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Abstract
This work presents a model to determine the annualized cost optimal design of a pressure swing

adsorption (PSA) separation system. Design decisions include the number of beds, the operations to use,

the scheduling of those operations, and the operating conditions. Operations include adsorption, pressure

equalization, blowdown, desorption, and feed repressurizadon. Operations can be interconnected such as

pressurizing one bed by connecting it to another which is to be depressurized.

The capital and operating costs and adsorption behavior of each operation in the operating sequence

is approximated by a set of algebraic equations, which, due to the level of error in determining the

physical properties, has been found to be sufficiently accurate to characterize the system. The paper

presents each of these operation models and the assumptions behind them.

The structure of the model is a mixed-integer nonlinear program (MINLP), the solution of which

determines the optimal operating configuration, size, and operating conditions. Designing an "optimal11

PSA system to remove methane from a hydrogen stream illustrates the approach.

Introduction

Pressure swing adsorption (PSA) processes have become a viable alternative for many gaseous

separations. Because of their inherent energy efficiency, they can compete with distillation and other heat

based separation schemes. To be competitive with these cryogenic methods though, PSA processes must

be capable of economically producing products with high recoveries and purities. A system operating

using only the most basic PSA steps of pressurization, adsorption, depressurization and desorption is not

sufficient to meet these demands (Heck and Johansen, 1978). More inventive designs are used with steps

involving bed couplings such as cocurrent and countercurrent repressurizations and depressurizations

(pressure equalizations), as well as product repressurizadon (Yang, 1987).

The expansion of PSA usage depends not only upon the use of highly efficient cycles but also upon

the ability to determine an optimal design of the system and its operating conditions. The design and

operation of a PSA system is affected by many variables. Improper determination of any of these could

lead to increased separation costs due to decreased recovery or increased equipment size (Doshi et al.,

1971).

Not much has been published in the literature about the optimization of PSA systems. A



quantitative overview of optimization for a four bed cycle used for hydrogen purification is given (Doshi

et al., 1971). For this study, the operating schedule was chosen a priori and the remaining design

parameters were improved by the use of experimental data. It clearly illustrated, the numerous trade-offs

possible in a PSA system. In another study (Krishnamurthy and Lerner, 1988) the cycle sequence was

determined, except for the pressure equalization (PE) steps. The PE steps tested included ones with up to

three equalization steps. At most one bed-bed equalization could be followed by up to two bed-tank

equalizations. Each different PE sequences was chosen separately and then its optimal operating

conditions were determined. One novel bed-bed equalization step that was analyzed used equalizations

that were accomplished through both ends of the beds. The concentration profiles in the beds were shown

to not move appreciably for this equalization, and a higher recovery proved possible. The results from

these studies were used to develop guidelines for selecting pressure equalization steps that could

maximize product recovery for other PSA separations.

Both of these studies used an experimental approach to determine the values of the "optimal" design

parameters. Thus, although there exists detailed theoretical models for PSA process steps, they were not

incorporated into the optimization problem due to their complexity and lack of the necessary property

data. A recent study (Banerjee et al., 1990) makes use of exergy analysis to determine the optimal

operating parameters of a process, as well as for comparing different configurations. Unlike the above

studies, no experimental or laboratory data is used. The optimal configuration or operating point is

determined using the minimization of the compressor work per unit mole of product, neglecting the

capital costs of the system.

This paper presents work where PSA processes are designed and optimized with respect to the total

annualized cost of the process. By the use of this approach, it is hoped that the number and amount of

both laboratory and parameter studies necessary to determine the correct operating structure and

conditions can be reduced.

Cyclic Scheduling of Pressure Swing Adsorption Systems

To achieve higher product and pressure recoveries, operations with bed interconnections are used

frequently. The use of these operations greatly increases the complexity of the cyclic operating schedule

since both beds must begin the connected operation simultaneously and have the same duration. As the

complexity increases, it becomes more difficult to formulate even a feasible cyclic schedule, much less an

optimal one. This problem has been addressed recently by Chiang (Chiang, 1988) and by Smith and

Westerberg (Smith and Westerberg, 1990) for single product systems. In the latter stu4y, we presented a

model that structures this problem as an optimization problem.



The basic premise used to formulate the scheduling model is that, if there are N beds performing the

same operations in the same order, then each bed will be operating identically with a time shift D from

another bed's current operation.

where N is an integer and xtot is the total cycle time, given by the sum of the times of each operation xk

M

If an operation Oi results from the connection of two beds, then there exists an operation O of the

same duration which is the reciprocal operation. The proper scheduling of these dual bed operations

requires that the time from the initiation of Ot to the initiation of 0 on the same bed be an integer

multiple of the interval D. The following constraints result from this analysis:

which can be written for each such pair of interconnected operations.

The simplest model resulted in a mixed-integer nonlinear program (MINLP). For special cases the

nonlinearities may be linearized to reformulate the problem as a mixed-integer linear program (MILP).

The algorithm allows time and process constraints to be added or manipulated with ease. The direct

solution of the model gives the most desired cyclic schedule.

Since the model was very simple, the objective function used for the above scheduling problem was

the minimization of N, the number of adsorption beds. The scheduling model though, can be modified by

adding mass and energy balances as well as correlating costs and operation times to be functions of the

design parameters. With these new constraints and an objective function to express total annual costs, a

minimum cost design of PSA processes can be accomplished. Of course, the use of the more detailed

model necessarily adds many more nonlinear constraints which cannot be linearized. This forces the use

of an MINLP model.

The binary existence variables, which were used in the above work to signal the existence or

nonexistence of an operation, become very important They were defined as:
• If zk = 0 then xk = 0

x°• Else, if zk = 1 then x°k >

Thus the first constraint will eliminate an operation if the corresponding binary is zero, whereas the



second constraint will enforce that an operation exists if its binary is one. These binaries also allow

interconnected operations to be remove or added to the model due to the following constraints, which

enforce Equation 3 if zf- « 1 and allow/; - 0 if z- - 0.

h * Jl * J * W

For the current design model these binaries will be the decision variables used to find the optimal

sequence of operations for the system.

Operation Modeling
The mass and energy balances mentioned above could be added to the algebraic scheduling model

in different ways. First, since the original form of the conservation equations are parabolic partial

differential equations (PDE's), they could be written as such and then discretized in the spatial and time

dimensions to yield an algebraic set of equations. These could then be added to the above model. A

second method would be to start with the same PDE's, use equilibrium theory to simplify them to

ordinary differential equations (Kayser and Knaebel, 1989), and then discretize to algebraic equations.

Both these methods suffer when sharp fronts exist in the adsorber bed due to the large number of

discretizations then necessary to insure an accurate solutioa Also, these methods assume that the

physical constants, such as diffusion coefficients and heats of adsorption, are well enough known so as to

prohibit compounding of errors by their use. Much effort and resources would be spent determining the

intermediate behavior of the mass and energy fronts while the initial and final profile are, in most cases,

all that are actually needed for design of the system.

Due to these difficulties, we haved used simple time integrated balances to describe the initial and

final concentration and temperature profiles for each operation of the model. This model allows only

average or nominal physical properties to be used, but it still predicts behavior.

The following model is for the purification of a binary (AB) stream, where A is adsorbed and is the

impurity and B is considered inert to the adsorbent and is the product. The major assumptions of the

model are:

1. Ideal gas behavior.

2. Temperature and mass fronts are both sharp and move with the same velocity.

3. All adsorption and desorption occurs at the adiabatic temperature which is calculated from
the corresponding energy balances.



4. All product gas is pure and leaves the bed at the bed's initial temperature.

5. All waste gas (produced during purging) is of the same temperature and composition.

6. The specific heat effects of the metal shell are ignored in the energy balances.

The important equations of the model for each operation are presented below.

Equations for an Adsorption Operation

Figure 1, shows the essential characteristics of the adsorption model. Adsorption is assumed to

<l>A<fe

Y\

0

Amount of Adsorbent
Utilized

0

Figure 1: Characteristics of the Adsorption Model

occur at some constant fraction of equilibrium, r i ^ , and use some given percentage of the available

adsorbent, fy^. Also, the gas in the void spaces of the unused adsorbent, (Vb - V ^ ) e, is assumed to be

pure product. By manipulation of T i ^ and §Ads any type of adsorption behavior can be characterized.

For example, if adsorption occurs close to equilibrium with a small mass transfer zone (MTZ) then r ) ^

and <|>^ are both approximately 1. If, however, adsorption is not close to equilibrium and the MTZ is

large, then, 4^ and T^ would both be less than 1. Use of these parameters is similar to using an

efficiency to characterize the performance of a compressor when carrying out preliminary design

calculations.

With the use of these parameters, the volume of the bed to be used for adsoiption, VAds9 is calculated

by:



* (6)

The solid adsorbent in this volume, with an efficiency of T ^ , can adsorb mA'e moles of gas during the

course of the operation, which is calculated by:

MWA

The equilibrium isotherm can be given by a variety of theoretical and empirical correlations. In general,

any isotherm that is a function of composition, temperature, and pressure, and is of the form

qi - /(Y, T9P)9 can be used. For the example problem given below, a linear isotherm is assumed:

At the end of the operation the gas voids in the VAds volume are filled with feed gas. The moles of gas in

this volume of bed, m£g
9 are calculated by:

The bed is assumed to be equilibrated at a uniform temperature at the start of the operation. The

volume of bed where adsorption occurs, VAdg9 rises to a uniform temperature due the heat of adsorption

and sensible heat of the incoming stream. Adsorption occurs adiabatically with the temperature of

adsorption, 7*f being determined by the energy balance:

t) ~ V^< 1 - e ) c ^ ( P - V)

During the operation, the moles of feed gas processed, "*J£ ̂ , is calculated by:

YA,fg ("I** ~ "$') ' < - mA°
and the moles of product gas produced during the operation, rn*^ is calculated by:

Equations 11 and 12 are used to determine the recovery and economic feasibility of the process.

Equations for a Pressure Equalization Operation

Since a pressure equalization is a coupled or interconnected operation, the equations must be written

for both beds. Here, the bed undergoing a depressurization is signified as 1, and the bed undergoing a

repressurization is signified as 2. It is assumed that all of the gas A that enters bed 2 while it is being



repressurized adsorbs onto the solid phase very quickly and is completely adsorbed by the end of step 1,

given below.

A pressure equalization operation is modeled by breaking it into three parts:

1. The beds are connected and the gases undergo an adiabatic expansion or compression.

2. The connecting valve is closed.

3. The gas in the beds now equilibrate and establish new temperatures and pressures.

The main equations for step 1 are adiabatic temperature calculations and determination of the moles

of gas transferred.

During this step, the pressures are assumed to come to equilibrium, thus:

1 = 1 (13)

Since the gases have undergone adiabatic expansions or contractions, die final temperature of the

feed gas (AB) undergoing the adiabatic expansion in bed 1,7^ t can be calculated by:

In the same way, the final temperatures of the B and feed gases undergoing an adiabatic

compression in bed 2 are, respectively:

P2

The moles of feed gas in bed 1 at the end of step 1 is:

...
" " * • • •

and the moles of feed gas into bed 2 is:

where 7^ 2 is given above by Eqn. 16 and v£ is given by:



i/Tin <» A i n *

«S " ̂ 7 ^ CM)

The main equations for step 3 are the adiabatic heat balances for beds 1 and 2:

(22)

and the pressure equilibration (reconciled) equations:

(23)

Prec,2 - y— (24)

Equations for a Desorption Operation

The desorption operation modeled here combines a blowdown operation and a purge (or desorption)

operation. The blowdown operation is essentially the same as that experienced by bed 1 in a pressure

equalization operation above, and, since the equations are similar, they will not be given.

Desorption like adsorption is assumed to occur at some constant fraction of equilibrium, r\Des, and

only some percentage of the total amount available to desorb does, §Des. Figure 2, shows the bed

concentration profile after the desorption operation. The mole fraction of A in the purge stream, using

*s calculated by:

* (25)

The adiabatic desorption temperature is calculated by the following heat balance:

+ (26)

The total amount of product gas (B) that is needed to both purge and fill the void spaces in the bed is:

mB,Des - •f l*f—pS mA + mB (27)

eand the moles of B needed to fill the gas voids at the end of the operation, m^e, is calculated by:
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Figure 2: Characteristics of the Desorption Model

Win (28)

Equations for Feed Repressurization Operation

The feed repressurization operation is essentially the same as that experienced by bed 2 in a pressure

equalization. The equations are similar to those presented above, and they will not be given here except

for the equation used to calculate the moles of feed gas needed for the operation, m^FR.

Vu £ P* P*
mm

 FR = ( .) (29)

As in the pressure equalization operation, all the gas A is assumed to adsorb onto the solid phase before

the final operation temperature is calculated.

The recovery of the product gas, B, during one cycle can be calculated using Equations 11, 12, 27,

and 29 as:

out in
mBtAds'~mBtDes (30)
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Process Costs
Since the objective of the optimization problem is to minimize annual cost, it is essential to use

accurate correlations for the capital and operating costs. Correlations for the capital costs of the bed metal

shell, CSh£u> the compressor, CComp, and compressor driver, CDriy€ were curve fit from data given by

Guthrie (Guthrie, 1974) and Peters & Timmerhaus (Peters and Timmerhaus, 1980). These correlations

were then multiplied by the appropriate modular factor and inflation index and summed to yield the total

capital cost, in 1987 dollars.

The correlation for the modular cost of the shell was determined to be:

CSh£ll - P°584( 19.73 dl + 14.94^ + 2957) (31)

where d and / are the diameter and length respectively. The cost of the valves, since for a PSA system it

is larger than normal, was included in Equation 31 by tripling the appropriate percentage of base cost in

the modular factor. The modular compressor costs were correlated as functions of the inlet flowrate, Q^,

and operating horsepower, hpComp9 as:

14020 Q°,435 (32)

CDrive = 11.68 hp1^ + 2470 hp**, (33)

The operating costs are given on a per cycle basis and include the costs of purchasing and selling all

of the gas into or out of the system during the cycle as well as the cost of compression of the feed gas.

The cost/price of the feed and product gases is a specified parameter, and the waste or blowdown gas is

sold on the basis of its heat of combustion.

The total annual cost of the system, CArmualf is then calculated as:

Ccan
^Annual - — * + ( 1 - tax) CQp + dr tOX Ccap (34)

where xpb is the payback time, rax is the tax rate on earnings, and dr is the depreciation rate.

Model Formulation

The above scheduling, conservation, and cost equations can be combined with additional constraints

to form the model to be used for design. Some of these additional constraints are:

1. Constraints on bed diameter and length. The fluidization velocity limit of the bed
determines the minimum bed diameter (White and Barkley, 1989). The maximum bed
diameter is determined from equilibrium considerations to be the smallest velocity that will
still allow a substantial amount of mass transfer.
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2. Constraints on the operation time of pressure changes. The operation time, z°k, for an
operation undergoing a pressure change was approximated as a linear function of the
difference in pressure. Thus, for an operation undergoing a pressure increase we have:

k (35)
where xvd/ve is the time required for valve operation at the initialization and termination of

the operation. For the below example, a value of Tv- - 1 — ^ T — was used.
vaive operation

3. Overall cycle time constraint to ensure closure of the mass balance:

^g^tot " mfg,Ads + mfgtFR (36)

where F*£ is the molar flowrate of feed gas into the system.

The final model is in the form of an MINLP. The integer variables are the binary existence

variables, the cycle integers, and the number of beds. The model description was formulated and

debugged using the ASCEND (Piela et al., 1991) modeling system and then set up for optimization using

the General Algebraic Modeling System (GAMS) (Brooke et al., 1988).

Example Problem
It is desired to continuously produce a purified hydrogen stream from a hydrogen/methane waste

stream. A PSA system is being considered. Preliminary work suggests considering a PSA system that

operates with either zero, one, two, or three pressure equalization operations in the schedule. The overall

operation sequence that contains all the possible operations thus is:

1: Ox (Adsorption and production of product gas)

2: O2 (Pressure equalization with low pressure operation O8)

3: O3 (Pressure equalization with low pressure operation O7)

4: OA (Pressure equalization with low pressure operation O6)

5: O5 (Blowdown and countercurrent purge with product gas)

6: O6 (Pressure equalization with high pressure operation 04)

7: O7 (Pressure equalization with high pressure operation O3)

8: O% (Pressure equalization with high pressure operation O2)

9: O9 (Repressurize with feed gas)

Operations Ov O5, and O9 must always occur so their binary existence variables are all fixed at 1;

whereas, the binary existence variables for operations <92, Ov O4, O6, Ov and O% are allowed to vary due

to the pressure equalization specification above.
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Continuous production requires that t\ >. D. The cycle integers for the O2-O9, 03-08 , and O4-O7

interconnected operations will be designated as Jv J2, and /3 respectively. The parameter values used for

the example are given in Table 1, where component A is Methane.

3 6 8 * 1 0

2 9 3 * 1 0

cpa<is 8 0 4 X l o 5 - Jr mr K

dr 0.125 i

ft 8.15 x lO"3

/^ sec

HB 2.86 x 108

—«•
iff 1.2 x lO-2 JlL-

A Kgmole

Pra 3 $
B J Kgmole

tg 350 K

Tfg 298 K

Tpb 2 yrs

tax 0.4

0 0 5

0.44

0.95

1-0

800 g

Table 1: Modeling Parameters used for Example Problem
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Model Solution

To receive further insight into the problem before continuing with the MINLP formulation, the

cyclic scheduling problem (Smith and Westerberg, 1990) may be formulated and solved by using

reasonable estimates for the process times and other design variables that need to be be fixed for this

analysis. The binary existence variables were fixed for each specific case, i.e. 0,l,2,or 3 PE steps, and the

resulting optimization problem was solved. The model, in this form, is linearizable and thus a mixed-

integer linear program (MILP) is all that need be solved. The four pressure equalization cases were

solved with the assumption that only the duration of operation one, Ov is greater than or equal to D9 (i.e.

x°x = 1 and for all other operations x°k ^ 1). The resulting values for Nmin and the cycle integers are

given in Table 2. Note that the cycle integer values given in Table 2 are those that result in a feasible

schedule given Nmin number of beds. There are actually an infinite number of feasible schedules possible

for each operating sequence (Chiang, 1988). For example, with one PE operation, two other feasible

schedules for N, Jv Jv and /3 are 4,1,0,0 and 4,2,0,0. The schedule corresponding to Nmin though has

proved to be optimal for many current PSA systems.

#PE's AT.

0

1

2

3

2

3

4

5

0

1

2

3

0

0

1

2

0

0

0

1

Table 2: Integer Variables from Cyclic Scheduling Problem

The results of Table 2 inspire these additional constraints on the cycle integers:

Jx > J2 + z3 (37)

J2 > J3 + z4 (38)

These constraints should have been obvious from the problem specification above, since the operations

that define the duration ofJx (i.e. O2 through <97) totally enclose the operations defining J2. Constraints

such as Equations 37 and 38 can be written any time all the operations associated with a cycle integer are

also all in the set of operations of another cycle integer. Thus, the same analysis as above holds for/2
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Jv The inclusion of these constraints will prohibit the MILP step of the MINLP solution procedure from

testing infeasible sets of cycle integers such as Jx and J2 - 1.

Again before solving the overall MINLP problem, we can gain additional insight by using the

scheduling results above to further fix the values of the cycle integers and N, which results in a nonlinear

program (NLP) formulation for the model. In fact, if the problem is well enough understood so that the

designer is able to prune the infinite number of scheduling possibilities mentioned above, then this

solution method of solving a number of MILP's followed be a number of NLP's is all that is necessary.

For our example problem, these NLP's were solved, using GAMS and MINOS (Murtagh and Saunders,

1987), to yield initial guesses that were utilized when solving the MINLP formulation. It became

apparent at this stage that the formulation is highly nonlinear, having many bilinear terms, and attaining

any optima becomes difficult. By manipulating the initial guess and MINOS option parameters, local

optima could be obtained.

The overall MINLP problem has the special structure in which the integer variables appear linearly

and the continuous variables appear both linearly and nonlinearly. The problem was formulated using

GAMS and solved using DICOPT++ (Viswanathan and Grossman, 1990). DICOPT++ is based on the

augmented penalty function version of the outer approximation/equality relaxation algorithm (Kocis,

1988). Unfortunately, a solution to this formulation was never obtained using the above software. Using

DICOPT++, the relaxed NLP problem and the first MILP master problem were correctly solved to obtain

*°, y° and xl
9y

l
9 respectively. The difficulties occurred during the solution of the first NLP subproblem.

The first NLP subproblem is initialized at the point JC1, yl and this point, since it is derived from the linear

model, may be "far" from the feasible region. Thus, the linearization of the current NLP constraints may

not contain a feasible point MINOS attempts to relax the bounds on the slacks associated with the

nonlinear rows, but only up to 5 times before termination occurs, which is not sufficient for the current

problem. This problem could have been overcome by the use of the DICOPT (Kocis, 1988) algorithm

which allows the user to specify the initialization point for each NLP subproblem. It was felt by the

authors that a simplification of the overall MINLP formulation would be more enlightening.

One simplification is inspired by the differences between the two types of integer variables in the

problem: the binary existence variables, zf., and the cycle integers, NKJV Jv Jv By fixing the values of the

binary existence variables, the operating sequence is fixed but the scheduling integers will still cover the

infinite number of scheduling possibilities for that structure. The structure of the problem is still an

MINLP and since the example considers the possibility of only 0, 1, 2, or 3 pressure equalizations, the
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overall MINLP can be expressed by only four of these subMINLP problems. The minimum of these four

problems will be the minimum of the overall MINLP problem. This simplification was enough to allow

convergence of the subMINLP's with the use of DICOPT++.

The small number of different operating sequences considered in the example allowed it to be

expressed by only four subMINLP's. If many operating alternatives were to be considered, the number of

subMINLP problems necessary could become large. Under these conditions it becomes necessary to have

a more robust MINLP solution procedure. One possibility is to allow the user to interact with the

algorithm. By interactively supplying initial guesses and solver parameters, these highly nonlinear

problems may be solved.

Results

The results of the four subMINLP problems are presented in Table 3. The model parameters used

were those given in Table 1. As can be seen from Table 3, the largest profit is obtained from the

configuration using no pressure equalizations.

#PE's

0

1

2

3

JL
2

3

4

5

0

1

2

3

0

0

1

2

0

0

0

1

Cost (1000$)

-75.7

-44.5

-11.0

21.6

Table 3: Minimum Costs of the Four Pressure Equalization Configurations

Another fact illustrated by the results in Table 3 is that the scheduling of all four optimal

configurations was that given above in Table 2 which resulted from the MILP scheduling problem. In

fact, as long as the constraint of z° < 1 is valid for every operation that it is assumed for, the cycle

integers chosen by the scheduling MILP will be the optimal ones. The reason is that the capital costs are

a monotonic increasing function of the number of beds whereas the operating costs are invariant to the

addition of a bed when in the same scheduling family. The additional bed is not fully taken advantage of

since it is not being used to perform another pressure equalization but merely to allow a slightly different

schedule to occur.
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The results in Table 3 were for a specific set of parameters and hydrogen sale price. It is important

to study the effects that changes in these parameters has upon the solution. Figure 3 shows the behavior

of the optimal design due to changes in just the sale price of the product, PrB. Over the range of

a

2 3 4 5 6 7

Product Sale Price - $/KgmoIe

Figure 3: Behavior of Optimal Configuration due to Product Price Changes

saleprices considered, (0.25 to 0.9
IOOSCF

), the configurations are in a strict descending order of cost.

Due to the increased recovery that a pressure equalization step makes possible, at PrB Kgmole, the
9

configuration of one pressure equalization step becomes more profitable than no pressure equalization

steps. At a larger PrB the two-pressure equalization configuration becomes the most profitable and at an

even larger PrB the three-pressure equalization configuration become the most profitable. The large

values of PrB necessary for these structural changes are not realistic, but it is important to illustrate that

the model predicts the qualitative behavior of the system correctly.

The cost of the capital investment is an important parameter to consider. Figure 4 shows the costs

of the four different configurations when capital has become cheaper by 200% (i.e. % b = 6yr). The

curves are closer together due to the lower incremental cost of adding another adsorber bed, and the
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one-pressure equalization configuration becomes more profitable within the range of saleprices

considered.

-100

1

-200

-300-

-400-

-500-

-600

•"• 2,0,0,0
"•" 3,1,0,0
-» 4,2,1,0
"•" 5,3,2,1

2 3 4 5 6 7

Product Sale Price - $/KgmoIe

Figure 4: Behavior of Optimal Configuration with x . = 6yr

Figures 3 and 4 compare the different pressure equalization sequences, but the adsorption and

desorption parameters, <|>,r|, are held constant for the comparison. This is slightly in error since one

would expect to be able to utilize more of the bed for adsorption, i.e. §Ads increases, as the number of

pressure equalizations increases, since the mass transfer zone,MTZ, becomes sharper. The sharper MTZ

allows equilibrium adsorption to occur to a larger bed depth before breakthrough occurs. Thus, the

comparisons of Figures 3 and 4 favor the lower number of pressure equalization configurations. Figure 5

illustrates this point further by showing the variation of the cost with 0, 1,2, and 3 pressure equalizations

using a $Ads of 0.75,0.85, 0.90, and 0.95 respectively. Also xpb = 4 yr is used. In the range of saleprices

considered the two-pressure equalization configuration becomes more profitable than no-pressure

equalizations.

The variation of product recovery due to changes in the adsorption pressure is illustrated in Figure
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1
I

2 3 4 5 6 7

Product Sale Price - $/Kgmole

Figure 5: Behavior of Optimal Configuration with different ty^

6. As is expected, the recovery increases asymptotically with pressure. The capital and compression

costs increase with pressure also and thus the optimal operating point lies where these competing terms

balance. Figure 7 shows the variation of total annual cost due to changes in the adsorption pressure.

Discussion

The above mass and energy balances for PSA operations have been simplified enough to allow the

optimization problem to be of tractable size, yet they still are representative of the actual adsorber

behavior. The above MINLP model can then be formulated. The design decisions of the model include

the operations, structure, scheduling, and operating conditions of the system.

The parameter studies shown above indicate that both capital and operating costs must be

considered during the design process. By basing the design procedure on the minimization of total annual

cost, both costs can be properly considered.

The simplified model also allows the competing economic forces to be studied individually. The

results of such an analysis can be used to suggest better simplifications for the problem.
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Figure 6: Variance in Product Recovery due to Adsorption Pressure Changes
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Figure 7: Variance in Total Annual Cost due to Adsorption Pressure Changes
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Notation

C

CP

d

D

dr

F

cost-$

heat capacity - K JoUK

bed diameter - m

xtot
cycle shift time ( - -^- - sec

depreciation rate - dimensionless

molar flowrate—&0?_L

H heat of adsorption -

Ap horse power - Ap

Ji

K

I

m

MW

N

ok

P

Pr

Q

4i

R

Rec

T

tax

c y c l e i n t e g e r € { 0 , 1 , 2 , 3 , • • • }

m3

adsorption equilibrium constant - „ .

bed length - m

moles - Kgmole

molecular weight - „ ,

number of beds in system e { 1 , 2 , 3 ,

operation k

pressure - Pa

volumetric flow rate - ^ -
nun

equilibrium amount adsorbed - T--^-

gas constant - K
m

mo^K

product recovery - dimensionless

temperature - K

tax rate - dimensionless
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V volume - m3

Y mole fraction - dimensionless

zk binary existence variable

Greek letters

e

•

P

X

void fraction - dimensionless

bed utilization

efficiency

density - - |
m

time - sec

Superscripts

e

eq

in

o

out

s

V

end (or final)

equilibrium

into operation

original (or initial) and operation time

out of operation

solid (or adsorbent) phase and slack time

gas (or void) phase

Subscripts

1

2

A

ads

Ads

b

B

Des

bed 1 in a dual bed operation

bed 2 in a dual bed operation

component A

adsorbent

Adsorption operation

bed

component B (product)

Desorption operation
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fg

FR

k

pb

rec

sh

tot

feed gas

Fteed Repressurization operation

operation k

pay back

reconciled

shell

total



24

References

Banerjee, R., Narayankhedkar, K. G., and Sukhatme, S. P. (1990). Exergy Analysis of Pressure Swing
Adsorption Processes for Air Separatioa Chem. Eng. ScL, 45(2), 467-475.

Brooke, A., D. Kendrick and A. Meeraus. (1988). GAMS: A User's Guide. Redwood City, CA: The
Scientific Press.

Chiang, A. S. T. (1988). Arithmetic of PS A Process Scheduling. AIChE J., 54(11), 1910-1912.

Doshi, K. J., Katira, C. H. and Stewart, H. A. (1971). Optimization of a Pressure Swing Cycle. AIChE
Symp.Ser., (57(117), 90-97.

Guthrie, Kenneth M. (1974). Process Plant Estimating Evaluation and Control. Solana Beach, CA:
Craftsman Book Co. of America.

Heck, J. L. and Johansen, T. (1978). Process Improves Large Scale Hydrogen Production. Hydro. Proc,
57(1), 175-177.

Kayser, John C. and Knaebel, Kent S. (1989). Pressure Swing Adsorption: Development of an
Equilibrium Theory for Binary Gas Mixtures with Nonlinear Isotherms. Chem. Eng. ScL, 44(1),
1-8.

Kocis, G. R. (August 1988). A Mixed-Integer Nonlinear Programming Approach to Structural Flowsheet
Optimization. Doctoral dissertation, Carnegie Mellon University.

Krishnamurthy, R. and Lerner, S. L. (1988). Optimum PSA Pressure Equalization Sequence for Argon
Separation from Ammonia Purge Gas and Implications for Other Separations. AIChE Symp. Ser.,
84(264), 44-53.

Murtagh, Bruce A and Saunders, Michael A. (1987). MINOS 5.1 User's Guide .

Peters, Max S. and Timmerhaus, Klaus D. (1980). Plant Design and Economics for Chemical Engineers.
New York, NY: McGraw Hill Book Co.

Piela, P. C, Epperly, T. G., Westerberg, K. M., and Westerberg, A. W. (1991). ASCEND: An Object-
oriented Computer Environment for Modeling and Analysis. Part 1 - The Modeling Language. In
press, Comp. Chem. Eng.

Smith, IV, Oliver J. and Westerberg, Arthur W. (1990). Mixed-Integer Programming for Pressure Swing
Adsorption Cycle Scheduling. Chem. Eng. ScL, 45(9), 2833-2842.

Viswanathan J. and Grossmann, Ignacio E. (1990). A Combined Penalty Function and Outer-
Approximation Method for MINLP Optimization. Comp. Chem. Engng., 14(1), 769-782.

White, Donald H. and Barkley, P. Glenn. (1989). The Design of Pressure Swing Adsorption Systems.
Chem. Eng. Prog., 85(1), 25-33.

Yang, R. T. (1987). Gas Separation by Adsorption Processes. Boston, MA: Butterworths.


