
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

An Intelligent Modelling Interface
for Design Optimization

by

Regis J. Amarger, Larry T. Biegler, Ignacio E. Grossmann

EDRC 06-95-90

AN INTELLIGENT MODELLING INTERFACE
FOR DESIGN OPTIMIZATION

by

Regis J. Amarger
Ignacio E. Grossmann

Lorenz T. Biegler

Engineering Design Research Center
and Department of Chemical Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

November 1990

University Libraries
Carnegie MGHOK University
Pittsburgh PA 15213-3890

ABSTRACT :

Optimization of engineering problems relies on the use of modern softwares for solving algebraic

models, including NLP, MILP and MINLP models. Although a number of powerful optimization packages are

currently available, it is still far from being trivial for general design engineers to properly formulate optimization

models. Since a qualitative knowledge base by experts in optimization does exist for modelling, the objective

of our work is to develop an interface written in LISP to encode this knowledge to reformulate the model so as

to increase the robustness and the efficiency of algorithms for nonlinear and integer problems. In this work,

models specified in GAMS input files are automatically preprocessed by the interface which generates a new

well-formulated model. Capabilities include constraint reformulation to induce linearity and convexity,

tightening of bounds, scaling as well as fixing 0-1 variables a priori. Computational results are presented to

illustrate how the proposed interface can reformulate poor models to increase both the robustness and the

efficiency of the optimization methods.

INTRODUCTION :

Mathematical programming techniques are increasingly being used for design optimization. The

extensive research conducted over the past forty years has led to the development of algorithms that are

capable of solving progressively larger and more difficult problems. This task has been facilitated by the

increased power and speed of computers.

Most of the research in mathematical programming has been devoted to linear programming (LP),

largely for two reasons. Firstly, linear models arise frequently in problems of manufacturing, banking,

management, and other decision making domains. Secondly, they constitute the class of mathematical

programming problems which is simplest to solve. The different implementations of the simplex algorithm and

the new interior point methods are quite efficient and the packages available on the market are robust.

More recently, research has focused on methods for solving mixed integer linear programming (MILP)

and nonlinear programming (NLP) problems. Algorithms developed for the solution of MILP models are

usually based on branch-and-bound procedures. Robustness of these methods is good in general but

efficiency may vary. New techniques are still under development, in particular cutting planes techniques. NLP

methods such as reduced gradient [Wolfe 1962] (e.g. MINOS) and SQP [9] [20] have made good progress

but their robustness and efficiency are not always satisfactory.

One of the most challenging research areas in mathematical programming today is mixed integer

nonlinear programming (MINLP). Software packages such as GAMS/DICOPT++ are already emerging but

reliability and efficiency are still important limitations.

From the above discussion one can draw the general conclusion that nonlinear and integer

mathematical programming techniques still lack the degree of robustness and efficiency that has been

achieved for linear programming. Although algorithmic improvements can be expected in the future to

circumvent some of these problems, another equally important aspect to be considered is problem

formulation. Currently, many of the failures experienced by design engineers with nonlinear and integer

optimization techniques can be attributed to the fact that engineers are often not experts in mathematical

programming and that the methods are still quite sensitive to the form of the model. Therefore the motivation

of this work was to develop a tool that can help engineers to automatically reformulate "well-behaved"

optimization models by making use of common rules and heuristics that are used by experts in mathematical

programming in order to increase the efficiency and robustness of a method.

IMPACT OF FORMULATION :

The manner in which NLP, MILP and MINLP problems are formulated can have a great impact on the

robustness and performance of the algorithm used for solving. Model designers know that in practice it is

likely that they will need to modify the formulation of their model several times before successfully solving it. In

this they are aided by various rules used by experts in optimization which constitute a qualitative knowledge

base for the formulation of mathematical programming problems.

The scope of our work is therefore to analyze what rules and heuristics should be applied to obtain

"good** models and then to develop an interface that will automatically preprocess a given design optimization

model and reformulate it according to these rules. We define a HgoodH model as one where the formulation of

the equations increases the robustness of the algorithm and possibly the efficiency of finding the solution.

The optimization platform used in our work is GAMS (General Algebraic Modeling System) [3] which is in

fact a language that can interact with different solvers. The solvers that can be interfaced with GAMS include

ZOOM, SCICONIC and MPSX for LP and MILP; MINOS and SQP for NLP; and DICOPT++ [12] [23] for MINLP.

GAMS is one of the most advanced commercial packages for NLP/MILP/MINLP models in equation form.

Our interface is a front-end that parses a model specified in a GAMS input file, processes it and returns a

new improved input file for GAMS with the reformulated model. The interface is written in COMMON LISP

which allows symbolic manipulation of the equations and data.

Typically, the solution of a mathematical programming model consists of minimizing or maximizing an

objective function

z:=cTy+f(x) (1)

subject to a set of constraints of the general form

Ay + h(x) = 0

By+g(x)<0 (2)

Cy + Dx £ 0

where x are continuous variables and y are binary variables

X€X={xeFT:xL<x<xu} (3)

As will be explained in this paper, many of the heuristics for the transformation or reformulation of a

model may not necessarily improve the robustness and efficiency of a model. The interface must be

- 1 -

sufficiently flexible to accomodate different decisions, possibly allowing for user intervention rather than

following a strict step-by-step procedure. The interface interacts with the model designer to decide which

transformations should be attempted for a particular model. Of course, a default procedure exists that will

apply the standard formulation enhancement rules to the model.

The interface can be viewed as a tool to apply selected encoded transformation rules. It allows the user

to generate different formulations of the same optimization model.

The next section will describe how to reformulate constraints so as to enhance the formulation. It will be

followed by a section explaining a method for reducing the domain of search based on tightening of the

bounds. The next section describes what can be done with mixed-integer or pure integer constraints. Finally,

the last section presents selected computational results using the interface to perform various model

transformations.

CONSTRAINT FORMULATION :

Most of the problems associated with poor constraint formulation can usually be avoided by following

the rules stated below :

- avoid potentially undefined functions

- reduce the degree of non-linearity

- try to convexity the model

* avoid poor scaling of variables and equations

These simple rules are well known by expert designers. The novel aspect in our work is to implement

them within an interface which can identify badly formulated equations and rewrite them in a more desirable

form, using a fully symbolic and automated procedure.

A detailed discussion of the above rules is presented in the ensuing subsections. In particular, we

show why they are necessary and how they are to be implemented.

Avoiding potentially undefined functions :

A problem frequently encountered by designers, e.g. when they run an optimization model for the first

time, occurs when the algorithm attempts a function evaluation at a point where the function is not defined.

This immediately causes a numerical error and the algorithm fails to converge.

The most common undefined mathematical functions in engineering design problems are :

- divisions by zero

-2 -

- logarithms of non positive expressions

For the treatment of logarithms one can specify bounds on the variables so that the function is always

defined. For example if the expression log(x) is used, x is restricted to being strictly positive. The difficulty

with this approach however, is that it is not always clear how to specify the lower bounds. For example, if the

function is given by log (x-y), x-y needs to be positive but this will depend on the individual range of values for

x and y. To avoid this difficulty, our interface uses an alternative approach ; the log terms are removed by

applying exponential functions.

To circumvent the problem of divisions by zero our interface automatically multiplies each equation by

the denominator(s) of the division(s). Using slack variables may be necessary in case the sign of the

expression multiplying the inequality for reformulation is not fixed a priori by the domain of the variables. The

use of slack variables is, however, usually not advised since it increases the degree of complexity of the

model.

The following example illustrates the method :

Given log (x / (y-z)) < d, this inequality is transformed into x - (y-z) * exp (d) £ 0.

In this way the constraint is defined for any value of x, y and z, and is linear when d is constant.

There are of course a number of other potentially undefined functions. For instance, consider the

Logarithmic Mean Temperature Differences (LMTDs) used in chemical engineering problems for heat

exchangers:

LMTD = (ATi - AT2) / log (ATVAT2)

It is to be noted that in the case where AT1 - AT2 this expression leads to an undefined value for the

LMTD. When this happens a more suitable approximation should be used. Two alternatives are :

Chen's approximation : LMTD «[(AT1) (AT2) (AT1 + AT2) / 2 J3

Patterson's approximation : LMTD - -i * [AT1 + AT2] + £ # [AT1 * AT2]os

which are well defined for non-negative values of AT«| and AT2.

Reducing the degree of nonlinearity :

It is well-known in nonlinear programming that problems are far easier to solve if the constraints are

mostly linear Consequently it is clear that reducing the nonlinearities in the constraints is a way to improve the

efficiency and possibly also the robustness of the algorithm.

-3-

Being able to symbolically linearize the constraints is not always possible, but it can be done in a few

cases. A very common case is when a bound over a ratio is specified in the following manner:

f(X) / g(X) £ a where a is a numerical constant, X is a vector,

and f and g are continuous functions.

The equivalent expression f(X) - a * g(X) £ 0 is clearly preferable, especially when f(X) and g(X) are linear

functions.

When monomial expressions containing ratios are systematically multiplied by the denominators, and

when monomial logarithms are removed from expressions by taking the exponential, these expressions are

transformed into a linear form. Therefore this simple algebraic device is included in our interface.

An additional technique has been implemented as part of our interface in an attempt to reduce the

degree of nonlinearity of the model. It is very frequent in engineering design optimization models that several

constraints contain the same nonlinear term that often expresses a variable as a function or a correlation of

some other variables. Replacing such a term by a new variable can hence reduce the overall degree of

nonlinearity of the model.

In our preprocessing strategy the equations are first scanned to identify the nonlinear terms. An

automatic substitution is then performed on some of these terms when this replacement can reduce the

number of nonlinear terms in the model by more than one half. One half is arbitrarily selected as a criterion for

improvement. In the procedure, all the nonlinear terms are considered ; if the number of globally different

terms is more than half the total, new variables are introduced. The limitation of our implementation is that it

does not try to partially match the expressions ; for instance, it fails to recognize that the expressions x * (x2 -

3xy) and y * (x2 - 3xy) contain similar terms.

Convexlfylng models :

The convergence of a nonlinear optimization algorithm to the global optimum can only be guaranteed if

the model is convex, i.e. when the objective function and all the constraints of the model are convex.

Furthermore, convex constraints avoids the problem of infeasible or inconsistent linearizations.

In engineering design geometric programming problems that consist of posynomial expressions are

quite common. This well-known class of problems can be convexified with exponential transformations. For

example, the inequality

y

can be convexified in terms of the new variables X, Y and Z, using the transformations x = exp (X), y = exp (Y)

and z « exp (Z). This leads to the convex inequality

exp(0.6X-Y) + exp(-Z)<a

-4-

The proposed interface can automatically perform this reformulation and it also recognizes the inherent

linearity of monomials, that is

x y / z < a

is transformed as

X + Y-Z<bg(a)

It should be noted that in the GAMS input file the original variables are reported to the user only through

the display command after the solution of the NLP has been obtained.

In general, transforming constraints by systematically using exponential functions instead of logarithmic

functions has another advantage besides helping to avoid potential numerical errors as described earlier. It

can also help to convexify the constraint, completely or only partially if other non-convex functions are

present.

As an example consider the inequality,

log(x-b)<a which is not convex

but (x - b) < exp (a) is convex.

Similarly, log (x - a) + log (y - b) < c

is not convex but can be advantageously replaced by the set of constraints

X + Y<c

(x-a) = exp(X)

(y-b) = exp(Y)

which are convex if the last two inequalities relax as

(x - a) > exp (X)

(y-b)>exp(Y)

Using well scaled expressions :

Although it is well-known that scaling has a great impact on the robustness and efficiency of an

algorithm, no ideal a priori scaling strategy exists. Most mathematical programming codes have an internal

scaling procedure, usually based on the values of the gradient coefficients.

An expresston is considered to be well scaled when all its elements are neither too big nor too small. As

a heuristic, one can consider an expression as being reasonably scaled when lying between 0.01 and 100.

Too big or too small expressions or coefficients lead to ill-conditioning in the jacobian and hessian matrices,

and thus to poor step predictions.

In the interface we have implemented the following procedure that attempts to rescale both the

-5-

variables and the constraints. We do not claim our scaling strategy is ideal but it seems to be reasonably

acceptable and to work well. The procedure can be described by the following rules :

- scaling of the variables :

If a variable has an upper bound greater than 100, it will be rescaled using a new proportional

variable whose upper bound will be 100. In a similar manner a variable with a lower bound lower

than .01 will be rescaled such that the lower bound of the new variable is .01.

• scaling of the equations :

A "mean" value of the left hand side of each constraint is evaluated corresponding to a "mean"

value of the vector of variables. When this mean value of the left hand side is too big (arbitrarily

over 100) or too small (arbitrarily under .01) the equation is then multiplied by a scaling factor

such that the new mean value of the left hand side lies between .01 and 100.

The main problem of this method is to determine a good "mean** value of a variable. Here, a "mean"

value is defined by :

- if a variable has both a lower and an upper bound, take the mean value of the bounds

- if the variable has only a lower bound take 1.5 times its lower bound as a mean value

- if the variable has only an upper bound take .66 times its upper bound as a mean value

- if the variable has no bounds take 1 as a mean value

When rescaling the equation by a certain factor it is important to apply this factor as deep in the

expression tree as possible and not to just globally multiply the member by this factor. The reason is that

applying the factor to the coefficients of the variables induces numerical simplifications and scale changes in

the intermediate function and derivative calculations, while global multiplication does not.

For example, 200*x + 400*y < 500 with x *100 and y *100

should be rescaled as 0.5*x + y < 1.25 rather than (200*x + 400*y) / 400 < 1.25

TIGHTENING OF THE BOUNDS :

An effective way to reduce the domain of search in optimization problems is to tighten the upper and

tower bounds of the variables. The impact of such a space reduction is most significant when dealing with

large nonlinear and mixed-integer nonlinear models. To achieve this space reduction as part of our interface,

we have implemented an algorithm based on the monotonicity of the constraints. The basic idea is as follows :

For all the constraints, we select the subset of constraints which are monotonic in the variables (i.e.

partial derivatives along the coordinate directions are one signed). We then determine for the variables of

such constraints the "worst" value, given that the other one signed variables are placed at one of their

bounds. The "worst" computed values are then updated as bounds and this information is incorporated in the

analysis of the subsequent equations. A recursive cycle of iterations is performed until the change in the

-6-

bounds is small or zero.

This section describes a procedure to obtain tight bounds. Further, details of some of the steps (e.g.

how to analyze the monotonicity of an equation, and how to determine the critical bounds) are presented in

Appendix A. It is to be noted that the procedure described in this section is not related to the one developed

by Papalambros [18] which uses the monotonicity of the constraints to relax the equalities and eliminate the

inactive inequalities.

General procedure :

The procedure for tightening the bounds can be discribed in three major steps : definition and

construction of lists, recursive algorithm for bounds tightening and the updating of the bounds.

Step 0 : Definition of lists

Define the following lists or sets for the equations and variables :

. list_all_var

- contains all the variables in the model.

. list_eqn

- contains the monotonic equations : eqn_1, eqn_2,... eqn_k,... eqn_n.

. varjn_eqn_k

- n sublists that contain the variables appearing in each eqn_k.

. listjnonotonicity

- contains n sublists monotonicity_in_eqn_k.

. monotonicity_in_eqn_k

- contains type of monotonicity (+/-) for each variable in eqn_k.

. criticaljx>undsjor_eqn_k

- contains critical bound type (up/lo) for each variable in eqn_k. For a < (>) inequality,

a critical bound for a variable is defined as the variable bound for which the left hand side

of the inequality is minimized (maximized). Assigning all but one of the variables to their

aitical bound values will allow a monotonic inequality to determine the critical bound value

for the remaining variable. See part 2 of Appendix A, for bound value determination.

-7 -

. list_upperjbounds

- contains values for variable upper bounds.

. listjower_bounds

- contains values for variable lower bounds.

. updated_LO

- contains variables for which lower bounds were specified at the end of the last cycle.

Initialized to list_alLvar.

. updatedJJP

- contains variables for which upper bounds were specified at the end of the last cycle

Initialized to list_alLvar.

. updated_lo

- contains variables for which lower bonds are specified (at the current cycle).

Initialized to NIL.

updaled_up

contains varaibles for which upper bonds are specified (at the current Cycle).

Initialized to NIL.

Step 1 : Construction of lists

Using the method described in part 1 of Appendix A, process the constraints and obtain the following

information:

- construct list_eqn by identifying all the monotonic constraints.

(Note that all equalities have been substitued by two inequalities)

Discard the remaining constraints and the objective function.

- construct the lists varjn_eqn_k and monotonfcity_in_eqn_k.

Initialize list_upperjx>unds and listjowerjx>unds with specified bound values.

- determine critical bounds for each variable in each eqn_k

and construct the list criticaljx>undsjor_eqn_k.

- 8 -

- initialize updatedJJP, updated_LO, updated_up and updatedjo as described above.

Step 2 : Tightening of the bounds

for eqn_k,

- determine N, the number of unspecified critical bounds for that equation.

-ifN<2.then

if at least one element of criticaLbounds_for_eqn_k appears in updatedJ.0

or updatedJJP, derive new critical bounds for all variables in varjn_eqn_k,

as described in part 3 of Appendix A.

if the new lower (upper) bounds are significantly better than the current values,

replace values in listjower_bounds (list_upper_bounds)

and enter the corresponding variables in updatedjo (updated_up).

- proceed to next eqn_k

Step 3 : Updating and termination

If updatedjo or updated_up are not empty, then set updatedJ.0 to updatedjo and updatedJJP to

updated_up. Go to step 2.

Else, no further bound updating is possible. Report values in list_upper_bounds and

listjower_bounds as new upper and lower variables bounds.

Furthermore using these tighter values of the bounds it is possible to derive a starting point inside the

domain limited by these bounds. For inequality constrained problems, the searchspace limited by these

problems is smaller, a starting point chosen inside these bounds is more likely to yield a feasible point that one

chosen with the initial bounds. The interface will automatically generate a starting point by taking as an initial

value of the variables the mean value of the bounds ; in case not both upper and lower bounds are available

for a variable the rules presented in section B.4 for constraint scaling are used for evaluating a mean value.

- 9 -

Having a starting point located nearby the center of the search domain is not always a good choice as far as

efficiency is concerned but again it is more likely to be inside the feasible region.

We note that when no bounds are specified for a given variable, the interface arbitrarily uses 0 and

50000 as the default lower and upper bounds for the variables respectively.

Example :

Model:

eqn_1:

eqn_2:

eqn_3:

eqn_4:

eqn_5 :

eqn_6:

y - 2 x - 3 £ 0

x 2 -4y+ i£0

4-xy<0

1.5x + y - 1 0 < 0

x2-6x + y<0

profit = y

where x and y are positive continuous variables

step 1a:

eqn_5 is not monotonic ; it is hence discarded when applying the algorithm.

eqn_6 represents the objective function to be maximized ; it is also discarded.

BsLaljvar: (X y)

varjn_eqn_1 : (x y)

varjn_eqn_2: (x y)

var_in_eqn_3: (x y)

varJn_eqn_4: (x y)

nx>notonicityjn_eqn_1 : (- +)

ironotonicityjn_eqn_2 : (+ -)

monotonicity_in_eqn_3 : (- -)

monotonicityjn_eqn_4 : (+ +)

step-1b:

listjower_bounds : (0 0)

list_upper_bounds : (nil nil)

-10 -

step 1c:

critical_boundsjor_eqnj : (up lo)

criticaLboundsJor_eqn_2 : (lo up)

critical_boundsJor_eqnJ3: (up up)

crtfcal_boundsjor_eqn_4: (lo lo)

step 2a:

updated_LO: (x y)

updatedJJP: (x y)

updated J o : nil

updated_up: nil

step 2b:

loop 1 :

eqn_1 : N = 1 (N is the number of unspecified critical bounds. See Appendix A)

x.up? solve 0 - 2 x - 3 < 0 -> x>-3 which is not interesting

eqn_2 : N = 1

y.up ? solve 02 - 4y +1 < 0 -> y > .25

y.lo = .25

updated_up = nil

updated Jo = (y)

eqn__3 : N = 2, Too many unspecified critical bounds. Nothing further can be determined.

eqn_4 : N = 0

if x.up? solve .25 + 1.5x-10<0 -> x<6.5

if y.up? solve y + 0-10<0 ~> y<10

x.up = 6.5

y.up = 10

updated_up = (x y)

updatedjo = (y)

end of loop 1 :

0 < x < 6.5

.25<y<10

updatedJJP = (x y)

- 1 1 -

updatedJ-0 = (y)

loop 2:
eqnjl : N = 0

if x.up? solve . 2 5 - 2 x - 3 < 0 ~> x>-1.375 which is not interesting
if y.b? solve y -2*6 .5 -3£0 ~> y<16 which is not as good as 10

eqn_2: N * 0
if x.lo ? ~> x < V 39 = 6.25 which is better than 6.5
if y.up? ->

eqn_3 : N = 0
if x.up? -> x^.4 which is better than 0
if y.up? -> y£ 4/6.25 = .64 which is better than .25

eqn_4 : N » 0
if x.to? solve .64 + 1.5x<10 -> x<6.24
if y.lo? solve y + 1.5\4<10 -> y<9.4

end of loop 2 :
.40 < x £ 6.24
.64 < y ^ 9.40
updatedJJP = (x y)
updated_LO « (x y)

loop 3 :
eqnjl : N « 0

if x.up? -> x ^ - _ which is not interesting
if y.lo? -> y^ 15.48 which is not as good as 9.4

eqn_2 : N « 0
if x.lo ? -> x < 6.05 better than 6.24
if y.up? --> y £ .29 not as good as .64

eqn_3 : N = 0
if x.up? --> x>.42 better than .40

- 1 2 -

if y.up? ~> y > . 66 better than .64

eqn_4: N :0

if x.lo? -->

if y.lo? -->

x < 6.23 not as good as 6.05

y< 9.37 better than 9.40

end of loop 3 :

.42 < x < 6.05

.66 < y < 9.37

updatedJJP = (x y)

updated_LO = (x y)

loop 4 :

the same procedure could be applied one more time without giving better values (with a .01 precision) of

the bounds.

step 3 :

The final bounds are then given by

x.lo = 0.42

y.lo = 0.66

x.up = 6.04

y.up = 9.37

This simple example with two variables shows how the domain can be narrowed at each loop. Table 1

shows the progress of the bonds at each loop.

x.lo
x.up
y.lo
y.up

initial
0
oo

0

loop 1
0

6.5
0.25
10

loop 2

0.40
6.24
0.64
9.40

loop 3
0.42
6.05
0.66
9.37

loop 4

0.42
6.04
0.66
9.37

Table 1: Values of the bounds after each loop

Figure 1 shows in the two-dimensional space how the bounds that we have obtained for the example

reduce the domain of search (rectangle). The initial search space was the entire positive quadran since

neither x nor y had upper bounds. The actual feasible region is the nonshaded area. The constraints are

represented by the lines with the corresponding indices.

-13-

(2)

constraints
— — bounds

Figure 1: plan representation of the model

Note that in this example our proposed method did not find the absolute smallest search space.

However, finding a smaller search space would require the solution of several nonlinear programs. It is also

interesting to note that when solving this problem with GAMS/MINOS and without specifying any bounds it

takes 23 iterations to obtain the optimum with profit = 7. Solving the same model with the four bounds

obtained above requires only 16 iterations.

Efficiency of the bounds tightening procedure :

It is to be stressed that using tighter bounds is a way to improve the robustness of the model but not

necessarily the efficiency of the solving procedure. Smaller domains of search implies better robustness

because the NLP algorithms used are always a variation of the Newton method [15] which is valid only nearby

the optimum.

-14-

In fact after having tested numerous test problems we can draw the following conclusions :

- for linear models and mixed-integer linear models it is generally not an advantage to tighten the

bounds (unless binary variables can thus be eliminated). Introducing tighter bounds on the variables is like

adding new constraints to the problem. Therefore the number of vertices in the feasible region increases and

hence the number of pivots required by the simplex method increases as well. Furthermore, notice that with

our procedure for tightening the bounds, any new bound corresponds to the intersection of two constraints

and we see that a bound applied directly at a vertex point is not only unnecessary but leads to degeneracies

when solving the LP. - Here, simplex methods have difficulty in determining unique active sets and shadow

prices at these points.

- On the other hand, for nonlinear models and mixed-integer nonlinear models, having tight

bounds presents a great advantage as far as the robustness is concerned. When reducing the search domain

by tightening the bounds the NLP algorithm can indeed find more easily a feasible starting point and it

generally requires less steps to converge.

- for mixed-integer linear models and mixed-integer nonlinear models, bound tightening

preprocessing can be advantageous if the algorithm is able to fix some of the binary variables. Here, the

number of nodes in the trees used for the branch-and-bound procedure of the IP algorithm is exponentially

increasing with the number of free binary variables. As will be explained later in this paper having an upper

bound on the continuous variable of a mixed-integer constraint can allow reduction of the coefficient value of

that constraint Therefore a better approximation of the corresponding binary variable when solving the relaxed

problem can be found. This leads to better choices for the parent node of the tree used in the

branch-and-bound procedure of the IP algorithm.

MODELS WITH BINARY VARIABLES :

Mixed-integer linear and nonlinear programming problems have the feature that it is often possible to

develop markedly different formulations for the same problem, which in turn may mean the difference

between making the problem solvable or not.

Some rules exists to obtain well formulated mixed-integer and pure integer constraints [10], [11], [19].

The next section presents these rules and describe how they can be implemented in our interface. It also

presents the application of the bound tightening procedure for 0-1 variables, possibly fixing some of them.

Mixed-lnteaer and pure integer constraints :

When dealing with some pure integer constraints it is desirable to make ad hoc improvements to

formulation of the model applying the few rules developed below. These rules tend to eliminate inactive

-15 -

constraints, to rewrite other equations in a simple and logical linear form and to reduce the coefficients used in

the equations. It has to be noted at this point that unlike the LP problems the addition of new constraints to a

MILP or a MINLP problem will in general reduce the computational effort, especially when the new constraints

are purely integer variables.

In the case of a type one special ordered set, if we have the constraint

2 > E 0)

where N+ and N- are two disjoint sets of indices and where all the a. and a k are strictly positive constants, then

the following preprocessing operations can be performed [16] (they are not yet implemented in our interface)

if - £ a< > ao then (1) is infeasible : error in modelling

I £ 3 < ao then (1) is inactive and can be removed from the model

if 3 > ao+X * t h e n M c a n be * i x e d t0 ° a n d dropped from the model
ft

if - an > ao+£ 3 then yk can be fixed to 1 and dropped from the model

Another treatment can be performed over the pure integer constraints known as the coefficient subset

reduction which replaces the equation X a^ <, aQ with an equivalent equation X a'jX; £ aQ where the a'j s are

smaller than the initial a; s. These coefficient reductions are more important than it may seem since they

provide with a tighter constraint when solving the LP or NLP subproblems. Despite the interest that this

method presents, it has not been incorporated in our preprocessing package.

A particular treatment can applied to the mixed-integer equations of the form

x - A * y < 0 where x is a continuous variable, y is a binary variable and A is an upper bound.

One should try to chose A as small as possible, but still maintaining it as a valid upper bound for x. The

procedure in the interlace is implemented as follows. After we attempt to tighten the bounds, the equation of

the type mentioned above are selected and rewritten of the form x - A1 * y £ 0 where At is the new upper

bound of x, if it exists.

The procedure has also been extended to the case where x is not a variable but a linear combination of

continuous variables. For example x1 - x2 - A * y < 0 is replaced by x1 - x2 - (min[A, x1 .up - x2.lo]) * y < 0.

Preprocessing of the binary variables :

As for the possible fixing of 0-1 variables, this is done when the interface tries to tighten the bounds as

-16-

it includes the binary variables to the set of continuous variables having 0 and 1 as lower and upper bounds

respectively. If the new bounds are tighter than 0 and 1, the value of the corresponding binary variable can be

fixed. For instance, if the bound tightening procedure gives y1.lo=0.2 and y2.up=0.9 then y1 can be fixed to

1 and y2 to 0. This method can therefore reduce the number of 0-1 variables and thus reduce the branch and

bounds enumeration effort.

COMPUTATIONAL EXPERIMENTS :

Our interface is still under development. In particular it does not yet handle indexed equations in GAMS,

which makes it difficult to test it on large models. However, its application to small test problems has produced

some interesting results as will be shown below.

In this section three types of examples will be presented : one illustrating the constraint reformulation

and scaling procedure, one presenting the exponential transformation of a geometric model, one concerning

bounds tightening and binary fixing for MILP models, one showing bounds tightening on MINLP models.

Alkylatlon problem :

This problem was first presented by Bracken and McCormick (1968). The design optimization of an

alkylation unit can be modelled as follows :

profit = 0.063x4x7 - 5.04x1 - 0.035x2 - 10x3 - 3.36x5

x4 = x, * (1.12 + 0.13167x8 - 0.00667x8
2)

x7 = 86.35 + 1.098x8 - 0.038xe
2 + 0.325 * (x6 - 89)

x f l = 35.82 - 0.222x10

x10 « 3x7 - 133

xe • (x2 + x5) / x, (#)

x5 * 1.22x4 - x,

x6 « 98000x3 / (x4x9 + 1000x3) (*)

where x1 ,x2 ,... x10 are continuous variables and profit is the variable to be maximized.

-17-

According to physical considerations the variables bounds are as follows

Lowe
x,
x2

x3

x4

x5

x6

x7

x8

x9 .

X 1 0 '•

r bounds
: 0

:0
: 0
0

.0

85
90

3
1.2

145

Upper bounds
x,
x2

x3

x4

x5

x6

x7

x8

x9

x10

: 2000

: 16000
: 120

: 5000
: -

. 93
: 95

. 12
• 4

162

This problem has its global optimum at the point:

Solution point

x,
x2

x3

x4

x5

x6

x7

x8

x»
x 1 0

2000
16000
118.15

3532.8

2310.0

89.6
93.4

9.15
3.131

147.25

1) When trying to solve the model (M) in its original formulation presented above a numerical failure of

the GAMS/MINOS solver is experienced.

2) If the model (M) is preprocessed through our interface for an attempt to reformulate the constraints,

then the two constraints that have been marked when presenting the initial model are automatically

reformulated as follows:

x, * x, - x2 + x5 (##)
x6 * (x4x, + 1000x3) = 98000x3 (")

When trying to solve the new model (M') that includes the constraints (##) and (**) instead of the
constraints (#) and (*) the solution is reached after 389 iterations. The reformulation done during the
preprocessing has hence permitted the model that could not be solved initially, to be solved.

-18-

3) Furthermore if the user attempts also to improve the scaling of the model when doing the

preprocessing, several variables and constraints are then rescaled. When trying to solve the new model, the

solution is obtained after only 46 iterations. Our scaling procedure appears to be very efficient with this

example.

This example illustrate that our preprocessing interface can greatly improve the robustness of NLP

algorithms. It can also increase the efficiency of the algorithm by reducing the number of necessary iterations.

However, one should note that as far as the global CPU time is concerned the time saved when solving a

model may not in general be important enough to balance the time required by the preprocessing procedure.

Fleet problem :

This problem has been presented by P.Y.Papalambros [18]. In its initial formulation it can not be solved

by GAMS/MINOS and GAMS/SQP. When preprocessed through the interface, the model is found to be

geometric and a transformed model using the exponential transformation is obtained that can easily be solved

by GAMS/MINOS and GAMS/SQP. The GAMS input files of both the initial and the reformulated models are

presented in Appendix C.

MILP problems :

A few small to medium sized mixed-integer linear problems have been tested with our interface. The

results obtained with four selected models are summarized in Table 2.

In the top section of Table 2 the size of the models are listed. The next section of the table shows how

many bounds (either upper bounds or lower bounds) were specified for the continuous variables initially and

after having applied the tightening procedure. The last row of that section shows how many of the binary

variables can be fixed from the results obtained when doing the tightening procedure. The two sections at

the bottom of the table present the computational results obtained using GAMS/ZOOM. It shows first how

many nodes have been evaluated by ZOOM during the branch and bounds procedure with the initial model

and with the reformulated model. Finally, it compares at last the total number of necessary iterations for solving

the initial model and the reformulated model.

It is clear that the preprocessing procedure has produced a large number of bounds and that in several

cases it permitted fixing some of the binary variables. The impact of fixing some of the binary variables is that it

reduces the number of nodes required by the branch and bounds algorithm used in ZOOM. This number is

reduced to zero in three out of four examples making the branch and bound procedure unecessary and

drastically reduces the total number of iterations.

19-

cont. var.

bin. var.

equations

non-lin.

bounds before

bounds after

bin.fixed

nodes before

nodes after

iter. before

iter. after

7sp3

74
14
60
0

0
142

8

42
0

284
39

GS

9
4

12
0

0
12
4

16
0

46
7

maxmi2

13
4

1 9

0

0
10
0

16
16

103
102

pshex

80
21
87
0

0
118
13

47
0

555
8 3

on Sun3/60 workstation using GAMS/ZOOM

Table 2: Computational results with selected MILP models

In the maxmi2 example no improvement upon the number of required iterations is achieved although

10 out of 26 possible bounds have been derived. This illustrates the point that unless binary variables are

eliminated by this procedure, bound tightening may not help.

MINLP examples :

Two test examples are presented in this section : one for which the bounds tightening procedure has a

beneficial impact, and the other for which the procedure does not lead to any improvement. The data and

results concerning these two models are summarized in Table 3. The structure of Table 3 is similar to the one

of Table 2 presented earlier.

In the preprocessing of both examples we obtain tighter bounds on the continuous variables but none

of the binary variables can be fixed before solving the models. However, the impact on the total number of

iterations is quite different..

In the batch problem (a fairly large and nonlinear model for optimizing the number of units, their

volumes and their cycle times for a low cost production), the total number of iterations can be reduced to one

-20-

cont. var.
bin. var.
equations
non-lin.

bounds before
bounds after

bin.fixed

nodes before
nodes after

iter. before
iter. after

duran batch

25 24
8 24

32 74
5 22

9 18
24 27
0 0

36 64
37 66

801 2051
905 694

on Sun3/60 workstation using GAMS/ZOOM/MINOS/DICOPT++

Table 3: Computational results with selected MINLP models

third. It should also be noted that in the reformulated model many of the coefficients of the mixed-integer

constraints have been reduced.

The example duran [4] is presented to stress the fact that, as with the reformulation procedure,

tightening the bounds does not always lead to faster convergence. The topology of the feasibility region, the

degree of nonlinearity of the model and the starting point are three factors that are difficult to control and

whose impact on the efficiency of the solution can camouflage the effect of having tight bounds.

CONCLUSIONS :

In this paper we have presented how some of the principles and techniques that help in formulating

well-behaved models have been encoded in an interface that automates the process. This interface can be

used by model designers as a preprocessing tool to automatically obtain alternative formulations that would

provide him with a better model. Since very few transformations can be guaranteed to improve any given

model, there is no standard way of formulating a problem to ensure a more robust formulation, so the model

proposed by the interface is not guaranteed to be more efficient for all problems.

-21 -

Various features has been encoded within the interface that allows one to tacke the problem of model

reformulation at various levels. Firstly, when preprocessing a set of constraints, the interface is able to

automatically identify troublesome equations and to symbolically manipulate them to produce well-formulated

expressions. In some cases global manipulations of the set of constraints are performed in order to convexity

the model. Besides, the use of new variables and new equations can lessen its degree of nonlinearity.

Moreover it is to be noted that the preprocessing pays special attention to numerical concerns by avoiding

potential problems of locally undefined functions and also by applying an empirical scaling procedure.

Secondly, a strategy has been developed and implemented for reducing the domain of search and

thereby increasing the robustness of the model and often speeding up the convergence. The algorithm

takes advantage of monotonic constraints and through a recursive procedure over the set of these constraints

derives tighter bounds for the continuous variables. Test problems have shown that this proposed algorithm

can greatly reduce the domain of search. It can also allow for the fixing of the values of some of the binary

variables even before starting the solution procedure and thus may decrease the number of node evaluations

required during the branch-and-bound search.

The developed interface is a good tool for automatically deriving alternative formulations and

well-behaved models. As shown by the examples, the strengthening of the model robustness that can be

performed through our interface is worth the extra effort .

-22 -

REFERENCES :

[1] Benders, J.F., "Partitioning Procedures for Solving Mixed-variables Programming

Problems", Numerische Mathematik 4. 238-252.

[2] Biegler, L.T., "Simultaneous Modular Simulation and Optimization", Proceedings 2nd

Intl. Conf. FOCAPD. Eds. Westerberg and Chien, CACHE, 369-409 (1984).

[3] Brooke, A., D.Kendrick and A.Meeraus, "GAMS - A Users Guide", Scientific Press

(1988).

[4] Duran, M.A. and I.E.Grossmann, "An Outer-Approximation Algorithm fora Special Class

of Mixed Integer Nonlinear Programs", Mathematical Programming 36.307 (1986).

[5] Edgar, T.F. and D.M.Himmelblau, "Optimization of Chemical Processes", McGraw Hill

(1988).

[6] Geoffrion, A.M., "Generalized Benders Decomposition", Journal of Optimization Theory

and Applications. 10(4), 237-260.

[7] Gill, P.E., W. Murray and M. H.Wright, "Practical Optimization", Academic Press, London

(1981).

[8] Grossmann, I.E., "Mixed-Integer Nonlinear Programming Techniques for the Synthesis

of Engineering Systems", Research in Engineering Design. 1, 205 (1990).

[9] Han, S.P., "Superlinearly Convergent Variable Metric Algorithms for General Nonlinear

Programming Problems", Math. Progr.. Vol. 11, 263-282,1976.

[10] IBM General Information Manual, "An Introduction to Modeling Using Mixed Integer

Programming", Amsterdam, 1972.

[11] Johnson,. E.L. and U.H. Suhl, "Experiments in Integer Programming", Discrete Applied

Mathematics. 2, 39-55 (1980).

[12] Kocis, G.R. and I.E.Grossmann "Computational Experience with DICOPTsolving MINLP

-23-

Problems in Process Synthesis Engineering", Computers and Chemical Engineering

13, 307-315 (1989).

[13] Kocis, G.R. and I.E.Grossmann "A Modeling and Decomposition Strategy for the MINLP

Optimization of Process Flowsheets", Computers and Chemical Engineering. 13, 7,

797-819 (1989).

[14] Liebman, J., L.Ladson, L.Schrage and A.Warren, "Modelling and Optimization with

GINO", Scientific Press (1986).

[15] Murtagh, B.A. and M.A.Saunders, "A Projected Lagrangian Algorithm and its

Implementation for Sparse Nonlinear Constraints", Mathematical Programming Study

Vol. 16,84-117(1982).

[16] Nemhauser, G.L. and LA.Wolsey, "Integer and Combinatorial Optimization", John Wiley

(1988).

[17] Padberg, M., H.Crowder and E.L.Johnson, "Solving Large-Scale Zero-One Linear

Programming Problems", Operations Research. Vol. 31, No. 5, Sept/Oct 1983.

[18] Papalambros, P.Y. and DJ. Wilde, "Principles of Optimal Design - Modeling and

Computation", Cambridge University Press (1988).

[19] Plane, D.R. and C.McMillan Jr, "Discete Optimization", Prentice-Hall, Englewood Cliffs,

NJ, 1971.

[20] Powell, M.J.D., "A Fast Algorithm for Nonlinearly Constrained Optimization Calculations",

In Numerical Analysis, Dundee 1977. G.A. Watson (ed.) Lecture Notes in Mathematics

630, Springer-Verlag, Berlin (1978).

[21] Reklaitis, G.V., A.Ravindran and K.M.Ragsdell, "Engineering Optimization : methods

and applications", John Wiley (1983).

[22] Van Roy, T.J. and L.A. Wolsey, "Solving Mixed Integer Programming Problems Using

Automatic Reformulation, Operations Research. 35, 45-57 (1987).

[23] Viswanathan, J. and I.E.Grossmann, "A Combined Penalty Function and

Outer-Approximation Method for MINLP Optimization", Computers and Chemical

Engineering. 14, 7, 769-782 (1990).

-24-

Appendix A :

1) Monotonicity of the equations :

An equation is defined as being monotonic when its left hand side (the right hand side being a

constant) is monotonically increasing or decreasing with respect to each variable. In the context of this

definition, all the variables are assumed to be non negative. To determine whether an expression is

increasing or decreasing with respect to a given variable, one can check the sign of the partial derivative of the

expression. An alternative approach is to build the tree representing the expression and then to propagate

information concerning the monotonicity of the variables along that tree.

Building the tree representing an equation consistsof drawing the following schematic for the equation

Once the tree has been built, using the rules of precedence and associativity, we can evaluate the

monotonicity at each node given the partial expression beneath the node. This is done by considering the

arithmetic operator involved at the node as well as the monotonicity of the arguments of the operator. Each

variable is considered in turn, starting at the roots of the tree. Note that no restriction is placed on the linearity

of the expression. This method is easy to implement once the equations have been written in the reverse

polish notation used in our LISP implementation.

The example below is intended to clarify the steps involved in the method.

Suppose we want to analyze the monotonicity of the equation x2y - 3 * (y-x) < 0. By directly applying

-25-

the method described above we obtain the figure shown below. Next to each node are two signs (+, - or 0) ;

the top one represents the monotonicity of the subtree below the node with respect to the variable x ; the

bottom one represents the monotonicity with respect to y. A V means that the expression is increasing with

the variable, a"-" means it is decreasing and a M0M means that the expression is not monotonic with respect to

the variable.

From the "+H next to the M<" sign we can conclude that the expression x2y - 3 * (y-x) < 0 is monotonic

(and increasing) with respect to the varaible x. From the "0H next to "<" we conclude that x2y - 3 * (y-x) < 0 is not

monotonic with respect to the variable y.

2) Obtaining the required critical bounds :

Since each equality constraints is converted into two inequalities, the model consists only of

inequalities. Then for each monotonic inequality eqn_k, we dispose of the following information : a list

var_in_eqnj< of the variables that occur in the inequality; and a list monotonicityJn_eqn_k, consisting of V

and "-", describing the monotonicity of eqn_k with respect to the corresponding variables of varjn_eqn_k.

If the sign in monotonicity_in_eqn_k corresponding to variable XJ of var_jn_eqn_n is M+M and the

relational operator is V, then the lower bound of XJ is called the critical bound; when the relational operator is
M>" the critical bound is given by the upper bound on XJ. Similarily, when the sign in monotonicity_in__eqn_k is
H-H, the critical bound on XJ is its upper bound if the relational operator is V\ or its lower bound if the relational

operator is V.

It is thus possible to construct a list of Mlow and HupH describing which bound is critical for the each of the

variables in var_in_eqn_k.

In the equation x - y < 2 , for instance, the critical bounds are the lower bound for x and the upper

bound for y.

-26 -

3) Deriving tight bounds :

For each equation eqn_k, we are given first varjn_eqn_k, second the corresponding lists

monotonicityjn_eqn_k and criticaljboundsjor_eqn_k, third the lists of the names of the bounds that have

been updated in the previous loop (updated_LO and updated_UP) and so far in the current loop (updatedJo

and updated_up). We then count the number N of unknown bounds in critical__boundsjor_eqn_k.

Note : If the default values (0 and 50000) are used for the unknown bounds then process directly to the case

N=0.

if N>=2 then tightening the bounds is not possible using this equation at the current loop.

if N=1 then

let us call x* the variable for which a new bound is to be derived, then fix all the variables except x* to

their critical bound numerical values and solve the equation for x\ If the numerical value of x* obtained thus is

in the feasible range (between 0 and 50000), take it as the new value for the critical bound of x * ; otherwise

discard it.

Remark about the way the equation is solved in our interface : when x* occurs only once in the expression, the

equation is solved for x* and the exact solution is obtained ; when x* occurs more than once a bisection

method is applied (recalling that the expression is either monotically increasing or decreasing with x*).

if N=0 then

for each variable of varjn_eqn_k in turn, assume that no critical bound is known for that variable and

apply the process described for the case where N=1. In case a bound is derived from that processing,

compare it to the existing one and record the best one. Proceed then with the next variable.

It is interesting to be noted that one can easily predict the nature of the bound that will be derived at

each calculation depending upon the type of inequality constraint and the type of monotonicity for the

equation whose bound is seeked for. Any monotonic constraint can be casted in one of the two cases below

where the V represents an operation that keeps the monotonicity such as an addition or a log and the "-"

represents an operation that reverses the monotonicity such as a substractjon or a division.

Assuming that

- X is a vector of continuous variables x

- Y is a vector of continuous variables y

-27-

- X and Y are disjoint

- f is a function monotonically increasing with respect with all the x

- g is a function monotonically increasing with respect with all the y

- Y.lo means that all the variables y of the vector Y have a lower bound y.lo

and Y.up, X.lo and X.up are defined in a similar manner,

the ensuing rules stand :

when f(X) + g(Y)<a

if Y.lo is known some information about the x.up might be derived,

if Y.up is known no information can be derived.

when f(X)-g(Y)<a

if Y.lo is known no information can be derived,

if Y.up is known some information about the x.up might be derived,

if X.lo is known some information about the y.lo might be derived,

if X.up is known no information can be derived.

-28-

Appendix B :

In this appendix we will present an example of GAMS input file preprocessing for a NLP model, the

alkylation problem for which results have been presented earlier in this paper. The variations between the

initial input file and the reformulated input file are marked in bold style for better identification.

1) Initial GAMS Input file :

$TITLE : IMPACT OF LINEAR EQUATIONS ON THE ALKYLATION PROBLEM

$OFFUPPER

$OFFSYMXREF

$OFFSYMLIST

VARIABLES

PROFIT;

POSITIVE VARIABLES

X1, X2, X3, X4, X5, X6, X7, X8, X9, X10 ;

EQUATIONS

EQ1, EQ2, EQ3. EQ4, EQ5, EQ6, EQ7, EQ8 ;

EQ1.. X1*(1.12 + 0.13167*X8 - 0.00667*X8"2) - X4 =E= 0 ;

EQ2.. 86.35 + 1.098*X8 - 0.038*X8"2 + 0.325*(X6 - 89) - X7 =E= 0 ;

EQ3.. 35.82 - 0.222*X10 - X9 =E= 0 ;

EQ4.. X10 - 3*X7 + 133 =E= 0 ;

EQ5.. X8*X1 - X2 - X5 =E= 0 ;

EQ6.. X5 -1.22*X4 + X1 =E= 0 ;

EQ7.. X6 * (X4*X9 + 1000*X3) - 98000 * X3 =E= 0 ;

EQ8.. PROFIT =E=* 0.063*X4*X7 - 5.04*X1 - 0.035*X2 - 10*X3 - 3.36#X5;

X1.LO-10; X1.UP=2000;

X2.LO=0; X2.UP=16000;

X3.LO=0; X3.UP=120;

X4.LO=0; X4.UP=5000;

-29-

X5.LO=0;

X6.LO=85; X6.UP=93;

X7.LO=90; X7.UP-95;

X8.LO-3; X8.UP=12;

X9.LO=1.2; X9.UP=4;

X10.LO-145; X10.UP=162;

OPTION NLP=MINOS5 ;

OPTION ITERLIM = 1000;

MODEL PB/ALL/;

SOLVE PB USING NLP MAXIMIZING PROFIT;

1) Reformulated GAMS Input file :

$TITLE : IMPACT OF LINEAR EQUATIONS ON THE ALKYLATION PROBLEM

SOFFUPPER

$OFFSYMXREF

$OFFSYMLIST

VARIABLES

SX1, SX2, SX3, SX4, SX5, X6, X7, X8, X9, SX10, PROFIT

PARAMETERS

X I , X2, X3, X4, X5, X10 ;

EQUATIONS

EQ1, EQ2, EQ3, EQ4, EQ5, EQ6, EQ7, EQ8 ;

- 30 -

EQ1.. 199.0 * SX1 * (1.12 + 0.13167 * X8 - 0.00667 * X8 " 2) - 500.0 * SX4 =E= 0;

EQ2.. 86.35 + 1.098 * X8 - 0.038 * X8 " 2 + 0.325 * (X6 - 89) - X7 =E= 0;

EQ3.. 35.82 - 0.222 * 2.0 * SX10 - X9 =E= 0;

EQ4.. 2.0 * SX10 - 3 * X7 + 133 =E= 0;

EQ5.. X8 * 199.0 * SX1 /1000 - 1.6 * SX2 - SX5 =E= 0.0;

EQ6.. 0.5 * SX5 - 1.22 * 500.0 * SX4 / 2000 + 199.0 • SX1 / 2000 =E= 0.0;

EQ7.. X6 * (500.0 * SX4 * X9 / 2418000.0 + 1000 * 12.0 * SX3 / 2418000.0)

- 98000 * 12.0 * SX3 / 2418000.0 =E= 0.0;

EQ8.. PROFIT =E= 0.063*X4*X7 - 5.04*X1 - 0.035*X2 - 10*X3 - 3.36*X5 ;

SX1.LO=0.05 ;

SX2.LO=0 ;

SX3.LO=0 ;

SX4.LO=0 ;

SX5.LO=0 ;

X6.LO=85;

X7.LO=90;

X8.LO=3;

X9.LO=1.2;

SX10.LO=72.5

SX1.UP=10.06

SX2.UP=10.0

SX3.UP=10.0

SX4.UP=10.0

X6.UP=93;

X7.UP=95;

X8.UP=12;

X9.UP=4;

-31 -

SX10.UP=81.0

SX1.L=5.03;

SX2.L=5.0 ;

SX3.L=5.0 ;

SX4.L=5.0 ;

SX5.L=1.0 ;

X6.L=89 ;

X7.L=92.5 ;

X8.L=7.5 ;

X9.L=2.6 ;

SX10.L=76.75

MODEL PB/ALL/;

OPTION NLP=MINOS5;

OPTION ITERLIM = 1000 ;

SOLVE PB USING NLP MAXIMIZING PROFIT;

X1 = SX1 * 199.0 ;

X2 = SX2 * 1600.0 ;

X3 = SX3 * 12.0 ;

X4 = SX4 * 500.0 ;

X5 = SX5 * 1000.0 ;

X10 = SX10 * 2.0 ;

DISPLAY

X I , X2, X3, X4, X5, X10 ;

-32 -

Appendix C :

In this appendix we will present an example of GAMS input file preprocessing for a NLP model which is

identified by the interface as being geometric and which is then reformulated using the exponential

transformations. Computational results with this model have been presented earlier in this paper under the

fleet model appellation.

1) Initial GAMS Input file :

VARIABLES
n, I, b, h, t, v, d, di, u, cost;

EQUATIONS

eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9 ;

eq1.. 2E-6*d*u*v/3 + u =e= 1 ;

eq2.. 0.4*((l*b*h)"0.9)*(di"0.52) + d*(di"0.52)

+ 0.02*(v"2.16)*di - di*(di"0.52) =e= 0 ;

eq3.. 0.93*dil*(l"0.5) + 0.93*vTb*t - (l"0.5)Tb*t =e= 0 ;

eq4.. 2.75E6 + 2.1 E-3*vV(di"(2/3))*n V v

-n*d*u*v=l=0;

eq5.. 1.9E-3*(t"1.43) +1 - h =l= 0 ;

eq6.. 2 t - b = l = 0 ;

eq7.. 0.07*1 - h =1= 0 ;

eq8.. 3*d - l*b"h =1= 0 ;

eq9.. cost =e= 160*n*((l*b*h)"0.9) + (2+0.8*u)*n*(v**2.16)/(di**0.48) ;

n.lo=1 ;

-33-

l.lo=5;

b.lo=5 ;

h.lo=3 ;

t.lo=2 ;

v.lo=3 ;

d.lo*10000 ;

di.lo=50000 ;

u.lo=0.6 ;

n.up=50 ;

u.up=1 ;

MODEL fleet/ALL/ ;

OPTION LIMCOL=0;

OPTION LIMROW=0 ;

OPTION NLP=MINOS;

SOLVE fleet USING nip MINIMIZING cost;

1) Reformulated GAMS Input file :

VARIABLES

n, I, b, h, t, v, d, di, u, cost;

PARAMETERS

on, ol, ob, oh.o t, ov, od, odi. ou ;

EQUATIONS

eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9 ;

eq1.. exp(d + v -14.220976 + u) + exp(u) =e= 1 ;

eq2.. exp(0.9*(l+b+h) - 0.916291 - di) + exp(d - di)

+ exp(2.16*v - 3.912023 - 0.52*di) =e= 1 ;

eq3.. exp(di - 0.07257 -1 - b -1) + exp(v - 0.072571 - 0.5*1) =e= 1 ;

- 3 4 -

eq4.. exp(14.82711 -n-d-u-v)

+ exp(2*v + 0.666667*di - 6.165818 - d) =l= 1 ;

eq5.. exp(1.43M - h - 6.265901) + exp(t - h) =l= 1 ;

eq6.. t - b + 0.69315=1=0;

eq7.. I - h - 2.65926 =1= 0 ;

eq8.. d -1 - b - h +1.0986123 =l= 0 ;

eq9.. cost =e= exp(n + 0.9*(l+b+h) + 5.0714)

+ exp(log(2+0.8*exp(u)) + n + 2.16*v - 0.48*di)

n.lo=1 ;

b.lo=1 ;

h.lo=1 ;

t.lo=1 ;

v.lo=1 ;

d.lo=1 ;

di.lo=1 ;

u.up=O ;

MODEL

OPTION

OPTION

OPTION

fleet /ALL/ ;

LIMCOL=0;

LIMROW=0;

SOLPRINT=OFF;

SOLVE fleet USING nip MINIMIZING cost;

on= exp(n.l);

DISPLAY 'n= ', on ;

-35-

ol= exp(l.l);

DISPLAY W . o l ;

ob= exp(b.l);

DISPLAY 'b=\ ob;

oh= exp(h.l);

DISPLAY 'h-1 , oh;

ot=exp(t.l);

DISPLAY t = \ o t ;

ov= exp(v.l);

DISPLAY V=', ov ;

od= exp(d.l);

DISPLAY 'd= *, od ;

odi= exp(di.l);

DISPLAY *di=', odi;

ou= exp(u.l);

DISPLAY 'u=', ou ;

-36-

Appendix D :

In this appendix we will present an example of GAMS input file preprocessing for a MINLP model, the

model called duran earlier in the paper. The variations between the initial input file and the reformulated input

file are marked in bold style for better identification.

1) Initial GAMS Input file :

$TITLE MARCO DURAN'S EXAMPLE #3 PROBLEM FROM PH.D. THESIS

$OFFSYMXREF

$OFFSYMLIST

* SELECT OPTIMAL PROCESS FROM WITHIN GIVEN SUPERSTRUCTURE.
*

* REFERENCE: MARCO DURAN , PH.D. THESIS, 1984.

CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PA.

* MASS BALANCES ARE REFERENCE ACCORDING TO THEIR POSITION IN

* THE SUPERSTRUCTURE. I.E. MASS BALANCE #1 OCCURS BETWEEN

*' UNITS#4, 6 , AND7.

POSITIVE VARIABLES

X2,x3,x4,x5,x6,x7,x8,x9,x10,x11 ,x12,x13,x14,x15,x16,

x17,x18,x19,x20,x21 ,x22,x23,x24,x25;

VARIABLES

profit;

BINARY VARIABLES

y1,y2,y3,y4,y5,y6,y7,y8;

EQUATIONS

INOUT1 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 1

INOUT2 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 2

INOUT3 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 3

-37-

IN0UT4 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 4

INOUT5 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 5

INOUT6 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 6

INOUT7 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 7

INOUT8 INPUT-OUTPUT RELATIONS FOR PROCESS UNIT 8

MASSBAL1 MASS BALANCE #1

MASSBAL2 MASS BALANCE #2

MASSBAL3 MASS BALANCE #3

MASSBAL4 MASS BALANCE #4

MASSBAL5 MASS BALANCE #5

MASSBAL6 MASS BALANCE #6

MASSBAL7 MASS BALANCE #7

SPECS1 DESIGN SPECSIFICATION 1

SPECS2 DESIGN SPECSIFICATION 2

SPECS3 DESIGN SPECSIFICATION 3

SPECS4 DESIGN SPECSIFICATION 4

LOGICAL! CONSTRAINTS WHICH ALLOW FLOW IFF UNIT 1 EXISTS

LOGICAL2 CONSTRAINTS WHICH ALLOW FLOW IFF UNIT 2 EXISTS

LOGICAL3 CONSTRAINTS WHICH ALLOW FLOW IFF UNIT 3 EXISTS

LOGICAL4 CONSTRAINTS WHICH ALLOW FLOW IFF UNIT 4 EXISTS

LOGJCAL5 CONSTRAINTS WHICH ALLOW FLOW IFF UNIT 5 EXISTS

LOGICAL6 CONSTRAINTS WHICH ALLOW FLOW IFF UNIT 6 EXISTS

LOGICAL7 CONSTRAINTS WHICH ALLOW FLOW IFF UNIT 7 EXISTS

LOGICAL8 CONSTRAINTS WHICH ALLOW FLOW IFF UNIT 8 EXISTS

PUREINT1 PURELY INTEGER CONSTRAINT #1

PUREINT2 PURELY INTEGER CONSTRAINT #2

PUREINT3 PURELY INTEGER CONSTRAINT #3

PUREINT4 PURELY INTEGER CONSTRAINT #4

addoonstr

OBJ OBJECTIVE FUNCTION DEFINITION;

INOUT1.. EXP(X3) -1. =E= X2

INOUT2.. EXP(X5/1.2) -1 . =E= X4

. INOUT3.. 1.5 * X9 + X10 =E= X8

INOUT4.. 1.25 * (X12+X14) =E= X13

-38-

IN0UT5..

iNOirra.
IN0UT7..

IN0UT8..

MASSBAL1..

MASSBAL2..

MASSBAL3..

MASSBAL4..

MASSBAL5..

MASSBAL6..

MASSBAL7..

SPECS1..

SPECS2..

SPECS3..

SPECS4..

LOGICAL1..

LOGICAL2..

LOGICAL3..

LOGICAL4..

LOGICAL5..

LOGICAL6..

LOGICAL7..

LOGICAL8..

PUREINT1..

PUREINT2..

PUREINT3..

PUREINT4..

addconstr.. :

X15 =E=

EXP(X20/1.5)-1

EXP(X22) -1 .

EXP(X18) -1 .

X13 =E

2.*X16 ;
. =E= X19

=E= X21 ;

=E= X10 + X17

= X19 + X21 ;

X17 =E= X9 + X16 + X25;

X11 =E=X12 + X15 ;

X3 + X5=E=

X6 =E=

= X6 + X11 ;

X7 + X8 ;

X23 =E=X20 + X22 ;

X23 =E

X10 =L= 0.8*

X10 =G= 0.4'

X12 =L= 5.0*

X12 =G= 2.0'

X2 =L= 50. *

X4 =L= 50. *

X9 =U50 . *

X12 + X14 =

X15 =L= 50.

X19 =L= 50.

X21 =L= 50.

= X14 + X24 ;

X17 ;

'X17 ;

X14 ;

'X14 ;

Y1 ;

Y2 ;

Y3 ;

L=50.*Y4 ;

*Y5 ;

*Y6 ;

*Y7 ;

X10 + X17 =L= 5O.*Y8 ;

Y1+Y2=E=

Y4 + Y5 =L=

Y6 + Y7-Y4

Y3-Y8 =L= (

<7 + x18 + x24'

1. ;

1. ;

=E=0. ;

=g= 0.1 ;

OBJ.. PROFIT =E= - 5*y1 - 8*y2 - 6*y3 - 10*y4 - 6*y5 - 7*y6 - 4*y7 - 5*y8

- x2 + 10*x3 - x4 + 15*x5 + 40*x9 - 15*x10 - 15*x14 - 80*x17

+ 65*x18 -25*x19 + 60*x20 -35*x21 + 80*x22 + 35*x25 -122 ;

-39 -

MODEL EXAMPLE3 / ALL /;

OPTIONS LIMCOL = 0 ;

option optcr=0;

SOLVE EXAMPLE3 USING MIDNLP MAXIMIZING PROFIT ;

1) Reformulated GAMS input file :

$TITLE MARCO DURAN'S EXAMPLE #3 PROBLEM FROM PH.D. THESIS

$OFFSYMXREF

$OFFSYMLIST

BINARY VARIABLES

POSITIVE VARIABLES

x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17,

x18, x19, x20, x21, x22, x23, x24, x25 ;

VARIABLES

profit;

EQUATIONS

inouti, inout2, inout3, inout4, inout5, inout6, inout7, inout8, massbali,

massbal2, massbal3, massbaW, massbal5, massbal6, massbal7, specsi,

specs2, specs3, specs4, logicaU, Iogical2, Iogical3, logicaW, Iogical5,

Iogical6, Iogical7, Iogical8, pureinti, pureint2, pureint3, purein(4,

addoonstr, ob j ;

inouti.. exp (x3) -1 - x2 =e= 0 ;

inout2.. exp (x5 /1.2) -1 - x4 =e= 0 ;

• inout3.. 1.5 * x9 + x10 - x8 =e= 0 ;

inout4.. 1.25*(x12 + x14) -x13=e=0;

-40 -

inout5.. x15-2*x16=e=0;
inout6.. exp (x20 /1.5) -1 - x19 =e= 0 ;
inout7.. exp (x22) -1 - x21 =e= 0 ;
inout8.. exp(x18)-1 -x10-x17=e=0;
massbah.. x13 - x19 - x21 =e= 0 ;
massbal2.. x17 - x9 - x16 - x25 =e= 0 ;
massbaB.. x11 - x12 - X15 =e= 0 ;
massbaW.. x3 + x5 - x6 - x11 =e= 0 ;
massbaE.. x6-x7-x8=e=0;
massbal6.. x23 - x20 - x22 =e= 0 ;
massbal7.. x23 - x14 - x24 =e= 0 ;
specsL. x10-0.8*x17=l=0;
specs2.. x10 - 0.4 * x17 =g= 0 ;
specs3.. x12-5.0*x14=l=0;
specs4.. x12-2.0*x14=g=0;
togicah.. x2-50*y1 =l=0;
Iogical2.. x4-50*y2=l=0;
Iogical3.. x9 - 5.7668 * y3 =l= 0 ;
logicaW.. x12 + x14 -12.9753 * y4 =l= 0 ;
Iogical5.. x15 - 8.6502 #y5 =l= 0 ;
Iogical6.. x19 -16.2192* y6=l= 0 ;
Iogical7.. x21 -16.2192 * y7 =l= 0 ;
Iogical8.. x10 + x17 - 30.2757 * y8 =l= 0 ;
pureintL. y1 + y2 =e= 1 ;
pureint2.. y4 + y5 =l= 1 ;
pureint3.. y6 + y7 - y4 =e= 0 ;
pureint4.. y3 - y8 =l= 0 ;
addconstr.. x7 + x18 + x24 =g= 0.1 ;

obj.. prof i t=e»0-5*y1-8*y2-6 # y3-10*y4-6*y5-7*y6
- 4 * y7 - 5 * y8 - x2 +10 * x3 - x4 +15 * x5 + 40 * x9 -15 * x 10 -15

35*x25-122;

x2.up=50.0 ;
x3.up=3.9319
x4.up=50.0 ;

-41 -

X5.up=4.7182 ;
x6.up=8.6502 ;
x7.up=8.6502 ;
x8.up=8.6502 ;
x9.up=5.7668 ;

x10.up=8.6502
Xi1.up=8.6502 ;
x12.up=8.6502 ;
x13.up=16.2192 ;
x14.up=4.3251 ;
x15.up=8.6502 ;
x16.up=4.3251 ;
x17.up=21.6255 ;
x18.up=3.4429 ;
x19.ups16.2192 ;
x20.up=4.2691 ;
x21.up=16.2192 ;
X22.up=2.8461 ;
x23.up=7.1152 ;
X24.up=7.1152 ;
X25.up=21.6255 ;

x2.l=25.0;

x3.l=1.96595;

x4.l=25.0;

x5.l=2.3591 ;

x6.l=4.3251 i

x7.l=4.3251 ;

x8.l=4.3251 ;

x9.l=2.8834 ;

x10.1=4.3251 ;

x11.1=4.3251 ;

x12.1=4.3251 ;

x13.l=8.1096 ;

x 14.1=2.16255 ;

x15.l=4.3251 ;

X16.1=2.16255 ;

- 42 -

x17.l=10.81275;

x18.l=1.72145;

x19.1=8.1096;

x20.l=2.13455;

x21.1=8.1096;

x22.l=1.42305;

x23.l=3.5576 ;

x24.l=3.5576;

x25.l=10.81275 ;

MODEL EXAMPLE3 / ALL / ;

OPTION LIMCOL = 0 ;

OPTION OPTCR=0;

SOLVE EXAMPLE3 USING MIDNLP MAXIMIZING PROFIT;

-43-

