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Abstract 

Many set functions F in combinatorial optimization satisfy the diminishing returns property F{A U X) — F(A) > 
F(A' U X) — F(A') for A C A!. Such functions are called submodular. A result from Nemhauser etal. states that 
the problem of selecting ^-element subsets maximizing a nondecreasing submodular function can be approximated 
with a constant factor (1 — 1/e) performance guarantee. Khuller etal. showed that for the special submodular 
function involved in the MAX-COVER problem, this approximation result generalizes to a budgeted setting under 
linear nonnegative cost-functions. In this note, we extend this result to general submodular functions. Motivated by 
the problem of maximizing entropy in discrete graphical models, where the submodular objective cannot be evaluated 
exactly, we generalize our result to account for absolute errors. 
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1 Introduction 
Many set functions F in combinatorial optimization satisfy the diminishing returns property F(A U X) - F(A) > 
F(A' UX)-F(A') for Ac A', i.e. adding an element to a smaller set helps more than adding it to a larger set. Such 
functions are called submodular. The submodular function motivating our research is the joint entropy H(A) for a set 
of random variables A. The entropy of a distribution P : {x i , . . . , Xd} —• [0,1] is defined as 

H(P) = -y£P(xk)logP(xk), 
k 

measuring the number of bits required to encode {xi , . . . , Xd) [1]. If A is a set of discrete random variables A = 
{X\,..., Xn}, then their entropy #(.4) is defined as the entropy of their joint distribution. The conditional entropy 
H (A | B) for two subsets A, B C V is defined as 

H(A\B) = - ]T P ( a ,b ) logP(a | b ) , 
a€dom*4 
bedomB 

measuring the expected uncertainty about variables A after variables B are observed. 
Using the chain-rule of entropies [1], H(A UB) = H{A | B) + H(B)t we can compute H(A U X) - H(A) = 

#(X|*4). The information never hurts principle [1], H(X \ A) > H(X | A') for a l M C A!, proves submodularity 
of the entropy. In the discrete setting, H(X \ A) is also always non-negative, hence the entropy is nondecreasing. 

In practice, a commonly used algorithm for selecting a set of variables with maximum entropy is to greedily select 
the next variable to observe as the most uncertain variable given the ones observed thus far: 

Xk :=zrgmzxH(X | {Xu •. (LI) 
x 

which is again motivated by the chain-rule. 
It is no surprise that this problem has been tackled with heuristic approaches, since even the unit cost has been 

shown to be NP-hard for multivariate Gaussian distributions [3], and a related formulation has been shown to be 
NP p p -ha rd even for discrete distributions that can be represented by polytree graphical models [4]. 

Fortunately, a result from Nemhauser et.al. [5] states that the problem of selecting fc-element subsets maximizing a 
nondecreasing submodular function can be approximated with a constant factor (1—1/e) performance guarantee, using 
the greedy algorithm as mentioned above. Khuller etal. [2] showed that for the special submodular function involved 
in the MAX-COVER problem, this approximation result generalizes to a budgeted setting under linear nonnegative 
cost-functions. In this note, we extend this result to general submodular functions. 

Motivated by the problem of maximizing entropy in discrete graphical models, where the conditional entropies in 
(1.1) can in general not be evaluated both exactly and efficiently [4], we generalize our result to account for absolute 
errors. Our derivations in the following sections closely follows the analysis presented in [2]. 

2 Budgeted maximization of submodular functions 
Let V be a finite set, and F : V -* R be a set function with F(0) = 0. F is called submodular if F(A UX)- F(A) > 
F(A'uX)-F(A')foral\Ac VandX e V\A. F is called non-decreasing if F(AuX)-F(A) > OforalM C V 
and l € V \ A The quantities Fl(A\ X) := F(A U X) - F(A) are called marginal increases of F with respect to A 
and X. Furthermore define a cost function c : V —• R"1", associating a positive cost c(X) with each element X € V. 
We extend c linearly to sets: For A C V define 

c(A) = £ c(X). 
X€A 

For a budget B > 0, the budgeted maximization problem is to maximize 

OPT= argmax F(A) (2.1) 
AcV:c(A)<B 

Note that the exclusion of zero cost does not incur loss of generality because since the submodular functions are 
nondecreasing. We refer to c(^4) = |^4| as the unit-cost case. 
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3 A constant factor approximation 
In analogy to the unit-cost case discussed in [5], we analyze the greedy algorithm, where the greedy rule adds to set A 
the element X* such that 

m a x * ( g y ; * > . 
X€W\Si_i c(Xi) 

Khuller etal. [2] prove that the simple greedy algorithm with this greedy selection rule has unbounded approxi
mation ratio. They suggest a small modification, considering the best single element solution as alternative to the 
output of the naive greedy heuristic, which, as they prove, guarantees a constant factor approximation for the bud
geted MAX-fc-COVER problem. Their algorithm is stated here as Algorithm 1, and we extend their analysis to 
the case of general submodular functions. Motivated by the entropy maximization problem where we cannot effi
ciently evaluate the marginal increases F'(A\ X) exactly [4], we only assume that we can evaluate F'{A\ X) such 
that \P\A\ X) - F'{A\ X)\<e for some e > 0. 

Input: d> 0 , 5 >0,VVCV 
Output: SelectionAQW 
begin 

Ai :=argmax{F({X}) : X € W,c(X) < £ } ; 
A2 := 0; 
W := W; 
while W ^ 0 do 

foreach X € W do Ax := F'{A2\X); 
X* := argmax{A x/c(X) : X € W'}; 
ttc(A2) + c(X*) < B then A2 := A2 U X*\ 
W := W\Xm\ 

end 
return argmax F(A) 

Ae{AuA2} 
end 

Algorithm 1: Approximation algorithm for budgeted case. 

Let us consider the computation of the set A2 in Algorithm 1. Renumber V = {X\,..., Xn} and define Go = 0 
and Qi = {Xu..., Xi} such that 

F(0j) - F(gj-i) + e U Y) - F(Q) - e 

The sequence (Gj)j corresponds to the sequence of assignments to A2, and is motivated by the simple greedy rule, 
adding, for a prior selection </t-i, the element Xi such that 

X€W\a.-i c(Xi) 

Let / = max{i : c(Qi) < B) be the index corresponding to the iteration, where A2 is last augmented in Line 1, 
and let cmin = minx c{X). Hence A2 = Q\. Let L = c(OPT), and w = |OPT|. We first prove the following 
Theorem: 

Theorem 1 (adapted from [2]). Algorithm 1 achieves an 

approximation for (2.1), using (9(|W| 2) evaluations ofF'. 

To prove Theorem 1, we need two lemmas: 
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Lemma 2 (generalized from [2]). For i = 1 , . . . , / + 1, if holds that 

FiGi) - F(ft_i) > S^A{F{oPT) - F(ft_i)) - e ( l + ) 

P/tw/ Using monotonicity of F, we have 

F(OPT) - < ^ (OPT U ft.,) - F(ft_0 = F(OPT \ ft_x U ft-i) - F( f t - i ) 

Assume OPT \ ft_x = {11, • • • ,Ym}, and let for j = l , . . . , m 

= F(ft_! u {y x , . . . , Yj}) - F(ft_! u {y x , . . . , r.-i}). 

Then F(OPT) - F(ft_,) < £™ = 1 ^i-
Now notice that 

Zj-e F ( f t . t U Yj) - F(f t -Q - e F(ft) - F ( f t .Q + e 
c(YJ) " cfty " ciXi) 

using submodularity in the first and the greedy rule in the second inequality. Since Y^JLi c(Yj) <Lh holds that 

F{OPT) - F(ft_,) = f ) Z, < L

F<M-f + < + me 
j=i cyAi> 

Lemma 3 (adapted from [2]). Fori = l,...,l + lit holds that 

F(ft) > e. 

Proof. Let * = 1 for sake of induction. We need to prove that F(f t ) > S ^ F ( O P T ) - (-fa + w) e. This follows 
from Lemma 2 and since 

c(Xi) L 

Now let i > 1. We have 

F(ft) = F(C_ 1) + [F(f t)--F(f t- i )] 

> F(ft_0 + ^ [ F ( O P T ) - F(ft_ x)] - e ( l + ^ g ^ ) 

- ( l _ £<*>) F(f t_ x ) + C-^F(OPT) - e ( l + ^ ) 

- ( i - n ( i - ^ ) ) ^ « , - ( ^ + . ) . 

using Lemma 2 in the first and the induction hypothesis in the second inequality. • 

From now on let (3 = —^—h w. 
cmin 
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Proof of Theorem 1. Observe that for ax,..., an G R+ such that £ <*>% = A, the function (1 - n?=i C1 - A )) achieves 
its minimum at a\ = • • = an = —. 

We have 

F(Gi+1) > F(OPT) - fie 

F(OPT) - 0e 

• f f ( -^) 
fe=l V ' 

where the first inequality follows from Lemma 3 and the second inequality follows from the fact that c{Gi+\) > L, 
since it violates the budget. 

Furthermore note, that the violating increase F(Gi+i)-F(Gi) is bounded by F(X*) for X* = a rgmax X € V V F(X), 
i.e. the second candidate solution considered by the modified greedy algorithm. Hence 

F(Gi) + F(X*) > F(Gl+1) > (1 - l/e)F(OPT) - 0e 

and at least one of the values F(X*) or F(Gi) must be greater than or equal to ±((1 - l/e)F{OPT) - fie). • 

4 An improved approximation guarantee 
To achieve the same performance guarantee of (1 - 1/e) which can be achieved for the unit-cost in the case of general 
submodular functions [5], Khuller et.al.[2] propose a partial enumeration heuristic which enumerates all subsets of 
up to d elements for some constant d > 0, and complements these subsets using the modified greedy algorithm 
Algorithm 1. They prove that this algorithm guarantees a (1 - 1/e) approximation for the budgeted MAX-fc-COVER 
)roblem. The algorithm is stated below for general nondecreasing submodular functions:  

Input: d > 0 , B > 0 , W C V 
Output: SelectionACW 
begin 

Ai:= argmax{F(>t) :AQW,\W\<d,c(W)<B}A2:=Q; 
foreach G c W, \G\ = d, c(G) < B do 

W : = W \ 0 ; 
w h i l e W ^ 0 d o 

foreach X e W do Ax := P(Q\ X)\ 
X* := argmax{A x/c(X) : X e W'}; 
if c(£) + c{X*) < B then G := G U X*; 
W:=W\X*\ 

end 
if F(0) > F(A2) then <A2 := 5 

end 
return argmax F(A) 

end 
Algorithm 2: Approximation algorithm for budgeted case. 

Theorem 4 (adapted from [2]). Algorithm 2 achieves an approximation guarantee of 

(1 - l/e)F(OPT) - (— +w)e 

for (2.1) if sets at least up to cardinality d = 3are enumerated, using 0{\W|d+2) evaluations of F'. 
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Since we do not know L and w in general, the following corollary provides an explicitly computable bound on the 
absolute error: 

Corollary 5. Algorithm 2 achieves an approximation guarantee of 

(1 - l/e)F(OPT) - — e 

for (2.1) if sets at least up to cardinality d = 3are enumerated. 

Proof of Theorem 4. Assume that \OPT\ > k, otherwise the algorithm finds the exact optimum. Renumber OPT = 
{Yi,.. . ,Y m}such that 

y < + 1 = a r g m a x F ^ x , . . .,YitY}) - F({YU...,«}), 
YeOPT 

and let B = {Yi,. . . , Y*}. Consider the iteration where the algorithm considers B. Define the function 

F'(A) = F(AuB)-F(B). 

F' is a nondecreasing submodular set function with F'(0) = 0, hence we can apply the modified greedy algorithm 
to it. Let A = {Vi, . . . , Vj} be the result of the algorithm, where Vi are chosen in sequence, let V/+i be the first 
element from OPT \ B which could not be added due to budget constraints, and let Q = A U B. Per definition, 
F(G) = F'{A) + F(B). Let A = F'{A U Vi+i) - F'(A). Using Lemma 3, we find that 

F*(A) 4-A > (1 — l/e)F'{OPT \ B) - (3e. 

Furthermore observe, since the elements in OPT are ordered, that F({Y\,..., Yi}) - F({Yi, . . . , Yi-i}) > A for 
1 < i < k. Hence F(B) > kA. Now we get 

F(g) = F(B) + F'(A) 
> F(B) 4- (1 - l/e)Ff(OPT \ B) - A - pe 

> F(B) + (1 - l/e)Ff(OPT \ B) - W- - (3e 

> (1 - \/k)F{B) + (1 - l/e)F\OPT\B)-pe 

But by definition, F(B) + F'(OPT \B) = F(OPT), and hence for k > 3 

F(£) > (1 - l/e)F(OPT) - Pe. 

5 Conclusions 

We presented an efficient approximation algorithm for the budgeted maximization of nondecreasing submodular set 
functions. We proved bounds on the absolute error which are incurred if the marginal increases can only be computed 
with an absolute error. We believe that our results are useful for the wide class of combinatorial optimization problems 
concerned with maximizing submodular functions. 
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