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ABSTRACT

This paper deals with the problem of evaluating and optimizing a
stochastic measure that integrates flexibility and reliability in
multiproduct batch plants. It is assumed that uncertainties in the
product demands are given in terms of statistical distributions, and
that expected failure rates of the equipment are given in terms of
discrete probabilities. Based on recent work by the authors (Straub
and Grossmann, 1989), an efficient computational method is
proposed to evaluate the expected stochastic flexibility in
multiproduct batch plants. It is also shown that this method can be
incorporated in the optimization for determining the sizes and
parallel equipment that maximize the expected stochastic flexibility
under a capital investment constraint. By varying the specification
of the latter, trade-offs can be established between investment cost
and flexibility.



Introduct ion

In recent years the study of batch plants has received significant attention. This is due to the

growth in demand for specialized chemicals, which are often complex to produce and have low volumes

of production. The ability of batch chemical plants to efficiently process different products has also

contributed to this increased attention.

There are two basic types of batch plants: the multiproduct and the multipurpose plants. In the

multiproduct plant the products are produced using the same sequence of processing steps. In this

configuration the products are produced one at a time since all products go through the last stage, and

the last stage can only produce one product at a time. In the multipurpose plant the products do not

necessarily follow the same sequence of processing steps. Thus, with this plant it is possible to produce

products simultaneously.

The optimal design of batch plants has been discussed by Sparrow et al. (1975) who addressed

the optimal sizing of multiproduct batch plants using heuristics and branch and bound methods.

Grossmann and Sargent (1979) have studied the same problem but formulated it as an MINLP to

determine the optimal solution. Knopf et al. (1982) extended the MINLP formulation in order to also

size the semi-continuous equipment. Suhami and Mah (1982) formulated an MINLP model to design a

restricted class of multipurpose chemical plants a problem that subsequently was studied by Vaselenak

et al. (1987) and Faqir and Karimi (1988). Other aspects of batch plants have also been considered.

For example, Modi and Karimi (1989) discuss the use of intermediate storage between stages while

Birewar and Grossmann (1989) discuss scheduling aspects in determining the optimal design. A

general review on design methods for batch plants is given in Reklaitis (1989).

One aspect of batch plants that has received much less attention is the flexibility of the plant;

that is the ability of the plant to meet production requirements given that there are uncertainties in

demands and technical specifications such as size factors and processing times. Some of the first

authors to investigate this problem were Reinhart and Rippin (1986). They discuss the effect of

uncertainties in both product demands and in technical specifications. They define the flexibility as the

probability of meeting the demand requirements, but assuming that there is only one piece of equipment

in each stage, thus not accounting for failures in equipment. Wellons and Reklaitis (1989) have also

investigated the flexibility of batch plants by determining the optimal staged expansions over time to

account for increases in product demand.

In this paper we will present a framework to evaluate and optimize the expected stochastic

flexibility of multiproduct batch plants that operate with single product campaigns. It will be assumed

that the demands of the products are uncertain and characterized by continuous probability distribution

functions. In addition, the availability of the various pieces of equipment will be considered uncertain

with discrete probabilities for failure. Methods will first be presented to evaluate the probability of
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meeting the uncertain demand requirements (stochastic flexibility). As a next step we will incorporate

the uncertainty in the availability of the equipment (traditionally the domain of reliability) to evaluate

the expected value of the stochastic flexibility. Finally, the optimization of these flexibility measures

will be considered for the design of multiproduct batch plants.

Review of Expected Stochastic Flexibility

The metric which will be used to characterize multiproduct batch plants with discrete

(equipment availability) and continuous uncertainties (product demands) is the Expected Stochastic

Flexibility, E(SF), which has recently been proposed by Straub and Grossmann (1989). The

stochastic flexibility, SF, is a probabilistic measure of a system's ability to tolerate continuous

uncertainties for a given discrete state. The discrete uncertainties are taken into account when

determining the expected value of the stochastic flexibility.

The concept of the stochastic flexibility is shown in Figure 1. The triangle represents the

feasible region of operation for the system in the space of the continuous uncertainties, 61 and 02. Each

of the continuous uncertainties is described by a probabilistic distribution. In this case 81 and e2 are

independent parameters characterized by normal distributions, which gives rise to a joint distribution

whose contours are circles. The stochastic flexibility is the cumulative probability of the joint

distribution that lies within the feasible region. Thus, mathematically, the stochastic flexibility is the

integral of the joint distribution over the shaded region.

The discrete uncertainty involves changes in the state of a design which result in different

feasible regions. The effect of a design change is shown in Figure 2. Here normal operation is

represented by State 1 and results in the outer triangle. State 2 represents the process in which some

equipment has failed. In this case the size of the feasible region gets smaller since the process has less

capacity.

The expected stochastic flexibility is calculated by summing up the product of the probability

for each discrete state and its corresponding stochastic flexibility. In this way, the E(SF) represents,

qualitatively, the probability of feasible operation that we can expect on average over a large time

period.

As will be shown in this paper considerable advantages can be taken from the special structure

of the model of the multiproduct batch plants to simplify the calculation for the expected stochastic

flexibil i ty.

Model

The model used to characterize the operation of the batch plant is reported by Grossmann and

Sargent (1979). The plant has M stages. Each stage j, j=1,...M, contains Nj identical pieces of



equipment. The number of units Nj and their corresponding sizes Vj are the design variables. In this

design the products are processed one at time and follow the same sequence of processing stages.

The design chosen needs to be able to produce the required demand for each of the HP products.

At the design stage the demand for product Qj i=1,...NP is unknown but can be specified by a probability

distribution. Thus for the case with only uncertainties in the demands, the SF of a design measures the

probability of satisfying these demands.

The constraints that define the system are shown below. The first constraint states that the

cycle time Ty for each product i must be equal to the largest processing time in any stage (Sparrow et

al, 1975):
T Li-max{ N J J-1....M ^

Here ty is the time to process one batch of product i in stage j. It is assumed that ty is not a function of

the batch size. The cycle time represents the time between the production of successive batches of the

final product i (care must be taken when referring to product i, since all intermediates are also

referred to as product i). This constraint can be rationalized in the following manner. Assume that we

have a time period T in which to operate. Neglecting other stages, each stage j will be able to produce

(T/tjj)*Nj batches of product «. For example, if product 1 has ti«j=3, ^2=6 and t-|3=4 and we have

T=15 the first stage will be able to produce 5 batches, the second 2.5 and the third 3.75 with N=1 in

all stages. Obviously if the stages are connected together (regardless of the order) the second stage is

rate limiting, determining the rate at which the final product is produced. To determine this rate for

product i we can set

T*{-^}=1 batch
tij ( 2 )

and solve for T which gives {ty/Nj}. Choosing the largest time as in (1) then gives the time necessary

to produce one batch.

Next, the maximum batch size for each product i is given:

Bi=mjn {^ } J
J S i j ( 3 )

Here Vj is the size of the equipment in stage j and Sy ,the size factor, is the capacity required to process

a unit mass of product. This constraint states that the batch size cannot exceed the volume divided by

the size factor for all stages j.
The production constraint is given by

T B i " ( 4 )

where H is the horizon and represents the total time available to process all products. The quotient

Qj/Bj is equal to the total number of batches that will be processed for product i. This quantity



multiplied by the time, Ty , to produce successive batches gives the total time to process product i. In

using this constraint we are assuming single product campaigns where we are neglecting the effect of

the heads and tail in the schedule of each product i.
Finally, we have a cost function in terms of the number of parallel units, Nj, and the equipment

sizes VJ:

J ( 5 )
where CCJ and pj are constants, with 0< pj < 1.

There are several interesting aspects of this model. Most notable is the fact that the feasible

region is linear in the space of the demands Qj, once we have specified the design variables N; and V;.

This follows from the fact that from equations (1) and (3) the ratios

are constant. In this way the horizon constraint in (4) reduces to the linear inequality:

T
i ( 6 )

An example of a feasible region for 2 products is given in Figure 3.

Evaluation of Stochastic Flexibility

In order to evaluate the SF of a particular design we need to integrate the joint probability

distribution function of the demands Qj, i=1 ,...NP, over the corresponding feasible region. One way to

do this is to apply the inequality reduction scheme of Straub and Grossmann (1989). But given that

there is effectively only one constraint (6), the inequality reduction scheme simplifies a great deal. To

explain how to evaluate the SF first consider the following integral, for the case of two demands:

MAX Q M A X ( Q I )

SF= j(Q)dQ2dQi
JO JO ( 7 )

Here Q 1
m a x is obtained by setting Q2 =0 in the horizon constraint (6) resulting in

Y l ( 8 )

The upper bound on the inner integral can be written in terms of Q^ through the horizon constraint:

Equations (8) and (9) then define the bounds on the integral. In general the form of j(Q) will be

complex enough to force the integral to be evaluated numerically. An appropriate method is to use a two

dimensional Gaussian Quadrature, see Straub and Grossmann (1990). The only difficulty with this

method is that with a larger number of products the integral becomes increasingly expensive to solve.



There is, however, another way to determine the SF that takes advantage of the structure of the

problem. Note that the SF also represents the probability that the horizon constraint will be satisfied,

SF=Pr{XQiY£H}
i ( 1 0 )

Now assume that we let HA equal the left hand side of the horizon constraint,

HA=ZQiYi
i • (11)

Then the SF is simply the probability that HA ^ H. If we further assume that the demands for products

Qj, i=1,...NP, are characterized by normal distributions, fj(Qj), then since HA is a linear function of

Qj, i=1,..NP, HA is also distributed normally with the following mean and variance ( see Appendix)

1 ( I O )

where JXQJ and a 2
Q j are the mean and variance of the density functions fj(Qj), i=1 ,...,NP.

This transformation allows us to formulate the SF as a one dimensional integral, regardless of how

many products there are:

SF=( f(HA)dHA

JO ( 1 4 )

Example 1

In order to clarify the concept of the SF a small example will be presented that involves 2

products that are processed in 3 stages. The data are shown in Table 1. This example is taken from

Grossmann and Sargent (1979). The horizon time for this problem is 6000 hours. The first design

that will be evaluated is the solution from Grossmann and Sargent (1979), that is shown in Table 2(a).

This design was obtained by optimizing the volumes and the number of units for the mean values of the

demands. The SF of this design was evaluated using 9 point Gaussian quadrature on the integral in
(14). In the actual implementation of the quadrature scheme the lower bound was set equal to
| ! H A . 3 * < J H A , for values of H A smaller than this the integral of f ( H A ) over the region 0 to

l i H A - 3 * < J H A is negligible in comparison to the integral over the region H H A "3* G H A
 t 0 H-

Evaluation of the design results in SF=0.498 with a design cost of $106,769. This result means that

this design can only operate feasibly in 4 9 . 8 % of the situations that are l ikely to be encountered.

Consider in contrast the alternative design in Table 2(b) which has somewhat larger volumes. The cost

of this design is $110,000, a 3.3% increase in comparison to the previous design. This design results

in a SF=0.815, or an increase of 63.7% in the SF.



Evaluation of the Expected Stochastic Flexibility

Another type of uncertainty that may occur in a batch plant is equipment failure. Unlike the

continuous uncertainties in product demand, equipment failure is characterized by a discrete

probability distribution. Because of the discrete nature of the distributions we can define different
ZNj

states in the plant. The total number of discrete states for equipment availability is 2 j J however

since the units in each stage are identical we can greatly reduce the number of states we need to

analyze. For example in a plant with one stage and two identical pieces of equipment we have 3

conditions, both available, one available and none available. We characterize the different states in the

following manner. First recall that Nj is the total number of units that exist in stage j. A state k is

k k

defined by the number of active or available units in each stage, nj , where 0£ Hj<Nj. A state will be
characterized by the set Sk={n^, n^, •••» n j } , which corresponds to the number of active units in each

stage. Furthermore, we will say that a state ^is a substate of k if nj < nj for all j.

Since we have Nj+1 conditions of equipment at each stage, the total number of states in terms of

the number of available pieces of equipment in each stage is given by

TS=fl (Nj + 1)
j=i ( 1 5 )

Furthermore, let us define condition Nj+1 as the one that corresponds to the case when no unit is

available in stage j; since at this condition there is infeasible operation, the stochastic flexibility is

zero. Therefore, total number of feasible states with nj>1 j=1,...,M is given by

TFS=fl (Nj)
j=i ( 1 6 )

So for example if we have a plant with 3 stages (M=3), three units in stage 1, two units in stage 2 and

one unit in stage 3, TS=24 states and TFS=6 states. Also note that the number of feasible states TFS, is

considerably smaller that the total number of actual states 26=64.

The probability of a piece of equipment being active, pj, can be generated from failure rate and

repair rate data. The determination of Pj in the context of availability is as follows. First assume that

the equipment is in its useful life, where failures occur by chance, rather than by the initial break-in

or wearout. In this case it can be assumed that the failure rate \ is constant. It will also be assumed the

repair rate jx is constant. The reliability of this component is defined as follows:

R(t) = exp(-Xt) ( 1 7 )

This expression can be used to define the mean time to failure (MTTF) of the components:

M T T F = | exp(-Xt) dt = 1A
JO ( 1 8 )

Similarly the mean time to repair is given by



I expO+u) dt = \/\i

( 19 )

Using Markov Chain theory (Billinton and Allan 1983) it can be shown that the probability of being in

an active state as t -> °° is

MTTF+MTTR (20 )

Note that this differs from the reliability of the component which represents the probability of staying

in the active state as a function of time. More complicated models are discussed by and Billinton and

Allan (1983).

In order to compute the probability Pk of each state k, k=1,...TFS, in terms of the probabilities

Pj, we use the following expression:

p <Ni)! " ? ( N " ? )

To briefly justify this expression, the first portion simply represents the number of combinations of
Is

rij items from Nj total items. The second part is the probability of that particular combination of

active and inactive equipment. With (21) the expected stochastic flexibility E(SF) can be determined

from

= X SFk * Pk
k=l ( 2 2 )

Bounding Procedure

An efficient bounding scheme for the E(SF) has been developed by Straub and Grossmann

(1989) to avoid analyzing all possible states. The basis for the scheme is that the feasible region gets

smaller as the number of active components decreases (assuming that the volumes remain constant).

That is SF(Sa) £ SF(Sb) for Sb c Sa.

They show that a valid lower bound, LB, can be obtained by taking a partial summation of (22).

This summation would only include terms whose SF has been evaluated. A valid upper bound, UB, can be

obtained by adding to the lower bound the remaining terms with BSF(Sk) substituted for the SF(Sk).

The BSF is an upper bound on the state SF.

The manner in which the BSF are obtained is best illustrated with an example. Consider a 2

stage batch plant in which N1=3 and N2=2. In this case TS=(3+1)(2+1)=12 and TFS=3*2=6 states.

A network representation of the states is shown in Figure 4. In this network the lines connect a state to

its substate. For example S5={2,1} is a substate of both S2={3,1} and S3={2,2}. Since S 5 c S 2 then

SF(S5 )<SF(S2 ) ; similarly SF(S5)<SF(S3). Thus, a valid upper bound of SF(S5) is given by

BSF(S5)=min[SF(S2), SF(S3)]. Note that if SF(S2) and SF(S3) have not been evaluated yet, then



their corresponding bounds, BSF(S2) and BSF(S3), can be used to compute the bound for S5 . That is,

BSF(S5)=min[BSF(S2) , BSF(S3)].

To illustrate the bounding procedure more clearly, consider Figure 5 in which the probabilities

for each discrete state are shown. These result from assuming p-^0.9 and p2=0.8. For the network of

Figure 5 only SF(S1)=0.95 has been evaluated. Because all the remaining states are substates of S1

they are all bounded by SF(S1). In this case the following bounds would be calculated as follows:

LB=SF(Si)*P(Si) ( 2 3 )
TFS

UB=SF(Si)*P(Si)+ Z BSF(Sj)*P(Sj)
i=2 ( 2 4 )

Substituting the corresponding values in the equations above leads to LB=0.4433 and UB=0.9112. It is

important to keep in mind that the summation is over TFS not TS, thus any state with nj=O is assigned

SF=0.

Now assume the SF(S2) is evaluated next since it has, from the remaining states, the largest

potential contribution to the E(SF); BSF(S2)*P(S2)=0.2216. Assume that SF(S2) is found to be 0.7,

with which the changes to the BSPs are shown in Figure 6. In this case the BSF for states S5 and S8

change to 0.7 since they are substates of S2 .

The new bounds are then:

LB=SF(Si)*P(Si)+SF(S2)*P(S2) ( 2 5 )
TFS

UB=SF(Si)*P(Si)+SF(S2)*P(S2)+ Y BSF(S-)*P(Si)

i-3 ( 2 6 )

Substituting the corresponding values in the equations above leads to LB=0.6066 and UB=0.8312.

In this way, if we successively evaluate that state in the network with the largest BSF*P, and

update the corresponding bounds in the substates, fast convergence for the lower and upper bounds can

be obtained within a specified finite tolerance. This then avoids the problem of evaluating the SF for

each state which is the major bottleneck in the computations.

The bounding procedure can be stated in general as follows. First we define the index sets E and

U:
E={i|SF(Sj) is evaluated}
U={i|SF(Sj) is not evaluated} where EuU=TFS

The steps are then as follows for a specified tolerance e in the bounds:

1 ) Evaluate the stochastic flexibility SF(S-|) of the state S-jwith all components
active. Set E={1}, U={2,3,...TFS}, and BSF(S i)=SF(S1), ie l ) .

2 ) Determine the bounds:

X SF(Si)*P(Si)
i € E ( 2 7 )
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SF(Si)*P(SO + X BSF(Si)*P(SO
i€E i€U ( 2 8 )

3 ) If UB-LB<e stop. Otherwise go to step 4
4 ) Let j be the index of the largest value of BSF(Sj)*P(Sj)f ie U.

Set E=Eu{j}, U=U\{j}
5 ) Evaluate SF(Sj) update the BSF(Sj) for ie U and go to step 2.

Example 2

Consider the system presented in Example 1 for the design in Table 1(a). The only additional

design parameters are the probabilities of the equipment being active. Initially we will let all Pj=0.9,

j=1,2,3. Given N=(2,2,1) we can determine TS=18 and TFS=4 with state probabilities shown in

Table 3. For the design presented in Table 2(a), the bounds converge to E(SF)=0.294. It was

necessary to evaluate 3 states in order for the bounds to converge. This data is shown in Table 4. The

result can be interpreted as follows, of all possible combinations of demands and system states, 29.4%

of these combinations result in feasible operation.

There are some interesting aspects of the E(SF). First, if we increase the horizon time to

10,000 hours which effectively assigns SF=1 to all states that have a feasible path then the resulting

E(SF) is equal to the systems reliability. For the given pj and the system configuration the resulting

reliability is 0.882. When we evaluate the E(SF) the bounds also converge to 0.882. It is also

important to note here that a feasible state for reliability is one in which the production is nonzero.

One might ask how to calculate the reliability when constraints on product demand must be considered.

This is easy to calculate with the present formulation. Suppose we define a feasible state as one

producing a minimum of 180,000 units of Q^ and 40,000 units of Q2; then the reliability is equal to

the E(SF) when we set the mean of Qj to 180,000 and 40,000 and set the standard deviations to a small

positive number (e.g. 10). Doing so gives us a E(SF)=0.7217 which is then the reliability of the

system for these demands.

Another aspect of the E(SF), which is more obvious, is that it converges to the SF of the state

with all components active as Pj -> 1.00 (recall Example 1). This is demonstrated in Table 5.

Example 3

To demonstrate the effectiveness of the bounding procedure consider the following problem with

6 stages and 5 products. The data for the problem is given in Table 6. The horizon time for the

problem is 6000 hours. Given the maximum available number of units in Table 6(d) we can calculate

TS=864 and TFS=72. When the bounding scheme was applied to this problem the following bounds

were obtained: 0.7210 < E(SF) < 0.7239. The bounding scheme required examination of 7 states, see

Table 7. Thus only - 1 0 % of the feasible states and < 1 % of the total states were required to evaluate the

E(SF). The progression of the bounds is shown in Figure 7.



Optimization of SF

Having considered the evaluation of expected stochastic flexibility for a fixed design, the next

step would be to consider the selection of volumes and number of units to maximize the expected

stochastic flexibility and to minimize the investment cost. Since this leads to a bicriterion

optimization problem, we will consider that the optimization problem is formulated as maximizing

flexibility subject to a constraint for maximum investment. This problem can then be easily extended

to generate trade-off curves that relate flexibility with cost.

The first case we will present is the one in which the number of units is fixed and we seek the

determine the optimal volumes. For the case of normal distributions this problem can be formulated as

the NLP,

Jo
maxSF=| f(HA)dHA
v h

s.t. Bi=mjn{FJ-}

j
Yi=TLi/Bi i=l NP

where C is a limit on the capital investment, vj* and V^ are lower and upper bounds for the volumes,

and Bj- and Bj- are lower and upper bounds on the batch size:

\
min ̂ - < Bi < min ^

j i>ij J I>ij ( 2 9 )

Note that in this formulation the cycle time T y is a parameter, since its value is determined by the

value of Nj which is fixed. Problem (P1) is a difficult problem to solve since the objective requires a

numerical integration technique and the first set of constraints are non-differentiable. However, this

formulation can be simplified a great deal. The first change would be to write the batch size constraint

as the following system of inequalities.

{^} j
^i j ( 3 0 )

The purpose of doing this is to avoid nondifferentiabilities in the NLP. Next, the following

transformations can be used to convexify the problem (see Kocis and Grossmann, 1988):
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Bj=exp(bj)
Vj-exp(vj)
Nj=exp(tij) ( 3 1 )
Ty=exp(tLi)

Applying these transformation results in the following NLP:

maxSF=| f(HA)dHA
V Jo

s.t. b i^Vj-

X «j exp(nj +Pj VJ) <C

(P2)

i -

We can make one more simplification for the objective function. The SF is the cumulative probability

of HA up to the value of H. Presently we need to use some type of numerical integration technique to

evaluate the SF. But recall that f(HA) is assumed to be a normal distribution. Thus we can apply the

following transformation to normalize the distribution.
z =( H "HHA) / a HA ( 3 2 )

The transformed variable is distributed normally with mean 0 and standard deviation 1. More

important though, is the fact that the SF can now be written as

( 3 3 )

For all practical purposes the lower bound is essentially -<x>, since the function is essentially constant

between -co and -4, and the lower bound is in general less than -4. Thus the SF is only a function of z.

A plot of SF versus z is shown in Figure 8. Note that SF and z are monotonic, thus maximizing SF is

equivalent to maximizing z. This fact allows us to rewrite the NLP as follows:

max z=(H-t iH A ) /aHA
s.t. bi< Vj - log(Sij) i = l , .

X ij +Pj VJ) <C

1 1



( p 3 )

This problem reduces to a standard NLP problem that is much easier to solve than the original problem

( P 1 ) .

Example 4

To demonstrate the optimization of the SF consider the system presented in Example 1, the 3

stage 2 product problem. Using the formulation in P3 we have determined the optimal SF for

N=(2,2,1) and various values of the cost limit C using GAMS/MINOS on an HP 800. The trade off curve

is shown in Figure 9. It should be noted that the alternative solution in Example 1 corresponds to a

point in the tradeoff curve. Also note how much the optimal SF increases between $100,000 and

$110,000 as compared from $110,000 to $120,000 where it becomes increasingly more expensive

to increase the SF. It is interesting to compare the volumes at $100,000 where SF=0.023 and at

$110,000 where SF=0.816. For the former V=(1076, 1614, 2152) while for the latter V=(1265,

1897, 2500). As can be seen a modest increase in the sizes leads to a large increase in the stochastic

flexibility. Also in this case the overdesigns are of the order of 17%.

It is also of interest to optimize over Nj the number of units in each stage. This is a

straightforward extension of problem P3. First we need to add the cycle time as a constraint in the

formulation. For the same reasons we modified the batch size constraint, we will also formulate the

cycle time constraint as a system of inequalities, applying the convexification transformation:

tLj > log(tjj) -rij i=1 NP j=1 M ( 3 4 )

We also need the following constraints which restrict the values of Nj to be integer values. In terms of

the transformed variables T|J this is given by:

( 3 5 )

? y j r = 1 yj r-0,1 j=1 M r=1 NjU

where N i u is an upper bound on the number of units in stage j. The formulation (P3) with the

additional constraints in (34) and (35) corresponds to an MINLP problem which will be denoted as

( P 4 ) .
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Example 5

To demonstrate the optimization over V and N consider the 6 stage 5 product problem in Example

2. For this problem the tradeoff curve shown in Figure 10 has been generated by solving the

corresponding MINLP problem with DICOPT++ (see Viswanathan and Grossmann, 1990). It is

interesting to compare the solutions at $260,000 with SF=0.109 and $290,000 with SF=0.877. The

first solution is N=*(222211) and V=(3000, 1849 1974, 2560, 2316, 2062). The second solution is

N=*(223211) and V=(3000, 1984, 1974, 2748, 2442, 2213).

Optimization of E(SF)

Having developed a NLP to optimize the SF over V we will now extend the formulation to determine the

volumes which maximize the E(SF) for a fixed number of units and a specified cost. The NLP to solve

this problem is very similar to (P3).

max E(SF)»I Pk * SFk(zk)
S.t. zk=(H.HHA(k))/aHA(k)

bi<£vj-log(Sij) i= l , . . . ,
Z J s

( r 5)

where TIJTS in the cost constraint are the number of units in the top state (i.e. exp(TijTS)= Nj). For

each state Sk (k»1,..f TFS) we will have a different cycle time tu (k), mean jiHA(k)» standard deviation

GHA(R) a n d SF(k). In this case we cannot simply maximize the summation with zk substituted for SFR.

The reason for this is that E(SF) and E(z) do not have a direct relationship as opposed to SF and z which

does. In order to avoid evaluating the SF by numerical integration we can employ the following

nonlinear approximation of the curve shown in Figure 8.

exp(1.7009*z)

l+exp(1.7009*z) . (3 6)

This approximation was determined by nonlinear curve fitting. Thus, problem (P5) can be simplified

as the NLP problem:
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max E(SF)=I Pk • SFk(zk)
S.t. zk=(

l+exp(1.7009 * zk)
bi<Vj-log(Sij) i=l,...:

Y. «j exp(njs +pj VJ) <C

Ci(k)=tLj(k)-bi

Example 6

Again consider the 3 stage 2 product problem of Example 1. For this example let pj=(0.93,

0.95, 0.89). The top state Nj is chosen to be (322). The network structure in Figure 11 shows all

possible states Sk in the set TFS. The set TFS may contain a large number of states depending on the size

of the system and the top state chosen. A simple way to reduce the size of the set TFS is to determine the

states whose production capacity is limited by the number of units in each stage. These states can be

determined by evaluating the SF for each state with the capacities equal to V j m a x . In this problem

Vjmax=2500/ for all j . Evaluating the SF for each state as in Example 1 we obtain the results shown in

Table 8. This table shows that 8 states do not have enough units to produce even the smallest value of

the uncertain demand. Since these states cannot contribute to the E(SF) they can be removed from the

set TFS, leaving 4 states. In order to formulate (P6) we need to determine the probability of each state

and also the cycle time, using equations (21) and (1) respectively. This data is shown in Table 9. The

results of solving problem (P6) for this example are shown in a trade off curve, Figure 12. It is

interesting to compare the results at a cost of 135,000 and 150,000. The volumes are (995, 1493,

1990) and (1186, 1779, 2372) respectively. The E(SF) are 0.208 and 0.781 respectively. As

expected, as the cost increases the E(SF) converges to 0.8790, the sum of the probabilities of the 4

states remaining in set TFS. That is, the SF of each of the states goes to 1.0.

. Determination of the optimaJ number of units and the corresponding capacities to maximize the

E(SF) is a much more complicated problem. The complexity is due to the change in the size of the set

TFS, depending on the choice of the number of units in Nj, the top state. For example consider the

network structure in Figure 13. Here the top state is (333) and there are a total of 27 states in the

set TFS. But note that if the plant has 2 parallel units in stages 2 and 3 the top state is (322), as in the

14



last example, we would only have 12 states in the set TFS. This dynamic change in the set size is very

difficult to incorporate in an MINLP. An interesting side note is that the network structure for the top

state (322) is embedded in the network structure for the top state (333).

In order to determine the optimal volumes and number of units to optimize the E(SF) for a fixed

cost, an effective algorithm will be presented that involves evaluation of the SF and E(SF) and the

optimization problems described earlier in the paper. The algorithm is best demonstrated with an

example. A summary of the detailed steps will be presented after the example.

Example 7

Consider the 3 stage 2 product problem described in Example 6. In this case the maximum

number of units N j u in any stage is 3. Therefore there are 27 different states as in Figure 13. One

way to solve this problem is to solve problem (P6) for every possible combination of units. This is

equivalent to solving (P6) for each of these states, i, and its corresponding substates, k(i). Although

this is a valid method of solving the problem it can be computationally expensive to do so. An obvious

simplification is to eliminate states from the set that needs to be evaluated. This will reduce the

number of times (P6) needs to be applied. Note that eliminating a state from the set that needs to be

evaluated doesn't imply that it is totally eliminated from the problem. It is still a substate and

therefore may need to be included in the problem (P6) for other states that do need to be evaluated.

All 27 states are shown in Figure 13. This form is especially convenient since for any

particular state its substates are easily identified. For example if N=(122) we can identify (112),

(121), and (111) as substates to be included in (P6). Similarly if N=(333), (P6) would contain all

the states shown in the figure.

The set of states for which we need to apply problem (P6) will be labeled PTS. States will be

eliminated from this set if the upper bound on the E(SF) is less than the current lower bound on the

E(SF). Initially all 27 states are included in this set. In addition a set SI contains the states which

might need to be included in the program (P6) as substates. Initially all 27 states are included in this

set also. Obviously not all states in the set SI are included in (P6), only those which are substates of

the state being evaluated. Also states can be eliminated from the set SI if their SF=0.

The first step of the algorithm is to determine a lower bound on the optimal E(SF). This will be

used in the next two steps to eliminate states from the set PTS. A good heuristic lower bound can be

obtained by determining the optimal V and N that maximize the SF (i.e. solving problem P4) and using

the results to evaluate the E(SF). In this example solving the MJNLP problem (P4) for a cost of

$150,000 results in N*=(331) and V*=(1244, 1866,2488). The E(SF) was evaluated to be

0.865 (this number is actually the first three decimal places of the upper and lower bound from the

bounding scheme), which gives us an initial lower bound on the E(SF).
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The second step of the algorithm involves determining the absolute maximum SF that a state can

have. This is done by evaluating the SF of each state at V m a x using equation (14). The resulting SFjm a x

is an upper bound on the E(SF) for state i. Any state i whose SFjmax<0.865 can be eliminated from the

set PTS. Also any state in which SFjmax=O can be eliminated from the set SI since it cannot contribute

to the summation. The results of the evaluation are shown in Table 10. Based on these results we can

eliminate the following states from both PTS and SI since they have SFjmax=O, which is less than

0.865, (313), (123), (213), (312), (133), (122), (212), (311), (112), (121), (211), and (111). In

addition states (133), (132), and (131) have SFjmax=0.16 and thus can be eliminated from the set PTS.

Figure 14 is a revised version of Figure 13. In this figure the states eliminated from SI are also

removed from the state network. The states that remain in the set PTS are circled. This step has

eliminated 15 out of the 27 states in the set SI greatly reducing the number of states for which (P6)

needs to be applied.

The third step in the algorithm is similar to the second step except that the S F j m a x is

determined using (P3). Since the cost constraint is being used to limit the volumes it is expected that

the SFj m a x in this step will be smaller than in the previous step. Given the new SFj m a x states can be

eliminated from the sets as in the last step. The results of solving (P3) are shown in Table 11. Based

on the results state (133) can be eliminated from SI since SFjm a x=O. Also states (333), (233),

(323), (133), (223), (132), and (131) can be eliminated from PTS since SFjm a x£0.856. At the

end of this step SI contains 14 states and PTS contains 8 states. The resulting state network is shown in

Figure 15. An interesting side note is that we could eliminate even more states at this point. As shown

in Figure 15 (333), (233), (323), and (223) are not substates of any state in the set PTS and thus

they could be eliminated from the set SI. Since this doesn't influence the computational efficiency of the

algorithm this is not included as a step.

The fourth step involves calculating lower and upper bounds on the E(SF) for states in the set

PTS. The lower bound is calculated in the following manner. For state i use the optimal V* from (P3)

in the previous step to evaluate the E(SF) for state i. That is, for each substate k use V* from state i

and N from the substate in equation (14) to get SFk(j)(V*) in equation (37). Depending on the number

of substates, k(i), for i the bounding procedure described earlier can be used to obtain bounds on the

lower bound, but in general the lower bound can be written:

E(SF)[X)=Pi * SFf " + X pk(i) * SFk(i)(V*)

k(i) ( 3 7 )

Actually, since this is a maximization problem, any V that satisfies the cost constraint will result in a

lower bound. Intuitively though, it is expected that V* will give a very good lower bound. An upper

bound can be obtained by using the following expression:

^ P i * SF?ax + X Pk(i) * SFgg
k(i) ( 3 8 )
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This is an upper bound since SF|<max from (P3) in the previous step is an upper bound on SFj<. To

clarify how these bounds are calculated consider state i=(231) in Figure 15 which has substates k=i

(131) and k=2 (221) in the set SI. The optimal solution from (P3) for (231) is

V*=(1618,2427,2500). This solution is used to evaluate the SF of (131) and (221), and results in

SF(k=1)=0.1062 and SF(k=2)=0.9973. Using equation (21) to evaluate the probabilities the

following result is obtained:

E(SF)LO « ( 0 . 6 6 0 0 ) * ( 1 . 0 0 ) + ( . 0 9 9 4 ) * ( 0 . 1 0 6 2 ) + ( 0 . 1 0 4 2 ) * ( . 9 9 7 3 )

=0.7745

The upper bound is obtained by using SF m a x from (P3) in step 3 (see Table 11) for all states:

E(SF)U P = ( 0 . 6 6 0 0 ) * ( 1 . 0 0 ) + ( . 0 9 9 4 ) * ( 0 . 1 6 ) + ( 0 . 1 0 4 2 ) * ( 1 . 0 0 )

=0.7801

Repeating this for each state gives the results shown in Table 12. Having lower and upper bounds for

each state in the set PTS the size of PTS can be reduced by eliminating states whose upper bound is

smaller than the largest lower bound (i.e. 0.8635 for state 331). Doing this results in the elimination

of the following states: (232), (222), (231), (321), and (221). The state network is shown in

Figure 16. The size of PTS has been reduced to 3 states.

The fifth and final step is to use the NLP in (P6) to determine the optimal volumes that

maximize E(SF) for each state in PTS. The optimal design is the one resulting in the largest E(SF).

The results of this step are shown in Table 13. The optimal solution occurs with N=(331). In this

instance the optimal V and N that maximize the SF also maximize the E(SF). This is not always the case

but it demonstrates why the solution to the optimal SF problem is used in step 1. The circumstances

under which the optimal solutions will be the same is not clearly defined. There are many trade offs

that need to be considered. For example, when a stage has a very low probability it is appropriate to

add an extra unit, but doing so reduces the capital that can be spent on the other stages. Thus, the E(SF)

may actually decrease by adding the extra unit.

Table 14 shows the optimal number of units for various costs. This data is plotted in the

tradeoff curve, Figure 17. Unlike the previous tradeoff curves this one is not as smooth due to the

changing number of units as the capital investment increases.

The algorithm can be summarized as follows.

Step 0 Define the set PTS with the maximum number of units to be considered. Also

setSUPTS.

Step 1 Determine the optimal V and N which maximize the SF by solving the MINLP

P4. Then evaluate the E(SF) at these conditions; this value is the current

lower bound on the E(SF), E(SF)LB.

Step 2 Using (14) evaluate the upper bound SF m a x for each state i in the set SI using

V m a x as the capacity (i.e. with no regard for the cost). Eliminate any state i
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for which SFjm a x £ E(SF)LB from the set PTS. Also eliminate states i with

SFjmax=O from the set SI.

Step 3 For each state in the set SI determine the actual SFjmax and its optimal

volumes V* by solving the NLP in (P3) with the corresponding cost

constraint. Eliminate any state i for which SFjm a x ^ E(SF)LB from the set

PTS. Also eliminate states i with SFjmax=O from the set SI.

Step 4 Calculate lower and upper bounds on the E(SF) for each state i in the set PTS:
E(SF)^°=Pi * SFfax + X Pk(i) * SFk(i)(V)

p=Pi * SFfax

Here k(i) are the substates of i in the set SI. Eliminate from the set PTS any

state whose upper bound is smaller than the largest lower bound.

Step 5 Apply the formulation in (P6) to all states in the set PTS. The largest

resulting E(SF) is the optimal solution.

The importance of this algorithm is that it provides a rigorous solution to the maximization of the

E(SF) for choices of Nj and Vj without having to do an exhaustive evaluation of E(SF) for each discrete

alternative.

Conclusions

The paper has presented a measure for the probability of feasible operation for batch plants

with uncertainties in product demands and equipment availability. As has been shown efficient

procedures for evaluation of both the SF and E(SF) can be developed for the case when the demands are

described by normal distribution functions. Also efficient NLP's and MINLP and algorithms have been

presented for the optimization of the flexibility measures by exploiting a number of properties.

Finally a novel bounding procedure for the optimization of E(SF) with number of units and volumes as

decision variables has been presented to greatly reduce the computational expense. As has been shown

by the results the proposed methods can be used to assess the trade-offs involved in flexibility and

investment cost.
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Appendix

Proof of Property 1

If XT and X2 are normally distributed, then Y= aX^ + bX2 is also normally distributed with mean

aX, + bX2 and variance a2VAR(X1)+b2VAR(X2)

Mean:

E(aXi +bXz) = J X ( a X i +bX2) fi(Xi)f2(X2) dXi dX2

=("flaXi fi(Xi)f2(X2) dXi dX2+J"J"bX2fi(Xi)f2(X2)dXi dX2

-a£Xi f i (X i )dX i +b }" bX2 f2(X2) dX2

=a E(Xi) +b E(X2)

Variance: first note that

E((aXi +bX2)
2) = J X ( a X i + b X 2 ) 2 fi(Xi)f2<X2) dXi dX2

^ +b2x|) fi(Xi)f2(X2) dXi

=a2ff Xtfi

+2ab ( J~Xi

+

i(Xi)f2(X2) dXi dX2

fi(Xi)f2(X2) dXi dX2

i(Xi)f2(X2) dXi dX2

a2j" X2 fi(Xi) dXi

fi(Xi)dXi ) (£X2f2(X2)

b 2 f X l f2(X2) dX2

=a2E(X?) +2ab E(Xi)E(X2)+b2E(X|)

VAR(Y)=E(Y2)-[E(Y)]2

VAR(aXi +bX2)=E(( aXi +bX2 )
2)-[E(aXi +bX2)]

2

=a2E(X?) +2ab E(Xi)E(X2)+b2E(X|)-[aE(Xi) +bE(X2)]
2

=a2E(X2) +2ab E(Xi)E(X2)+b2E(Xi)-[a2E(Xi)2 *2ab E(Xi)E(X2) +b2E(X2)

=a2E(X?) -a2E(Xi)2
 +b2E(X2

2)-b2E(X2)2

=a2{E(X?) -E(Xi)2 }+b2 {E(X|)-E(X2)2}

=a2 VAR(Xi)+b2 VAR(X2)
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Table 1 Data for Example 1

(a) Size Factors (I/kg)
stage

product 1 2 3
1
2

2
4

3
6

4
3

(b) Processing Times (hr)
stage

product 1 2 3
1
2

8
16

20
4

8
4

(c) Mean and Standard Deviation for Q
product

1
2

(kg)

u200,000
100,000

1
1
0
0

a
,000
,000

(d) Cost Coefficients
stage j a

1
2
3

250
250
250

0.6
0.6
0.6

Table 2 Alternative Designs

(a) Alternative 1

stage
1
2
3

Nj Tj
1200
1800
2400

(b)

3tage.
1
2
3

Alternative
r j .

2
2
1

1265
1900
2500
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Table 3
State Number

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18

State Probabilities for Example 2.
1 2 3 Probability
2
2
2
2
2
2
1
1
1
1
1
1
0
0
0
0
0
0

2
2
1
1
0
0
2
2
1
1
0
0
2
2
1
1
0
0

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

0.59049
0.06561
0.13122
0.01458
0.00729
0.00081
0.13122
0.01458
0.02916
0.00324
0.00162
0.00018
0.00729
0.00081
0.00162
0.00018
0.00009
0.00001

Table 4 Computation of bounds for Expected Stochastic Flexibility
Iteration State evaluated State SF LB UB

1
2
3

221
121
211

0.4986
0
0

0.2944
0.2944
0.2944

0.4398
0.3598
0.2944

Table 5 Convergence of E(SF) to SF as pj-
P E(SF)

1.0.

0.9
0.92
0.95
0.97
0.99
0.999

0.2944
0.3286
0.3858
0.4282
0.4742
0.4962
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Table 6 Data for Example 3
(a) Size Factors (I/kg)

Product
1
2
3
4
5

1
7.9
0.7
0.7
4.7
1.2

2
2.0
0.8
2.6
2.3
3.6

3
5.2
0.9
1.6
1.6
2.4

4
4.9
3.4
3.6
2.7
4.5

5
6.1
2.1
3.2
1.2
1.6

6
4.2
2.5
2.9
2.5
2.1

(b) Processing Times (hrs)
Stage

Product
1
2
3
4
5

1
6.4
6.8
1.0
3.2
2.1

2
4.7
6.4
6.3
3.0
2.5

3
8.3
6.5
5.4
3.5
4.2

4
3.9
4.4
11.9
3.3
3.6

5
2.1
2.3
5.7
2.8
3.7

6
1.2
3.2
6.2
3.4
2.2

(c) Mean and Standard Deviations for demands (kg)
product

1
2
3
4
5

u
250,000
150,000
180,000
160,000
120,000

10,000
8,000
9,000
6,000
3,000

(d) Cost, Probabilites and Number of units
Stage

1
2
3
4
5
6

250
250
250
250
250
250

0.6
0.6
0.6
0.6
0.6
0.6

0.96
0.98
0.97
0.95
0.93
0.98

3
2
3
2
1
2

3000
1900
2000
2600
2300
2100
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Table 7 States evaluated and resulting bounds for Example 3
iteration

1
2
3
4
5
6
7

n
323212
223212
323112
322212
323211
313212
123212

Sf
0.9972
0.9247

0
0

0.9918
0
0

LB
0.6234
0.6957
0.6957
0.6957
0.7210
0.7210
0.7210

UB
0.9243
0.9166
0.8293
0.7569
0.7568
0.7271
0.7239

Table 8 SF of states in

k State

the set TFS at maximum capacity for Example 6
S F m a x

1
2
3
4
5
6
7
8
9
10
11
12

322
222
312
321
122
212
221
311
112
121
211
111

1.0
1.0
0.0
1.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0

Table 9 State probabilities and Cycle times

k State Probability TL1

for states in Example 6

1
2
4
7

322
222
321
221

0.5750
0.1298
0.1421
0.0321 .

10
10
10
10

5.33
8

5.33
8
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Table 10 State SF from the second step in Example 7
.max

State SF"
333
233
323
332
133
223
232
313
322
331
123
132
213
222
231
312
321
113
122
131
212
221
311
112
121
211
111

1.00
1.00
1.00
1.00
0.16
1.00
1.00
0.00
1.00
1.00
0.00
0.16
0.00
1.00
1.00
0.00
1.00
0.00
0.00
0.16
0.00
1.00
0.00
0.00
0.00
0.00
0.00
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Table 11 State SF from the 3rd step in Example 7
.max

State SF'
333
233
323
332
133
223
232
322
331
132
222
231
321
131
221

0.08
0.03
0.01
1.00
0.00
0.03
0.99
1.00
1.00
0.02
0.99
1.00
1.00
0.16
1.00

Table 12 Resulting Lower and Upper bounds from step 4 of Example 7
State
332
232
322
331
222
231
321
221

LB
0.7035
0.7159
0.7821
0.8635
0.7692
0.7745
0.7899
0.6947

UB
0.9675
0.8535
0.8791
0.8728
0.7711
0.7801
0.7920
0.6947

Table 13 Optimal E(SF) from 5th step of Example 7
State E(SF)
332
322
331

0.7036
0.7820
0.8650
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Table 14 Trade-off curve data for Example 7
cost

100000
102000
105000
106000
109000
112000
115000
120000
125000
135000
145000
150000
160000
165000
170000
180000
190000
195000
200000
210000

N
221
221
221
221
221
221
221
221
321
321
331
331
332
332
332
332
332
332
332
333

E(SF)
0.0312615
0.0923951
0.20841
0.284827
0.5196356
0.6425975
0.6694
0.6913
0.728
0.7866
0.8504
0.865
0.8808
0.9277
0.9454
0.9635
0.9644
0.9651
0.9662
0.9729
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82

e,

Figure 1 The stochastic flexibility equals the probability that the combination 91 82 lie within the
feasible region.

82

State 1

State 2

81

Figure 2 Showing the effect on the feasible region of equipment failure.
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Illlllllllllllltlllllllllllllllllllllll Q1

Figure 3 Linear feasible region in the space of the uncertain demands

nf={3,l} nf={2,2}

n?={1,2}

nf={0,2}

nj12={0,0}

Figure 4 Network Representation of states
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j
p-0.4666
SF-0.95

nf-{3,1}

p-0.2333
BSF-0.95

nf={2,2}

p=0.1555
BSF=0.95

p=0.0292
SF=O

nf={2.1}

p=0.0778
BSF-0.95

nf={1,2}

p=0.0173
BSF=0.95

p=0.0097
SF=O

p=0.0086
BSF=0.95

n?={0,2}

p=0.0006
SF=O

nj10={1.0}

p=0.0011
SF=O

p=0.0003
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Figure 5 Network Representation shown with State Probabilities and BSF resulting

from the evaluation of SF for State 1.
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Figure 6 Network Representation shown with State Probabilities and

BSF resulting from the evaluation of SF for State 1 and State 2.
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Figure 7 Convergence of bounds for Example 3

Figure 8 SF versus z
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Figure 9 Trade-off curve for Example 4.
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Figure 10 Trade off curve for Example 5
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Figure 11 State Network for Example 6
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Figure 12 Trade off curve for example 6
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Figure 13 Network structure defined by Nju=3 for all j . .
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Figure 14 Network after limination of states in step 2.
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Figure 15 Network after elimination of states in step 3.
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Figure 16 Network after elimination in step 4.
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Figure 17 Trade off curve for the optimal E(SF) over V and N problem
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