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Abstract 

We introduce the Hidden Process Model (HPM), a probabilistic model for 
multivariate time series data intended to model complex, poorly understood, 
overlapping and linearly additive processes. HPMs are motivated by our 
interest in modeling cognitive processes given brain image data. We define 
HPMs, present inference and learning algorithms, study their characteristics 
using synthetic data, and demonstrate their use for tracking human cognitive 
processes using fMRI data. 
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1 Introduction 
In this paper, we propose the Hidden Process Model (HPM), a probabilistic model 
for multivariate time series data generated by a system of overlapping, potentially 
hidden, linearly additive processes. HPMs are motivated by the study of cognitive 
processes in the brain using functional magnetic resonance imaging (fMRI) data, a 
technique to indirectly capture neural activations in a subject's brain by measuring 
changes in the blood oxygenation level (also called the hemodynamic response). In 
particular, HPMs are designed to learn and track both known and hidden cognitive 
processes, taking into account that the hemodynamic response signatures might 
overlap in the fMRI data. 

HPMs build on existing machine learning methods for time series data and the 
state-of-the-art approach for fMRI data analysis. With respect to the former, HPMs 
have similarities to dynamic Bayesian networks (DBNs) [1]. In fact, we have found 
that HPMs can be expressed in DBN format, and thus are technically a special case 
of DBNs. However, to preserve the set of assumptions captured in the HPM format 
requires a complex DBN. For instance, we must inflate the state-space of the DBN 
by using Markov chains as binary 'memory' variables. We are continuing work on 
formalizing the connection between HPMs and DBNs, but at this point we suspect 
that HPMs will provide an advantage over their DBN counterparts in terms of time 
and sample complexities. 

With respect to fMRI data analysis, HPMs build on a variant of the General 
Linear Model (GLM) approach widely used in fMRI data analysis. In particular, 
HPMs are similar to the GLM approach described in [3] to extract hemodynamic 
responses out of overlapping processes. Our work differs from theirs in that HPMs 
can handle processes with unknown timing, whereas GLMs do not allow uncer­
tainly about timing in the design matrix. HPMs express that uncertainty proba­
bilistically, where every instance of a general process shares the same timing dis­
tribution. Although one could attempt to handle timing uncertainly by enumerating 
and solving a set of alternative GLMs, HPMs provide a more principled way to de­
scribe timing uncertainty, and a principled method for learning process models in 
the face of this uncertainty. 

There has been an effort to analyze fMRI data using hidden Markov models 
(HMMs) [4]. Unlike that approach, HPMs are not restricted to block design fMRI 
data and are capable of inferring states that are not binary. 
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Figure 1: Hidden Process Models assume data is generated by a collection of pro­
cess instances that inherit properties from general process descriptions. 

2 Hidden Process Models 
Informally, HPMs assume the observed time series data is generated by a collection 
of hidden process instances, as depicted in Figure 1. Each process instance is active 
during some time interval, and influences the observed data only during this inter­
val. Process instances inherit properties from general process descriptions. The 
timing of process instances depends on timing parameters of the general process it 
instantiates, plus a fixed timing landmark derived from input stimuli. If multiple 
processes are simultaneously active at some point in time, then their contributions 
sum linearly to determine their joint influence on the observed data. 

More formally, we consider the problem setting in which we are given observed 
data Y and known input stimuli A . The observed data Y is a T x V matrix 
consisting of V time series, each of length T. For example, these may be the time 
series of fMRI activation at V different locations in the brain. The information 
about input stimuli, A , is a T x J matrix, where matrix element 5u = 1 if an input 
stimulus of type i is initiated at time t, and 6u = 0 otherwise. The observed data Y 
is generated nondeterministically by some system in response to the input stimuli 
A . We use an HPM to model this system. Let us begin by defining processes: 

Definition. A process h is a tuple (W, ©, fi, d). d is a scalar called the duration 
of K which specifies the length of the interval during which h is active. W is a 
d x V matrix called the response signature of /i, which specifies the influence of 
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h on the observed data at each of d time points, in each of the V observed time 
series. © is the collection of parameters for a multinomial distribution of a random 
variable which governs the timing of h, and which takes on values in ft. The set of 
all processes is denoted by Ti. 

We will use the notation Q(h) to refer to the Ct for a particular process h. More 
generally, we adopt the convention that f(x) refers to the parameter / affiliated 
with entity x. 

Each process represents a general procedure which may be instantiated multi­
ple times over the time series. For example, in one of our fMRI studies subjects had 
to determine whether a sentence correctly described a picture, on each of 40 trials. 
We hypothesize general cognitive processes such as ReadSentence, ViewPicture, 
and Decide, each of which is instantiated once for each trial. The instantiation of a 
process at a particular time is called a process instance, defined as follows: 

Definition. A process instance 7r is a tuple (h, A, O), where h is a process as de­
fined above, A is a known scalar called a timing landmark, and O is an integer 
random variable called the offset time, which takes on values in Q(h). The time at 
which process instance n begins is defined to be A + O. The multinomial distribu­
tion governing O is defined by G(/i). The duration of 7r is given by d{h). 

The timing landmark A is defined by a particular input in A (e.g., the timing 
landmark for a 'ReadSentence' process instance may be the time at which the sen­
tence stimulus is presented to the subject), whereas the values for the offset time O 
and/or the process h of the process instance may in general be unknown. 

The latent variables in an HPM are h and O for each of the process instances. 
We refer to each possible set of process instances as a configuration. 

Definition. A configuration c is a set of process instances {ni... TTL}. 

Given a configuration c = {ni... TTL} the probability distribution over each 
observed data point ytv in the observed data Y is defined by the Normal distribu­
tion: 

Vtv~ N{V>tv{c),Gv) (1) 

where av is the standard deviation characterizing the time-independent noise dis­
tribution associated with the vth time series, and where 

M*(<0 = £ £ 5(A(7r)-hO(7r) = t - r ) ^ W (2) 
7rEc r=0 

Here 6(>) is an indicator function whose value is 1 if its argument is true, and 0 
otherwise, is the element of the response signature Wh^ associated with 
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process h(ir), for data series v, and for the r t h time step in the interval during 
which .7T is instantiated. 

Equation (2) says that the mean of the Normal distribution governing observed 
data point ytv is the sum of single contributions from each process instance whose 
interval of activation includes time t. In particular, the 5(-) expression is non-zero 
only when the start time ( A ( 7 r ) + 0 ( 7 r ) ) of process instance n is exactly r time steps 
before t, in which case we add the element of the response signature W ^ W at the 
appropriate delay (r) to the mean at time t. This expression captures a linear system 
assumption that if multiple processes are simultaneously active, their contributions 
to the data sum linearly. To some extent, this assumption holds for fMRI data [5] 
and is widely used in fMRI data analysis. 

We can now define Hidden Process Models: 

Definition. A Hidden Process Model, HPM, isatuple (H> <&,C, (ai... cry)), where 
H is a set of processes, $ is a vector of parameters defining the prior probabilities 
over the processes in H, C is a set of candidate configurations, and av is the stan­
dard deviation characterizing the noise in the vth time series of Y . 

An HPM defines a probability distribution over the observed data Y , given 
input stimuli A , as follows: 

P(Y\HPM, A ) = ^2 P(Y\HPM, C = c)P{C = c\HPM, A ) (3) 
cec 

where C is the set of candidate configurations associated with the HPM, and C 
is a random variable defined over C. Notice the term P(Y\HPM, C = c) is defined 
by equations (1) and (2) above. The second term is 

1 - c l " ™ > ^ E d e e P(h^)\HPM)P(0(^)\h(^)yHPM1 A ) 
(4) 

where P(h(Tr)\HPM) is the prior probability of process h(ir) as defined by the 
parameter vector $ of the HPM. Similarly, P(0(7r)\h(7r),HPM, A ) is the multi­
nomial distribution defined by ©(h(7r)). 

Thus, the generative model for an HPM involves first choosing a configuration 
ceC, using the distribution given by equation (4), then generating values for each 
time series point using the configuration c of process instances and the distribution 
for P(Y\HPM, C = c) given by equations (1) and (2). 
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2.1 Inference 

The basic inference problem in HPMs is to infer the posterior distribution over the 
candidate configurations C of process instances, given the HPM, input stimuli A , 
and observed data Y . By Bayes theorem we have 

P(C - c\Y,A,HPM) - E c / g c p ( Y | c = d , H P M ) P { C = c>\A,HPM) ( 5 ) 

where the terms in this expression can be obtained using equations (1), (2), and (4). 

2.2 Learning 

The learning problem in HPMs is analogous to that for HMMs and DBNs: given 
an observed data sequence Y , an observed stimulus sequence A , and a set of 
candidate configurations including landmarks for each process instance, we wish 
to learn maximum likelihood estimates of the HPM parameters. The set * of 
parameters to be learned include Q(h) and Wh for each process h G H, $ , and av 

for each time series v. 

2.2.1 Learning from fully observed data 

First consider the case in which the configuration of process instances is fully 
observed in advance (i.e., all process instances, including their offset times and 
processes, are known). For example, in our sentence-picture brain imaging ex­
periment, if we assume there are only two cognitive processes, ReadSentence and 
ViewPicture, then we can reasonably assume a ReadSentence process instance be­
gins at exactly the time when the sentence is presented to the subject, and View-
Picture begins exactly when the picture is presented. 

In such fully observable settings the problem of learning $ and the re­
duces to a simple maximum likelihood estimate of multinomial parameters from 
observed data. The problem of learning the response signatures Wh is more com­
plex, because the Wh terms from multiple process instances jointly influence the 
observed data at each time point (see equation (2)). Solving for W ' 1 reduces to 
solving a multiple linear regression problem to find a least squares solution, after 
which it is easy to find the maximum likelihood solution for the crv. Our multi­
ple linear regression approach in this case is based on the approach described in 
[3]. One complication that arises is that the regression problem can be ill posed 
if the training data does not exhibit sufficient diversity in the relative onset times 
of different process instances. For example, if processes A and B always occur 
simultaneously with the same onset times, then it is impossible to distinguish their 
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relative contributions to the observed data. In cases where the problem involves 
such singularities, we use the Moore-Penrose pseudoinverse to solve the regres­
sion problem. 

2.2.2 Learning from partially observed data 

In the more general case, the configuration of process instances may not be fully 
observed, and we face a problem of learning from incomplete data. In this section 
we consider the case where the offset times of process instances are unobserved, 
however the number of process instances is known, along with the process asso­
ciated with each. For example, in the sentence-picture brain imaging experiment, 
if we assume there are three cognitive processes, ReadSentence, ViewPicture, and 
Decide, then while it is reasonable to assume known offset times for ReadSentence 
and ViewPicture, we must treat the offset time for Decide as unobserved. 

In this case, we use an EM algorithm to obtain locally maximum likelihood 
estimates of the parameters, based on the following Q function. Here we use C 
to denote the collection of unobserved variables in the configuration of process 
instances, and we suppress mention of A to simplify notation. 

Q ( * , * o l d ) = £ C | Y ) *o l d [P(Y ,C | v l>)] 

The EM algorithm finds parameters ^ that locally maximize the Q function by 
iterating the following steps until convergence: 

E step: The E step involves solving for the probability distribution over the 
unobserved features of configuration of process instances. The solution to this is 
given by our earlier equation (5). 

M step: The M step uses the distribution over the partially observed process 
instances from the E step, to obtain parameter estimates that maximize the expected 
log likelihood of the full (observed and unobserved) data. 

The update to W is the solution to a weighted least squares problem maximiz­
ing the objective function 

V ^ V - P(C = c\Y,*°ld) , 2 

X , z2 X , — - — 5 ^ — - <y» - ^(c)) ( 6 ) 

v=i t=i cec L G v 

where /xtv(c) is defined in terms of W as given in equation (2). 
The updates to the remaining parameters are given by 

1 \ 
j , ~ 2ytvEC\Y^oid[fJ,tv(C)} + £,C|Y,*°"'[Mtv(C)]) 

t=l 
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9 _ Ecec E , € c = h)6(0(n) = o)P(C = c| Y , tt°ld) 

2.2.3 Model selection 

In cases where the exact number of processes or the identities of the processes are 
not known in advance, we can use cross-validated likelihood to choose the most 
appropriate model from a set of candidate HPMs. 

2.3 Tractability and prior knowledge 

HPMs can be mapped into fHMMs by creating a fHMM state variable for each 
HPM process, and defining the appropriate fHMM emission distribution. The ad­
vantage of HPMs is that their different timing model naturally incorporates prior 
assumptions that yield large reductions in the number of latent variables to be esti­
mated. Given an HPM with L processes and M process instances and an observed 
time series of length T, unconstrained fHMMs would require consideration of 2LT 

configurations of state variables, whereas HPMs consider only "LT choose M " 
configurations. Further reductions follow when one has prior knowledge of which 
process is associated with each process instance (reducing the number of configu­
rations to fewer than T M ) . Large additional reductions occur when the time series 
can be partitioned into segments separated by intervals with zero process instances 
(as is common in brain imaging experiments with rest periods between trials). For 
example, in an experiment involving n trials with maximum trial length r and 
m process instances per trial, the number of configurations considered reduces to 

3 Experimental results 
To test the effectiveness of the HPM learning and inference algorithms, we applied 
them to both synthetic data and to fMRI data obtained from human subjects. Ex­
periments with synthetic data allowed us to measure the effect of noise, number of 
training examples and data dimensionality on the ability to accurately learn HPMs. 
Experiments with fMRI data were used to elucidate the hidden cognitive processes 
in human subjects, and test HPMs on problems of realistic complexity. 
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Figure 2: Learned versus true process responses; synthetic data. Plots on the right 
show learned response signatures (blue lines) for three processes superimposed 
on the true response signatures (green lines). This HPM was learned from the 
synthesized data shown on the left, in red; the green line indicates the synthesized 
data before noise was added. 

3.1 Experiments with synthetic data 

Data was synthesized from a known HPM with three processes whose response sig­
natures are shown in Figure 2. Data was synthesized to mimic the characteristics 
of the fMRI data set discussed in the following section: the data series consisted 
of a sequence of trials, each trial instantiating all three processes. During learning, 
the exact timing for two processes was provided, but not for the third. As shown 
in the figure, the HPM learning algorithm obtains good estimates of the response 
signatures despite strong overlaps in the time intervals of the processes instances 
and significant noise in the data. In a variety of experiments we measured the ac­
curacy of learned HPMs by the fit of their response signatures to true response 
signatures, by their data loglikelihood on held out data, and by their ability to cor­
rectly classify the process associated with each process instance on held out data. 
Accuracy decreased with increasing data noise and improved with the number of 
trials in the time series. We also found accuracy improved as the dimension of the 
data increased, presumably because this provides more information for localizing 
the timing of process instances. 

3.2 Experiments with fMRI data 

In this fMRI study [6], human subjects were presented a sequence of 40 trials. In 
half the trials they were presented a picture for 4 sec, a blank screen for 4 sec, then 
a sentence. Then they pressed a button to indicate whether the sentence correctly 
described the picture. In the remaining trials the sentence was presented before the 
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picture. Throughout, fMRI images of brain activity were captured every 500 msec. 
We used three different HPMs to analyze this data. The first was a 2-process 

HPM which assumes the fMRI data is generated by a ReadSentence process and 
a ViewPicture process, each of which is instantiated immediately whenever the 
corresponding sentence or picture stimulus is presented, with a duration of 11 sec­
onds. This is a typical duration for the fMRI response to neural activity (note this 
means the fMRI responses to the first and second stimuli overlap). We also con­
sidered a 3-process HPM which included the same ReadSentence and ViewPicture 
processes, plus a third Decide process (to model the subject's cognitive process 
of comparing the stimuli). The timing for ReadSentence and ViewPicture in this 
3-process model were identical to the 2-process HPM, but the timing of the third 
Decide process was unspecified, with uniform priors on start times in an inter­
val following the second stimulus. Finally we considered a model identical to the 
above 2-process HPM, but with process durations of 8 sec to assure the response 
signatures of processes did not overlap. We refer to this HPM model as the GNB 
model, because the non-overlapping responses make it equivalent to a Gaussian 
Naive Bayes classifier. 

We trained each HPM and evaluated them using a leave-one-trial-out cross 
validation method. We measured their data loglikelihood and their classification 
accuracy when labeling each process as either ReadSentence or ViewPicture on 
the held-out data. The results are given in Table 1, for five human subjects. First 
note that both HPMs outperform the Gaussian Naive Bayes (GNB) model, in both 
data loglikelihood and classification accuracy. We take this as a promising sign 
of the superiority of HPMs over earlier classifier methods (e.g., [7]) for modeling 
cognitive processes. 

Second, notice the 3-process HPM outperforms the 2-process HPM. This in­
dicates that HPMs provide a viable approach to modeling truly hidden cognitive 
processes (e.g., the Decide process) with unknown timing. The fact that the 3-
process model has greater cross-validated data loglikelihood means that it is able 
to find useful structure in the data by incorporating the additional process. 

We also applied HPMs to data from a second fMRI study in which subjects 
were presented a sequence of 120 words, one every 3-4 seconds, and decided 
whether the word was a noun or verb. We trained a two-process HPM, with pro­
cesses ReadNoun and ReadVerb, each with duration 15 sec. This implies there 
are overlapping contributions from up to 5 distinct process instances at any given 
time, making it unrealistic to apply classifiers like GNB to this data. We applied 
learned HPMs to classify which process instances were ReadNoun versus Read-
Verb. Despite the greatly overlapped fMRI responses, we found cross-validated 
classification accuracies significantly (p-value < 0.1) better than random classifi­
cation in 4 of 6 human subjects, with the accuracy for the best subject reaching .67 
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(random classification yields accuracy of .5). This further supports our claim that 
HPMs provide an effective approach to analyzing overlapping cognitive processes. 

Table 1: fMRI study: leave-one-trial-out cross validation results for GNB and HPM 
on the five subjects (A through E) exhibiting the highest accuracies and data log-
likelihoods out of 13 total subjects. The accuracies are for predicting the identities 
of the first and the second stimuli (up to 80 correct answers, 0.5 for purely random 
classification scheme). 

A B C D E 
accuracy 
GNB 0.725 0.750 0.725 0.637 0.750 

accuracy 
2-process HPM 0.750 0.875 0.700 0.675 0.787 

accuracy 
3-process HPM 0.775 0.875 0.738 0.637 0.812 

loglikelihood 
GNB -896.23541 -786.75823 -941.54912 -783.50593 -476.53631 

loglikelihood 
2-process HPM -876.44947 -751.3732 -912.31519 -768.7222 -466.71741 

loglikelihood 
3-process HPM -864.70878 -713.63435 -898.53191 -753.82864 -447.55965 

4 Conclusion 
We have presented HPMs to model hidden and temporally overlapping processes, 
along with algorithms for inference and learning. We have shown the robustness 
of HPMs with synthetic data experiments, and our results on real fMRI data show 
potential for HPMs as a new way to examine cognitive processes. 

Our future work will improve our model in several ways. We will extend the 
model to handle parametric response forms, like the parametric hemodynamic re­
sponse in [5]. We will allow real-valued offset times. Our model currently assumes 
white noise, but we plan to consider more general noise models. We will also ex­
plore approximate inference techniques to scale up HPMs. Additionally, we would 
like to allow variable-duration processes, timing dependencies between process 
instances, and domain-specific process parameters (e.g. whether a sentence was 
affirmative or negative). Finally, we believe that HPMs solve a problem that is not 
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specific to fMRI, and we are seeking additional appropriate domains. 
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