different clusterings if the number of variables is high. That happens because the greedy 
C H O O S E C L U S T E R I N G / C H O O S E C L U S T E R I N G C L I Q U E algorithms visit many states of equal 
value during search, and in our implementation a choice is made based on which maximal 
clique was generated first. Since the order of cliques that is generated is a function of a 
random order of nodes in each run, we get variations of the result among runs. 

For instance, in our simulation studies reported in the next section, where synthetic 
models have relatively large pure submodels, there is virtually no ordering effect in the 
output. On the other hand, with the real-world cases, there is a clear variation of output 
with respect to the chosen order of variables. However, multiple runs can actually increase 

the insight given by pure models, as illustrated in Section 7.2. We will hardly ever have a pure 
model with all variables, but by showing multiple pure models over different sets of variables, 
one can still have a clear picture of the generative process. Also, in the future we might want 
to explore the effect of avoiding tests as defined by Step 6 of F I N D I N I T I A L S E L E C T I O N . 

Finally, we define R O B U S T P U R I F Y as in Table 5. After the first two steps, clusters do 
not overlap and according to our constraint rules no two elements in different sets can share 
a common parent in the true latent variable graph (BLUE or RED edge in C) or they cannot 
be in a pure subgraph (GRAY edge in C). 

Structural EM is applied as an heuristic for identifying impurities. Notice the use of 
bidirected edges, which corresponds to freeing the correlation of the error terms of two 
observed nodes, as an alternative to add new independent latents. Adding a new latent would 
require recomputing the required expected values and therefore wasting computational time. 
We stress that in general the BIC score it is not going to give the same result for different 
graphs in the same tetrad equivalence class. The goal is to throw away indicators in the 
purification, a much more modest goal than claiming that extra edges among indicators 
can be identified. Therefore, we claim that heuristics for purification have a particular 
pratical use in this context. Althought there is no theoretical guarantee that Structural 
EM will converge to the global optimum of all DAGs, nor that greedy heuristic search with 
a BIC score provides a consistent penalization for complexity, we find this heuristic to be 
very useful in practice and consistent with some of the results in Elidan and Friedman 
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Algorithm R O B U S T P U R I F Y 

Inputs: Clusters, a set of subsets of some set O; 
C, an undirect graph over O; 
E, a sample covariance matrix of O. 

1. Remove all nodes that have appear in more than one set in Clusters. 

2. For all pairs of nodes that belong to two different sets in Clusters and are adjacent 
in C, remove the one from Clusters that belong to the largest set unless the smallest 
one has less than three elements. 

3. Let G a graph with a latent corresponding to each nonempty set in Clusters. Add 
all nodes in Clusters as observed nodes in G. For each set S € Clusters, add a new 
latent as the only common parent of all nodes in S. Choose an arbitrary ordering of 
latents and according to that ordering create a fully connected DAG over the latents. 

4. Apply Structural EM to (G, S) using the Gaussian BIC as a score function, and some 
hill-climbing algorithm with operators as follows: adding a directed edge from an 
observed node to another in the same cluster as long as it does not create cycles; 
adding a bidirected edge between two observed nodes (in the same cluster or not) as 
long as there is no directed path between these nodes; removing edges between observed 
nodes. 

5. Let Ord be a list of the observed nodes in G in a decreasing order of the number of 
non-latent adjacencies they have. 

6. Sequentially remove elements from G according to the order given by Ord till no 
observed node has an adjacency besides its unique latent parent. 

7. Remove any latents without observed children. 

8. Return G. 

Table 5: A score-based purification. 
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(2001) which illustrate that, given a starting point close to the true graph, heuristic hill-
climbing will provide an estimate graph reasonably close to the true graph. One can therefore 
also interpret the tetrad constraint search that initializes the Structural EM module as a 
principled approach to find a good starting point that is able to converge to a pure subgraph 
of the original network. In the next section we evaluate how good this procedure is. 

Finally, we apply the heuristic of removing nodes iteratively according to the number 
of impurities related to each of them. Trying to achieve some kind of optimality such as 
maximizing the number of pure nodes or requiring at least k indicators per latent would result 
in a very expensive combinatorial optimization problem. For instance, even the problem of 
finding a purification of a given graph that includes the maximum number of latents can be 
shown to be hard. 

Proposition 3 Let G be a latent variable graph. Then, finding a purified subgraph of G 

with the maooimum number of latents where each latent has at least one indicator is NP-hard. 

Proof: Reduction to MAX CLIQUE. Let G' be equal to G but where observed nodes that 
have more than one latent parent are removed. Create a graph H with the observed nodes 
of G'. Add an edge for every pair of nodes that do not share a common latent parent and 
are d-separated in Gf given the latents. Then finding a maximum clique in H is equivalent 
to find a pure subgraph of G with the maximum possible number of latents, each latent with 
at least one indicator. • 

7 Empi r i ca l r e su l t s 

Evaluating automated knowledge discovery algorithms is often a difficult task because of the 
lack of a readily available gold standard by which comparisons could be made. This is espe­
cially true for unsupervised learning techniques such as clustering and causality discovery. 
However, we can still compare the outcome of our algorithm to theoretical models designed 
by experts in a field of interest, althought the models themselves might not be perfect. 

Another approach we take to evaluate our algorithm is by sampling synthetic data from 
simulated models. By knowing the true underlying structure, and we can come up with 
objective measures of success. Also, it is possible to perform sensitivity analysis of our model 
with respect to distributional assumptions: in the next subsection, we will also evaluate how 
the score-based purification is sensitive to non-gaussian distributions. The second part of 
our empirical evaluation concerns rebuilding the measurement model of three real-world data 
sets according to theoretical models. 

7.1 Synthet i c da ta 

The data sets we use in this section are synthetic data sets. The importance of synthetic 
data is the fact that we know which is the true model that generated the given samples, and 
therefore we can calculate precisely some measures of distance from our induced models to 
the true structure. We will evaluate the following features for each pure model we get with 
respect to a purified true graph: 
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(c) 

Figure 4: In (a), a pure model with 2 latents and three indicators per latent. In (b), a type 
of impurity model of 2 latents where 2 observed variables per each latent are children of 
multiple latents. The model in (c) is an example of model with three latents with a chain 
that turns the first and last indicators of each latent impure. 

• proportion of missing latents (ML), the number of latents in the true graph that 
do not appear in the estimated pure graph, divided by the number of latents in the 
true graph; 

• proportion of missing indicators (MI), the number of indicators in the true puri­
fied graph that do not appear in the estimated pure graph, divided by the number of 
indicators in the true purified graph; 

• proportion of misplaced indicators (Mpl), the number of indicators in the es­
timated pure graph that end up in the the wrong cluster, divided by the number of 
indicators in the estimated pure graph; 

• proportion of impurities (Im), the number of impurities in the estimated pure 
graph divided by the number of impurities in the true (non-purified) graph; 

• proportion of splits (Sp), the number of clusters in estimated pure graph that were 
split in more than one cluster, divided by the total number of clusters in the true 
graph. 

To perform the comparison, we should indicate which latent found in the estimation 
corresponds to which of the original latents. The straightforward way is making the match 
according to the original parent of the majority of the indicators in a given estimated cluster: 
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for example, suppose we have an estimated latent L#. If, for instance, 70% of the measures 
in L e are measures of the true latent L 2 , we label L e as L 2 in the estimated graph and 
calculate the statistics of comparison as described above. Ties are broken arbitrarily. 

For the following results, we generated only multivariate normal indicators, with requires 
a linear latent structure. Samples were generated using the Tetrad IV program 7 . Values for 
the cofficients are then uniformly sampled from the interval [—1.5, — 0.5]U[0.5,1.5]. Variances 
for the exogenous nodes (i.e., latents without parents and error nodes) are uniformly sampled 
from the interval [1,3]. The motivation for choosing such intervals is generating artificial 
models where the causal effects are not too big or too small. After the full parameterized 
model is set, independent samples are pseudorandomly generated. The pseudorandom num­
ber generator used in the following experiments was the one used in the Java 1.4 virtual 
machine. The p-value used in all tests for all experiments was 0.05 for F I N D I N I T I A L S E L E C -

T I O N and reduced to 0.02 elsewhere, since in our simulations rules CS1, CS2, CS3 have a 
tendency to fire erroneously because parts of the rules concerning tetrads constraints that 
should not hold (e.g., oxxx2vyxy2 &XiY2&x2Yi in CS1) are accepted as such when the null 
hypothesis is actually true (i.e., oxxx2oyxy2 = &XIY2vx2YI)-

We generate four types of models: pure models with three indicators per latent (Pure-3) 
as illustrated by Figure 4(a); pure models with five indicators per latent (Pure-5); models 
with three pure indicators per latent plus two observed variables per latent that are shared 
indicators (SI) of every latent (Pure-3 + SI) as illustrated by Figure 4(b); models with five 
indicators per latent, three of which are pure, and the other two are linked by a directed edge 
(Pure-3 + Chain). Also, the last indicator of each cluster is a parent of the first indicator 
of the consecutive cluster, as illustrated by Figure 4(c). In this way, every latent will have 
only three pure indicators, except the first latent in the chain, which will have four pure 
indicators. 

Simulation results are given in Table 6. Each result is an average over 20 experiments 
with different parameter values randomly selected for each instance and three different sample 
sizes. There was a sensible improvement from trials based on samples of size 1000 compared 
to those with samples of size 200, but little difference was observed when comparing trials 
of sample size 1000 to those with sample size 10000. There was a tendency to remove more 
indicators than necessary in the purification procedure (i.e., high MI index). We conjecture 
that it can be a result of using BIC as a score function: notice that this phenomenon 
was less extreme with pure models. One can verify, at least empirically, that the Jacobian 
matrix of the parameters of the network with respect to the joint parameters (i.e., the 
matrix of derivatives of the entries of the covariance matrix with respect to coefficients and 
error variances) has full rank when the variances of the latents are scaled to a fixed value. 
According to Geiger et al. (1996), under this condition the BIC score might work well. A 
way to improve our results might be through adjusting the BIC score by using this rank 
instead of the number of parameters, but that might imply extra computational cost if it 
is not possible to find an analytical way of computing such rank. An alternative is running 
an iterated fit-and-purify procedure: after hill-climbing is done, remove only one variable. 
Repeat the process from scratch. In this way, the purification is less sensitive to the numerous 
edges that might have been added without necessity. However, the computational cost is 

7Available at http: //www. phil. emu. edu/tetrad. 
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Evaluation of estimated purified models 
ML MI Mpl Im Sp 

Pure-3 
sample size 200 0.16 ±0.14 0.22 ±0.08 0.05 ±0.07 0.0 ±0.0 

sample size 1000 0.04 ± 0.07 0.10 ± 0.07 0.0 ±0.0 0.0 ± 0.0 
sample size 10000 0.04 ± 0.06 0.08 ± 0.08 0.0 ±0.0 0.0 ± 0.0 

Pure-5 
sample size 200 0.02 ±0.05 0.25 ±0.08 0.0 ±0.0 0.06 ±0.07 

sample size 1000 0.02 ± 0.07 0.15 ± 0.09 0.01 ± 0.02 0.02 ± 0.05 
sample size 10000 0.0 ± 0.0 0.03 ± 0.03 0.0 ±0.0 0.0 ± 0.0 

Pure-3 + SI 
sample size 200 0.09 ± 0.14 0.25 ± 0.11 0.02 ± 0.04 0.15 ± 0.10 0.01 ± 0.03 

sample size 1000 0.05 ± 0.07 0.14 ± 0.11 0.0 ± 0.0 0.12 ±0.07 0.0 ± 0.0 
sample size 10000 0.07 ± 0.09 0.13 ± 0.10 0.0 ± 0.0 0.08 ± 0.08 0.0 ± 0.0 
Pure-3 + chain 

sample size 200 0.14 ± 0.13 0.28 ±0.11 0.02 ± 0.04 0.21 ± 0.12 0.02 ± 0.05 
sample size 1000 0.02 ± 0.05 0.11 ± 0.06 0.0 ± 0.0 0.04 ± 0.06 0.02 ± 0.05 

sample size 10000 0.04 ± 0.08 0.12 ± 0.12 0.0 ± 0.0 0.05 ± 0.05 0.02 ± 0.05 

Table 6: Results obtained for estimated purified graphs. Each number is an average over 20 
trials, with an indication of the standard deviation over these trials. 

also largely increased. In a future, we may try to adopt similar strategies. 
We also ran experiments to detect how sensible R O B U S T B U I L D P U R E C L U S T E R S might 

be when the normality assumption is violated. Using the same causal structure from the 
Pure-3 + SI graph and multivariate Gaussian parameterization, we generated Gaussian data 
with additional random noise sampled from a mixture of two betas independently added to 
each observed variable. The mixture was defined randomly for each data set by sampling 
the four betas parameters from a uniform [0,10] distribution, and the mixture proportion 
from a uniform [0,1]. We also multiplied the noise by 3, and generated 15 data sets where 
the average proportion of variance for each variable increased by at least 30% after adding 
noise. 

The results were as follows for a sample size of 1000: an average of 0.07 missing latents 
(standard deviation: 0.09), 0.24 missing indicators (deviation of 0.10), 0.02 misplaced indica­
tors (0.03), 0.07 impurities (.07) and 0.009 clusters that were split (for only one cluster in one 
of the 15 trials). There was a significant increase of missing indicators compared to the case 
with no non-Gaussian noise, but the algorithm still, demonstrated a robust behavior against 
deviations from normality according to the other criteria. This is not surprising, considering 
the relative robustness of linear models against wrong distributional assumptions. However, 
a more extensive sensitive analysis still needs to be done in the future. 
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7.2 Real-world appl icat ions 

We now discuss results obtained in three different data sets in social sciences. Even though 
data collected from social questionnaires may pose significant problems for exploratory data 
analysis since sample sizes are usually small and noisy, nevertheless they have a very useful 
property for our empirical evaluation purposes: questionnaires are designed to target specific 
latent factors (such as "stress", "job satisfaction", and so on) and a theoretical measurement 
model is developed by experts in the area to measure the desired latent variables, thus 
providing a basis for comparison with the output of our algorithm. Such variables usually 
include dozens of different indicators, although the chance that various observed variables 
are not pure measures of their theoretical latents is high. Indicators are usually discrete, but 
ordered in a Likert scale (Bollen, 1989) such as {"strongly disagree", "relatively disagree", 
"indifferent", "relatively agree", "strongly agree"}. We will treat them as continuous vari­
ables. 

Since there are theoretical models, it is easier to evaluate how our algorithm performs. 
The evaluation performed in the following three data sets will basically contrast the quali­
tative models obtained from our tetrad analysis against the theoretical models specified by 
previous empirical research. As an additional comment, since sample sizes are small, such 
data sets could hardly be reliably analysed by full score-based hill-climbing algorithms, since 
the number of parameters would by far exceed the number of data points. When our proce­
dure invokes the score-based purification, the number of parameters is already dramatically 
reduced. 

Student anxiety factors. A survey of test anxiety indicators was administered to 335 grade 
12 male students in British Columbia (Bartholomew et a!., 2002). The survey consisted in 
20 measures on symptoms of anxiety under test conditions. A brief description of the 20 
indicators is shown in Table 7. 

Using factor analysis, Bartholomew et al. concluded that two factors would be the best 
choice for this data set throught a scree plot. If we perform a chi-square test of statistical 
fitness using the given covariance matrix, the factor analysis implementation in SAS reveals 
that just one factor is enough with a p-value of 0.09. This is also the result that minimizes 
BIC. Bartholomew et al. favor a better account of the variation in this data by using a more 
complex model. 

According to Bartholomew et al., this inventory has been used in many countries with 
similar results. The original study identified items { x 2 , x S l x 9 , x i o , Xi 5 , # i 6 , # i 8 } as indicators 
of an "emotionality" latent factor (this includes physiological symptoms such as jittery and 
faster heart beatting), and items { # 3 , £ 4 , X 5 , : E 6 , # 7 , # 1 4 , # 1 7 , # 2 0 } as indicators of a more psy­
chological type of anxiety labeled "worry" by Bartholomew et al. No further description is 
given about the remaining five variables. Bartholomew et al.'s factor analysis with oblique 
rotation roughly matches this model. 

We ran our algorithm 10 times with different random orderings of variables and we got 
always the same following measurement model (#* represents the zth item in Table 7): 

1. x2,x$,x9,x10,xmxi6,x1$ 

2. x 3 , x 5 , x 7 
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1. Lack of confidence during tests 

2. Uneasy, upset feeling 

3. Thinking about grades 

4. Freeze up 

5. Thinking about getting through school 

6. The harder I work, the more confused I get 

7. Thought interfere with concentration 

8. Jittery when taking tests 

9. Even when prepared, get nervous 

10. Uneasy before getting the test back 

11. Tense during test 

12. Exams bother me 

13. Tense/stomach upset 

14. Defeat myself during tests 

15. Panicky during tests 

16. Worry before important tests 

17. Think about failing 

18. Heart beating fast during tests 

19. Can't stop worrying 

20. Nervous during test, forget facts 

Table 7: Indicators of test anxiety described in Bartholomew et al. (2002). 
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3. Xq,Xu 

Interestingly, the largest cluster closely corresponds to the "emotionality" factor as de­
scribed by previous studies. The remaining two clusters are a split of "worry" into two 
subclusters with some of the original variables eliminated. Variables in the second cluster 
are only questions that explicitly describe "thinking" about sucess/failure (the only other 
question in the survey with the same characteristic was xu which was eliminated). Variables 
x 6 and #i4 are can be interpreted as indicating self-defeat. 

To evaluate how the model given by Bartholomew et al. compares to the outcome of 
our algorithm, we will compare their fits according to the usual chi-square test, and also 
evaluate intermediate models. The two-factor model given by all theoretical indicators of 
"emotionality" and "worry" does not fit as a pure model (p-value of zero): the full factor 
analysis solution will require that some of the indicators have significant loadings in both 
latents, but there is no simple principled way to explain why such loadings are necessary. 
They may be due to direct effects of one variable on another, or due to other latent factors 
independent of the two conjectured. Besides that, the significance of such coefficients is tied 
to whatever ad-hoc rotation method is employed order to obtain "simple structure". 

If we remove variables #4, Xi7 and #20 from Bartholomew et al.'s model because they are 
not in our purified model and fit a 2-factor purified model (i.e., equivalent to our model 
after merging clusters 2 and 3 and latents are always fully connected), we get a p-value of 
0.11, corresponding to a chi-square statistic of 65.8 (53 degrees of freedom). This model 
itself might be significant, but comparing to our proposed model of p-value 0.47 (chi-square 
of 51.2, 51 degrees of freedom), the difference of chi-squares is large enough such that the 
p-value of the pure two-factor model, using as alternative hypothesis our model, drops to 
0.0007. This strongly suggests that our model adds a significant improvement in fit to the 
pure two-factor model by splitting the group {x3, #5, x$, X7,Xu} into two. In contrast, by 
randomly partitioning the first cluster into two, we did not get any significant improvement 
(p-value < 0.05) in 5 trials. To summarize, by dropping only 3 out of 15 previously clas­
sified variables (among a total of 20 variables), our algorithm built a measurement model 
not only much simpler to understand, but also giving a better fit. All without using any 
domain-specific prior knowledge and without relying on ad-hoc definitions of "simplicity" 
such as the ones used to justify factor rotation. 

Well-being and spiritual coping Bongjae Lee from the University of Pittsburgh organized 
a study to investigate religious/spiritual coping and stress in graduate students. In December 
of 2003, 127 Masters in Social Works students answered a questionnaire intendent to measure 
three main factors: 

• stress, measured with 21 items, each using a 7-point scale (from "not all stressful" to 
"extremely stressful") according to situations such as: "fulfilling responsabilities both 
at home and at school"; "meeting with faculty"; "writing papers"; "paying monthly 
expenses"; "fear of failing"; "arranging childcare"; 

• well-being, measured with 20 items, each using a 4-point scale (from "rarely or none" 
to "most or all the time") according to indicators as: "my appetite was poor"; "I felt 
fearful"; "I enjoyed life" "I felt that people disliked me"; "my sleep was restless"; 
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• religious/spiritual coping, measured with 20 items, each using a 4-point scale (from 
"not at all" to "a great deal") according to indicators such as: "I think about how 
my life is part of a larger spiritual force"; "I look to God (high power) for strength in 
crises"; "I wonder wheter God (high power) really exists"; "I pray to get my mind off 
of my problems"; 

The full questionnaire is given in the Appendix. Theoretical latents are not necessarily 
unidimensional, i.e., they might be partioned into an unknown set of sublatents and their 
indicators might be impure, but there was no prior knowledge about which impurities might 
exist. 

The goal of the original study was to use graphical models to quantify how spiritual 
coping moderates the association of stress and well-being. Our goal in this analysis is to 
verify if we get a clustering consistent with the theoretical measurement model (i.e., questions 
related to different topics will not end up in a same cluster), and analyse how questions are 
partioned within each theoretical cluster (i.e., how a group of questions related to the same 
theoretical latent ended up divided in different subclusters) using no prior knowledge. 

The algorithm was applied 10 times with a different random choice of variable ordering 
each time. On average we got 18.2 indicators (standard deviation of 1.8). Clusters with only 
one variable were excluded. On average, 5.5 latents were discovered (standard deviation 
of 0.85). Counting only latents with at least three indicators, we had on average 4 latents 
(standard deviation of 0.67). In comparison, using the theoretical model as an initial model 
and by applying purification directly 8 , i.e. without automated clustering, we obtained 15 
variables (8 indicators of stress, 4 indicators of coping and 3 indicators of depression). We 
should not expect to do much better with an automated clustering method. This clustering 
is given below: 

1. Clustering CO (p-value: 0.28): 
STR03, STR04, STR16, STR18, STR20 
DEP09, DEP13, DEP19 
COP09, COP12, COP14, COP15 

By comparing each result to the theoretical model and taking the proportion of indica­
tors that were clustered differently from the theoretical model, we had an average percentage 
of 0.05 (standard deviation of 0.05). The proportionally high standard deviation is a con­
sequence of the small percentages: in 4 out of 10 cases there was no indicator mistakenly 
clustered with respect to the questionnaire, in 5 out of 10 we had only one mistake, and in 
only one case there were two mistakes. 

The three outputs with the highest number of indicators (respectively, 21, 20, 20) were 
also the ones with the highest number of latents: 

8 I N ORDER TO SAVE TIME, WE FIRST APPLIED A CONSTRAINT-BASED PURIFICATION METHOD DESCRIBED IN SPIRTES ET AL. 

( 2 0 0 0 ) AS A FIRST STEP, USING FALSE DISCOVERY RATES AS A METHOD FOR CONTROLLING TO MULTIPLE HYPOTHESIS TESTS. 

D U E TO RELATIVELY LARGE NUMBER OF VARIABLES, THIS METHOD IS QUITE CONSERVATIVE AND WILL TEND TO UNDERPRUNE 

THE MODEL, AND THEREFORE SHOULD NOT COMPROMISE THE SUBSEQUENT SCORE-BASED PURIFICATION THAT WAS APPLIED. 

FOR INSTANCE, AFTER THE FIRST STEP THE MODEL STILL HAD A P-VALUE OF ZERO ACCORDING TO A CHI-SQUARE TEST. 
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1. Clustering CI (p-value: 0.31) 
STR05, STR06, STR08, STR09 
STR12, STR15, STR21 
DEP06, DEP08, DEP17, DEP18, DEP20 
DEP15, DEP19 
COP03, COP04, COP05, СОРИ, COP16 
СОРЮ, COP13 

2. Clustering C2 (p-value: 0.80) 
STR06, STR09, STR10 
STR07, STR15, STR21 
DEP08, DEP12 
DEP01, DEP07, COP06 
COP02, COP03, COP04, C0P11 
COP15, COP16, COP18 
STR17, DEP36 

3. Clustering C3 (p-value: 0.52) 
STR05, STR08, STR09, STR10 
STR12, STR21 
DEP06, DEP10, DEP17, DEP18, DEP20 
DEP08, DEP12, DEP16 
COP03, COP05, СОРИ, C0P18 
СОРЮ, COP13 

P­values are obtained from a chi­square test assuming a multivariate Gaussian distribu­

tion. Notice that variables COP11 and COP16 are clustered together in CI, while they are 
separated in C2. The reason for that was due to the first stage of clustering used in our 
implementation, where we look for clusters of size at least three based on a more stringent 
version of CS1. In the case of Cl, we obtained a clustering in the first stage where COP11 
and COP16 were in the same cluster and, therefore, not tested again in the second stage. 
In the C2 run, the first stage did not include this cluster, and during the second stage there 
was a condition by which COP11 and COP16 were separated. Althought in principle the 
purification method should remove one of these two indicators in Cl if they were not meant 
to be clustered together, or no rule should separate COP11 and COP16 in C2 if they were 
not meant to be separated, with small sample sizes there is no guarantee of a reliable choice. 
This is also a reason why it is useful to report different 1­interpretations. A similar situation 
happened between COP11 and COP18. 

In order to evaluate how the split of theoretical clusters into subclusters was helpful, we 
evaluated the fit of models Cl, C2 and C3 by merging subclusters of the same theoretical 
concept into single ones, one at a time. For Cl, all three submodels have p­values less than 
0.03. For C2, we first removed indicators STR17, DEP36 and COP06 to remove the effect of 
having a theoretically wrong clustering. The resulting p­value is roughly the same, 0.79. We 
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then merged the stress, depression and coping pairs of clusters, one pair at a time. Merging 
the depression indicators result in a model of p-value 0.09, and the difference of chi-squares 
between the original model and the merged indicators model is not significant at a level 
10" 6, favoring the more complex model. Merging the stress indicators results in a model 
with a p-value of 0.21, and the difference of chi-square statistics has a p-value not significant 
at a level 10" 2. Merging the coping indicators results in a model with a p-value 0.73, and 
the difference in chi-squares has now a p-value of 0.22, providing evidence that this cluster 
might have been spuriously divided. 

When looking at the descriptions of items {COP02, COP03, COP04, COP11} there is 
actually a significant degree of semantical cohesion: there are all items concerning "fighting 
difficult situations". Items in cluster {COP15, COP16, COP18} are not as clearly grouped, 
but one can still argue that among all items given in the questionnaire they are the ones 
more directly related to "possible sources of advice" in a more general sense. Interestingly, 
the former cluster can then be seen as a special case of the latter. Anyway, the fact that in 
CI we had COP11 and COP16 clustered together, and in C3 we had COP11 and COP 18 
together provide extra evidence that these clusters might have been better interpreted when 
merged. 

Concerning merging clusters of C3, when we merge the stress clusters the resulting model 
has a p-value of 0.006, and the difference of chi-squares highly favours the more complex 
model. When the depression clusters are merged, the new p-value is 0.004, and again the 
more complex model is favoured. Finally, when the two clusters for coping are merged, the 
p-value is 0.21, but the difference of chi-squares implies a p-value of only 0.002, which still 
indicates lack of evidence supporting the less complex model compared to the one found by 
our procedure. 

In conclusion, by analysing the models obtained from the automated latent discovery 
procedure, one can verify that they largely match theoretical expectations and, more than 
that, are slightly more comprehensive than the purification CO obtained by using the origi­
nal questionnaire as a starting point. CI, C2 and C3 also maintain excellent indices of fit, 
despite their larger complexity with respect to CO. 

Single-mothers' self-efficacy and children's development: Jackson and Scheines (2004) 
analysed a longitudinal study on single black mothers with one child in New York City from 
1996 to 1999. The goal of the study was to detect the relationship among perceived self-
efficacy, mothers' employement, maternal parenting and child outcomes. Overall, there were 
nine factors used in this study. Three of them, age, education and income, are represented 
directly by one indicator each (here represented as W2moage, W2moedu and W2faminc, 
respectively). The other six factors are latent variables measured by a varied number of 
indicators: 

1. financial strain (3 indicators, represented by W2finanl, W2finan2, W2finan3) 

2. parenting stress (26 indicators, represented by W2paroa - W2paroz) 

3. emotional support from family (20 indicators, represented by W2suf01 - W2suf20) 

4. emotional support from friends (20 indicators, W2sufr01 - S2sufr20) 
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5. tangible support (i.e., more material than psychological. 4 indicators, W2ssupta -
W2ssuptd) 

6. problem behaviors of child (30 indicators, W2mnegl - W2mneg30) 

We do not reproduce the original questionnaire here due to its size. The questionnaire is 
based on previous work on creating scales for such latents. As before, we evaluate how our 
algorithm output compares to the theoretical model. The extra difficulty here is that the 
distribution of the variables, which are ordinal categorical, are significantly skewed. Some 
of the categories are very rare, and we smoothed the original levels by collapsing values 
that were adjacent and represented less than 5% of the total total number of cases. Several 
variables ended up binary by doing this transformation, which reduces the efficiency of 
models based on multivariate Gaussian distributions. 1 out of the 106 variables was also 
removed (W2sufr04) since 98% of the points fell into one of the two possible categories. The 
sample size is 178, relatively large for this kind of study, but it still considerably small for 
exploratory data analysis. 

As before, the algorithm was applied 10 times with a different random choice of variable 
ordering each time. On average we got 21 indicators (standard deviation of 3.35) excluding 
clusters with only one variable. On average, 7.3 latents were discovered (standard deviation 
of 1.5). Counting only latents with at least three indicators, we had on average 4.3 latents 
(standard deviation of 0.86). Moreover, comparing each result to the theoretical model 
and taking the proportion of indicators that were wrongly clustered, we had an average 
percentage of 0.08, with standard deviation of 0.07. 

It was noticeable that the small theoretical clusterings ("financial strain" and "tangi­
ble support") did not show up in the final models, but we claim that errors of omission 
are less harmful than those of comission, i.e., wrong clustering. However, it was relatively 
unexpected that the clusterings obtained in the first stage of our implementation (i.e., the 
output of F I N D I N I T I A L S E L E C T I O N ) were larger in number of indicators than the ones ob­
tained at the end of process. This can be explained by the fact that the initial step is a 
more constrained search, and therefore less prone to overfit. Since our data set is noisier 
than in the previous cases, we choose to evaluate only the three largest clusters obtained 
from F I N D I N I T I A L S E L E C T I O N . In this case, we had an average proportion of 0.037 wrongly 
clustered items (standard deviation: 0.025), 4.9 clusters (deviation: 0.33), 4.6 clusters of size 
at least three (deviation: 0.71) and 24.2 indicators (deviation: 2.8). Notice that the clusters 
were less fragmented than in the previous case, i.e., we had less clusters, more indicators per 
clustering, and a insignificant number of clusters with less than three indicators. 

The largest clusters in this situations were the following: 

1. Cluster D l (p-value: 0.46): 
W2sufr02 W2sufr05 W2sufr08 W2sufrl3 W2sufrl4 W2sufrl9 W2sufr20 
W2mnegl4 W2mnegl5 W2mneg2 W2mneg22 W2mneg26 W2mneg28 W2mneg29 
W2suf01 W2suf05 W2suf08 
W2paro2e W2paro2j W2paro2t W2paro2w 
W2suf07 W2sufl2 W2sufl7 
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2. Cluster D2 (p-value: 0.22): 
W2sufr01 W2sufr08 W2sufrl0 W2sufrl2 W2sufrl3 W2sufrl4 W2sufrl9 W2sufr20 
W2suf04 W2suf05 W2sufl0 
W2paro2e W2paro2j W2paro2t W2paro2w 
W2paro2k W2sufl2 W2sufl7 
W2mneg2 W2mneg5 W2mnegl2 W2mnegl4 W2mneg21 W2mneg22 W2mneg26 

3. Cluster D3 (p-value: 0.29): 
W2mneg2 W2mnegl0 W2mneg22 W2mneg26 W2mneg28 W2mneg29 
W2sufr01 W2sufr05 W2sufr08 W2sufr09 W2sufrl2 W2sufrl3 W2sufrl4 W2sufrl9 
W2suf02 W2suf04 W2suf05 W2sufll W2sufl3 W2suf20 
W2paro2e W2paro2j W2paro2t W2paro2w 
W2paro2k W2sufl2 W2sufl7 

One can see that such models largely agree with those formed from prior knowledge. 
However, sucess in this domain is not as interesting as in the previous two cases: unlike in 
the test anxiety and spiritual coping models, the covariance matrix of the latent variables 
has a majority number of very small entries, resulting in a considerably easier clustering by 
just observing marginal independencies among items. 

Still, the cases where theoretical clusters were split seem to be in accordance with the 
data: merging the W2suf indicators in a single pure cluster in Dl will result in a model with 
a p-value of 0.008. Merging the W2suf variables in D2 will also result in a low p-value (0.06) 
even when W2paro2k is removed. Unsurprinsingly, doing a similar merging in D3 gives a 
model with a p-value of 0.04. This is a strong indication that W2sufl2 and W2sufl7 should 
form a cluster on their own. In fact, these two items are formulated as two very similar 
indicators: "members of my family come to me for emotional support" and "members of my 
family seek me out for companionship". No other indicator for this latent seems to fall in the 
same category. Why this particular pair is singled out in comparison with other indicators 
for this latent is a question for future studies and a simple example of how our procedure 
can help in understanding the latent structure of the data. 

8 Discuss ion a n d fu tu re work 
We introduced a novel method for automated knowledge discovery based on causal graphs 
with latent, variables. The very general, relatively weak, assumptions by which this method 
has theoretical guarantees are made explicit. Although there are situations where the output 
of our algorithm might not be very informative, since one can expect that only a subset of the 
available variables forms a pure measurement model, this can also be seen as a strength of the 
algorithm: it does not commit itself to report features of the underlying causal model that 
could be explained by different mechanisms under the given set of assumptions. Assumptions 
are made clear instead of being buried in apparent but deceiving flexibility. 

Our experiments presented evidence that such framework can be useful in practice, but 
as usual there are many directions where this work can be expanded: 
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dependency on parametric assumptions: the tetrad equivalence class and nearly all 
of our causal assumptions are independent of assumptions about the probability dis­
tribution of the data. However, when it comes down to do tetrad constraint tests or 
scoring a measurement model for purification, probabilistic descriptions of the data are 
crucial. So far we have restricted ourselves to multivariate Gaussian distributions, as 
usual in the literature of graphical models with continuous variables. In principle, there 
are asymptotic distribution-free tests of tetrad constraints (Bollen, 1990) and linear 
measurement errors are known to be relatively robust to the failure of the normality 
assumption (Fuller, 1987). However, there might be more statistically efficient ways of 
weakening distributional assumptions. This is also a problem for scoring DAGs as used 
for a heuristic purification. More flexible approaches for measurement models such as 
Carroll et al. (1996) could be explored in the context of discovering measurement 
model structure; 

finding robust score functions that will give the same score only for models in the same 
tetrad equivalent class. The goal is to avoid constraint-satisfaction approaches for 
learning graphical models and reduce the problem to hill-climbing algorithms. How­
ever, this can be a difficult task for a variety of reasons, such as the fact that multi­
variate Gaussian latent variable models are not curved exponential models and even 
approximations for them can be potentially very difficult to compute (Rusakov and 
Geiger, 2004). Also, just having a score equivalence class corresponding to a tetrad 
equivalence class is not enough to guarantee a theoretically consistent learning proce­
dure: one would also need to prove that some non-trivial search algorithm is able to 
find the best scoring model; 

better treatment of discrete variables: although we hinted how discrete variables could 
be integrated in a tetrad equivalence class, we did not run any experiments to evaluate 
how this approach performs. Bartholomew and Knott (1999) survey different ways of 
integrating factor analysis and discrete variables that can be readily adapted. Two 
major problems affect discrete factor analysis: relying on underlying Gaussian random 
variables, which ties the structural causal assumptions to a specific probabilistic model; 
the computation cost of performing numerical integrations. So far no empirical studies 
have been performed about how such issues might affect the tetrad equivalence class 
here described. 

study applications of this technique for multivariate density estimation. Since density 
estimation in high dimensional spaces is a very difficult task, one could try a more 
modest goal of choosing variables that can be represented as a pure measurement 
model and then fit such model to the data. For instance, Zhang (2004) noticed that 
it is not always possible to find good fitting models for his class of pure measurement 
models. We therefore would search for a subset of variables that would be reasonably 
represented in our pure measurement model formulation; 

finding causal relationships among latent variables given a fixed measurement model for 
them. This was studied before in Silva (2002) with a different clustering algorithm. The 
natural extension is applying similar techniques with the learning algorithm developed 
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in this work. One can then contrast the full latent variable approach against, e.g., the 
standard practice in social sciences of building scales, where new variables are created 
as deterministic functions of indicators (average, for instance) and graphical models 
are built using these news variables instead of introducing latents. 
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A p p e n d i x 

A Proofs 
Before presenting proofs for the lemmas and theorems stated in the body of this text, we will 
introduce the following notation. Let o x y denote the covariance of any two random variables 
X and Y and Pxy.z denote THE partial correlation of X and Y given Z. The symbol {XT} 
will stand for a finitely indexed set of variables. 

Also, let X = XX0L + YLI=i ^xiVi a n d Y be random variables with zero mean, as well as 
{L, 77!, ...,7/fc}. Let {Axo, A X l , X X K } be real coefficients. We define gxyl, the "covariance of 
X and Y through L", as gxyl = XXOE[LY]. 

Lemma 1 LET G(0) BE A SEMILINEAR LATENT VARIABLE GRAPH. FOR SOME SET O' = {A, B, C, D} C 
O, IF cfabVcd = vac<*bd = vadVbc AND FOR ALL TRIPLETS {X,Y,Z}, {X,Y} C 0 ' , Z € O, 
WE HAVE Pxy.z 0 AND Pxy ^ 0; THEN NO ELEMENT i n l G O ' IS AN ANCESTOR OF ANY ELEMENT 
IN 0'\X IN G WITH PROBABILITY 1 WITH RESPECT TO A LEBESGUE MEASURE OVER THE COEFFICIENT AND 
ERROR VARIANCE PARAMETERS. 

Proof: Since G is acyclic among observed variables, then at least one element in O 7 is not 
an ancestor in G of any other element in this set. By symmetry, we can assume without 
loss of generality that D is such node. Since the measurement model is linear, we can write 
A , B,C,D as linear functions of their parents: 

where on the right-hand side of each equation we have the respective parents of A , B, C and 
D. Such parents can be latents, another indicators or, for now, the respective error term, 
but each indicator has at least one latent parent besides the error term. Let L be the set 
of latent variables in G. Since each indicator is always a linear function of its parents, by 

A 
B 
C 
D 

EIBIBI 

J2K DKDK 

A>PAP 
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composition of linear functions we have that each X G O' will be a linear function of its 
immediate latent ancestors, i.e., latent ancestors Lxv of X such that there is a directed path 
from Lxv to X in G that does not contain any other element of L. The equations above can 
then be rewritten as: 

A = Ylp^ApLAp  

B = Y^i^BiLBi 

where on the right-hand side of each equation we have the respective immediate latent 
ancestors of A, B, C and D and A parameters are functions of the original coefficients of the 
measurement model. Notice that in general the sets of immediate latent ancestors for each 
pair of elements in O' will overlap. 

Since the graph is acyclic, at least one element of {̂ 4, B, C} is not an ancestor of the 
other two. By symmetry, assume without loss of generality that C is such a node. Assume 
also C is an ancestor of D. We will prove by contradiction that this is not possible. Let L 
be a latent parent of C, where the edge from L into C is labeled with c, corresponding to 
its linear coefficient. We can rewrite the equation for C as 

C = cL + J > C . L C . (2) 
3 

where by an abuse of notation we are keeping the same symbols \c5 and Lcj to represent 
the other dependencies of C. Notice that it is possible that L = Lc5 for some Lc5 if there 
is more than one directed path from L to C, but this will not be relevant for our proof. In 
this case, the corresponding coefficient A is modified by subtracting c. It should be stressed 
that the symbol c does not appear anywhere in the polynomial corresponding to J2j ^cjLcj, 
where in this case the variables of the polynomial are the original coefficients parameterizing 
the measurement model and the immediate latent ancestors of C. 

By another abuse of notation, rewrite A, B and D as 

A = cuaL + Y^p ^ApLAp 

B = cubL + Y,i ^BiLBi 

D = cudL + J2k xDkLDk 

Each uv symbol is a polynomial function of all (possible) directed paths from C to 
Xv e {A, B, £>}, as illustrated in Figure 5. The possible corresponding Xxvt coefficient for L 
is adjusted in the summation by subtracting cuxvt (again, L may appear in the summation 
if there are directed paths from L to Xv that do not go through C). If C has more than one 
parent, then the expression for uv will appear again in some \xvt- However, the symbol c 
cannot appear again into any Xxvt, since uv summarizes all possible directed paths from C to 
Xv. This remark will be very important later when we factorize the expression corresponding 
to the tetrad constraints. Notice that, by assumption, uja = o;& = 0, and ujd ^ 0. We keep 
ua and a/& in our equations to account for the next cases, where we will prove that B and 
A cannot be ancestors of D. The reasoning will be analogous, but the respective us will be 
nonzero. 
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Figure 5: (a) The symbol Ud is defined as the sum over all directed paths from C to D of the 
product of the labels of each edge that appears in each path. Here the larger edges represent 
edges in such directed paths, (b) An example: we have two directed paths from C to D. 
The symbol UD then stands for ol\ + OL2&Z, where each term in this polynomial corresponds 
to one directed path. Notice that it is not possible to obtain any additive term that forms 
Ud out of the product of some A^p, A^, A^, since D is not an ancestor of any of them: in 
our example, A \ and A 2 cannot appear in any A^A^Ac, product ( a 3 may appear if X is an 
ancestor of A OR B). 

Another important point to be emphasized is that no term inside Ud can appear in the 
expression for A and B. That happens because D is not an ancestor of A, B or C, and at 
least the edges from the parents of D to D cannot appear in any trek between any pair of 
elements in {A, B, C} and every term inside Ud contains the label of one edge between a 
parent of D and D. This remark will also be very important later when we will factorize the 
expression corresponding to the tetrad constraints. 

By the definitions above, we have: 

a A B = c2uauba2

L + cua E A B i a L B . L + aoh E XAp^LApL + E E ^Ap^B^LApLBi 

°CD = C2UJD(J2

L + CLL^DkVLDkL + CUdJ2^Cj^LCjL + E E ^Cj^Dk^LCjLDk 

A ac = C2UAAL + aoa E ^c^lCjl + C E ^ap&lApl + E E ^ap^c^lAplCj 

&bd = c2ubuda2

L + cub E Ad* &LDk l + cujd E aLBi l + E E ^ XDK c t L b . l D k 

Consider the polynomial identity (Jab^cd — oac<*bd = 0 as a function of the parameters 
of the measurement model, i.e., the linear coefficients and error variances for the observed 
variables. Assume this constraint is entailed by G and its unknown latent covariance matrix. 
With a Lebesgue measure over the parameters, this will hold with probability 1, which follows 
from the fact that the solution set to non-trivial polynomial constraints has measure zero. 
See Meek (1997) and references within for more details. This also means that every term 
in this polynomial expression should vanish to zero with probability 1: i.e., the coefficients 
(functions of the latent covariance matrix) of every term in the polynomial should be zero. 
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Therefore, the sum of all terms with a factor Udt = hh->h at a given choice of exponents for 
each l i , l z should be zero, where Udt is some term inside the polynomial Ud> 

Before using this result, we need to identify precisely which elements of the polynomial 
&AB&CD — vac&bd can be factored by, say, c2

Udt, for some Udt- This can include elements 
from any term that will explicitly show c

2

Ud when multiplying the covariance equations 
above among others, but we have to consider the multiplicity of the factors that compose 
Udt- Let Udt — hh—lz- We want to factorize our tetrad constraint according to terms 
that contain /1 /2 . - /2 with multiplicity 1 for each label (i.e., our terms cannot include l\, 
for instance, or some subset of {/1, ...,/*}). Since C does not have some descendant X 
that is a common ancestor of A and D or B and D , this means that no algebraic term 
ua,ui) or XApj^Bi can contain some symbol in { / 1 , Z 2 } . Notice that some A^fcs will be 
functions of Udt- every immediate latent ancestor of C is an immediate latent ancestor of D . 
Therefore, for each common immediate latent ancestor parent L q of C and D , we have that 
^dq = u d \ c q + t(Lq, D) = udAcq + (<*>d - udt)Xcq + t{Lqj D), where t(Lq, D) is a polynomial 
representing other directed paths from L q to D that do not go through C. 

For example, consider the expression c
2

ua ^Y^Bi^LBiLJ {jLL^Dk&LDkLJ, which is an 
additive term inside the product (Jab^cd- If we group only those terms inside this expression 
that contain Udt, we will get c2

uaudt (Y ^b^l^lJ (Y^CJ^l^lJ where the index j runs 
over the same latent ancestors as in (2). As discussed before, no factor of Udt can be a factor 
of any term in A s r The same holds for ua. Therefore, the multiplicity of each /1, ...,lz in 
this term is exactly 1. 

When one writes down the algebraic expression for oab°cd — &ac&bd as functions of As, 
c, u^u^Udu the terms 

C
2

Udt[a
2

L Y ^Ap^B^LApLBi + UaUhG
2

L Y Y ^C^C^Lc.Lc., +^aE ^B^LBiL Y ^Cj°LCjL+ 

Mb Y ^Ap°LApL Y ^CJVLCJL]-

(?Udt[u\>(y\ Y E ^Ap^CjVLApLcj +
u

aVl E E ^BjXcj^LBiLCj + â̂ 6 Y ^C^LCjL Y ^C^LCjL+ 

Y ^Ap°LApL Y ^B^LB.l] 

will be the only ones that can be factorized by c2

Udt, where the power of c in such terms is 
2, and the multiplicity of each / 1 , l z is 1. Since this has to be identically zero and Udt ^ 0, 
we have the following relation: 

/ i(G) = / 2 (G) (3) 

where 

fl(G) = C
2

[a
2

L Y Y ^Ap^B^LApLB.+^b(yl Y E ^CjXc^LcjLc., +"a Y ^B^L^L Y ^C^LCjL+ 

Ub Y >^Ap<7LApL Y ^CjVLcjl] 

f2(G) = C2

[ub(T
2

L Y Y ^Ap^C^LApLCj +UaCrl E E ^Bj^C^L^L^ +(*)<№> Y ^C^LCjL Y ^C^LCjL+ 

Y ^Ap°LApL Y ^Bi<7LBiL] 

Similarly, when we factorize terms that include oudu where the respective powers of 
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c, LI, ...,LZ in the term have to be 1, we get the following expression as an additive term of 
&AB&CD — &AC&BD: 

CLOdt[ua E *Bi<7LBiL E E ^C^C^L^Lc., + ^b E ^Ap°LApL E E ^C^C^L^Lc., + 
2 E ^C^Lc.L E E ^Ap^B^LApLBt]-

CUJdt[aJa E ^C^LCjlY1 E ^BIXC^LBiLCj + E ^Ap&LApL E X) ^Bi^Cj^LB.LCj + 

Ub E XCj^LCjL E X ^ P

A C ^ L A P L C J + X ^B^LB.L E X) ^ A ^ L ^ L C , ] 

for which we have: 
M(G) = 92(G) (4) 

where 

= C[A; A E \Bi(7LBiL X) XI A C J ^ C j f ^ L C j L C j , + E ^Ap(?LApL X) X) ^ AC j, ^ L C J L C Y + 
2 X) ^CjVLCjL X) XI * I 4 P A B ^ L ^ L B J 

32(G) = C[A; A £ XcjVLCJL E E A # I * C j ° L B i L C i + E A ^ P A ^ P L E E *BI^Cj°LBiLCi + 

^ 6 E ^CjVLcjL E E ^Ap^C^LApLCi + E ^Bi^LBiL E E ^C^LApLCj] 

Finally, we look at terms multiplying a;^ without c, which will result in: 

H1(G) = H2(G) (5) 

where 
M G ) = XApXBi<rLApLBi 2 2 ^Cj^Cj'^LCjLCj, 

Writing down the full expression for cacObc and a^aAB will result in: 

oacobc = P(G) + F2(G) + 92(G) + to(G) (6) 

o&ab = P(G) + H(G) + 9L(G) + /n(G) (7) 

where 

P(G) = C 4 C J Q A ; 6 ( C R £ ) 2 + <rW ; 6 CR£ X) ^C^Lo^ + C 3 W 0 <RF, X] A ^ < T L B | L + 

c3w6<x|, £ A ^ a ^ L + c 2 ^ X) A C J A L C J L £ XAp(?LApL 

By (3), (4), (5), (6) and (7), we have: 

oacobc = OcaAB °ab - 0ac<Jbc(oc)~1 = 0 Pab.c = 0 

Contradiction. Therefore, C cannot be an ancestor of D, and more generally, of any 
element in 0'\C. 
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Assume without loss of generality that В is not an ancestor of А . С is not an ancestor 
of any element in 0 ' \ C If В does not have a descendant that is a common ancestor of С 
and D, then by analogy with the (C, D) case (where now more than one И element will be 
nonzero as hinted before, since we have to consider the possibility of В being an ancestor of 
both С and D), В cannot be an ancestor of С nor D. 

Assume then that В has a descendant X that is a common ancestor of С and D, where 
X Ф С and X Ф D, since С is not an ancestor of D and vice­versa. Notice also that X is 
not an ancestor of A , since В is not an ancestor of A . Relations such as Equation 3 might 
not hold, since we might be equating terms that have different exponents for symbols in 
{HI—IH}- However, since now we have an observed intermediate term X, we can make use 
of its error variance parameter £x corresponding to the error term EX-

No term in GAB can have Cx> since EX is independent of both A and B. There is at least 
one term in GQD that contains £x as a factor. There is no term in GAC that contains Of 
as a factor, since EX is independent of A . There is no term in GBD that contains £x as a 
factor, since EX is independent of B. Therefore, in GAB&CD we have at least one term that 
has Cx, while no term in GAC&BD contains such term. That requires some parameters or the 
variance of some latent ancestor of В to be zero, which is a contradiction. 

Therefore, В is not an ancestor of any element in СУ\В. In a completely analogous way, 
one can show that A is not an ancestor of any element in 0'\A. • 

Lemma 2 LET G(0) BE A SEMILINEAR LATENT VARIABLE MODEL LET {A, BY C, D} С О SUCH THAT 
A IS NOT AN ANCESTOR OF В, С OR D IN G AND A HAS A PARENT L IN G, AND NO ELEMENT OF THE 
COVARIANCE MATRIX OF A,B,C AND D IS ZERO. IF GAC&BD — &AD&BC, THEN GACL = &ADL = 0 
OR GACL/VADL = &AC/&AD = VBCI&BD WITH PROBABILITY 1 WITH RESPECT TO A LEBESGUE MEASURE 
OVER THE COEFFICIENT PARAMETERS. 

Proof: Since G is a linear latent variable graph, we can express А, В, С and D as linear 
functions of their parents as follows: 

A = AL + YJP

 APAP 
В = ЕЛВГ 
с = Y2J

CJCJ 

where on the right­hand side of each equation the uppercase symbols denote the respective 
parents of each variable on the left side, error terms included. 

Given the assumptions, we have: 

OACGBD = GAD&BC 

E[A J2J CJLCJ + E P £j APCJAPC^GBD = E[A £ f c

 D^LDK + £ P £FC APDKAPDk]GBC 

A

(HJ CjGLCj)GBD + £ p J2J ClpCjGApCjVBD = a ( £ f c dkGLDk)GBC + £ p £ f c UpdkGApDk°ВС 
AICEJCJVLC^BD - {T,kdkGLDk)GBc)\ + [UpT^j^J^ApCj^BD " £ p £fc &pdkGAvDk& Bc\ = 

Since A is not an ancestor of В, С or D, there is no trek among elements of {В, C, D} con­

taining both L and A, and therefore the symbol A cannot appear in £ p £V ApCjGApCj^BD — 
^2PJ2k

a

pd'kO'ApDk^BC when we expand each covariance as a function of the parameters of 
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G Therefore, since this polynomial is identically zero, we have to have the coefficient for A 
equal to zero, which implies: 

Since no element in T>abcd is zero, then gacl = 0 ^ &adl = 0. If (Tacl 0> then 
vaclI°adl = ctac/vad = vbc/vbd- d 

Lemma 3 LET G(0) BE A SEMILINEAR LATENT VARIABLE GRAPH. ASSUME {XI, X2, X^ Yi, Y2, Y3} C 
O AND <JXxYx°X2X3 = VXxX2

(JXzYi = <rXiX3

aX2Yi, VXiYx^Ys = ^XiY^YxYz = ^XxYs^Y^t 
°xxx2°yx y2 vx1y2°x2y1 AND THAT FOR ALL TRIPLETS {A, B, C}, {A, B} C {XUX2, X 3 , Yi, Y2, Y 3}, 
C G 0 ; WE HAVE pab Q^Pabc 0- THEN X\ AND Yi DO NOT HAVE A COMMON PARENT IN G 
WITH PROBABILITY 1 WITH RESPECT TO A LEBESGUE MEASURE OVER THE COEFFICIENT AND ERROR VARIANCE 
PARAMETERS. 

Proof: Suppose X\ and Yi have a common parent L in G. Let X\ = AL + Yp

 aj>A> a n d 
Yi = BL + Yi BIBU where each API BI are parents in G of X\ and Yi, respectively. 

By Lemma 1 and the given constraints, an element of {X\, Yi} cannot be an ancestor 
of the other, and neither can be an ancestor in G of any element in {X2,X$,Y2,YZ}. By 
definition, GxxVL = {o./B)aY1vL f ° r some variable V, and therefore <txxvl = 0 ^ <tyxvl — 
0. Assume AYLX2L = °xxx2l = 0. Since it is given that aXlY^X2X3 = ^ 1 X 2 ^ 1 X 3 > by 
Lemma 2 we have (Jxxyxl = &xxx2l — 0. Since cfxxyxl — OBA\ + K, where no term 
in K contains the factor aft, then if (?xxyxl — 0, with probability 1 ABA\ = 0 =$> A\ = 
0, which is a contradiction of the assumptions. By repeating the argument, no element 
in {VX1X2L,GXxXzL,GYXX2L,<yYxX3L,vxiY2L, &X\Y3l>&Y\y2l > &Y\y3 L } is zero. Therefore, since 
(fXiYi^Xs = vxxXiVXzYi = °XXXZCRX2Yx by assumption, from Lemma 2 we have 

aXxX3 _ 

and from flx^ay^ = <Jxxy2°yxy3 = ^ X ^ C Y ^ 

(8) 

a Viy 3 = &Y\YzL 

°XXY3 &XXY3L 

Since no covariance among the given variables is zero, 

(9) 

°XXX2<*YXX3 _ Cfx^s^YiXi 

VXxY^YxYs °XXY3°YXY2 

^XXX2^YXY2 = ^XiYz^nXz 

Prom (8), (9) it follows: 

VXXX2°YXY2 = (rXiY2<7YiX2 

<7XXX3L&YXY3L 

— <JXlY2&YiX2 

— &X1Y2°YiX2 
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Contradiction. • 

The following lemma will be useful to prove the correctness of CS2: 

Lemma 4 LET G(0) BE A LINEAR LATENT VARIABLE MODEL, AND LET {Xi , X 2 , X 3 , X4} C O BE SUCH 
THAT AXLX2^X3X4 = VXLXZVX2XA = OXXX^X2X^ UPAB ¥= 0 FOR ALL {A, B} C { X i , X 2 , X 3 , X 4 } , 
THEN AN UNIQUE CHOKE POINT P ENTAILS ALL THE GIVEN TETRAD CONSTRAINTS, AND P D-SEPARATES ALL 
ELEMENTS IN {XI, X 2 , X 3 , X4}. 

Proof: Let P be a choke point for pairs { X i , X 2 } x { X 3 , X 4 } . Let Q be a choke point for 
pairs { X l 5 X 3 } x { X 2 , X 4 } . We will show that P = Q by contradiction. 

Assume P ^ Q. Because there is a trek that links XI and X 4 throught P (since PXXXA 

0), we have that Q should also be on that trek. Suppose T is a trek connecting X\ to X4 

through P and Q, and without loss of generality assume this trek follows an order that defines 
three subtreks: T 0, from X\ to P; Ti, from P to Q\ and T2Y from Q to X 4 , as illustrated by 
Figure 6(a). In principle, To and T2 might be empty, i.e., we are not excluding the possibility 
that XX = P or X4 = Q. 

There must be at least one trek TQ2 connecting X2 and Q, since Q is on every trek between 
X\ and X2 and there is at least one such trek (since PXXX2 ¥= 0). We have the following cases: 

CASE 1: TQ2 INCLUDES P. TQ2 has to be into P , and P ^ X i , or otherwise there will be a trek 
connecting X2 to Xi through a (possibly empty) trek T 0 that does not include Q, contrary 
to our hypothesis. For the same reason, To has to be into P . This will imply that T\ is a 
directed path from P to Q, and T2 is a directed path from Q to X4 (Figure 6(b)). 

Because there is at least one trek connecting X\ and X2 (since PXXX2 0), and because Q 
is on every such trek, Q has to be an ancestor of at least one member of {Xi, X2}. Without 
loss of generality, assume Q is an ancestor of X \ . No directed path from Q to X\ can include 
P , since P is an ancestor of Q and the graph is acyclic. Therefore, there is a trek connecting 
Xi and X4 with Q as the source that does not include P , contrary to our hypothesis. 

CASE 2: TQ2 DOES NOT INCLUDE P. This is case is similar to Case 1. TQ2 has to be into Q, and 
Q ^ X 4 , or otherwise there will be a trek connecting X2 to X4 through a (possible empty) 
trek T2 that does not include P , contrary to our hypothesis. For the same reason, T2 has to 
be into P . This will imply that Ti is a directed path from Q to P , and T 0 is a directed path 
from P to X i . An argument analogous to Case 1 will follow. 

We will now show by contradiction that P d-separates all nodes in { X i , X 2 , X 3 , X 4 } . 
From the P — Q result, we know that P lies on every trek between any pair of elements in 
{Xi ,X2 ,X 3 ,X4} . First consider the case where at most one element of {Xi ,X2 ,X 3 ,X4} is 
linked to P through a trek that is into P. By the Tetrad Representation Theorem, any trek 
connecting two elements of { X i , X 2 , X 3 , X 4 } goes through P . Since P cannot be a collider 
on any trek, then P d-separates these two elements. 

Without loss of generality, assume there is a trek connecting X\ and P that is into P , 
and a trek connecting X 2 and P that is into P . If there is no trek connecting X i and P 
that is out of P neither any trek connecting X 2 and P that is out of P , then there is no trek 
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Figure 6: In (a), a depiction of a trek T linking X\ and X* through P and Q, creating three 
subtreks labeled as T 0, T\ and T 2. Directions in such treks are left unspecified. In (b), the 
existence of a trek TQ2 linking X2 and Q through P will compel the directions depicted as 
a consequence of the given tetrad and correlation constraints (the dotted path represents 
any possible continuation of TQ2 that does not coincide with T). The configuration in (c) 
cannot happen if P is a choke point entailing all three tetrads among marginally dependent 
nodes {XI,X2,XZ,X±}. The configuration in (d) cannot happen if P is a choke point for 
{XI, X 3 } x {X2, X J , since there is a trek XI — P — X2 such that P is not on the {XI, X 3 } 
side of it, and another trek X2 — S — P — X 3 such that P is not on the {X2Y X4} side of it. 

connecting XI and X 2 , since P is on every trek connecting these two elements according 
to the Tetrad Representation Theorem. But this implies PXXX2 = 0, a contradiction, as 
illustrated by Figure 6(c). 

Consider the case where there is also a trek out of P and into X 2 . Then there is a trek 
connecting X\ to X2 through P that is not on the {X\, X 3 } side of pair {X\, X 3 } x {X2, X4} 
to which P is a choke point. Therefore, P should be on the {X2J X4} of every trek connecting 
elements pairs in {XI,X3} x { X 2 , X 4 } . Without loss of generality, assume there is a trek 
out of P and into X$ (because if there is no such trek for either X3 and X*, we fall in the 
previous case by symmetry). Let S be the source of a trek into P and X 2 L which should exist 
since X2 is not an ancestor of P . Then there is a trek of source S connecting X 3 and X2 

such that P is not on the {X2) X±} side of it as shown in Figure 6(d). Therefore P cannot 
be a choke point for {Xi ,X 3 } x {X2,X±}. Contradiction. • 

Lemma 5 LET G(0) BE A LINEAR LATENT VARIABLE MODEL. ASSUME {X[ ,X 2 ,X 3 , Yi, Y2, V3} C 
O, XI IS NOT AN ANCESTOR OF X 3 ; Y\ IS NOT AN ANCESTOR OF V 3 ; F i (Xi ,X 2 ,G) = TRUE, 
PI(YL,F 2,G9 = 1 AND AX1Yi&X2Y2 = ^XiY^X^, ^X2Y^Y2Y3 = VX2Y3°Y2YX, &XIX2VX3Y2 — 
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Figure 7: Figure (a) illustrates necessary treks among elements of {Xi, X 2 , Yi, Y2, L} accord­
ing to the assumptions of Lemma 5 if we further assume that Xi is a choke point for pairs 
{Xi ,X 2 } x {Yi, Y2} (other treks might exist). Figure (b) rearranges (a) by emphasizing that 
YI and Y2 cannot be d-separated by a single node. 

<7x1y2<7x3x2, vxxx2oyxy2 ^x1y2^x2y1 AND THAT FOR ALL TRIPLETS {A, B, C}, {A, B} C {Xi,X 2 , 
X 3 , Yi, y 2 , Y 3}, C G 0 ; WE HAVE pab 0, Pab.c 0- THEN Xi AND Yi do not have A COMMON 
PARENT IN G. 

Proof: We will prove this result by contradiction. Assume X\ and YX have a common 
parent L . Because of the tetrad constraints given by hypothesis and the existence of 
the trek X\ <— L —» Yi, one node in {Xi,L,Yi} should be a choke point for the pair 
{Xi ,X 2 } x {Yi, Y 2}. We will first show that L has to be such a choke point, and therefore 
lies on every trek connecting X x and Y2, as well as X 2 and Yi. We then show that L lies on 
every trek connecting Y\ and Y2, as well as X\ and X 2 . Finally, we show that L is a choke 
point for {Xi, Yi} x {X 2, Y 2}, contrary to our hypothesis. 

STEP 1: IF THERE IS A COMMON PARENT L TO X\ AND Yi, THEN L IS A {X 1 ? X 2 } x {Yi, Y2} CHOKE 
POINT. For the sake of contradiction, assume Xi is a choke point in this case. By Lemma 1 
and assumption Fi (Xi ,X 2 ,G) , we have that X\ is not an ancestor of X 2 , and therefore all 
treks connecting X\ and X 2 should be into X\. Since PX2Y2 I1 0 by assumption and X\ is on 
all treks connecting X 2 and Y2, there must be a directed path out of X\ and into Y2. Since 
Px2y2.X\ 7̂  0 by assumption and X\ is on all treks connecting X 2 and Y2, there must be a 
trek into Xi and Y2. Because PX2Yi 0, there must be a trek out of Xi and into Yi. Figure 
7(a) illustrates the configuration. 

Since Fi(Yi, Y 2,G) is true, by Lemma 4 there must be a node d-separating Yi and Y2 

(neither Yi nor Y2 can be the choke point in Fi(Yi, Y2, G) because this choke point has to be 
latent, according to the partial correlation conditions of Pi). However, by Figure 7(b), treks 
T2 — T 3 and Ti — T 4 cannot both be blocked by a single node. Contradiction. Therefore Xi 
cannot be a choke point for {Xi ,X 2 } x {Yi, Y2} and, by symmetry, neither can Yi. 
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Figure 8: In (a), a depiction of TY and TX, where edges represent treks (TX can be seen 
more generally as the combination of the solid edge between X2 and P concatenated with a 
dashed edge between P and Yi representing the possibility that Ty and TX might intersect 
multiple times in Tpy, but in principle do not need to coincide in TPY if P is not a choke 
point.) In (b), a possible configurations of edges < X _ i , P > and < P, Y+i > that do not 
collide in P , and P is a choke point (and Y+\ ^ Y ) . In (c), the edge < Y_i, P > is compelled 
to be directed away from P because of the collider with the other two neighbors of P . 

STEP 2: L IS ON EVERY TREK CONNECTING Yi AND Y2 AND ON EVERY TREK CONNECTING X\ AND X2. 
Let L be the choke point for pairs {XI,X2} x {Y l 5 Y2}. As a consequence, all treks between 
Y2 and XI go through L . All treks between X2 and Yi go through L . All treks between X2 

and Y2 go through L . Such treks exist, since no respective correlation vanishes. 
Consider the given hypothesis ctX2y1(Jy2yZ — AX2Yz&Y2Yn corresponding to a choke point 

{X2L Y2} X {Yi, Y3}. From the previous paragraph, we know there is a trek linking Y2 and L . 
L is a parent of Yi by construction. That means Y2 and Yi are connected by a trek through 
L. 

We will show by contradiction that L is on every trek connecting Yi and Y2. Assume 
there is a trek TY connecting Y2 and Yi that does not contain L . Let P be the first point of 
intersection of TY and a trek TX connecting X2 to Yi, starting from X 2 . If TY exists, such 
point should exist, since TY should contain a choke point {X2,Y2} x {Yi, Y 3}, and all treks 
connecting X2 and Yi (including Tx) contain the same choke point. 

Let TPY be the subtrek of TY starting on P and ending one node before Yi. Any choke 
point {X2, Y2} x {Yi, y 3 } should lie on TPY (Figure 8(a)). (Yi cannot be such a choke point, 
since all treks connecting Yi and Y2 are into Yi, and by hypothesis all treks connecting Yi 
and Y3 are into Yi. Since all treks connecting Y2 and Y3 would need to go through Yi by 
definition, then there would be no such trek, implying py2y3 = 0, contrary to our hypothesis.) 

Assume first that X2 ^ P and Y2 ^ P . Let X_i be the node before P in TX starting 
from X 2 . Let YLi be the node before P in TY starting from Y2. Let Y + 1 be the node after 
P in TY starting from Y2 (notice that it is possible that Y + 1 = Yi). If X_i and Y+i do 
not collide on P (i.e., there is no structure X-I —> P 4 — Y+i), then there will be a trek 
connecting X2 to Yi through TPY after P . Since L is not in Tpy, L should be before P in 
TX. But then there will be a trek connecting X2 and Yi that does not intersect Tpy, which 
is a contradiction (Figure 8(b)). If the collider does exist, we have the edge P <— Y + i . Since 
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Figure 9: In (a), Y 2 and Xi cannot share a parent, and because of the given tetrad constraints, 
L should d-separate M and Y 3. Y 3 is not a child of L either, but there will be a trek linking 
L and (not necessarily into) Y 3. In (b), a set of possible configurations for X2 and X 3 , where 
X 3 has some parent in the trek linking M and L . In (c), another variation where now X2 

and X 3 share a parent in that trek. 

no collider Y-I - ^ P f - Y+i can exist because TY is a trek, the edge between Y_i and P is 
out of P. But that forms a trek connecting X2 and Y2 (Figure 8(c)), and since L is in every 
trek between X2 and Y2 and TY does not contain L, then TX should contain L before P , 
which again creates a trek between X2 and Y\ that does not intersect TPY. 

If X2 — P , then TPY has to contain L, because every trek between X2 and Y\ contains L . 
Therefore, X2 ^ P . If Y 2 = ^P, then because every trek between X2 and Y2 should contain L, 
we again have that L lies in TX before P , which creates a trek between X2 and Y\ that does 
not intersect TPY- Therefore, we showed by contradiction that L lies on every trek between 
Y2 and YX. 

Consider now the given hypothesis oxxx2&x3y2 = 0x^0x3X2> corresponding to a choke 
point { X 2 , Y 2 } x {Xi , X3}. By symmetry with the previous case, all treks between X\ and 
X 2 go through L . 

STEP 3: IF L EXISTS, SO DOES A CHOKE POINT {Xi,Yi} x { X 2 , Y 2 } . By the previous steps, L 

intermediates all treks between elements of the pair {Xi ,Yi} x { X 2 , Y 2 } . Because L is a 
common parent of {Xi ,Yi} , it lies on the {Xi ,Yi} side of every trek connecting pairs of 
elements in {Xi , Y\} x {X 2 , Y2}. L is a choke point for this pair. This implies <JxxX2GYiY2 = 

^XIY2

(Jx2y1' Contradiction. • 

Lemma 6 LET G(0) BE A LINEAR LATENT VARIABLE GRAPH. ASSUME { X i , X 2 , X 3 , Y i , Y 2, Y 3 } C 
O AND aXlYi^Y2Y3 = gxxy2oyxyz = vxxy3oyxy21 gxxy2vx2xz — vxxx2vy2xz — °xxx3vx2y2, 
VXxY3<7x2X3 = ^ 1 X 2 ^ 3 X 3 = ^XiX3^x 2 y 3 ; gxxx2^y2y3 7^ °xxy2°x2y3 AND THAT FOR ALL TRIPLETS 
{A,B,C},{A,B} C {XUX2,X3,YL9Y2IF3},C G 0 ; WE HAVE PAB ^ 0 , P A B . C ± 0. THEN XX 

AND Y\ DO NOT HAVE A COMMON PARENT IN G. 

Proof: We will prove this result by contradiction. Suppose X\ and Y\ have a common parent 
L in G. Since all three tetrads hold in the covariance matrix of {Xi , Yi, Y 2, Y 3 } , by Lemma 
4 the choke point that entails these constraints d-separates the elements of {Xi, Yi, Y 2, Y 3 } . 
The choke point should be in the trek X\ <— L —> Yi, and since it cannot be an observed node 
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M" 

3 
Y 2 X l Y l Y 3 Y 2 X 2 X 3 X, Y, Y 

(a) (b) 

Figure 10: In (a), Y2 and X\ cannot share a parent, and because of the given tetrad con­
straints, L should d-separate M and Y3. Y3 is not a child of L either, but there will be a 
trek linking L and Y3. In (b), an (invalid) configuration for X2 and X 3 , where they share an 
ancestor between M and L . 

because by hypothesis no d-separation conditioned on a single node holds among elements 
of {XI, YI, Y2, y 3 } , L has to be a latent choke point for all pairs of pairs in {XI, Yi, Y2, Y 3}. 

Given the constraints in the hypothesis, it is the case that, by Lemma 3, XI and Y2 

cannot share a parent. Let Tml be a trek connecting some parent M of Y2 and L . Such a 
trek exists because pxxY2 0-

We will show by contradiction that there is no node in Tml\L that is connected to Y3 

by a trek that does not go through L. Suppose there is such a node, and call it V. If the 
trek connecting V and Y3 is into V, and since V is not a collider in Tml, then V is either 
an ancestor of M or an ancestor of L . If V" is an ancestor of M, then there will be a trek 
connecting Y2 and Y3 that is not through L, which is a contradiction. If V is an ancestor of L 
but not M, then both Y2 and Y3 are d-connected to a node V is a collider at the intersection 
of such d-connecting treks. However, V is an ancestor of L, which means L cannot d-separate 
Y2 and Y ,̂ a contradiction. Finally, if the trek connecting V and Y3 is out of V, then Y2 

and y 3 will be connected by a trek that does not include L, which again is not allowed. We 
therefore showed there is no node with the properties of V. This configuration is illustrated 
by Figure 10(a). 

Since all three tetrads hold among elements of {XI, X 2 , X 3 , Y 2}, then by Lemma 4, there 
is a single choke point P that entails such tetrads and d-separates elements of this set. Since 
Tml is a trek connecting Y2 to XI through L, then there are three possible locations for P 
in G: 

CASE 1: P = M. We have all treks between X 3 and X2 go through M but not through L, 
and some trek from XI to Y$ goes through L but not through M. No choke point can exist 
for pairs {XI,X3} x {X2,y3}, which by the Tetrad Representation Theorem means that the 
tetrad 0x^30x2X3 ~ c r X i X 2

c r y 3 x 3 cannot hold, contrary to our hypothesis. 

CASE 2: P LIES BETWEEN M AND L IN TMl- This configuration is illustrated by Figure 10(b). 
As before, no choke point exists for pairs {XI,X3} x {X2J y 3 } , contrary to our hypothesis. 

CASE 3: P = L. Because all three tetrads hold in {XI,X2,X^ Y3} and L d-separates all 
pairs in {XI,X2,XS}, one can verify that L d-separates all pairs in {XI,X2,X3,Y3}. This 
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Li 
1.0 
0.4636804781967626 
0.31177237495755117 
0.8241967922523632 
0.5167659523766029 

L2 

1.0 
0.1445627639088577 
0.6834605230188671 
0.428525239857415 

¿ 3 

1.0 
0.45954945371001815 
0.28813447630828753 

Z/4 ¿ 5 

1.0 
0.7617079965565864 1.0 

Table 8: A counterexample that can be used to prove Lemma 7. 

will imply a {XijYs} x {X2,Y2} choke point, contrary to our hypothesis. • 

Lemma 7 CSS is not sound for semilinear latent variable graphs. 

Proof: In order to show this, one has only to construct a semilinear latent variable graph 
with a latent covariance EL such that it entails all constraints of CS3 but where X i and Y\ 
have a same parent. Notice that the definition of entailment in semilinear graphs allows us 
to choose specific latent covariance matrices but the constraints should hold for any choice 
of linear coefficients and error variances. 

Consider the graph G with five latent variables L i y 1 < i < 5, where L \ has X\ and Y\ as 
its only children, X2 is the only child of L 2 , X 3 is the only child of L 3 , Y2 is the only child 
of L 4 and y 3 is the only child of L 5 . Also, {Xi,X2,X^Yi,Y2,Y3}, as defined in CS3, are 
the only observed variables, and each observed variable has only one parent besides its error 
term. Error variables are independent. 

The following simple randomized algorithm will choose a covariance matrix EL for { L \ , L 2 y 

L 3 , L 4 , L 5 } that entails CS3. The symbol g ^ will denote the covariance of Li and L j . 

1. Choose positive random values for all 0 ^ , 1 < i < 5 

2. Choose random values for g \ 2 and G\3 

3. 0 2 3 + - gyiGyiIgm 

4. Choose random values for cr 45, g2$ and ( J 2 4 

5. g u <— 0 1 2 ^ 4 5 / 0 2 5 

6. (J15 <— G\2G^JG24 

7. 0 3 5 <— 0 " 1 3 ^ 4 5 / 0 " 1 4 

8. G34 «— 0 1 2 0 4 5 / 0 1 5 

9. Repeat from the beginning if EL is not positive definite or if g\±g23 = 0*120*34 

Table 8 provides an example of such matrix. • . 
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Theorem 2 THERE IS SOME E¿ SUCH THAT LTM(E) AND S T M ( £ , £ L ) ore ^oi egwaZ. 

Proof: Follows immediately from Lemmas 6 and 7. • 

Before proving Theorem 3, we will introduce several lemmas that will be used in the 
Theorem proof. 

Lemma 8 LET G(O) BE A LATENT VARIABLE GRAPH WHERE NO PAIR IN O IS MARGINALLY UNCORRECTED, 
AND LET {X, Y} C O. / / THERE IS NO PAIR {P, Q} C O SUCH THAT oxy^pq = vxp&yq HOLDS, 
THEN THERE IS AT LEAST ONE GRAPH IN THE TETRAD EQUIVALENCE CLASS OF G WHERE X AND Y HAVE A 
COMMON LATENT PARENT. 

Proof: It will suffice to show the result for linear latent variable models, since they are more 
constrained than non-linear ones. Moreover, we will be able to make use of the Tetrad Rep­
resentation Theorem and the equivalence of d-separations and vanishing partial correlations, 
facilitating the proof. 

If in all graphs in the tetrad equivalence graph of G we have that X and Y share some 
common hidden parent, then we are done. Assume then that there is at least one graph GO 
in this class such that X and Y have no common hidden parent. Construct graph G'0 by 
adding a new latent and edges X <— L —• Y. We will show that G'0 is in the same tetrad 
equivalence class, i.e., the addition of the substructure X <— L —> Y to Go does not destroy 
any entailed tetrad constraint (it might, however, destroy some independence constraint). 

Assume there is a tetrad constraint corresponding to some choke point {X, P} x {T, Q}. 
If Y is not an ancestor of T or Q, then this tetrad will not be destroyed by the introduction 
of subpath X <— L —• Y, since no new treks connecting X or P to T or Q can be formed, 
and therefore no choke point {X, P} x {T, Q} will disappear. 

Assume without loss of generality that Y is an ancestor of Q. Since there is a trek 
connecting X to Q through Y (because no marginal correlations are zero) in G, the choke 
point {X, P} x {T, Q} should be in this trek. Let X be the starting node of this trek, and 
Q the ending node. If the choke point is after Y on this trek, then this choke point will be 
preserved under the addition of X <— L —> Y. If the choke point is Y or is before Y on this 
trek, then there will be a choke point {X, P} x {Y, Q}, a contradiction of the assumptions. 

One can show that choke points { Y, P} x {T, Q} are also preserved by an analogous 
argument. • 

Lemma 9 LET G(O) BE A LINEAR LATENT VARIABLE GRAPH, AND LET O' = {A, B , C , J ) } C O . / / ALL 
ELEMENTS IN O' ARE MARGINALLY CORRELATED, AND A CHOKE POINT CP = {A,C} x {P, D} EXISTS, 
AND CP IS IN ALL TREKS CONNECTING ELEMENTS IN {A, J5, G, D}, THEN NO TWO ELEMENTS {Xi, X 2 } ; 

Xi E {A, C}, X 2 G {B, D}, ARE BOTH CONNECTED TO CP IN G BY TREKS INTO CP. 

Proof: By the Tetrad Representation Theorem, CP should be either on the {A, C} or the 
{J3, D} side of every trek connecting elements in these two sets. For the sake of contradiction, 
assume without loss of generality that A and B are connected to CP by some treks into CP. 
Since cab t£ 0, CP has to be an ancestor of either AORB. Without loss of generality, let 
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CP be an ancestor of B. Then there is at least one trek connecting A and B such that CP 
is not on the {A^ C} side of it: the one connecting CP and A that is into CP and continues 
into B. 

If C P is an ancestor of C, then there is at least one trek connecting C and B such that 
CP is not in the {B, D} side of it: the one connecting CP and B that is into CP and 
continues into C. But this cannot happen by the definition of choke point. If CP is not 
an ancestor of C, CP has to be an ancestor of A , or otherwise there would be no treks 
connecting A and C (since CP is in all treks connecting A and C by hypothesis, and at 
least one exists, because g a c 0)- This implies at least one trek connecting A and B such 
that CP is not on the {£, D} side of it: the one connecting CP and B that is into CP and 
continues into A . Contradiction. • 

Lemma 10 LET G(0) BE A LINEAR LATENT VARIABLE GRAPH, AND LET O' = {A, B, C, D, E} C 
O. IF ALL ELEMENTS IN O' ARE MARGINALLY CORRELATED, AND CONSTRAINTS gab&cd = oadGbc, 
&ac<7de — &AE&CD AND gbc&de = &BD&CE HOLD, THEN ALL THREE TETRAD CONSTRAINTS HOLD IN 
THE COVARIANCE MATRIX OF {A, B, C, D}. 

Proof: By the Tetrad Representation Theorem, let CP\ be a choke point {A, C} x {B, £>}, 
which is known to exist in G by assumption. Let CP2 be a choke point {A, D} x {C ,£} , 
which is also assumed to exist. From the definition of choke point, all treks connecting C 
and D have to pass through both CP\ and CP 2 . We will assume without loss of generality 
that none of the choke points we introduce in this proof are elements of {A, J5, C, D, E}. 

First, we will show by contradiction that all treks connecting A to C should include CP\. 
Assume that A is connected to C through a trek T that includes CP2 but not CP\. Let T\ 
be the subtrek A — CP2L i.e., the subtrek of T connecting A and CP2. Let T2 be the subtrek 
CP2 — C. Neither T\ or T2 contain CPi, and they should not collide at CP2 by definition. 
Notice that a trek like T should exist, since CP2 has to be in all treks connecting A and 
C, and at least one such trek exists because g a c 0- Any subtrek connecting CP2 to D 
that does not intersect T2 elsewhere but in CP2 has to contain CP\. Let T 3 be the subtrek 
between CP2 and CP\. Let T 4 be a subtrek between CP\ and B. Let T 5 be the subtrek 
between CP\ and D. This is illustrated by Figure 11(a). (B and D might be connected by 
other treks, simbolized by the dashed edge.) 

Now consider the choke point C P 3 = {B, E} x {C, D}. Since C P 3 is in all treks connecting 
B and C, C P 3 should be either on T 2, T 3 or T 4 . If C P 3 is on T 4 (Figure 11(b)), then there will 
be a trek connecting D and E that does not include CP 2 , which contradicts the definition 
of choke point {̂ 4, D} x {C, E}, unless both B - CP\ and £> — CPi are into CPi. However, 
if both B - CPX and D - CPI (i.e., T 4 and T 5) are into CPi, then CPX - C P 2 is out of CPj 
and into CP 2 , since T 2 — T 3 — T 5 is a trek by construction, and therefore cannot contain a 
collider. Since D is an ancestor of C P 2 and C P 2 is in a trek connecting E and JD, then CP 2 is 
an ancestor of E. All paths C P 2 should include C P 3 by definition, which implies 
that CP2 is an ancestor of CP 3 . B cannot be an ancestor of CP 3 , or otherwise C P 3 would have 
to be an ancestor of CPi, creating the cycle C P 3 —> . . . CPi C P 2 CP 3 . 
C P 3 would have to be an ancestor of 2?, since B — C P 3 — CPi is assumed to be a trek into 
CPi and CPS is not an ancestor of CPi (Figure 11(c)). If C P 3 is an ancestor of B, then 
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Figure 11: Several illustrations depicting cases used in the proof of Lemma 10. 

there is a trek (?<—•••<— CP2 —> ... CPs —• B, which does not include CP\. Therefore, 
CPZ is not in T 4. 

If CP3 is in T 3 , B and D should both be ancestors of CPi, or otherwise there will be a trek 
connecting them that does not include CP 3 . Again, this will imply that CP\ is an ancestor 
of CP2. If some trek E — C P 3 is not into CP 3 , then this creates a trek D — CP\ — CPz — E 
that does not contain CP 2 , contrary to our hypothesis. If every trek E — C P 3 is into CP 3 , 
then some other trek C P 3 — D that is out of C P 3 but does not include CP\ has to exist. But 
then this creates a trek connecting C and D that does not include CPi, which contradicts 
the definition CP\ = {A, C} x {P, £>}. A similar reasoning forbids the placement of C P 3 in 
T2. 

Therefore, all treks connecting A and C should include CP\. We will now show that 
all treks connecting B and D should also include CP\. We know that all treks connecting 
elements in {A,C,D} go through CP\. We also know that all treks between {B,E} and 
{C, D} go through CP 3 . This is illustrated by Figure 11(d). A possible trek from C P 3 to D 
that does not include CP\ (represented by the dashed edge connecting CP3 and D) would 
still have to include CP 2 , since all treks in {Ay D} x {C, E} go through CP2. If CPX = CP 2 , 
then all treks between B and D go through CPi. If CP\ ^ CP 2 , then such C P 3 — D trek 
without CP\ but with C P 2 would exist, implying that some trek C — D without both CP\ 
and CP2 would exist, contrary to our hypothesis. 

Therefore, we showed that all treks connecting elements in {̂ 4, P , C, D} go through the 
same point CP\. By symmetry between B and E, it is also the case that CP\ is in all treks 
connecting elements in {̂ 4, E, C, D). From this one can verify that CP\ — CP2. We will 
show that CPi is also a choke point for {J5, E} x {C, D} (althought it might be the case that 
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C P I 7 ^ CP3). Because CP\ = CP2, one can verify that choke point CPS has to be in a trek 
connecting B and CP\. There is a trek connecting B and CP\ that is into CP\ if and only if 
is a trek connecting B and CPS that is into CP 3 . The same holds for E. Therefore, there is 
a trek connecting B and CP\ that is into CP\ if and only if there is a trek connecting E and 
CP\ that is into CP\. However, if there is a trek connecting B and CP\ into CPI, then there 
is no trek connecting C and CP\ that is into CP\ (because of choke point {A, C} x {P, D} 
and Lemma 9). This also implies there is no trek E — CP\ into CPi, and because CP\ is 
a {A, D} x {C, E} choke point, Lemma 9 will imply that there is no D — CP\ into CP\. 
Therefore, all treks connecting pairs { P , P } x {C, D} will be either on the { P , P } side or 
{C, D) of CPj. CPi is a {P, P } x {C, £>} choke point. 

Because CPI is a {A, C} x {P, P } , {A, P } x {C, P } and {P, E} x {C, £>} choke point, 
then no pair in {A, B,C, D} can be connected to CP\ by a trek into CP\. This implies 
that CP\ d-separates all elements in {A, P , C, D} and therefore CP\ is a choke point for all 
tetrads in this set. • 

Lemma 11 LET G(0) BE A LINEAR LATENT VARIABLE GRAPH, AND LET O' = {̂ 4, P , C, P , P } C 
O. / / ALL ELEMENTS IN O' ARE MARGINALLY CORRELATED, AND CONSTRAINTS (Jab^cd — gadQbc, 
&ac®de — &AE&CD AND &BE&DC = &BD&CE HOLD, THEN ALL THREE TETRAD CONSTRAINTS HOLD IN 
THE COVARIANCE SUBMATRIX FORMED BY ANY FOURSOME IN {A, P , C, P , P } . 

Proof: As in Lemma 10, let CP\ be a choke point {A, C} x {P, P } , and let CP2 be a choke 
point {A,D} x {C,P} . Let CPS be choke point {P ,C} x {£>,£}. 

We first show that all treks between C and A go through CP\. Assume there is a trek 
connecting A and C through CP2 but not CPi, analogous to Figure 11(a). Let T i , . . . ,T 5 

be defined as in Lemma 10. Since all treks between C and D go through CP 3 , choke point 
CPS should be either at T 2, T 3 or T 4 . 

If CPS is at T2 or T 3, then treks B and D should collide at CP\, or otherwise there 
will be a trek connecting B and D that does not include CP 3 . This implies that CP\ is an 
ancestor of CP 3 . If there is a trek connecting D and CPS that intersects T2 or T 3 not at 
CPi, then there will be a trek connecting C and D that does not include CPi, which would 
be a contradiction. If there is no such a trek connecting D and CP 3 , then CPS cannot be a 
{P, C} x {D, E} choke point. If CPS is at T 4, a similar case will follow. 

Therefore, all treks connecting A and C include CP\. By symmetry between {A, P , P } 
and {C, £>}, CPi is in all treks connecting any pair in {A, P , C, D, P } . Using the same ar­
guments of Lemma 10, one can show that CP\ is a choke point for any foursome in this set. • 

Lemma 12 LET G(O) BE A LINEAR LATENT VARIABLE GRAPH, AND LET OF — {A,B,C,D,E} C 
O. / / ALL ELEMENTS IN O' ARE MARGINALLY CORRELATED, AND CONSTRAINTS oab&cd = &adVbc, 
&AC&DE — gae&cd AND gAB&CE = ®accbe HOLD, THEN ALL THREE TETRAD CONSTRAINTS HOLD IN 
THE COVARIANCE MATRIX OF {A, C, D, E}. 

Proof: As in Lemmas 10 and 11, let CP\ be a choke point {A,C} x { P , P } , and let CP2 

be a choke point {A, D} x {C, E}. Let CPS be a choke point {A, E} x {P, C}. We will first 

64 



show that all treks connecting A and C either go through CP\ or all treks connecting A and 
D go through CP2. 

As in Lemma 10, all treks connecting C and D contains CP\ and CP2. Let T be one of 
these treks. Assuming that A and C are connected by some trek that does not contain CPX 

(but must contain CP2) implies a family of graphs represented by Figure 11(a). 
Since there is a choke point CPS = {A, E} x {J5, C}, the only possible position for CPS 

in Figure 11(a) is in trek A - CP2. If CP2 ^ CP 3 , then no choke point {A, D} x {C, E} can 
exist, since CPS is not in T. Therefore, either all treks between A and C contain CPi, or 
CP2 = CP 3 . 

If the first case holds, a similar argument will show that all treks between any element 
in {A, C, D} and node E will have to go through CP\. If the second case holds, a similar 
argument will show that all treks between any element in {A, C,D} and node E will have 
to go through CP2. 

Therefore, there is a node CP such that all treks connecting elements in {.A, C, D, E} go 
throught some choke point. Similarly to the proof of Lemma 10, using Lemma 9, the given 
tetrad constraints will imply that CP is a choke point for all tetrads in {A, C, £>, E} for both 
cases CP = CP, and CP = CP2. • 

Theorem 3 THERE IS NO LOCALLY SOUND TETRAD CONSTRAINT SET OF DOMAIN SIZE LESS THAN 6 FOR 
DECIDING IF TWO NODES A AND B DO NOT HAVE A COMMON PARENT IN A LATENT VARIABLE GRAPH G, IF 
PXiX2-Xz 0 AND pxiX2 0 FOR OIL {X\, X2} IN THE DOMAIN OF THE CONSTRAINT SET AND OBSERVED 
VARIABLE X 3 . 

Proof: It will suffice to show the result for linear latent variable models, since they are more 
constrained than non-linear ones. Moreover, we will be able to make use of the Tetrad Rep­
resentation Theorem and the equivalence of d-separations and vanishing partial correlations, 
facilitating the proof. 

This is trivial for domains of size 2 and 3, where no tetrad constraint can hold. For 
domains of size 4, let X = {A, B, C, D} be our four variables. We will show that it does not 
matter which tetrad constraints hold among these four variables (excluding logically incon­
sistent constraints), there exist two linear latent variable graphs with observable variables 
{A, 2?, C, £>}, G and G", where in the former A and B do not share a parent, while in latter 
they do have a parent in common. This will be the main technique used during the entire 
proof. Another technique is showing that some combinations of tetrad constraints will result 
in contradictory assumptions about existing constraints, and therefore we do not need to 
create the G and G" graphs corresponding to these sets. 

By Lemma 8, if we do not have any tetrad corresponding to a choke point {A, VI} x 
{£, V2}, then the result follows immediately. We therefore consider only the cases where 
the tetrad constraint corresponding to choke point {̂ 4, C} x {2?, D} exists, without loss of 
generality. This assumption will be used during the entire proof. 

Bi-directed edges X *-> Y will be used as a shorthand representation for the path X <— 
L —• y , where L is some new latent independent of its non-children. 

Suppose first that all possible three tetrad constraints hold in the covariance matrix E of 
{A,B,CY D}, i.e., (TAB&CD = °ac°bd = &ad&bC' Let G have two latent nodes L\ and L 2 , 
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where L\ is a common parent of A and L2, and L2 a parent of B, C and D. Let G" have a 
latent node LX as the only parent of A, B, C and B , and no other edges, and the result will 
follow for this case. 

Suppose now only one tetrad constraint holds instead of all three, i.e., the one entailed 
by a choke point between pairs {A, C} x {B, D} (the analogous case would be the pairs 
{A, D} x {B, G}). Create G' again by using two latents L\ and L 2 , making L2 a parent of 
B and D, and making L\ a parent of L 2 , A and C. Create G" from G', by adding the edge 
Li -> B. 

Now suppose our domain X = {A, B, C, B , E} has five variables, where E will now de­
note the covariance matrix of X. Again, we will show how to build graphs G' and G" in 
all possible consistent combinations of vanishing and non-vanishing tetrad constraints. This 
case is more complicated, and we will divide it in several major subcases. Each subcase 
will have an sub-index, and each sub-index inherits the assumptions of higher-level indices. 
Some results about entailment of tetrad constraints are stated without explicit detail: they 
can be derived directly by a couple of algebraic manipulations of tetrad constraints or from 
Lemmas 10, 11 and 12. 

CASE 1: There are choke points {A,C} x {B, D} and {A,B} x {C, B} . We know from 
the assumption of existence of a choke point {A, C} x {B, D} and results from Chapter 3 
that this is equivalent of having a latent variable d-separating all elements in {A, B, C, D}. 
Let Go be as follows: let L\ and L2 be two latent variables, let L\ be a parent of {A, B 2 }, 
and let L2 be a parent of {B, C, B, E}. We will construct G' and G" from Go, considering 
all possible combinations of choke points of the form {Vi, V2} x {V ,̂ E}. 

Case 1.1: there is a choke point {A, C} x {B,B}. 
Case 1.1.1 .there is a choke point {A, D} x {G, B}. As before, this implies a choke 

point {A,E} x {G, B} . We only have to consider now choke points of the form 
{Xi, B} x {X2L E} and {XX, X2} x {B, E}. From the given constraints (Jbd&ac = °bc&ad 
(choke point {A,B} x {G, B}) and (JdeVac — &ce°ad (choke point {A,E} x {G, B}), we 
have CRBD&CE = cbc&de, a {B, E} x {G, B} choke point. Choke points {B, E} x {A, C} and 
{B, E} x {A, D} will follow from this conclusion. Finally, if we assume also the existence of 
some choke point {X\,B} x {X 2 ,B} , then all choke points of this form will exist, and one 
can let G' = G 0 . Otherwise, if there is no choke point {XI, B} x {X2, B}, let G' be G 0 with 
the added edge B <-> E. Construct G" by adding edge L2 —• ^1 to G7. 

Case 1.1.2:there is no choke point {A, D] x {G, B}. Choke point {A, E] x {G, B} can­
not exist, or this will imply {A,D} x {G, E}. We only have to consider now choke 
points of the form {XUB} x {X 2 ,B} and {XLYX2} x {B ,B} . Choke point {A,C} x 
{B, B} is entailed to exist, since the single choke point that d-separates foursome {A, B, G, D} 
has to be the same choke point for {A, C} x {B, E} and therefore a choke point for {A, C} x 
{B,B}. No choke point {XX,D} x {X 2 , B} can exist, for XI G {A, B, G}, ¿ = 1,2: otherwise, 
from the given choke points and {XXYD} x {X 2 ,B} , one can verify that {A,D} x {G, B} 
would be generated using combinations of tetrad constraints. We only have to consider 
now choke points of the form {XUB} x {X2JE}. Choke points {B,G} x {A,E}, 
{B,G} x {B,B}, {A,B} x {G,B} and { A B } x {B,B} either all exist or none exists. If 
all exist, let G' = G 0 with the extra edge D *-+ E. If none exists, let G' = G 0 and add both 
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B +-> E and D <r> E to G'. Let G" be G' with the extra edge L 2 -+ A. 
Case 1.2: there is no choke point {A,C} x {£>,£}. 

Case 1.2.1:there is a choke point { A , D } x {C, E } . This case is analogous to Case 1.1.2 
by symmetry within { A , 2?, C, D } . 

Case 1.2.2:there is no choke point { A , D } x {C, E } . Assume first there is no choke 
point { A , E } x {C, D } . We only have to consider now choke points of the form 
{X^B} x {X2,E} and {Xi ,X 2 } x { £ , £ } . At most one of the choke points {XXlB} x 
{X 2 , E } can exist. Otherwise, any two of them will entail either { A , D } x {G, £ } , { A , C } x 
{£>, E } or {A, x {C, £>} by Lemmas 10, 11 or 12. Analogously, no choke point {Xi, X 2 } x 
{J3, E } can exist. 

Without loss of generality, let {A, B } x {D, £*} be the only possible extra choke point. 
Create G' by adding edges C E and D <-* £" to G 0 . Create G" by adding edge L 2 —• A 
to G'. For the case where no other choke point exists, create G' by adding edges A *-> 
B <-> E , C <-> E and Z) <-+ £ to G 0 . Create G" by adding edge L 2 -> A to G'. 

Assume now there is a choke point {A, P } x {G, D } . We only have to consider now 
choke points of the form {X 1 ? B } x {X 2 , E } and {Xi, X 2 } x {£, E } . No {A, £ } x {X 1 ? £ } 
choke point can exist, or by Lemmas 10, 11 or 12 and the given tetrad constraints, some 
{A,Xi} x {E,X2} choke point will be entailed. 

Choke point {B, G} x { D y E } exists if and only if {JB, D } X {G, E } exists, can exist. 
If both exist, create G by adding edges A <-> E to Go- Create G" by adding edge L 2 —» A 
to G'. If none exists, create G' by adding edges A <-* P and B ^ E to GQ. Create G ; / by 
adding edge L 2 —> A to G r. 

Ga^e There is a choke point {A, G} x {£, D}, but no choke point {A, B } x {G, D}. 
Case 2.1: there is a choke point {A, G} x {£>, £ } , . 

Case 2.1.1: there is a choke point {A, Z?} x {G, P } . As before, this implies a choke 
point {A,i?} x {G, £>}. We only have to consider now choke points of the form 
{XUB} x {X2lE} and {X 1 ,X 2 } x {B,E}. The choke point {A,G} x { £ , £ } is imphed. 
No choke point {J?, P } x {Xi, D } can exist, or otherwise {A, JB} x {G, D} will be implied. For 
the same reason, no choke point {B,Xi} x { D y E } can exist. We only have to consider 
now subsets of the set of constraints {{A, B } x {G, E } , {G, B } x {A, P}}. The existence 
of {A, Z?} x {G, P } implies {G, JB} x {A, We only need to consider either both or none. 

Suppose none of these two constraints hold. Create G' with two latents L i ,L 2 . Let 
Li be a parent of {JB,L 2}, let L 2 be a parent of {A, G, D , E } . Add the bi-directed edge 
B <-> E . Add the bi-directed edge B <-> D. Create G" out of G' by adding edge L 2 —> P . 
Now suppose both constraints hold. Create G' with two latents L\,L2. Let L\ be a parent 
of { B , L 2 } , let L 2 be a parent of {A, G, D, P } . Add the bi-directed edge B <-> D . Create G" 
out of G' by adding edge L 2 —• B. 

Case 2.1.2: there is no choke point {A, D} x {G, P } . Since there is a choke point 
{A,G} x by assumption 2.1, there is no choke point {A, E } x {G, D } or other­
wise we get a contradiction. Analogously, because there is a {A, G} x { B , D } choke point 
but no {A,JB} x {G, D } (assumption 2), we cannot have a {A, D } x {Z?,C} choke point. 
This covers all choke points within sets {A, S, G, £>} and {A, G, J9, £"}. We only have to 
consider now choke points of the form {X l 7Z?} x {X2,E} and {Xi ,X 2 } x {jB,i?}. 
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Prom (jabgCd = oadObc (choke point {A,C} x {B,D}) and g a e g C d = vad°ce 

(choke point {A,C} x {Z),Z?}) one gets g a b g C e = oae°bc, i.e., a x {A,C} choke 
point. Choke point {£?, £ } x { A , D } exists if and only if { B , E } x {C, £>} exists: to see how 
the former implies the latter, use the tetrad constraint from {£, E } x { A , C}. Therefore, we 
have two subcases. 

Case 2.1.2.1: there are choke points { B , E } x { A , D } and { B y E } x {C, D } . We 
only have to consider now choke points of the form {X\, B } x {X2l E } . No choke point 
{ B , A } x {C, E } and { B , C } x {A, Z?} can exist (one implies the other, since we have {Z?, E } x 
{AyC}> and all three together with the given choke points will generate {A,B} x {C, Z?}, 
excluded by assumption). Choke points {Z?,C} x and {Z?,Z)} x {C, £7} either both 
exist or both do not exist. The same holds for pair { { B , A } x { D , E } , {2?, D } x { A , E } } . Let 
G be a graph with two latents, L \ , L 2 , where L \ is a parent of {L 2, -4, C} and L 2 is a parent of 
{ B , £>, E } . Add bi-directed edge B +-> D for cases where { B , C } x {D, £ } , {J?, £>} x {C, E } 
d o not exist. Add bi-direeted edge B +-+ E for cases where {Z?, A} x {D, Z£}, {Z?, Z>} X { A , E } 
d o not exist. Let G" be formed from G with the addition of L \ —> Z?. 

Case 2.1.2.2: there are no choke points { B , E } x { A , D } and {J5, E } x {C,D}. We 
only have to consider now choke points of the form {Xi,B} x {X2jE}. Using the 
tetrad constraint implied by choke point { A , C } x {£), E } , one can verify that { A , B } x { D , E } 
holds if and only if { B , C } x {£>, £"} holds (call pair {{A Z?} x {£>, E ] , {£?, C } x {£>, £}} 
Pair 1). Prom the given {B, E} x {A,C}, we have that {i4,£} x {C,E} holds if and only 
if {S, C} x { A , E } holds (call it Pair 2). Using the given tetrad constraint corresponding to 
{ A , C } x { B , £>}, one can show that {£ , D } x {A, £7} holds if and only if {£ , £>} x {C, £ } 
(call it Pair 3). We can therefore partition all six possible {Xi, B } x {X 2 , £7} into these three 
pairs. Moreover, if Pair 1 holds, none of the other two can hold, because Pair 1 and Pair 2 
together imply { B , E } x { A , D } . Pair 1 and Pair 3 together imply {Z?, E } x {C, D } . 

If neither Pair holds, construct G as follows. Let Go be the latent variable graph 
containing three latents Zq ,L 2 ,L 3 where L \ is a parent of {A,C, L 2 } , L 2 is a parent of 
{B,L 3 } and Z/3 is a parent of {D>E}. Let G' be Go with the added edges B *-* D and 
B <r-+ E . If Pair 1 alone holds, let G be as Go- In both cases, let G" be G with the added 
edge Li —• 5 . 

If Pair 2 holds, but not Pair 3 (nor Pair 1), construct G as follows. Let Go be a 
latent variable graph with two latents L \ and L 2 , where L \ is a parent of L 2 and A , and L 2 

is a parent of {B,C,D,E}. Let G be G 0 augment with edges B <-+ D and B ^ E. If Pairs 
2 and 3 hold (but nor Pair 1), let G be Go with the extra edge B <-+ Z}. In both cases, let 
G" be G with the extra edge L 2 -» A. If Pair 3 holds but not Pair 2 (nor Pair 1), let G 
have three latents Zq, L 2 , L 3 , where L \ is a parent of L 2 and A, L 2 is a parent of L 3 and G, 
and L 3 is a parent of ZJ, Z) and E . Let G" be as G but with the extra edge L 3 —> Zq. 

Case 2.2: there no a choke point { A C } x {D,E}. 
Case 2.2.1: there is a choke point { A , D } x {C, E } . Because of the choke points that 

are assumed not to exist, it follows immediately that choke points { A , D } x { B , C}, { A , E } x 
{C, D } cannot exist. We only have to consider now choke points of the form 
{XUB} x {X2yE} and {X1,X2} x {B,E}. The choke point {A,D} x {B,E} cannot 
exist, or otherwise when it is combined with choke point { A , D } x {C, it will generate 
a contraint corresponding to choke point { A , D } x {Z?, G}, which is assumed not to exist. 
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Similarly, {A, C} x {B, E} cannot exist because the existence of {A, C} x {B, B} will imply 
{A, C} x {P, E}. No choke point {B, E} x {C, B} can exist either. This follows from choke 
points {A,C} x {B,B}, {A,B} x {C,B}, which with {B,B} x {C,B} entail choke point 
{A, B} x {C, B} (Lemma 10), which is assumed not to exist. 

We only have to consider now choke points of the form {Xi,B} x {X 2 ,B} . 
Choke points {B, C} x {B, E} and {B, B} x {C, B} are automatically excluded because of 
{A, C} x {B, B} , {A, B} x {C, B} and Lemma 11. Combining choke point {A, B} x {C, B} 
with choke point {A,B} x {C,B} will generate a choke point {B,B} x {C,B}, which we 
just discarded. Therefore, there is no choke point {A, B} x {C, E}. Combining choke point 
{B,B} x {A,B} with choke point {A,C} x {B,D} will generate a choke point {B,B} x 
{C, B}, which we just discarded. Therefore, there is no choke point {B, B} x {A, E}. 
Combining choke point {B, C} x {A, B} with {A, C} x {B, B} and {A, D} x {C, E} using 
Lemma 12 will result in a choke point {A, E} x {C, B} , which is discarded by hypothesis. 
Therefore, there is no choke point {B, C} x {A, E}. Combining choke point {A, B} x {B, E} 
with {A,C} x {B, B} and {A,B} x {C,E} using Lemma 12 will result in a choke point 
{A, B} x {C, B} , which is discarded by hypothesis. Therefore, there is no choke point 
{A,B}x{D,E}. 

This means our model can entail only tetrad constraints generated by {A, C} x {B, D} 
and {A, D} x {C, B}. Let G' have two latent variables L\ and L 2 . Make L\ the parent of 
{A, C, B, L 2 } . Let L 2 be the parent of B and B . Add bi-directed edges B <-> B. Let G" be 
C with the added edge L 2 —* A. 

Case 2.2.2: there is no choke point {A, D} x {C, B}. As before, both {A, B} x {C, B} 
and {A, B} x {B,C} are forbidden. We consider two possible scenarios for choke point 
{A,E}x{C,D}. 

Case 2.2.2.1: there is a choke point {A, E} x {C, B} . We only have to consider 
now choke points of the form {X\,B} x {X 2 ,B} and {X\,X2} x {B, B} . Choke point 
{B,B} x {C, D} does not exist, because this combined with {A,B} x {C, B} will result 
in {A, B} x {C, B} , excluded by assumption. {B, B} x {A, B} cannot exist either: to see 
this, start from the constraint set {{A,C} x {B,B},{A,B} x {C,B},{B,B} x {A,B}. 
Exchanging the labels of D and B, followed by the exchange of E and C, this is equivalent 
to {{A,B} x {B,C},{A,B} x {C,B},{B,B} x {A,C}. From Lemma 12, the constraint 
{B, B} x {B, C} is generated. Reverting the substitutions of E and C, and B and B, this is 
equal to {B, B} x {C, B} in the original labeling, which was ruled out at the beginning of this 
paragraph. A similar reasoning rules out {B, B} x {A, C}. We only have to consider now 
choke points of the form {Xi, B} x {X 2 , B} . Choke point {A, B} x {B, B} cannot exist. 
Given the assumed choke point set {A, C} x {B, B} , {A, B} x {C, B} , {A, B} x {B, B}, by 
exchanging labels A and C, one obtains {A, C} x {B, B} , {A, B} x {C, B}, {B, C} x {B, B}, 
which by Lemma 11 implies choke points among all elements in {A, B, C, B, B}. A similar 
reasoning rules out all other choke points of the type {Xi,B} x {X 2 ,B} . Construct Gr as 
follows: two latents, L\ and B 2 , where L\ is a parent of A, C, B and L 2 , and L2 is a parent 
of B and B. Add the bi-directed edge B B. Construct G" by adding edge Li —* B to G'. 

Case 2.2.2.2: there is no choke point {A, E} x {C, B} . We only have to con­
sider now choke points of the form {Xi, B} x {X 2 , E} and {Xi ,X 2 } x {B, B} . Choke 
point {A, C} x {B, B} does not exist, because this combined with {A, C} x {B, B} generates 
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{A, C} x {B,B} . Choke points {A, B} x {B,B} and {C,B} x {B,B} cannot both exist, 
since they jointly imply choke point {A, C} x {B, E}. 

Assume for now that choke point {A, D} x {B, E} exists (but not {G, B} x 
{B, E}). We only have to consider now choke points of the form B} x {X 2, B} . 
Choke point {A, B} x {C, B} cannot exist, since by exchanging A and B, B and G in set 
{{AC} x {B,P} ,{A,B} x { £ , £ } , {A,B} x {C,B} we get {{A,C} x {J5,B},{A,B} x 
{B, B}, {B, B} x {C, B} , which by Lemma 10 will imply all tetrad constraints with {A, B, G, B} . 

The same reasoning applies to {B,C} x {A,B} (exchanging A and B, B and 
C in the given tetrad constraints) by using Lemma 11. The same reasoning applies to 
{B, C} x {B, B} (exchanging A and B , B and C in the given tetrad constraints) by using 
Lemma 12. 

Because of the assumed {A, C} x {B, B} , either both choke points {A, E} x {B, B} , 
{G, B} x {B, B} exist or none exists. Because of the assumed {A, D} x {B, B}, either both 
choke points {A, E} x {B, B} , {A, B} x {B, B} exist or none exists. That is, either all choke 
points {{A, E} x {B, B} , {A, B} x {B, B}, {G, B} x {B, B}} exist or none exist. If all exist, 
create G as follows: use two latents Zq,B 2, where L \ is a parent of A , C and B 2 , L 2 is a 
parent of B, B and B, and there is a bi-directed edge C +-> E. Construct G" by adding edge 
L 2 —> A to G'. If none of the three mentioned choke points exist, do the same but with an 
extra bi-directed edge B <-> B. 

Assume now that choke point {C, B} x {B,B} exists (but not {A, D} x 
{B, B}). This is analogous to the previous case by symmetry of A and C. 

Assume now that no choke point {C, B} x {B, B} or {A, B} x {B, B} exists. 
We only have to consider now choke points of the form {X\,B} x {X 2 ,B} . Let 
Pair 1 be the set of choke points {{A, B} x {C, B}, {A, B} x {B, B}}. Let Pair 2 be the set 
of choke points {{B, C} x {A, B}, {B, C} x {B, B}}. Let Pair 3 be the set of choke points 
{{B, B} x {A, B}, {B, B} x {C, B}}. At most one element of Pair 1 can exist (or otherwise 
it will entail {A, B} x {C, B}). For the same reason, at most one element of Pair 2 can exist. 
Either both elements of Pair 3 exist or none exist. 

If both elements of Pair 3 exist, then no element of Pair 1 or Pair 2 can exist. For 
example, {B, B} x {A, E} from Pair 3 and {B, C} x {A, E} from Pair 2 together entail 
{C, B} x {A, B}, discarded by hypothesis. In the case where both elements of Pair 3 exist, 
construct G as follows: let L \ and L 2 be two latents, where L \ is a parent of A , C and L 2 , 
and L 2 is a parent of B, B and B. Add bi-directed edges A «-* B and C B. Construct 
G" by adding L 2 -* A to G. 

Choke point {B, G} x {B, B} (from Pair 2) cannot co-exist with {A, B} x {B, B} 
(from Pair 1) since this entails {A, C} x {B, B}. Moreover, {B, G} x {B, B} cannot co-exist 
with {A, B} x {G, B} (also from Pair 1), since {{A, C} x {B, B} , {A, B} x {G, B}, {B, G} x 
{B, B}}, which by exchanging B with B generates {{A, G}x{B, B } , {A, B}x{G, B}, {B, B}x 
{G, B}}. From Lemma 10, this implies all three tetrads in the covariance of {A, B, G, B} , a 
contradiction. 

By symmetry between A and G, it follows that no two elements of the union of 
Pair 1 and Pair 2 can simultaneously exist. Let {Xi, B} x {X 2 , E} be a choke point in the 
union of Pair 1 and Pair 2 that is assumed to exist. Construct G as follows: let L \ and L 2 

be two latents, where L \ is a parent of A, G and L 2 , and L 2 is a parent of B, B. If X\ = A 
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and X2 = C, or if XI = C and X2 = A9 let L\ be the parent of E. Otherwise, let L2 be the 
parent of E. Add bi-directed edges between E and every element in X\{B,XX}. Construct 
G" by adding L2 A to G'. 

Finally, if no element in Pairs 1, 2 or 3 is assumed to exist, create GF and G" as 
above, but connect E to all other elements of X by bi-directed edges. • 

Lemma 13 LET G(0) BE A SEMILINEAR LATENT VARIABLE GRAPH. THEN, IF FOR {A, B, C} C O 
WE HAVE pab = 0 OR pab.c = 0, THEN A AND B CANNOT SHARE A COMMON LATENT PARENT IN G 
WITH PROBABILITY 1 WITH RESPECT TO A LEBESGUE MEASURE OVER THE COEFFICIENT AND ERROR VARIANCE 
PARAMETERS. 

Proof: Let A, B, C be defined according to the following linear functions 

A = AL + J2p

aPAP + eA 
B = BL + ^BIBI + ES 
C = EJCJCJ + EC 

where L is a common latent parent of A and B, {AP} represents parents of A, {BI} are 
parents of B, {CJ} parents of C, and {ap}U{&*}U{cj}U{a, 6,CA, CB> C C } are parameters of the 
measurement model, {Ci, C#> C C } being the variances of error terms {e^, e#, ec}, respectively. 

Assume gab == 0. By the equations above, gab = ABG2

L + K, where no term in K that 
has a factor AB. For this identity to hold, we therefore need ABG\ = 0. By assumption, latent 
variables have positive variance, so the fact that ABG2

L = 0 implies g \ = 0 is a contradiction. 
Since Pab.c = 0 if and only if gabOq ~~ aAC&BC = 0 for positive g2

c , assume the latter. 
Expressing this polynomial as a function of the given coefficients, we obtain afojfa^ + Q. 
Since C is not an ancestor of L (because L is latent) no term in ABG\ contains the symbol Cc> 
nor any coefficient {cj}. Since every term in gac&bc that might contain Cc must also contain 
some {CJ}, then no term in gac&bc can cancel any term in ABG^C (which is contained in 
ABG^Go). This implies aftcr̂ Cc = 0, a contradiction. • 

Lemma 14 LET G(0) BE A LATENT VARIABLE GRAPH. LET {A,B,C}cO BE SOME TRIPLET SUCH 
THAT A AND B HAVE PARENTS L\ AND L2, RESPECTIVELY (WHERE IT IS POSSIBLE THAT L\ = L2), AND C 
IS NOT AN ANCESTOR OF A OR B. THEN, IF glxl2 0; IT FOLLOWS THAT Pab.c 0 WITH PROBABILITY 
1 WITH RESPECT TO A LEBESGUE MEASURE OVER THE COEFFICIENT AND ERROR VARIANCE PARAMETERS. 

Proof: Let the structural equations for A, B and C be A = AL\ + ^2IOIAI + c 0, B = 
BL2 + YLJBJBJ + €B and C — YLKC*@K + € o where ea,eb and EC are independent random 
variables, and independent of every other random variable in G besides their respective 
descendants. 

We have that Pab.c 0 oabVc — vacObc 0- We will prove that gabVc — vac°bc ^ 
0. From the above equations, we have that gab&c~~aAC&BC = [O>BALLL2+FI(A, J5)](F2(C) + 
Cc) — °ac°bc, where no term in F\(A, B) can contain the product afe, every term in F2(C) 
contains some variable CK as well as every term in gac&bc> and Cc is the variance of the error 
variance of C. The term glxl2 cannot contain any variable c*;, since C is not an ancestor 
of A or B. Therefore, no term in this polynomial can cancel the term ABGLLL2Qc, and since 
ataLiL2Cc 7̂  0, it follows that Pab.c I=- 0. • 
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Lemma 15 LET G(O) BE A LATENT VARIABLE GRAPH WITH LATENT COVARIANCE MATRIX E^. FOR ANY 
SET {A, B, C, D} = O' C 0 ; IF oab<Jcd = °acVbd = <7ad&bd AND FOR EVERY SET {X, Y} C 
O', Z 6 O WE HAVE Pxy.z ^ 0 AND PXY 0, THEN A AND B DO NOT HAVE MORE THAN ONE COMMON 
PARENT IN G WITH PROBABILITY 1 WITH RESPECT TO A LEBESGUE MEASURE OVER THE COEFFICIENT AND 
ERROR VARIANCE PARAMETERS. 

Proof: Assume L\ and L2 are two common parents of A and B in G. Let the graph G' have 
the same structure as G, but without all edges from other possible parents of A and B not 
in {L\,L2}. Since G' is more constrained than G, if a tetrad constraint holds in G, then it 
holds in G. By Lemma 1, no element in O' is an ancestor of any other element in this set. 
Let the structural equations for A, B, C and D in G be: 

A = OT\LX + ol2L2 

B = F31L2 + P2L2 

C = ]T\ CJCJ 
D = ZkDKDK 

Consider only the choice of coefficient and error variances by which the given constraint 
is entailed by G and all latent covariance matrices. As argued in previous lemmas, we know 
this happens with probability 1. Since the tetrad constraint (Jab^cd = gac°bd is entailed 
G', we have (Jab^cd - cfac^bd = 0 =4> ( a i A ^ + ai/?2<7L l L a + OT20iaLlL2 + OT2F32A2

L2)ACD-
{^LYLJCJVCJLI + OI2Y!FJCJACJL2){PlJ2K

DK®DKL1 + P2J2KDKADKL2) = 0 OL\I5\{P\x<7CD ~ 
( E j tyrciLiXE* DK°DKL,)) + / (G) = 0, where 

/(G) = (ai/320-L1L2+«2/3lCrL1L2+«2/32^i2)^CD-«2 ] T C3aCjL2 (Pi ^ dk®DkLX+P2 ^ dk°DkL2) 
J k k 

When fully expanding / (G) as a function of the linear parameters of G, the product aifii 

cannot possibly appear, since no element in O' is an ancestor of any other element in this 
set, Therefore, since the polynomial constraint is identically zero and nothing in / (G) can 
cancel the term aifa, we have: 

°\xocd = Yl c i a c i L i 2 d^aDkLi (10) 
3 k 

Using a similar argument for the coefficients of ol\(52, a2/3i and a2(32Y we get: 

VLxL^CD = C3aCjLx Y2 dkaDkL2 (H) 
3 k 

0LiL20CD = C3aCjL2 Y2 dk(7DkLi (12) 
3 k 

OI2°CD = XI C3aCjL2 ^2 d*aDkL2 (13) 
3 k 

Prom (10),(11), (12), (13), it follows: 
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&AC&AD = ]p\ Ylj CjVCjL! + 0L2 Ylj Cj^La] [ a l dkGDkLx + Ot2 YLk dk<?DkL2] 

ol\Ol2 J2j Cj<TCjL2 Sit d k a D k L l + ot\ J2j CjGCjl2 Zfc d k a D k L 2 

= &AaCD 

which implies acz> - vac°ad(v\)~1 = 0 Pcd.a = 0. By Lemma 14, C and D have no 
correlated parents, which entails g q d — 0 in G'. Since all treks between C and D in G are 
preserved in G', that implies g q d = 0 is entailed by G. Contradiction. • 

Lemma 16 Lei G(O) be a latent variable graph with latent covariance matrix S^. For any 
set {A,B,C,D} = O' C O , ifgAb°cd = vac°bd = °adctbd and for every set {X,Y} C 

O', Z G O we /iave pxr.z 7^ 0 and pxr 7^ 0, i/ien i /A and B have a common latent parent 
L\ in Gj B and C have a common latent parent L2 in G, we have L\ = L2 with probability 
1 with respect to a Lebesgue measure over the coefficient and error variance parameters. 

Proof: Assume A , B and G are parameterized as follows: 

A = aLi + Y^p apAp 

G = c^ + ZjCjCj 

where as before { A p } U {/?$} U {Gj} represents the possible other parents of A , B and G, 
respectively. Assume Li ^ L2. We will show that Plxl2 = 1, which is a contradiction. From 
the given tetrad constraint gab°cd — gadVbCI and the fact that from Lemma 1 we have 
that for no pair {X, Y} C O' X is an ancestor of Y, if we factorize the constraint according 
to which terms include a b \ c as a factor, we obtain with probability 1: 

abic[a2

Ll<TL2D - g L i D g L i L 2 ] (14) 

If we factorize such constraint according to a62c, it follows: 

ab2c[GLlL2GL2D - vlxdv\2\ (15) 

From (14) and (15), it follows that g\xg\2 = {gLiL2)2 =>• Plxl2 = 1. Contradiction. • 

Theorem 4 The output O / F I N D P A T T E R N is a generalized measurement pattern with respect 
to the tetrad and vanishing partial correlation constraints o /E with probability 1. 

Proof: Two nodes will not share a common latent parent in a measurement pattern if and 
only if they are not linked by an edge in graph G constructed by algorithm F I N D P A T T E R N 

and that happens if and only if some partial correlation vanishes or if any of rules CSl, CS2 
or CS3 holds. But then by Lemmas 3, 5, 6 and 13 the claim is proved. The claim about 
undirected edges follows directly from Lemma 1. • 
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Theorem 5 LET G(0) BE A LATENT VARIABLE GRAPH. THEN THE OUTPUT O / B U I L D P U R E C L U S T E R S 

IS A VALID L-INTERPRETATION FOR G IN THE FAMILY OF TETRAD AND VANISHING PARTIAL CORRELATION 
CONSTRAINTS AND A PURE GENERALIZED MEASUREMENT PATTERN. 

Proof: The output is a pure measurement model and generalized measurement pattern by-
construction: each node has only one latent parent, and there are no edges linking observed 
nodes. We only have to show that all tetrad constraints entailed by such measurement model 
also hold in the population covariance matrix. 

Let {A, B, C, D} be four observed nodes. If {A, B,C} belong to the same latent parent, 
then all tetrad constraints will be entailed by a pure measurement model with respect to a 
fourth node D, and by Step 5 of Table 2, this will be guaranteed. Now suppose {A, B} have 
the same latent parent, while C and D are children of other parents (where C and D might 
have the same parent). Then the tetrad oac^bd = &AD&BC will be entailed, and this will 
always hold in the covariance matrix, by Step 6 of Table 2. 

The tetrad gab&cd = &AD&BC will not be entailed: if L\ is the parent of A and BY L2 is 
the parent of C and L 3 is the parent of D, this will require Pl2l3.LI = 0, which will hold only 
in some latent covariance matrices, contrary to the definition of entailment in measurement 
models. Similarly, if no two elements in {A, B, C, D} share a common parent in the output, 
then no tetrad will be entailed in this set except for specific latent covariance matrices. • 

Corollary 1 LET G(0) BE A LATENT VARIABLE GRAPH. THEN THE OUTPUT OF B U I L D P U R E C L U S -

TERS IS A L-INTERPRETATION FOR G IN THE FAMILY OF TETRAD AND VANISHING PARTIAL CORRELATION 
CONSTRAINTS EVEN WHEN RULES CS1, CS2 AND CS3 ARE APPLIED AN ARBITRARY NUMBER OF TIMES IN 
FlNDPATTERN FOR ANY ARBITRARY SUBSET OF NODES AND AN ARBITRARY NUMBER OF MAXIMAL CLIQUES 
IS FOUND. 

Proof: Independently of the choice made on Step 2 of B U I L D P U R E C L U S T E R S , by the end 
of Step 4 we will meet all the conditions used to prove Theorem 5: that nodes in different 
clusters cannot share a same parent nor be ancestors of each other. The rest follows directly 
from the proof of Theorem 5. • 

B T h e sp i r i tua l coping ques t ionna i r e 
The following questionnaire is provided to facilitate understanding of the religious/spiritural 
coping example given in Section 7.2. It can also serve as an example of how questionnaires 
are actually designed. 

Section I This section intends to measure the level of stress of the subject. In the actual 
questionnaire, it starts with the following instructions: 

CIRCLE THE NUMBER NEXT TO EACH ITEM TO INDICATE HOW STRESSFUL EACH OF THESE EVENTS HAS BEEN 
FOR YOU SINCE ENTERED YOUR GRADUATE PROGRAM. IF YOU HAVE NEVER EXPERIENCED ONE OF THE EVENTS 
LISTED BELOWJ THEN CIRCLE NUMBER 1. IF ONE OF THE EVENTS LISTED BELOW HAS HAPPENED TO YOU AND 
HAS CAUSED YOU A GREAT DEAL OF STRESS, RATE THAT EVENT TOWARD THE "EXTREMELY STRESSFUL" END 
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of the rating scale. If an event has happened to you while you have been in graduate school, 
but has not bothered you at all, rate that event toward the lower end of the scale ("Not at all 
Stressful"). 

The student then chooses the level of stress by circling a number on a 7 point scale. The 
questions of this section are: 

1. Fulfilling responsibilities both at home and at school 
2. Trying to meet peers of your race/ethnicity on campus 
3. Taking exams 

4. Being obligated to participate in family functions 
5. Arranging childcare 
6. Finding support groups sensitive to your needs 
7. Fear of failing to meet program expectations 
8. Participating in class 
9. Meeting with faculty 

10. Living in the local community 
11. Handling relationships 
12. Handling the academic workload 
13. Peers treating you unlike the way they treat each other 
14. Faculty treating you differently than your peers 
15. Writing papers 
16. Paying monthly expenses 
17. Family having money problems 
18. Adjusting to the campus environment 
19. Being obligated to repay loans 
20. Anticipation of finding full-time professional work 
21. Meeting deadlines for course assignments 

Section II This section intends to measure the level of depression of the subject. In the 
actual questionnaire, it starts with the following instructions: 

Below is a list of the ways you might have felt or behaved. Please tell me how often you have 
felt this way during the past week. 

The student then chooses the level of frequency that some events happened to him/her by 
circling a number on a 4 point scale. The scale is "Rarely or None of the Time (less than 1 
day)", "Some or Little of the Time ( 1 - 2 days)", "Occasionally or a Moderate Amount of 
the Time ( 3 - 4 days)" and "Most or All of the Time ( 5 - 7 days)". The events are as follows: 
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1. I was bothered by things that usually don't bother me 

2. I did not feel like eating; my appetite was poor 
3. I felt that I could not shake off the blues even with help from my family or friends 

4. I felt that I was just as good as other people 
5. I had trouble keeping my mind on what I was doing 

6. I felt depressed 
7. I felt that everything I did was an effort 

8. I felt hopeful about the future 
9. I thought my life had been a failure 

10. I felt fearful 
11. My sleep was restless 
12. I was happy 
13. I talked less than usual 
14. I felt lonely 
15. People were unfriendly 
16. I enjoyed life 
17. I had crying spells 
18. I felt sad 
19. I felt that people disliked me 

20. I could not get "going" 

Section III This section intends to measure the level of spiritual coping of the subject. In 
the actual questionnaire, it starts with the following instructions: 

Please think about how you try to understand and deal with major problems in your life. 
These items ask what you did to cope with your negative event Each item says something 
about a particular way of coping. To what extent is your religion or higher power involved 
in the way you cope? 

The student then chooses the level of importance of some spiritual guideline by circling a 
number on a 4 point scale. The scale is "Not at all", "Somewhat", "Quite a bit", "A great 
deal". The guidelines are: 

1. I think about how my life is part of a larger spiritual force 
2. I work together with God (high power) as partners to get through hard times 

3. I look to God (high power) for strength, support, and guidance in crises 

4. I try to find the lesson from God (high power) in crises 
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5. I confess my sins and ask for God (high power) 's forgiveness 
6. I feel that stressful situations are God (high power)'s way of punishing me for my sins 

or lack of spirituality 
7. I wonder whether God has abandoned me 
8. I try to make sense of the situation and decide what to do without relying on God 

(high power) 
9. I question whether God (high power) really exists 

10. I express anger at God (high power) for letting terrible things happen 
11. I do what I can and put the rest in God (high power) 's hands 
12. I do not try much of anything; simply expect God (high power) to take my worries 

away 
13. I pray for a miracle 
14. I pray to get my mind off of my problems 
15. I ignore advice that is inconsistent with my faith 
16. I look for spiritual support from clergy 
17. I disagree with what my religion wants me to do or believe 
18. I ask God (high power) to help me find a new purpose in life 
19. I try to find a completely new life through religion 
20. I seek help from God (high power) in letting go of my anger 
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