
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Finding Optimal Bayesian Networks by 
Dynamic Programming 

Aji t P. S i n g h a n d A n d r e w W . M o o r e 

June, 2005 
C M U - C A L D - 0 5 - 1 0 6 ^ 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 

Abstract 

Finding the Bayesian network that maximizes a score function is known as structure learning 
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1 Introduction 

Learning the structure of a Bayesian network without restrictive assumptions is a hard 
problem. The number of possible structures is O (n\2^)^j (Robinson, 1 9 7 3 ) , making ex
haustive enumeration impractical. Under a wide variety of assumptions, including those of 
this paper, structure learning is NP-hard (Chickering, 1 9 9 6 ; Chickering et al., 2 0 0 3 ) . 

We propose an algorithm, O P T O R D , to find a Bayesian network that maximizes a de
composable scoring function, like BDeu. This algorithm is feasible for n < 2 6 , and is useful 
for learning moderately sized networks. One of the uses of O P T O R D is that we are able to 
quantify how close a heuristic structure learning algorithms gets to a global optimum. An
other use is that it is now possible to study the properties of decomposable scoring functions 
without the potential for results being distorted by the behaviour of local search. 

2 Problem Description 

We are given a fully observed data set D on n categorical variables. A Bayesian network 
represents relationships among variables as a directed acyclic graph G = (V,E) where each 
node corresponds to a variable and each edge to a dependence relationship. We are also 
given a scoring function D A G S C O R E ( D ) that is decomposable, that is 

D A G S C O R E ( G ) = ]P NODESCORE(x|parente(x)) ( 1 ) 
X€V 

where N O D E S C O R E depends on the parameters of the conditional density x\parents(x). 
The most common scoring metrics axe decomposible: BIC (Schwartz, 1 9 7 9 ) , BD (Cooper 
k Herskovits, 1 9 9 2 ) , BDeu (Buntine, 1 9 9 1 ) , BDe (Heckerman et al., 1 9 9 5 ) . Structure 
discovery is the task of finding a model that maximizes D A G S C O R E . 

In this paper we use the notion of an variable ordering (order). An order n is a per
mutation of the variables where if TTI = x then parents(x) C {TTI . . .7Ti_i}. Any digraph 
respecting the parent constraint must be acyclic. An order encodes a set of 0 ( 2 N ) possible 
structures, and a structure can be consistent with many orders. 

3 Exact Structure Discovery 

What if one were given a oracle that, for A C V and x € A, returns the best subset of 
parents from A — {x} as well as the corresponding node score ? Our dynamic programming 
algorithm assumes the existence of such an oracle 1 . It suffices to find an ordering of 
variables that contains the highest scoring network2. To construct the best network apply 
the oracle to each node, with its predecessors in the ordering as potential parents. 

We start with a simpler question than full structure discovery. Every acyclic digraph 
has at least one leaf. Can we identify a leaf of the best network, X£ = L E A F ( V ) ? Since 
xt cannot be the parent of any other variable, the score of the best network on V consists 
of two parts: (i) the score of the best network on V - {xt} and (ii) the score of L E A F ( V ) 

xThe oracle is a P-cache (section 4). 
2 There can be many networks that achieve the highest score. 
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given the best set of parents from V — {xt}, i.e., the set of parents that maximizes the node 
score of X£. This argument requires a decomposable scoring metric. Recursively, we can 
ask which node is a leaf in the best network on V - {xg}. This process induces a (reverse) 
order on the variables. It remains to be shown how to choose L E A F ( V ) . 

Suppose you had the score for the best network on V — {x} for each x G V. Since a leaf 
cannot influence the node score of any other variable, L E A F ( V ) is the node whose removal 
maximizes the score of the best network on the remaining variables. Formally 

SCORE(V ) = max S C O R E ( V - {x}) + BESTSCORE(V, X) (2) 

L E A F ( V ) = argmax SCORE(V - {x}) + BESTSCORE(V, X) (3) 

BESTSCORE(V, X) = P S ( ^ X ^ y N O D E S C O R E ( ^ P 5 ) 

where SCORE(0) = 0, LEAF(0) = nil, and PS denotes a parent set. 
To visualize the algorithm consider the subset lattice in figure 1. There is one state for 

each subset of V. The children (successors) of state S in the lattice correspond to potential 
choices for L E A F ( S ) . 

A naive depth-first search of the lattice corresponds to direct evaluation of recurrences 2 
and 3. The algorithm begins at the bottom of the lattice in figure 1 and searches all paths 
to the top. Each transition from state S to a successor corresponds to choosing a leaf in 
a network on the nodes in S. Thus a single path from {1,2,...,n) to {} corresponds to a 
sequence of leaf node removals, a (reverse) variable ordering. 

A simple depth-first search of the lattice would require 0(n!) time and O(n) space. The 
alternative is more memory intensive. Once the value of S C O R E ( S ) is computed on one 
search path, it can be memoized. If SCORE(S ) is cached, future search paths that arrive at 
S can be pruned. This is dynamic programming on the subset lattice (algorithm 1). 

When algorithm 1 terminates the value of L E A F ( S ) is known for every S CV. The last 
element of the order is L E A F ( V ) . The second last element of the order is L E A F ( V — L E A F ( V ) ) , 
etc. For memory efficiency, one can forgo storage of L E A F ( V ) , as it can be recovered in 
(9(n 2) time once all the SCORE(-) terms have been computed. 

3 .1 C o m p l e x i t y 

O P T O R D must store one floating point number for each state in the subset lattice, and this 
requires 0 ( 2 n ) memory. In the worst case, the oracle can require 0(n2n) memory, but will 
almost certainly never reach the worst case in practice. Since SCORE(-) is computed for 
each state there are 2n calls to the oracle. As will be seen in section 4 the worst-case cost 
of invoking the oracle on each x € S is | 5 | 2 l 5 ' _ 1 . In practice the cost is much less; the 
oracle uses a branch-and-bound algorithm. Summing over all states in the subset lattice 
the complexity is 0 ( n 3 n ) . If the indegree of a node is bounded the overall cost is reduced 
to 0(n2n). These are loose upper bounds. 

The cost of storing the lattice restricts O P T O R D to moderate values of n. A simple 
alternative, R A N D ORDERS, generates random orderings and uses the oracle to find the 
best network in each order. This is similar to the use of random orderings as inputs to K2, 
except that we find the provably best network in each order. 
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{ 1 , 2 , 3 , 4 } 

Figure 1: Subset lattice on a network with four nodes 

4 P-Caches 

Section 3 assumed the existence of an oracle that can choose the best subset of parents from 
a candidate set. In this section we describe an implementation of the oracle, using a set of 
data structures, known as P-caches. 

Given n variables, a parent cache (P-cache) for variable x compactly records all pertinent 
information about the 2n~~1 possible parent sets of variable x. Throughout this section 
we assume wlog that the n — 1 potential parents of a variable are designated by integers 
l , 2 , . . . , n — 1. Henceforth we assume the BDeu score is used, but these ideas work with 
any decomposable score. 

A P-cache supports two operations: P S C O R E ( P S ) which returns the node score of x in 
which P S C { 1 , 2 , . . . ,n — 1} are the parents of x and B E S T P S ( X , P S a v a j j ) which finds the 
subset of P S a v a i i , the set of potential parents, which maximizes the score. 

4 .1 T e r m i n o l o g y 

We introduce the following notation. An extension of a parent set PS is the set of all parent 
sets that include PS as a subset and, other than the members of PS, contain only variables 
that have a larger integer designation than the elements of PS. If a parent set is treated as 
a sorted list of integers PS = {ii , 2 2 , . . . , ik) then we can also define prefixes. 

M A X M E M B E R ( P S ) = largest integer in P S (MAXMEMBER (0) = 0) 

EXTENSIONS(PS) = { P S ' | P S c P S ' A Vz e ( P S ' - P S ) , t > M A X M E M B E R ( P S ) } 

PREFIXES(PS) = {0, {*!>, {h.i2}, . . . , { < i , . . . , Zfc_i}} 

A parent set is useless iff no extension of PS has a higher score than the highest scoring 
prefix of PS. If a parent set is useless then it is easy to prove that no extension of it can 
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Algori thm 1: O P T O R D ( S ) — Store score of the best network on S in C A C H E ( S ) 

bests core < oo 
if S = 0 t h e n return 0.0 
foreach x E S do 

if CACHED ( S - Z ) then 
s <— CACHE(S-X) jl if cached retrieve the score of best network on S — x 

else 
s <— QPTORD(S' -X) / / if not cached compute score of best network on S — x 

s <— s + BESTSCORE(5,X) / / add in the score of the best subset of parents for x 
if bestscore < s then 

L E A F ( S ) < - x 
bestscore <— s 

C A C H E ( S ) <— bestscore 
return bestscore 

be the parent set for x in the optimal Bayesian network. 

A P-cache for variable x is a data structure that stores a set of tuples 

(PSi, PSCORE(PSi), M A X E X T ( P S i ) ) 

where 

P S C O R E ( P S ) = score for using PS as parents of x 

M A X E X T ( P S ) = M A X P S C O R E ( P S ' ) 
V ' PS' € EXTENSIONS(PS) 

where a parent set does not appear in the P-cache if it is useless, and appears once otherwise. 
Tuples are stored in a data structure that supports efficient mapping from any parent set to 
its cached value. Once the P-cache is built computing PSCORE(-) is simply a lookup. While 
we cannot retrieve values for useless parent sets, those values are not required to find the 
optimal structure. Naively computing B E S T P S ( X , PS) would require searching all possible 
subsets of PS 

4 .2 C o n s t r u c t i n g t h e P - c a c h e 

Instead of explicitly iterating over all 2 n _ 1 parent sets, we perform a depth-first search in 
which the state is a parent set. In algorithm 2 the recursive function takes a set of potential 
parents for variable x, PS, as well as the node score of the best prefix, BPS, and returns 
the node score of x given the best set of parents from PREFIXES(PS) U EXTENSIONS (PS). 

If we can prove that the score of any extension must be less than the score of the best 
prefix of PS, we can prune the search over parent sets (note 1). The for-loop generates every 
possible extension of PS, and keeps track of the best score for extensions and prefixes of 
extensions of PS (note 2). If we find an extension of PS that is better than the best prefix 
of PS, we record the fact in the P-cache (note 3). Thus we never store a useless parent 
set. To compute all the P-caches on a network with variables V run CONSTRUCT(x, {},0) 
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An important practical detail when evaluating scores, or upper bounds on scores, is 
that they require counting records that match a particular condition. We use a variant of 
AD-tree search (Moore & Lee, 1998) to amortize the cost of counting operations on larger 
data sets. 

For the BDeu score 3 we propose the following bound for BOUNDEXTENSIONSCORE(PS) . 
We have a conditional probability table representing the density Xi\PS. Imagine there 
exists a "virtual" variable x* that, when added to P S , yields a perfect predictor for X{. 
That is, all the data that matches an assignment to PS U {x*} shares the same value 
for X{. Each row of Xi\PS is shattered into a set of pure virtual rows. Formally, let the 
J T H row in Xi\PS be denoted, by (AT^I, AT^2 , . . . , A T ^ R I ) . This row is transformed into a 
set of virtual rows in Xi\(PS U X*), denoted . . . , vm}. The virtual rows are pure iff 
V/C Vk = ( 0 , . . . , 0, Nijk, 0 , . . . , 0). An illustration of the transformation from a row to pure 
virtual rows is shown in figure 2(a) in appendix B. Let B^(S,D) denote the row score 
of virtual row Vk derived from row ij in the original network. Note that the introduction 
of virtual rows respects marginal constraints, if x\ is marginalized out of the virtual rows 
{ v i , . . . , vm} we get back the original row ( A T ^ i , . . . , N{jri). 

Theorem 1. Consider a row ( I V ^ I , . . . , Nijn) and the virtual rows {v\,..., vm} formed by 
adding variable x* to the parent set. If the virtual rows are pure then the BDeu score is 
maximized. 

Proof. See appendix B for the proof. The virtual rows transformation of this theorem is 
how BOUNDEXTENSIONSCORE is implemented. • 

CONSTRUCT is a branch-and-bound algorithm, and in the worst case the P-cache can 
have 0 ( 2 n ) tuples. However, good Bayes net scoring functions penalize complex models, 
and so many parent sets are useless and not stored. 

4 .3 S e a r c h i n g a P - c a c h e 

When constructing the P-cache for variable x all that was stored were useful parent sets, 
the node score of x given the parent set, and the best node score of x given an extension 
of the parent set. Algorithm 3 is a recursive function that finds the best subset of parents 
from a set of potential parents. Two invariants are maintained 

Mi G PSavail,i > M A X M E M B E R ( P S ) 

bestscore > M A X P S C O R E ( P S ' ) 
"~ PS' £ PREFIXES(D) V ' 

The function returns the score of the best subset of parents. Typically the call is 

BESTSCORE (X, { } , PSavaih 0, PCX). 

If PS is non-empty those variables are forced to be parents of x. 
BESTSCORE is a branch-and-bound algorithm where we consider the node score of x 

when we either throw away a potential parent (note 1) or make it an actual parent of x 
(note 2). This continues as long as there is an extension of PS with a better score. In the 
worst case the run-time is exponential in \PSavau\, but is typically much faster. 

3The Bayesian Dirichlet class of scoring metrics is explained in appendix A. 
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Algori thm 2: CONSTRUCT(X, PS, BPS) — Construct P-cache for x 
x child variable, the variable we are building the P-cache for. 
PS set of potential parents for x 
BPS node score of x given the best prefix of PS 
score node score of x given PS 
mes node score of x given the best extension of PS (the return value) 
bps{ node score of x given the best prefix of PS U{i} 
bpoei node score of the best prefix or extension of PS U{i} 

1 if B O U N D E X T E N S I O N S C O R E ( P S ) < BPS then return BPS 
mes = score = NODESCORE(:T | PS) 
q = MAXMEMBER(P5' ) 

2 for i e {q + 1 , q + 2 , . . . , n - 1} do 
bpsi = MAX(BPS, score) 
bpoei = C O N S T R U C T ^ , PS U { I } , bpsi) 
mes = MAX (mes, bpoe^) 

3 if mes > BPS then add (PS, score, mes) to P-cache for x 
return mes 

5 Experiments 

The purpose of our experiments is to compare the performance of O P T O R D to heuristic 
algorithms. Since our concern is with the algorithmic problem of structure discovery, and 
not the quality of scoring functions, we leave a comparison of the networks produced for 
future work. All experiments were done using BDeu scoring on an Opteron 1.8 GHz machine. 

5.1 D a t a S e t s 

The data sets used are presented in table 1. Seven of the data sets (nursery, zoo, adult, 
letters, covtype, mushroom, and autos) are from the U C I ML repository (Blake & Mertz, 
1998). Real-valued attributes were discretized to binary attributes by thresholding on the 
median value. The biosurv data set contains records on hospital admissions in Pennsylvania 
(Moore & Wong, 2003). For some of the data sets, we do not include all available records 
for computational reasons (i.e., adult, covtype, biosurv, mushroom, alarm). Parity consists 
of uniform noise for the first 9 attributes, with the last attribute being the parity of the 
first 9. 

5.2 R e s u l t s 

Before O P T O R D can be used to find the optimal Bayesian network, the P-cache must be 
constructed (see table 1). While the virtual rows bound (§4.2) is a true upper bound, it is 
loose and yields only limited forward pruning in BOUNDEXTENSIONSCORE. However, once 
the node score of a parent set is computed it is possible to prove it is useless (post-pruning). 
Thus relatively small P-caches can take a long time to build. 

To illustrate the behaviour of O P T O R D we compare it to three other discovery algo-
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PCX 

PS 
PS avail 
bestscore 

Algori thm 3: BESTSCORE(X, PS, PSavaii,bestscore, PCX) — Find best parents for x 
P-cache for variable x 
Current set of best parents for x 
Set of potential parents for x 
node score of x given PS 

res Intermediate variable, floating point 
MES(PS') Returns the score of the best extension PS from PCX 

SCORE(PS') Returns the score of PS from PCX 

if PS P-cache then return bestscore 
res = MAx(bestscore, SCORE (PS)) 
if M E S ( P S ) > res A PSavail ^ {} then 

m = MlN(PSavail) 
1 res = BESTSCORE(:T, PS, PSaVaii -{m}> res, PCX) 
2 res = BESTSCORE(Z, PSu{m}, PSaVaii -{m}, res, PCX) 

return res 

rithms: R A N D ORDERS (§3); O P T REINSERT, the optimal reinsertion algorithm of (Moore 
& Wong, 2003), which originally used P-caches without forward pruning; HLLLCLIMB, an 
optimized version of hillclimbing that uses multiple restarts and caching to ensure node 
scores are never recomputed. For zoo and autos, all algorithms use the indegree constraint. 

The results in table 2 confirm that O P T O R D is producing a higher scoring solution than 
the alternatives. If O P T O R D is too slow then R A N D ORDERS provides a reasonable any
time alternative. However, because the search over orders is uninformed, it will generally 
be beaten by optimal reinsertion. The run-time of O P T O R D can be dramatically affected 
by the cost of P-cache lookups. For example, on biosurv when k = 6 the optimal structure 
is found in 5802s (vs. 12649s when k = 22). In both cases the score of the best network 
was the same. To put the results in perspective, even if we could score 100 structures per 
second it would take over 1 0 7 7 years to test all possible structures for a 22 node network. 

5 .3 D i s c u s s i o n 

Two forms of path pruning were attempted: (i) pruning if the path score was lower than 
the best network found thus far. This happens rarely, as it is unusual for a network on a 
small subset of variables to have a lower score than any network on all the variables, (ii) 
By ignoring acyclicity we note that YlxeA BESTSCORE(X, A — {x}) is an upper-bound on 
the score of a network on A. If the path score, the score of leaves chosen so far, plus this 
bound is worse than the best known network, prune the search. Any combination of the 
pruning techniques slowed the search down. At any state A in the subset lattice, there are 
(n— \A\)\ paths to it - pruning one path leaves many others paths to be tested. Computing 
SCORE(A) requires 0(2' A I) time, but prevents all other paths from being expanded. 

Given the performance of R A N D ORDERS it would be worthwhile to consider a more 
informed way of sampling the space of orderings. The MCMC chain over variable orderings 
of (Friedman & Roller, 2000) may work. Other directions for future work include finding 
the fc-best networks and adapting this work to find Markov blankets. 
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Table 1: P-cache construction, n and k indicate the number of variables and indegree 
bound, respectively. Italicized entries are the P-caches used in table 2. 

NAME n k RECORDS TIME (S) SIZE ( M B ) 

nursery 9 9 12960 10 0.2 
parity 10 10 1 x 106 650 1.4 
adult 15 15 10000 4049 0.6 
letters 17 17 20000 13093 22.1 
covtype 21 21 1000 23577 489.6 
biosurv 22 22 5000 117724 1082.4 
zoo 17 6 101 30 6.0 
biosurv 22 5 5000 516 16.1 
biosurv 22 6 5000 1731 45.4 
mushroom 23 8 4000 34583 313.4 
autos 26 4 205 99 8.5 

Table 2: Comparison of structure learning algorithms. Run times do not include P-cache 
construction. The method(s) that reached the optimal score are in bold. Under hillclimb 
score A refers to the score after 120s, score B after 600s. 

DATASET EXACT RAND ORDERS OPT REINSERT HILLCLIMB 
SCORE TIME SCORE TIME SCORE TIME SCORE^ SCORER 

nursery - 1 2 5 7 1 7 < 1 - 1 2 5 7 1 7 120 s - 1 2 5 7 1 7 < 1 S - 1 2 5 7 1 7 same 
parity - 6 2 3 8 7 4 1 < 1 S -6238743 120 s - 6 2 3 8 7 4 1 2 s -6931538 same 
adult - 1 1 2 5 6 3 1 S -112570 120 s -112603 1 S -112796 -112785 
letters - 1 9 6 3 5 9 53 s -196834 120 s -196475 3 s -198638 -198209 
zoo - 5 8 7 18 s -593 120 s -592 2 s -649 -647 
covtype - 7 6 0 3 98 m -7654 120 s -7628 27 s -7684 same 
biosurv - 3 0 2 9 7 210 m -30321 120 s -30303 115 s -30435 -30397 
mushroom - 3 8 1 0 8 621 m -38142 120 s -38122 91 s -41010 -40711 
autos - 3 0 5 4 807 m -3159 120 s -3107 2 s -3159 same 

6 Related Work 

Most work on Bayes net structure learning is based on stochastic local search, usually 
hillclimbing (Buntine, 1991). There are several approaches to dealing with local minima: 
multi-link lookahead (Xiang et al., 1997), more complex search operators (Moore & Wong, 
2003), guiding the search towards promising candidates (Friedman et al., 1999; Brown et al., 
2004), constraining the (causal) search (Spirtes et al., 1993; Cheng et al., 1997; Margaritis 
& Thrun, 2000), and searching in a smaller space such as equivalence classes (Chickering, 
2002; Kocka & Castelo, 2001) or orderings (Friedman & Roller, 2000). 

The idea of using dynamic programming for exact Bayes net structure discovery was 
first proposed by Koivisto & Sood (KS) (Koivisto & Sood, 2004). Their paper extends the 
work of (Friedman & Roller, 2000; Friedman & Roller, 2003), which computes the Bayesian 
posterior probability of structural features, such as edges, as well as a single MAP model, by 
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MCMC search over orderings. KS showed that the equations of (Friedman & Roller, 2000; 
Friedman & Roller, 2003) can be solved as a recursive function over intermediate terms. This 
recursive function can be computed by dynamic programming, but requires precomputation 
of the intermediate terms, which is done through the Fast Mobius Transform. 

O P T O R D has a different class of functions to optimize, the decomposable scoring met
rics of equation 1. We have shown that incrementally removing leaves yields a (different) 
recursive equation, which can be solved by dynamic programming without the introduction 
of intermediate terms. Our basic operator is finding the best set of parents from a set of 
potential parents, which we compute efficiently using P-caches. An advantage of our imple
mentation, which could also be applied to RS, is the use of AD-trees to greatly reduce the 
cost of computing sufficient statistics from the data set. 

The cost of dynamic programming for both algorithms is 0(n2n) time, but with indegree 
constraints, RS is faster because many of the intermediate terms are zero - i.e., stored, but 
not computed. Using P-caches can be very expensive if there are no indegree constraints and 
the BDeu bound is loose; but if there are no indegree constraints computing the intermediate 
terms in RS is just as hard. Both algorithms have a worst case 0(n2n) memory requirement, 
but the advantage is ours since the worst case is only achieved when there is no bounding 
in the construction of the P-cache. This roughly corresponds to the implausible scenario 
where all parents sets, regardless of size, are all equally good for a given node. In our 
algorithm the memory requirement is 0 ( 2 n ) to store the subset lattice plus the size of the 
P-cache; in RS the cost is fl(n2n) to store the intermediate terms. RS supports some forms 
of edge constraints (layering), which can greatly reduce the search space. Layering makes 
direct comparison of their results to ours difficult. 

7 Conclusions 

The most common framework for structure discovery in Bayesian networks is to maximize a 
decomposable scoring function, like BDeu, over the space of acyclic digraphs. Existing work 
has been almost entirely devoted to heuristic methods, even for networks with less than 25 
variables. This paper (i) describes the first exact solution to this framework with less than 
superexponential complexity in the number of variables, (ii) describes the branch-and-bound 
construction and search of P-caches, which allow one to select the optimal set of parents 
for any variable under decomposable scoring metrics, and (iii) evaluates the performance of 
this algorithm on benchmark data sets. 
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A Bayesian Dirichlet (BD) Scoring 

The Bayesian Dirichlet (BD) scoring function (Cooper & Herskovits, 1992) scores a structure 
S against data D 

P(S,D) = P(S)P(D\S) 
n qi - p r ^ T T T T r( a»i) TT rfoijfc + Nijk) 

- P { S ) l\ii r(aij + N i j ) 11 T(aijk) 

Where 

• i - indexes the variables in the network, i.e., X{ £ V. 

• j - indexes the qi distinct assignments to the parents of X{. 

• k - indexes the r; values of X{. 

• OLij - the prior weight on the j t h assignment to the parents of X{ 

• OLijk - the prior weight of X{ taking on its k t h value given the j t h assignment to its 
parents. 

• N{j - the number of records that match the j t h assignment of the parents of Xi 

• Nijk ~ the number of records that match the k t h value of Xi and the j t h assignment 
to the parents of X{. 

• P(S) - prior distribution over structures. 

For the BDeu (likelihood equivalent uniform Bayesian Dirichlet) score (Buntine, 1991) we 
assume that P(S) is uniform, = l/q%, and â -fc = otij/ri. Thus the BDeu score is 

B(S,D) - 11 ft T ( a i j + N i j ) 11 T{ai.k) 

and the score for the j t h row in the conditional probability table for Xi is 

K (q n\- r( a*i) TT r(aufc + Nijk)  
Bi*{S>D) ~ T(a~+N~f) 11 T(aijk) 

B Proofs 

The following are proofs related to the BDeu scoring metric. The notation follows that 
established in section 4.2 and appendix A. 

Fact 1. The Pochhammer symbol, a.k.a. the rising factorial 

_ T(x + n)  
{ X ) n ~ T(x) 

is monotonic nondecreasing on [0, oo) for any fixed n > 0. 
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Fact 2. (Dragomir et al., 2000, Theorem 4). For a given a> 0 the mapping (a)x on [0, oo) 
is supermultiplicative: 

(a)x+y > (a)x(a)y 

Fact 3 . (Dragomir et al, 2000, Theorem 7) The Digamma function is monotonic 
nondecreasing on (0,oo). 

Lemma 1. Given a pure virtual row Vk = ( 0 , . . . , 0, N^k, 0 , . . . , 0) of length ri, 

(Q T)\ = IXajj) T(aijk + Nijk) 
°HV>") T { a i j + N . j k ) r ( a y f c ) 

is monotonically nonincreasing in aij. 

Proof. Trivially true if Nijk = 0. If Nijk > 0 observe that 

D) = V(aijk + Nijk) - Vfaj + Nijk) < 0 

by noting that > ctijk and applying fact 3. • 

If any N{jk = 0 then the corresponding pure virtual row vk has no direct contribution 
to the score,i.e., B^(S, D) = 1. However, these extra rows have an indirect effect since they 
reduce the value of ay . Lemma 1 shows that including these extra rows cannot decrease 
the score of the other non-zero pure virtual rows. This lemma allows us to not worry about 
whether N{jk = 0 in the proof of theorem 1. 

Lemma 2. Given a row (AT̂ i, AT^,..., N{jr.) where Nij = Ylk Nijk the row score is max
imized when for some fc, Nijk = Ny. 

Proof. Reexpress Bij(S,D) as follows, and then apply fact 2 

nan + N i j y a i j k ) N » i + - + N ^ 

• 
Lemma 3. Given a row v = ( 0 , . . . , 0, m*, 0 , . . . , 0, N^k, 0 , . . . ) and a row v' = ( 0 , . . . , 0, mjk+ 
tk,0,... ,0, Nijk,0,...) for mk,tk > 0 the row score of v is no smaller than the row score of 
V . 

Proof. Let the score of rows v, v' be denoted BV(S,D) and BV>(S,D) respectively. 
BV{S,D) = Tjajj + Njjk + mk+ tk) T(aijk + mk) 
Bv, (S, D) r(ay + Nijk + mfc) r (a i i f c + mk + tk) 

_ (ajj + Njjk + mk)tk > 

(ctijk + mk)tk ~ 
This proof does not require that the counts m*, and mk + tk be in the same position within 
their rows. rn 
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Theorem 1. Consider a row (iVyi,..., iV r̂.) and the virtual rows {vi,...,vm} formed by 
adding variable x* to the parent set If the virtual rows are pure then the BDeu score is 
maximized. 

Proof There must be at least r virtual rows for them to be pure while respecting the 
marginal constraints. If there are more rows, then purity is achieved at the cost of extra 
parameters, so m = r. The only way to improve the score is to remove a row (i.e., reduce 
the number of parameters). Rearranging the mass within each row cannot help since each 
row is already pure (lemma 2). Wolg let Niji < NIJ2 < . . . < Nijr., so we will remove 
virtual row v\. To respect the marginal constraints the mass in v\ is redistributed among 
{ ^ 2 , . . . , vT}. This process is illustrated in figure 2(b). The mass moved from Niji into vk 

is denoted mk. Note that all mk are integral and N^i = X33K=2 m f c - ^ instead we removed 
row V{ ^ v\ the redistribution would force some row(s) to absorb more mass than before. 
By lemma 3 this leads to a lower score for those rows, and thus a lower overall score. 

Let the prior weights associated with the virtual rows be denoted A!^ and A[JK. The 
score for the pure virtual rows is 

pure = J J 
K=I 

R(o^) mjk + Nijk) 

and the score for the impure virtual rows formed by removing v\ is 

impure = 
R K - * + % f c ) R K I F C

 + mfc) 

and so the ratio of the scores is 

impure 
pure 

<i 
> R K M ) j V i J I L R I 1 Wij + Nijk)r 

~ L K > K I J fc=2 K / R I W 

fc=2 Ŵ m* Kj)NIN 

Now CK > 1 since N^I > MK,VK. Next we observe that, since MK and N^I are integral, we 
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Nij1 Nij2 Nij3 Nij4 

N|]1 0 0 0 Nij1 0 0 0 0 0 0 0 

0 Nij2 0 0 0 Ni]2 0 0 Nij2 0 0 

0 0 Nij3 0 0 0 Nij3 0 m 3 0 Nij3 0 

0 0 0 Nij4 0 0 0 N j j4 m4 0 0 Nij4 

(a) An example of a row of arity 4 (left) 
turned into pure virtual rows (right) 

(b) Removing a row by redistributing its 
maSS. 77i2 + 7713 + 7714 = Niji 

Figure 2: Operations involving virtual rows 

can reexpress Tk as 

(ajj- + Nij2 + 77i2 - 1) • • • (aty + Nij2) \ m<i terms 

x (a'^ + Nij3 + m 3 - 1) • • • (of-j + Nij3) J m 3 terms 

x (a^ + Nijn + mri - 1) • • • (a'^ + ^ r i ) } mri 

(a'ij + Niji - I ) * " ( < • ) } NV1 terms 

terms 

There are a total of i terms in the numerator and N^i terms in the denominator. Since 
Vfc > 1, N^i < Nijk each term in the numerator is larger than any term in the denominator. 
Thus Tk > 1. Since Vk,Ck>l and Tk > 1 the overall ratio is greater than 1. It immediately 
follows that altering the pure virtual rows reduces the score. • 
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