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Abstract

Many set functions F in combinatorial optimization satisfy the diminishing returns property F(A U X) — F(4) >
FA LX) - F(A) for A C A'. Such functions are called submodular. A result from Nemhauser et.al. states that
the problem of selecting k-element subsets maximizing a nondecreasing submodular function can be approximated
with a constant factor (1 — 1/e) performance guarantee. Khuller et.al. showed that for the special submodular
function involved in the MAX-COVER problem, this approximation result generalizes to a budgeted setting under
linear nonnegative cost-functions. In this note, we extend this result to general submodular functions. Motivated by

the problem of maximizing entropy in discrete graphical models, where the submodular objective cannot be evaluated
exactly, we generalize our result to account for absolute errors.
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1 Introduction

Many set functions F' in combinatorial optimization satisfy the diminishing returns property F(A U X) — F(A4) >
F(A'UX)— F(A")for A C A',i.e. adding an element to a smaller set helps more than adding it to a larger set. Such
functions are called submodular. The submodular function motivating our research is the joint entropy H(A) for a set
of random variables .4. The entropy of a distribution P : {z,...,z4} — [0, 1] is defined as

H(P)= =3 P(x)log P(xs),
k

measuring the number of bits required to encode {x;,...,z4} [1]. If A is a set of discrete random variables A =
{X1,...,Xx}, then their entropy H{A) is defined as the entropy of their joint distribution. The conditional entropy
H({A | B) for two subsets A, B C V is defined as :

H(A|B)=~ )  P(ab)logP(a|b},
acdom A
bedom B
measuring the expected uncertainty about variables A after variables 13 are observed.

Using the chain-rule of entropies [1], H(A U B} = H(A | B) + H(B), we can compute H{AU X} — H(A) =
H(X|A). The information never hurts principle (1], H(X | A) > H(X | A") for all A C .A’, proves submodularity
of the entropy. In the discrete setting, H(X | .A} is also always non-negative, hence the entropy is nondecreasing.

In practice, a commonly used algorithm for selecting a set of variables with maximum entropy is to greedily select
the next variable to observe as the most uncertain variable given the ones observed thus far:

Xy = arg);?axH(X | {X1,.. . Xk-1}), (1.1)

which is again motivated by the chain-rule.

It is no surprise that this problem has been tackled with heuristic approaches, since even the unit cost has been
shown to be NP-hard for multivariate Gaussian distributions [3], and a related formulation has been shown to be
NPPP_hard even for discrete distributions that can be represented by polytree graphical models [4].

Fortunately, a result from Nemhauser et.al. [5] states that the problem of selecting k-element subsets maximizing a
nondecreasing submodular function can be approximated with a constant factor (1—1/e) performance guarantee, using
the greedy algorithm as mentioned above. Khuller et.al. [2] showed that for the special submodular function involved
in the MAX-COVER problem, this approximation result generalizes to a budgeted setting under linear nonnegative
cost-functions. In this note, we extend this result to general submodular functions.

Motivated by the problem of maximizing entropy in discrete graphical models, where the conditional entropies in
(1.1) can in general not be evaluated both exactly and efficiently [4], we generalize our result to account for absolute
errors. Qur derivations in the following sections closely follows the analysis presented in [2].

2 Budgeted maximization of submodular functions

Let V be a finite set, and ' : V — R be a set function with F(@) = 0. F' is called submodular if FAUX)-F(A) >
FAUX)—F(A')forall AC Vand X € V\ A. Fis called non-decreasing if FAUX)~-F(A) > 0forall A Cc VY
and X € V\ A. The quantities F'(A4; X) := F(AUX) — F(A) are called marginal increases of F with respect to A
and X'. Furthermore define a cost function c : V — R*, associating a positive cost e(X) with each element X € V.
We extend c linearly to sets: For A C V define

co(A) = > e(X).

XeA
For a budget B > 0, the budgeted maximization problem is to maximize

OPT = argmax F(A) 2.1
ACVic(A)< B

Note that the exclusion of zero cost does not incur loss of generality because since the submodular functions are
nondecreasing. We refer 10 e(A) = |.4| as the unit-cost case.



3 A constant factor approximation

In analogy to the unit-cost case discussed in [5], we analyze the greedy algorithm, where the greedy rule adds to set A
the element X* such that o )

Fl(Gi 1, X

X*= m —=
XeW\Gi, (X))

Khuller etal. [2] prove that the simple greedy algorithm with this greedy selection rule has unbounded approxi-
mation ratio. They suggest a small modification, considering the best single element solution as alterative to the
output of the naive greedy heuristic, which, as they prove, guarantees a constant factor approximation for the bud-
geted MAX-k-COVER problem. Their algorithm is stated here as Algorithm 1, and we extend their analysis to
the case of general submodular functions. Motivated by the entropy maximization problem where we cannot effi-
ciently evaluate the marginal increases F'(A4; X) exactly [4], we only assume that we can evaluate #(.4; X ) such

that |F"(A; X} — F'(4; X)J < eforsomee > 0.

Imput: d > 0,B > 0, WCV
Output: Selection 4 C W
begin
Ay=srgmax{F({X}) : X € We(X) < BY;
2 =W
W .=w,
while W # f do
foreach X ¢ Wdo Ax = F"(.Az;X);
X" .= argmax{Ax/e(X): X € W};
1 if c(Az) + ¢(X*) € Bthen Ay := A,UX*";
W =W\ X~
end

return argmax F(A)
Ac{A; Az}
end

Algorithm 1: Approximation algorithm for budgeted case.

Let us consider the computation of the set A in Algorithm 1. Renumber V = {Xj, ..., X.} and define Gp = ¢
and G; = {Xy,..., X;} such that

F(G))~ F(Gi_1) +¢ F(GiaUY)-F(G) -«
(X)) 2 max A7) '

The sequence (G;); corresponds to the sequence of assignments to .42, and is motivated by the simple greedy rule,
adding, for a prior selection G;_,, the element X; such that

o PG
* Xewhneg,, C(Xi) '

Let | = max{i : ¢(G:) < B} be the index comresponding to the iteration, where A; is last augmented in Line 1,
and let epin = ming ¢(X). Hence A; = Gi. Let L = ¢(OPT), and w = |OPT|. We first prove the following
Theorem:

Theorem 1 (adapted from [2]). Algorithm I achieves an

1 1/ L
5(1—1/9)F(OPT)——§(C +w)s

approximation for (2.1), using O(|W)|?) evaluations of F.

To prove Theorem 1, we need two lemmas:
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Lemma 2 (generalized from [2]). Fori=1,...,1+ 1, it holds that
F(G;) - F(Gi_y) > -C(LE(F(OPT) - F(Gi_)) ~¢ (1 + wchX.-)).

Proof: Using monotonicity of F, we have
F(OPT) - F(G;—1) < F(OPT UG;_1) — F(Gi1) = F(OPT\ Gi_1 UGi_1) — F(Gi-1)
Assume OPT\ Gi_y = {Yi,...,Yn} and letforj = 1,...,m
Z;=FGi1u{N,....Y;}) - F(Gi1u{Y1,....Y;11}).
Then F(OPT) - F(G,1) <, Z;.

Now notice that
Zi~c  FG1VY)) - F(Gi1) —« < FG) - F(Giy) +e
e(¥;) ~ e(Y;) - o(Xs)
using submodularity in the first and the greedy rule in the second inequality. Since ):;.';1 e(¥;) < L itholds that

F(Gi—1)+¢
e(Xq)

F(OPT) - P(Gi)) = 3.7, < 1F@) = +me

=1

Lemma 3 (adapted from [2]). Fori=1,...,l+ 1 it holds that

fI (1 - c(f"))] F(OPT) - (% + w) e.

k=1

FP(G) > ,:1 -

Proof. Leti = 1 for sake of induction. We need to prove that F(G,) > 251 F(OPT) - (E(iL?‘j + w) €. This follows
from Lemma 2 and since

Now leti > 1. We have
F(Gi) = F(Gi1) + [F(G:) — F(Gi_1)]

2 F(Gio1) + —+ (X ) [F(OPT) — F(Gi_1)] — ¢ (1 + wcFLXi))

T8 ey S

(H<—>)w(>(>(—>
= (=11 (- 2)) riorm - (o +0)

using Lemma 2 in the first and the induction hypothesis in the second inequality. ) 0

Fromnow on let 3 = # + w.

)



Proof of Theorem 1. Qbserve thatforay, ..., a, € R¥ suchthat 3~ a; = A, the function (1-[]7.,(1- %4.)) achieves

irsminimumatal=-~=a,,=“-:-.
We have
[T (1= 9X0)
FGun) > [1- 1] (1-43 )]F(OPT)-ﬁe

L k=1
( : C(Xk)

2_1—3;[1(1 c(gm)) F(OPT) - B¢
[ 1 i+1

> 1_(1"“._1) F(OPT) - B¢

v

(1 - %) F(OPT) — 8

where the first inequality follows from Lemma 3 and the second inequality follows from the fact that c(G1) > L,
since it violates the budget.

Furthermore note, that the violating increase F(Gy41)—F(G;) is bounded by F(X*) for X* = argmax xew F(X),
i.e. the second candidate solution considered by the modified greedy algorithm. Hence

F(Gi) + F(X*) 2 F{Gry1) 2 (1 - 1/e) F(OPT) — Be
and at least one of the values F(X*) or F(G;) must be greater than or equal to 3((1-1/e)F(OPT) - Be). O

4 Animproved approximation guarantee

To achieve the same performance guarantee of (1 — 1/€) which can be achieved for the unit-cost in the case of general
submodular functions [51, Khuller et.al.[2] propose a partial enumeration heuristic which enumerates all subsets of
up to d elements for some constant d > 0, and complements these subsets using the modified greedy algorithm
Algorithm 1. They prove that this algorithm guarantees a (1 — 1/e) approximation for the budgeted MAX-k-COVER
problem. The algorithm is stated below for general nondecreasing submodular functions:
Input: d > 0,B >0, WCV
Output: Selection A C W
begin
Ay :=argmax{F(A): ACW,|W|<d,c(W)< B} Ay :=;
foreachG C W, |G| =d,c{G) < Bdo
W :=W\G;
while W’ % @ do
foreach X € W do Ax = F/(G; X);
X" = argmax{Ax/ce(X): X e W},
ife(G)+e(X*Y< Bthen G:=CUX*:
W =W\ X, :
end
if F(G) > F(A) then Ay :=¢G
end

return argmax F(A)
AG{Al,A:}

end

Algorithm 2: Approximation algorithm for budgeted case.
Theorem 4 (adapted from [2]). Algorithm 2 achieves an approximation guarantee of

(1-1/€)F(OPT) — (c,f,-n + w) €

Jor (2.1) if sets at least up to cardinality d = 3 are enumerated, using O(|W|%+?) evaluations of F.
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Since we do not know L and w in general, the following corollary provides an explicitly computable bound on the
absolute error:

Corollary 5. Algorithm 2 achieves an approximation guarantee of
2B

Cmin

(1—1/€)F(OPT) —

[

Jor (2.1} if sets at least up to cardinality d = 3 are enumerated.

Proof of Theorem 4. Assume that |OPT)| > k, otherwise the algorithm finds the exact optimum. Renumber OPT =
{¥1,..., Y} such that

Yipr =argmax F({Y3,... .Y, Y}) - F({1,...,Yi}),
YeoPT

and let B = {Y,,. .., ¥, }. Consider the iteration where the algorithm considers B. Define the function
F'{A) = F(AuB) - F(B).

F’ is a nondecreasing submodular set function with £’ (@) = 0, hence we can apply the modified greedy algorithm
toit. Let A = {V;,...,V}} be the result of the algorithm, where V; are chosen in sequence, let Vi+1 be the first
element from OPT \ B which could not be added due to budget constraints, and let G = A U B. Per definition,
F(G)=F'(A)+ F(B). Let A = F/{AUVj ;) — F’(A). Using Lemma 3, we find that

F'{A)+A > (1-1/e)F/(OPT\ B) — pe.

Furthermore observe, since the elements in OPT are ordered, that F({Yy,....Y.}) - F({1,...,Y:i.1}) > A for
I <1 < k. Hence F(B) > kA. Now we get

F(G) = F(B) + F'(A)
2> F(B)y+(1- 1/e)F'(OPT\B) - A — 8¢
2 F(B)+(1-1/e)F'(OPT\ B) — ﬂf—) — e
2 (1-1/k)F(B)+ (1 - 1/e)F'(OPT\ B) - 3¢

But by definition, F'(B) + F'{(OPT\ B) = F(OPT), and hence for k > 3
F(G)2 (1~ 1/e)F(OPT) - .

5 Conclusions

We presented an efficient approximation algorithm for the budgeted maximization of nondecreasing submodular set
functions. We proved bounds on the absolute etror which are incurred if the marginal increases can only be computed
with an absolute error. We believe that our results are useful for the wide class of combinatorial optimization problems
concerned with maximizing submodular functions.
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