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Abstract

A Chebyshev-based representation of the state vector is proposed for designing optimal
control trajectories of unconstrained, linear, dynamic systemswith quadratic performance
indices. By approximating each state variable by a finite-term, shifted Chebyshev series,
thelinear quadratic (LQ) optimal control problem can be cast as a quadraticprogramming
(QP) problem. In solving this QP problem, one approach is to treat the state initial
conditions as constraints that are included in the performance index using a Lagrange
multiplier technique. A computationally more efficient approach is to tailor the state
representation such that the boundary conditions (which include the known initial
conditions) are decoupled from the coefficients of the Chebyshev series. In both
approaches the necessary condition ofoptimality is derived as a system of linear algebraic
equationsfromwhich near optimal trajectories can bedesigned.

. University Libraries
Carnegie Msihn _Universit
Pittsbargh PA 1S2i |- #f|




1. Introduction

The optimal control, and corresponding state, trajectories of linear, lumped parameter
models of dynamic systems are often determined from the necessary condition of
optimality. Using variational methods, this optimality condition can be represented as a

two—pbint boundary-value problem (TPBVP). One of the most well-known solution
- approaches is the Hamilton-Jacobi approach which convertsthe TPBVP to aterminal value
problem involving a matrix differential Riccati equation. Although the Hamilton-Jacobi
approach caststhe optimal solution in closed-loop form making it a preferred approach for
physical implementation, it iscomputationally intensive and sometimes difficult to employ
in solving high order systems.

For time-invariant systems, a more efficient solution method for optimal trajectory
planning is the open-loop trandtion matrix approach (Speyer, 1986; described in Appendix
C). Typically, the trangtion matrix approach converts the TPBVP into an initial value
problem which can be solved numerically. Thetrangtion matrix abproach can encounter a
problem of numerical ingtability in determining the optimal control of high order systems
(Yen and Nagurka, 1990). This problem has been attributed principally to the error
associated with the computation of large dimension state transtion matrices. An accurate
and computationally streamlined approach for calculation of state trangtion matrices of high
order systémsremainsaresearch challenge (Moler and L oan, 1978).

To circumvent these numerical difficulties, and in the interest of seeking alternative
solution strategies, trajectory parameterization methods have been investigated. In general,
these appr oaches approximate the control, state, and/or co-state trajectories by finite-term
orthogonal functions whose unknown coefficient values are sought giving a near optimal
(or sub-optimal) solution. For example, approaches employing functions such as Walsh
(Chen and Hsiao, 1975), block-pulse (Hsu and Cheng, 1981), Laguerre (Shih, Kung and
Chao, 1986), Chcbyshev (Paraskevoboulcs, 1983; Chou and Horng, 1985; Vlassenbroeck
and Van Dooren, 1988), and Fourier (Chung, 1987) have been suggested. Like the sate
trangtion matrix approach, many of these approaches employ algorithms that convert the
TPBVP into an initial value problem. The initial value problem is then integrated with
respect to time with the state and co-state vector s approximated by truncated orthogonal
series. Thistechnique (described in Appendix D) reducesthe initial value problem into a
static optimization problem represented by algebraic equations. The truncation of the
orthogonal seriesresultsin errors; which can be minimized by including more terms, but
the trangtion matrix (needed to convert the TPBVP to an initial value problem) mug ill be




evaluated which, as mentioned above, can cause instability problems in high order
systems.

Thisresearch ispart of a broader effort toward the development of computational tools
for solving optimal control problemsvia state parameterization. An advantage of state
parameterization is that boundary condition requirements on the state variables, such as
initial conditions, can be satisfied directly. A second advantage is that the state equations
can be treated as algebraic equations in determining the corresponding control trajectory.
This assumes that there are no congtraints on the control Structure preventing an arbitrary
representation of the satetrajectory from being achieved

Earlier work on parameterization of the state vector via Fourier-type series (Yen and
Nagurka, 1988) has shown that the necessary condition of optimality for an unconstrained
linear quadratic (L Q) problem can be formulated as a system of linear algebraic equations.
To ensure an arbitrary representation of the state trajectory and hence overcome the
potential difficuliy of trgjectory inadmissbility (in which an arbitrary state trgjectory can not
be achieved), artificial control variables were proposed. These physically non-existent
variables are driven small by being heavily penalized in the performanceindex. Smulation
results indicated that the approach isaccur ate, computationally efficient, and robust relative
to gandard methods.

- Studies of parameterization methods for prediction for optimal control of linear time-
invariant systems have demonstrated advantages of expansions in terms of Chebyshev
functions in comparison to Walsh, block-pulse, Hermite, Laguerre, and Legendre
functions (Paraskevopoulos, 1983, 1985). Chebyshev functions can nearly uniformly
approximate a broad class of functions, making them computationally attractive
(Vlassenbroeck and Van Dooren, 1988).

Thisreport explores the use of finiteterm Chebyshev-based representationsof the sate
trajectory. Inone approach, each state variable of a dynamic system is approximated by a
shifted Chebyshev series. The LQ problem is then converted to an equality constrained
quadratic programming (QP) problem that minimizes the performance index and satisfies
dateinitial conditionsviaLagrange multipliers. In an alternate formulation, the sateinitial
conditions are satisfied directly by representing each sate variable by the superpostion of a-
shifted Chebyshev seriesand a special third order polynomial. In both cases the necessary
condition of optimality can be written as a system of linear algebraic equationsfrom which
the unknown state parameters can be solved.




2. Methodology

2.1‘ Problem Statement
The behavior of alinear dynamic system is governed by the state-gpace modd .

X(t) = AOx(®) + BOu() @

~ with known initid condition x(O)=xowhere x isan Nx| state vector, u is an Mx| control
vector, A isan NxN system matrix, and B isan NxM control influence matrix.

. The design god isto find the control u(t) and the corresponding state x(t) in the time
interval [0, T] that minimizes the quadratic performanceindex L,

L=Li+L, @
where
Li =x"(T)HX(T) + h'x(T) ©)
T _
Lo= 1 [xr(t)Q(t)x(t)+uR(u()+xT()Sut)+q7 (Ox(t)+rT(Hu(t))de 4
Jo '

Itisassumed that H and Q are real NXN symmetric and positive-semidefinite matrices, R
iIsaMxM symmetric and positive definite matrix, Sisa NxM weighting matrix, h, g are
NxI vectors and r isan MxI vector. For now, it isassumed that the lengths of the state
and control vectors are the same (i.e.9 M=N) and B isinvertible. These assumptions will
be relaxed | ater.

2.2 Chebyshev Polynomials

Chebyshev polynomias are defined for the interval "€[-1,1] and have the
following andyticad form:

cp?) =cogk cos™ . k=0,1,2,... (5)

or

| =Y nD—K (1.5~ -
W ;‘o apazmd®s ™ w3 1e- .

where the notation [k/2] means the greatest integer smaller than k/2. From Equation (6),
thefirst few Chebyshev polynomids are




"5
P =1
P8 =§
92(8) =2E2-1
03(8) = 48°-3¢ | ' , (7a-0

@a§) = 88%-8E2+1
Ps(8) = 165%-208%+5¢

The Chebyshev polynomials have several properties such as satisfying (i) the recurrence
reations

1) - 250k8) + Pra§) =0 = ¥ 2

8ab
(1-6%08) = Ep® +k@i® | k=) 2, =

wherethe dot indicates differentiation with respect to time, (ii) theinitial, final and midpoint
values

<XD=1
Qul-1) = ()
Pu0)= “ (Sa-d)
<PX+(0) =0

and (Hi) theproduct relations

PENE =@ + @i ®] . 2]
(I0a-b)

%® =111 + (3]

The domain of the Chebyshev polynomials can be transformed to values between 0 and
T by I_etting

=2L. (11
o 8=2g-
giving the shifted Chebyshev polynomial \|/x(t) expressed as
Vi(® = Pu(E) = %(2% - l) (12

From Equation (12) thefirst few shifted Chebyshev polynomials are




Wo() =1

v (t) =211 _

Wa(t) = 8t2-81+1 (13a-6)
V3(t)-32t3-48t%+18t-I :

y4(t) = 128t*-256t°+160t>-32t +|

. where nondimensional timet =t/ T. From Equations (5) and (12), the initial and final
values of the shifted Chebyshev polynomial and itsfirst timederivative can beobtained as

Vk(0) = (-D*

VK(0) = (-N**1(2k¥T)
(M =1

k(T) = 26 T

(14a-d)

2.3 State Parameterization
231 Chebyshev State Parameterization A direct approach for state parameterization
isto approximate each of the N state variables x,(t) by a K term shifted Chebyshev series.
K
Xq(t) = X °kto ynk : (15)
.- k=1
for n=1,2,...,N where

oD = WD) (16)

In Equation (15) ynk is the k-th unknown coefficient of the Chebyshev polynomial for the
n-th sate variable. Alternatively, equation (15) can be written as

Xn(t) =cr ()yn (17)
where

¢ (O)=[c!(t) ca(t)... CK(O] (18)

Yo=[yal Y2 +-- Ykl (19)

wherey, is the state parameter vector (containing the unknown coefficients) for the n-th
date variable. The satevector containing the N state variablescan be written in termsof a
full state parameter vector vy, i.e.,
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- x(t)=C(y (20)
where
c'(t) 0 : 21
cod  cw (21)
0 c(® NXNK
vy [yn yr e yud
y2 [ya yn =+« yacl™ (22)
y = . = . .
y
N L [YNI YN2 tte » r “NKx1
Smilarly, the saterate vector can be written as
X(t) = D(t)y - (23)
where
[ d'(t) o]
| d'(t) | (24)
D(t) = C(t) = .
L 0 d'(0). NXNK
d"(t)=[ci(t)C2(t)... t(t)] (25)
The control vector u(t) can also be expressed as a function of y. From Equation (1)
u(t) = B1(t)x(t)- B H(OA®)X() (26)
From Equations (20) and (23),
u(t) =[B-*@®)D(t)- B HAMCH]y (27)

Thus, the application of Chebyshev sate parameterization allows the state vector, staterate
vector, and control vector to berepresented as functions of the state parameter vector.




3,32 Conversion Process Thefirst step in solving the state parameterized L Q problem
is to convert it to a quadratic programming (QP) problem by rewriting the performance.
index as afunction of the state parameter vector y. From Equation (20); the terminal Sate
vector X(T) can be expressed as

Xy =C(TMy (28)
By substituting Equation (28) into (3), thecost L is

Li =y"C(T)'HC(T)y + h'C(T)y (29)

Similarly, by subgtituting Equat_ion (26) into the integrand of Equation (4),
X"Qx+u'Ru+x"Su+qg'x+r'u = x"Fix+X"Fox*+x"F3X+x"fi+X"'f, (30)
where Fi, F2, and F3 are NxN matrices and fi and f,are NxI vectors given by
Vi = Q+G'RG+SG |
F,= B-RB"" (31a-c)
F;=2B'RG+B'S

fi = g+G'r

(32a-b)
f2 = B‘rr
where
G = -BM"A _ (33)

and superscript -T denotes inver se transpose. By subgtituting Equations (20) and (23) into
(30), the integrand of Equation (4) can be expressed as a function of parameter vector vy,
e,

X'Qx+u'Ru+x'Su+qg'x+r'u =y"'Py+y'p (34)
where

PmFi®cc'+F,®dd"+F3®dc'
(35a-b)
p= if ¥ ~ d




‘In Equation (35a-b), Pisan NKxNK matrix, p isan NK x| matrix, and ® is a Kronecker
product sign (Brewer, 1978), e.q.,

VnW ... ViWw

VOW =| 21w (36)

VW
VW WAL

where V isan nxn matrix and W is an arbitrary matrix. Thus, from Equation (34), the
integral part of the performance index can be expressed as

»T

La=| (y'Py+y'p)ck =¥ Py+yTp’ (37)
Jo

where _

fT

P*=| Pdt
J0 (38a-b)

- r

P=| Pdt

/o

Substituting Equations (29) and (37) into (2) gives the performanceindex L as aquadratic
function of parameter vector vy, i.e.

L =yTQy +y'<0 (39)
where
= + P*
Q =COVHC(T) + P (40a:-b)
tom C(T) 'h + p*
For time-invariant problems, F,, F,, Fs.f, and f,are constants and can be removed

from the integrals, enabling the remaining integral parts of P'and p* to be evaluated
analytically. That is, Equation (38a-b) can berewritten as




T
(dd")dt |+ Fy®)| [ (dcr)dt]

Jo

P*= Fi® iti+ F,®
: Jo
(41a-b)

p'= i®| | cdtj+fa® | ddt
Jo J 0]

The solutions of the integral partsof P* and p* (i.e., the termsin the brackets) have been
derived and are summarized asrecurrence formulasin Apbendix A.
Theinitial conditions of the Sate variables can be expressed as

X0 = Coy : - (42)
where

%o = X(0) (43a-b)

Co = C(0)

Hence, the problem isto minimize Equation (39) such that Equation (42) is satisfied.

2.3.3 Lagrange Multiplier Solution Procedure The above equality constrained QP

problem can bereduced to an uncongtrained problem by including theinitial conditions as
congraintsin the performance index viaa L agrange multiplier vector X:

S L(y.X) = yTQy + yToo + \'[Coy-Xg] (44)

The necessary conditions of optimality are given by
% L. ={e+Q )y +o+Clr = 0 (45)
ViL(y,A) =Coy -x0=0 (46)

representing a system of linear algebraic equations in terms of the elements of y and X.
Equations (45) and (46) can be written as

- - _l- -

y o« Cj ||

(47)

Al 1 co 0 | |xo

= - e -

from which the state parameter vector y can be solved.




: 3500 forization An dternate state representation is to
apprOX| mate each of the N state vanabl& Xn(t) by the superposition of a third-order
auxiliary polynomial and a (K-4) term shifted Chebyshev series. A motivation for this
representation, subsequently called Chebyshev-Based State Parameterization (in contrast to
just Chebyshev Parameterization above), is that the boundary values of the state variables
can be decoupled from the unknown state parameters enabli ng the stateinitia conditionsto
be satidfied directly.

Mathematically, the state variable x,(t) for n=I,2,...,N iswritten as

K-l
%a(t) = bno + brix + bAt2 + buat® + £ auyi(t) (48)

Then the derivative of x,(t) is

. K-l
%,(0 = }‘(bm + 202X+ 30nsT)) + £ a1
k=4 | _ (49)

The constants b's can be determined by subgtituting the initial and fina values of time (0
and T) into Equations (48) and (49), using Equations (14a-d), and manipulating
agebracdly.

K-l
bao = X590 — (-1 X nk

k=4

K-I
bt = Tk + (-1)* D 2kanx

k=4 (50&d)
K-l

b2 - -3Xno-2TXn0+3Xnr-TXNT+S H-3+2k?)+(.1)*(3-4k?)] an
k=4

K-
B = X0+ TXn0-2X, T+T X1 +X [(2-2k?)-(-)4(2-2k )] an
k=4

where XrQ X0, *T ™ AT are the values of the state variable X, and its derivative X, at
the boundaries of the time segment [0,T], i.e.,




where

12
X,0 ¢ Xn(0)
Xno = Xa(0)
(51a-d)
XnT = Xn(T)
XnT = X (T)

By subgtituting Equations (50a-d) into (48), die statevariablex,,(t) can berearranged as

' K
Xa(t) = Y. cx(ynk (52)
k=
ci = 1-3x%+2x3
C, = T(X-2X%+X3)
> 3 (53a-d)
C3 = 3Xx-2X

Cs = T(-X?%+X3)

= (-1)K-2(-1)k (K-1) 2t +[ 2k 2-4k -1 + (-1 )k (4k 2-8k +1)]x 2+ 2k (2-K) [1+(-1)]x*

and where

+Vk-i(0 (k=5,6,...,K) (54)
“Ynl = X,0
Ynz = S<n0
¥n3 = XaT (55a-e)
Yn4 = XuT

Yok = an(k-)  (K=56,*-K)

Then Equation (52) can be written as Equation (17) with different definitions of ynk's and

Ck*S.

Using Equations (55a-€) the elements of the NxNK matrix C(T) in Equation (28) can
beredefined as

I j=@i-DK+3 i=1,2,...,N
€ij(T) ={ (59)
| 0O otherwise
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The conversion processis smilar to the previous approach. Because the Ck'sin Equations
(53a-d) and (54) are redefined, theintegral parts of Pand p* change. For time-invariant
problems new closed-form expressions for the integral parts have been derived. They are
summarized in Appendix B.

_ Theoptimal control problem now can be
viewed as the search for the unknown coefficients of the state parameter vector y that
minimize Equation (39) subject to the equality congraints of Equation (55a). To isolate the
known initial condition, a new state parameter vector zisintroduced as

B _ 5

where
(58a-b)
Z,=X0O-
with
XNoJ
XI =[MO *20 ¢ « «
T
_ NO
*Q7[*10 *20 ¢ o o *
XE=[XIT X,TeseXNT] (59-€)

-X¥:[>Z|TX2T---iNr]

a' =[aw &]S... A1) 224 32 .. . XL - - - AN4 - « - AN(-D)]
=[yi5 yie. » e yik yis y26.--y2k--.yN5=.-. yNid

Vector Z2 containsthe known initial values of the state vector and vector 2 istheremaining
subset of the parameter vector y. The two vectors z and y are related via a linear
trangformation:

y= Oz (60)

where O isan NKxNK matrix with dements
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Jy-1 i=(n-DK+k; n-1,2...,N; k=1,2...,K
[NKAN T K=h
J=( NK-2N +n k=3 (61)
NK-3N +n k=4
(m-)K-4)+ (k-4 k=5,6,...,k
¢;;=0 otherwise
The perfonnance index L in Equation (39) can thus berewritten as afunction of z
L=2'Q" z+Z o 62)
where r
q=%a?
(63a-b)
=0 o
By expanding Equation (62), the pérforlmance index can be expressed as
r.| @ Q2 |fz T of '
L=[z1 zﬂ .. [22] + [zl zﬂ 2 (64)
21 " 221 5
or, equivaently,
L= Qhz1+ 2 (Qb+ OF) 2+ f Qp 2+ 0+ F o (65)

For an unconstrained L Q problem, the necessary condition of optimality can be obtained by
differentiating the performance index with respect to the unknown state parameter vector
2. Thisleadsto

(flu+ QA)zi =- (ni + QA )2- cof (66)

which represents a system of linear agebraic equations from which the unknown vector 2
can be solved.

2.4 Chebyshev-Based Approach for General Linear Systems

The approaches presented above are applicable to systems with square and
invertiblc control influence matrices. For generd linear systems, B is an NxM matrix
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where N is greater than M To apply the Chcbyshev and Ghebyshev-based approaches to
this more common case, j.e., general linear systems which have fewer control variables
than state variables, the sate-space model of Equation (1) is modified to

X(t) = A()X() + B'()u' (1) | | (67)
where

o . ov-Myx-M)

B()= = Bnix (68)
O Proas [ Onien-my . ]
, ) G(N-M)x

u)=uy A = (69)

' "“Mx

where T isan artificial (i.e., fictitious) control vector.

It can be guaranteed that B' is invertible if the last M rows of B are nonsingular.
However, if the last M rows are singular, thefirst (N-M) columns of B' in Equation (68)
can always be modified to makeit invertible. In order to predict the optimal solution, the
performance index is modified to

L'*Li+ ]_.'2 ' 70)
where.
T r .
]':2 ] [Xr(t)Q(t)x(t).q.u' (t)R'(t)ll'(t)'l'XA )S'({)u'(t)q.qr(t)x(t) +r (t)ll'(t)] dt (71)
0
. , PIN-M)X(N-M)  O(N-M)xM
R{@®)= R'N N

°*Mx(N-M) "MXM

pl(N-M)x(N-M)

V)

§(0=S,, = N (72a-)
x(N-M)

r'(t)::r;rx"=[p...p rT]T

where p is a weighting constant chosen to be a large positive number.. 1f S=0, q=0 and
r=0, then Equation (71) smplifiesto die more common penalty function:
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T
L'=L+ pf [T (t)aT)]dt <>
O -
By penalizing the artificial control vector, the magnitude and influence of the artificial
control variables can be made small and the solution of the modified optimal control
problem can approximate the solution of the original LQ problem.
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3. Simulation Study

To sudy the effectiveness of the approaches, the solutions of unconstrained,
time-invariant LQ problems have been obtained by both the Chebyshev and Chebyshev-
based state parameterization approaches and compared with the solutions from other
numerica agorithms.

3.1 Example 1

This example consders an N input N-th order linear time-invariant dynamic
. expressed in canonicd form.

(t) =AX() + Bu(t) ,- X'(0)=[1 2 *=+ N] (74)
where - -
O 10 oo 0
[xin " Ui "an
X2 U 001 .- 0
x=| .|, u= A= : . By (P29
) 000 o 1
N (UN.
L 1-2 3 ... (DNIN

The problem isto determine the control u that minimizes the performance index

l .
(xTQx + u’Ru) dt (76)

L = x"(DHx(]) +j
0
where
H = 10l
N (77ab)
Q=R= Inxn

One of the most efficient methods commonly used for solving this unconstrained LQ
problem is the trangition matrix gpproach (described in Appendix C; more details can be
found in (Speyer, 1986)). The gpproach converts an optima control problem into alinear
TPBVP (such as Equation (C.9)). By evaluating the transition matrix of this boundary
value problem, the problem can be converted into an initial vaue problem which can be
readily solved. In this study, the transition matrices were computed numericaly usng the
agorithm presented in (Franklin and Powell, 1980).

An aternate approach is a Chebyshev approach adapted from (Paraskevopoulos,
1983). It also converts an optima control problem into a linear initial value problem.
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Then, the stateand costate vectors in the linear homogeneous differential equations are
expanded in Chebyshev series with unknown coefficients. By integrating the differential
equations and introducing a " Chebyshev operational matrix", the unknown coefficients of
the Chebyshev series may be determined The state and control vectors may then be
obtained, asdescribed in Appendix D. (In thisstudy, die linear algebraic Equations (D.21)
wer e solved by an L U-decomposition routine. In Appendix B of (Paraskevopoulos,1983),
an algorithm which reduces the computational effort involved in solving Equation (D.21)
was presented.) For comparison, this approach - henceforth referred to as the " previous
Chebyshev" approach - wasimplemented.

In addition to the trandtion matrix approach and the previous Chebyshev approach, the
Chebyshev and Chebyshev-based approaches described in Section 2.3 were used to solve
this problem. The Gaussian elimination routine was used to solve the linear algebraic
equations representing the conditions of optimality in Equations (47) and (66). For the
Chebyshev approach, a sx-term seriesisemployed. For the Chebyshev-based approach, a
two-term shifted Chebyshev series in conjunction with a third-order polynomial is used.
The two-term seriesin the Chebyshev-based approabh isequivalent to a Six-term seriesin
the Chebyshev approach sincéthe-third-order polynomial is essentially areformulation of
the firs four terms of the shifted Chebyshev series.

Efforts were made to optimize the speeds of the computer codes, all of which were
written in "C" and executed on a SUN-3/60 workstation. Simulation results for
N=2,4,...,20 are summarized in Table 1. For the transtion matrix, Chebyshev and
Chebyshev-based approaches, the execution time includes the time to evaluate (i) the
system response (control vector) at 100 equally-spaced points and (ii) the performance
index. For the previous Chebyshev approach, the execution timeincludesonly the time to
evaluate the system response. (The table reports execution time for the transtion matrix
approach in seconds, and per cent execution timereative to the time of the trangtion matrix
approach for the previous Chebyshev, Chebyshev, and Chebyshev-based methods.)

The results show that the Chebyshev-based approach is the computationally most
attractive approach with thereéative error of the performance index less than one per cent
In comparison to the transition matrix approach, the Chebyshev-based approach is
increasingly more efficient for N>2. For N=20, the Chebyshev-based results suggest
greater than 70 percent savingsin execution time. For N=2, the Chebyshev-based method
isless efficient than the trandtion matrix approach sincethetimeto evaluatetheintegralsin
Equations (41a-b), a fixed time for any order system, is a sgnificant fraction of the overall
computation cost. For high order systems the principal computational cost is due to the
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solution of the linear algebraic equation (66), which is less intensive than the solution via
the trangtion matrix method

The Chcbyshev approach offers lesstime savings than the.-Chcbyshcv-based approach
for high order systems, but is still much faster than the trangtion matrix approach. The
Chebyshev approach ismore efficient than the Chcbyshev-based approach when N<4 since
theintegralsin Equations (41a-b) are easer to solve. Both the Chebyshev and Chebyshev-
base approaches have the same values for the performance indices and control vectors
because the terms of the series used to approximate the state variables are the same.

The previous Chebyshev approach is computationally more costly than the transtion
matrix approach. The advantage of this approach is that the relative error of the
performance index does not grow significantly when the order of the system increases.
The execution timeis approximately twice the time of the trangtion matrix approach.

The time histories of the state and control variables for the case N=2 are plotted in
Figures la and. Ib, respectively. The response curves from the transtion matrix and
Chebyshev/Chebyshev-based approaches drawn in these figures overlap for the scale
shown. Hence, the Chebyshev and Chebyshev-based solutions achieve conver gence on
the trajectories of the sate and control variables as well ason the value of the performance
index.

3.2 Example 2

This example, adapted and modified from (Meirovitch, 1990, Example 6.3), considers
a series arrangement of J masses and J springs. As shown in Figure 2, it representsa 2J
order system with a single force input acting on the last mass, mj. The displacement of
mass mj isdenoted by gj. The massand diffnessmatricesare

mg 0
M= mz . | (78)
| 0 mj
[ ki+ky ks 0
-k, kotks -ks
K = (79)
-kyy Kj.I+kj  -Kj
| 0 Kj




The date equatiom of this system is

i(t).==Ax(t)+Bu(t)

where

’ r
X =[xi X2.X2]" =[qi q2-qj qi 42- qj]

-MIK 0

B =[0 0...0 lmijf
Theinitial conditionsare
X(0)=[x1(0)X2(0)...X2j (0O)f

whereit ispresumed

xj(0)=1

XJ(0)=0 j =1.2..J-U+1...2]

implying that the last mass only has been displaced fromr est
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(80)

(81)

2

(83)

(84)

(85a-b)

Theproblem isto find the optimal contral history, u(t), that minimizes the performance

index

L x7Qx + uRuJdt

where

(86)




Faf £

(87a-b)

The ihtegrand term x"'Qx with Q of Equation (87a) represents the sum of kinetic and
potential energies of the system. Theinclusion of the integrand term u'Ru=u? reflects the
desreto minimizetheforce (aswell asthetotal energy).

In this example, using the values mj=10[kg] and kj=I[N/m] (j=I,2,...,J) for two
different systems, J=3 and J=5, the optimal solutionswere deter mined using the trangtion
matrix approach and the Chebyshev-based approach. To apply the Chebyshev-based
approach, the artificial control variable technique of Section 2.4 was employed with
p=10°.

Theresulting values of the performance index for the trangtion matrix and Chebyshev-
based approaches are summarized in Table 2. Thistable shows that the performance index
decreases as the number of terms of the Chebyshev-based seriesincreases. Thereative
errors with four or more terms are less than one percent which indicates that conver gence
has been achieved In particular, when the number of termsis six or more, the Chebyshev-
based solution is smaller than the solution obtained by thetranstion matrix approach. This
is because the weighting constant p is used to penalize the artificial control vector. As
shown in the table, for J=3 a 4-term Chebyshev-based approach offers a 20 percent
savings in execution time compared with the transtion matrix approach, while for J=5 it
offers a 28 percent savings compared with the trandtion matrix approach. This suggests
(as does Example 1) that the Chebyshev-based approach is more efficient in solving high
order systems.

The response histories for the state variables x3 and Xs (the displacement and velocity
of the last mass, respectively) and the control variable u for J=3 with four and six term
Chebyshev-based series are compared with the state and control variables of the trangtion
matrix approach in Figures 3a and 3b. Both the four-term and six-term solutions are close
to the trandition matrix solutions. To verify that the artificial control variable technique is
successful, the time histories of the artificial control variable Qi for four and sx-term
Chebyshev-based series arc plotted in Figure 3c. As shown in the Figure, the artificial
control variable based on a six-term Chebyshev-based series is smaller in magnitude (closer
to zero) than the artificial control variable based on a four-term series. However, the
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magnitudes are small for both cases and hence the influence of the artificia control

variables on the system dynamicsis negligible.
In summary, this example demonstrates the applicability of the Chebyshev-based
goproach to generd linear systems (with fewer control variables than state variables).

3.3 Example 3

This problem, adapted from (Huntley, 1979), considers the distributed parameter
problem

A= N+ 0<tsT, 0<y=<Y

dt §2 (89)
with boundary conditions
20 = Hvo=0
y dy (89)
andinitia condition
X(y,0) = 1+y (90)
The performance index to be minimized is
1L DAy )+uE(y )] dydt
2 I
0 SO (91)

Using a finite difference approximation, this distributed parameter system can be
aoproximated by the following lumped parameter N+l order system

X =AX +Bu ' (92)

where

@&y o0 i




=
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B * I(N+)x(N+)

AY =N ~ (932€)
X=[xoxi .. XNF *n = x(nAy), n=0,-.»N
u=[uoui... UNF un = u(nAy), n=0|,...,.N
with initial conditions
Xn(0) = 1 +nAy ,n=0,[,...,N (94)

Theperformance index is approximated by

T -
L= AZ—Y [ (xTQx+uTRu)dt _
0 | (95)
where
Q=R= diag[ 1 1L
K 1,..., 1, %\
2 2J(N+i)x(N) (96)

In this example, the optimal value of the performance index and the optimal trajectories
of the state and control vectors at 101 equally-spaced points were solved by the
Chebyshev-based approach, a Riccati equation solver (Speyer, 1986), a transtion matrix
approach (Speyer, 1986), and a Fourier-based state parameterization approach (Yen and
Nagurka, 1988).

The smulation resultsfor T=I, L=4 and N=4, 5, 8,10,16,20 and 32 are summarized
in Table 3. Although the Riccati equation solver provides accurate solutions in all cases, it
is time-consuming for high order systems. The transition matrix approach is
computationally more efficient than the Riccati equation solver but it encounters numerical
difficulties and fails to provide reasonable solutions when N is equal to or larger than 16.
Thisingability iscaused by the error in computing the trangtion matrix for the Hamiltonian
system. State parameterization approaches such as the Fourier-based approach and the
Chebyshev-based approach provide solutions with satisfactory accuracy and arc
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computationally mor e efficient than trandgtion matrix approach for all cases. Asshown in
Table 3, the 3-term Chebyshev-based approach is more accurate and computationally more
efficient than the 2-term Fourier-based approach. A K-term Chebyshev-ba%d approach
involves N(K+3) linear algebraic equations representing the conditions of optimality. In
comparison, a K-term Fourier approach involves N(2K +3) linear algebraic equations (see
Yen, Nagurka, 1988). AsN grows, the Fourier approach needsto spend relatively greater
time on solving the sytem of linear algebraic equations. For example, with N=32, the 3-
term Chebyshev-based results suggest greater than 35 percent savings in execution time
when compared with the 2-term Fourier-based approach. However, for N>10 in both
approaches, the performance indices increase dightly as the order of the system grows,
while the solutions from the Riccati equation solver indicate that the performance index
should decrease. Adding terms to the series improves the accuracy of the solutions. For
example, the performance index of a 4-term Chebyshev-type seriesdoes not increase as the
order of the system increases when N isequal to or smaller than 16.

“ The time histories of the state and control variables for the case N=4 obtained via a
trangtion matrix approach and a 3-term Chebyshev-based approach are plotted in Figures
4a and 4b, respectively. The overlap of the state and control trajectories from both
approachesindicate that conver gence has been achieved.

In summary, this example compares the Chebyshev-based approach with a Riccati
equation approach, a trangtion matrix approach and a Fourier-based approach. The
smulation results indicate that the Chebyshev-based approach is computationally more
efficient than other approaches, especially in solving high order system.
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4. Discussion

4.1 Chebyshev-based State Representation

Two state representations are presented in Sections 23.1 and 2.3.4. These two
representations can be viewed as equivalent, differing only in the way the QP problem is
solved. The approach described in Section 2.3.3 solves the unconstrained QP problem via
aLagrange multiplier technique. The second approach solves the same problem by direct
substitution. To illustrate the difference between these two approaches, consider the
- following problem.

Minimize x?+y* subjectto x+y=l
This problem can be readily solved by reformulation as
" Minimize x2+yZ+A(x+y-1)

where X is aLagrange multiplier. The above expression can be differentiated with respect
tox,y and X to obtain three linear equations from which the optimal values of x,y and X can
be computed. Alternately, this problerh can be solved by direct substitution. The equality
constraint can first be rewritten as

y=I-Xx

and then substituted into the original objective function. The problem is then converted into
the unconstrained problem:

Minimize x2+(1-x)2

By differentiating the above expression with respect to x, one can obtain a single linear
equation. Direct substitution, the method used in Section 2.3.5, is computationally more
efficient than the Lagrange multiplier method, the method of Section 2.3.3. This argument
is also supported by the simulation results summarized in Table 1.

4.2 Motivation of Auxiliary Polynomial

The inclusion of the third order polynomial in the Chebyshev-based state representation
decouples the state parameters from the initial conditions. This enables the direct
substitution technique to be used in solving the converted QP problem. Furthermore, the
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elements of C(T) in Equations (40a-b) can be obtained by Equation (56) instead of via
direct substitution of Equation (16). The latter is computationally much more expensive as
the order of the system increases.

Because the auxiliary polynomia of Equation (48) in Section 2.3.4 is essentidly a
reformulation of the first four terms of the Ghebyshev-type series of Equation (1S), the
Chebyshev and the Chebyshev-based approaches result in the same solutions.  Further

‘study of the smulation results has shown that the evauation of the integrals involving
shifted Chebyshev terms is computationally more expensive than the evauation of the
integrals involving only polynomia terms. However, the advantage of using the integrals
involving shifted Chebyshev terms is that the system of linear algebraic equations,
Equation (66), becomes better conditioned as more Chebyshev termsareused. That is, the
condition number of the coefficient matrix CI*,, + Q\\ becomes larger as K grows, as
shown in Table 4 indicating a better conditioned system. (Here, the condition number is
taken as (Come, 1965).) Hence, roundoff errors should not present a problem as more
terms areincluded.

4.3 Selection of the Terms of the Chebyshev-based Series

The example problems demonstrate that solutions with high accuracies can be achieved
using two. or three term Chebyshev-based series {e.g., see Example 1 and Example 3).
However, more terms are needed in Example 2 to achieve the required accuracy.
Increasing the number of terms of the Chebyshev-based series improves the accuracy of the
solution while sacrifici hg computationa time. A recommended procedure for selecting the
"optimum” number of the terms is to solve the problem using aK term series and a K+
term series (where 1" isan integer increment), respectively, and check whether the relative
error of the performance index is within the required tolerance. If the relative error is
within therequired tolerance, the K term seriesis acceptable.

For example, consdering the performance index for =3 in Table 2, the percent relative
error is61 percent comparing K=2 and K=4 and is 0.92 percent comparing K=4 and K=6.
(Here the percent relative error is defined as the magnitude of percent relative error of a
(K+2) term performance index with respect to a K term performance index.) With a
tolerance of one percent, the results show that a four term series leads to an accurate
gpproximation.
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5. Conclusions

Thisreport presents a sate parameterization method based on a finite-term Chebyshev
representation of the state trajectory. Such arepresentation is used for predicting the
optimal state and control trajectories of uncongtrained linear time-invariant dynamic systems
with quadratic performance indices. In one method, the time hiStory of each gate variable
is approximated by a shifted Chebyshev series. The unconstrained LQ problem is then
converted to an equality constrained QP problem that minimizes the performance index and
satisfies the gate initial conditions viaLagrange multipliers. In a second method, the time
history of each state variable is represented by the superpostion of a shifted Chebyshev
- seriesand athird order polynomial. Theincluson of the auxiliary polynomial improves the
speed of evaluation of the integral partsin Equations (41a-b) in comparison to a gandard
Chebyshev series. In both methods, the necessary condition of optimality gives a system
of linear algebraic equations from which the unknown gate parameters can be solved The
results of smulation studies demonstrate computational advantages of the Chebyshev-
based method relative to the Chebyshev method, a prevlous Chebyshev method and a
gandard sate transition matrix approach.
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Appendix A Integrals for Chebyshev Approach
A.l Integrals of Chebyshev Polynbmials
First, the integrals of Scpj. 5<H. <FI;H, <A and <K are defined as
R
oG] Eoile)as (A1)
'r!
Bij.J A<pjfe)dd (A2
-1 )
rl
% | 9:() ;&) d (A.3)
-1
el _
5= ¢ilE) oyle) d (A9
-
R
ey= | Pieile)ag (A5)

Applying Equations (7a-d), (8a-b), (9a-b) and (10a), the integrals of £, ()}, ({i(pi,
< and <H(j can be derived by “integration by parts'. In this section, the recurrence
fonnulas for these integrals are summarized as follows.

For i=0,1,2,...; j=0,1,2,...

aj =0 for j-i=1
(A.6a-b)

_1 .. . .
| ajj = G+ DG-1- l)[1 + (- l)‘*‘1+lja(i-1)(j+1)] forjsxl
Bi=1-( D™ ~iog; A0

1
;= 5[0!0(i+j) + aoli-jl] (A.8)




Soj=0
810=-Poi

811=pn

812 = 2P2i - Poi

5i3=4p3;-3pii

8 = 28iG-2) — Bi4) + 2i[Yar1)G-2) — Ya-1)G-2)]
€o0=0

Cii = Poi

%2 =1PH

Ei3=12p2i-3poi

£ij = 2£i(.2) - §(™> + 2§8i(j.i) + (8 - 2)8i(j.3)
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fori*0
fori*0
(A.9a0
fori*0
fori *0
fori= 0, j=4,5,...
(A.10z-€)

for j=4,5,...

A.2 Integrals of Shifted Chebyshev Polynomials

In this section, the integrals of r>j, tvifj, ViV; Vi\jj and Wj are derived using the
equations of the previous section. These integrals are needed to determine the integralsin

Equations (41a-b) for the Chebyshev approach.

From Equations (11) and (12) the following equations are known:

i) = ox(E)

. =2 .

yi(t) 3 ok (&)
=T

t 2(1 + !;)

_T
dt—zdé

(A.lla-d)

Making use of Equations (A.I la-d), the following integrals are obtained:




{dt= % oi

T
" (dt=30i

Vi@Owjt)de = Jzi-yij
l:

(t)ydt= 5jj

[ :ij

| h(?w()d ! Elgo"m“)

ft -m 'Aotm + 205 + Q2;)

4 i Vit ?Iié(_otos + 30y + 305 + 035)
-0

j tyi (£)d t-1Poi + 2By; + Bai)
0
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(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.2])
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f Sy de =Isi(BOi + 3By + 3B + Bai) (A2

for i=0,1,2,...; j=0,1,2,...

By introducing Ck = Vk-i(t) and dk = Vk-i(t) into Equations (A.12) - (A.16) and
applying Equations (18) and (25), the integrals in Equation (41a-b) for the Chebyshev
approach can be summarized as:

T
fcdt=:§a (A.23)
0
T
I ddt=P : (A.24)
0
ccT)dt =12"-y (A.25)
(dc)dt =5 (A.26)
f (ad7)dt =%e (A.27)
where
a=[cn on om --- ook-pf (A.28)
P=[poo Poi Pra -- poxk-f (A.29)
Yo ‘** Yax-p _
ya Tio : . (A.30)
V(KD t VK-DE-D




. ~K-DO ***

50(K-i)

. Bk

Eqk-1)

E(K-1)(K-1)

(A.31)

(A.32)




Appendix B Integrals for Chebyshev-based Approach

In order to formulate the integral parts of P* and p* for the Chebyshev-based
approach, Ck (k * 1,2,...,K) in Equations (53a-d) and (54) is redefined as

Ck = Mok + H1kT + B2x®? + P3 i + Ky (O (B.1)

where k=1, 2,.. ., K, x=t/T,

'Hd Hz He Ho4| [ 1 0 0 o0
M1t HI2 HI3 M4 (] O T O O (B.2)
H H2 H23 H24 3 2T 3 T

U3l H3R HXB H34J L. 2 T -2 T

I'HOk' B . ' (_Dk
G 20Dk ey: k=56,--K (B.3)
HX P - AK-1+(- 1)k gk+ 1) |  6,---, .
H3 : - 2k(2 -9l +(_Dk] |

Kk:{l k=5,6,..K

0 k=I,2,3,4 (B.4)
Thentheelementsof [ cdt, f ddt, 1 (cc')dt, t (dc")dt and F (dd")dt can be
expressed as Jo Jo Jo Jo Jo

C . .

i Cidt:T(n,Ji+llul2+l-lzi/3+u3i/4)+l| Wi.(tdt (B.5)
Jo

I T

| ddt = \x, T H2 t M3t Ki«]o Vi-i(t)dt (B.6)

Jo




f cicjdt = T{Roito; + {Kaikoj + Moik15)/2 + (M2iMoj + Bailtyj + Hoikiz;)/3

+ (H3ikloj + Mailyy + Haikoj + Hoik3;l/8 + (M3inty; + Haiklgj + Biikta)/5

+ (W2iR3j + H3iM2;)/6 + Haip3;/7)

T
+ %} toi \ Y,.i(Odt+’\if th-I(t)dt-l-M_zl', t2Vj-I(t)dt+|_\|_/| I3y
0 3

Jo o
(0]
T T T
S Vii)dt+ s .
+ K| Lo ® “—,I',-'-] tqri_l(t)dt+u—22flj t2ViI(t)dt+|Vl.[ t3\|li.1(t)dt
0 0 TJo ™Jo
:
| |
ok Vii)Vvj-it)dt (B.7)
- Jo '

I ca W PaiHoj + (Rl + 2M2iM2)/2 + (R1ibtj + 2ailtyj + aikto)/3

Jo

+ {M1iktaj + 22; 105 + Suaikts;)/4 + (2H2iM35 + 3aikta;)l/S + Mailo;/2

rT T T
K; 2125 3us;i ;
+=r1 Rli| ¥j.1(t)dt+%f twj.x(t)dt+—9-3—j 2y (0dt
T2
Jo 0 0
_ T |
Jue Byt Fa. ’
+Ki|Rg  adEESEE twiaMdes 0 tfyga(dt 4 {3yja(Ddt
Jo 0 TJo T JO
T
+ KiKjj Wd.~ovj.Kodt (B.8)

Jo
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f Lddt = %[l-hil-ltj + Waityj + Wik + (3H3iMy; + dilailaj + paiMa;)/3

Jo .
+(3u3il2j + 3uziiz;)/2 + IitayfS)

[ ¢t T
+ 3 oades | e
o Jo Jo ]
[ ¥ —_— 3o T ]
+ ‘K;I'-L \I-’i-l(t)dt + —.'rﬁ) t\i!i-l(t)dt + —-—--?-'-'I-I tzlil'i_l(t)dt
o 0 _T2 0 )

;
+%X  Vi-i(t) Vj-i(odt
(B.9)
where the integrals on the right hand sides of Equations (B.6)-(B.10) come from
Equations (A.12)-(A.22).
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Appendix C Trandgtion Matrix Approach

Congder the LQ problem that minimizes

«T
L =x(T)Hx(T) + J| (X"(D)Q(t)x(t)+u'(t)R(t)u(t))dt (C.h
' 0

subject to

x(t) = A(Dx(t) + B(u(t) , x(0) =X, (C2)

For smplicity, cross product and linear terms of the control and state vectors have been
omitted from the performance index. The order of the system is assumed to be'N.

In the trandition matrix goproach (see, for example, Speyer, 1986), the Hamiltonian is
firg introduced as

H= %xTQx + %uTRu +2TAx+1"Bu (C.3)
where X can be viewed as a Lagrangian multiplier vector whose e ements are often cdled

costate variables. It can be shown that the necessary conditions of optimdity are
., _ 3l

=—=sAx+Bu , Xx(0) =Xg (C.4)
dx
k=- ;X =-Qx-ATA , A(T)=Hx(T) (C5)
=9 _Ry+BN (C6)
du '

Equation (C.6) can be solved for the optima control u giving

u=-RIBTA (C.7)
Substituting equation (C.7) into equation (C.4) yields
X = Ax - BR'B"X (C.8)

Combining equations (C.5) and (C.8) gives a TPBVP that consists of 2N linear
homogeneous differentid equations

Ml b

This system of equations is often called the Hamiltonian system. Its solution has the
following forai

, X(0) =%o , MT)=Hx(T) (C.9)
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5 L
At2) I.Mtl) (CI0)

where ¢ isthetrandgtion matrix of the Hamiltonian system. By settingt2 =T and ti =0,
equation (Cl10O) gives

[X(T)}=[ 011(T.0)  <t>iy(T.0) ”x(O)] -
A(T) ¢ (T,0) <p22(T0) .

With the terminal condition X(T) = Hx(T) given by equation (C5), X(0) can be
determined from equation (C. 11) as

*.(0)=K(T)x(0) - (C12)
where
K(T) - [<P2ATO - H M 15(T,0)]"*[HATI(T,0) - <>2(T 0] (C.13)

The Hamiltonian system of equation (C.9) can thus be viewed as an initial value problem.
Using equation (C10O), the solution of thisinitial value problem can be formulated as

X(tp+At) x(1p)
= ¢t +At, t f ...P (C.14)
[1(:,,+At)] $iprin ) [Mt,,)] s

where P isthe number of equally-spaced points for which the solution isrequired and At
= TIP. Note that for timedinvariant problems, the transition matrix 4>t>+At, t,) is
indepehdent of t, and is only a function of At. A solution approach based on equation
(C.14) is computationally much more efficient in general than solving equation (C.9)
using numerical integration-based differential equation solvers such as Runge-Kutta
methods. The corresponding optimal control u can be computed from equatioh (C7).
Using this transition-matrix approach, it can also be shown that the corresponding
performance index valueis

L* =X (0)K (T)x(0) (c15)




40

Appendix D Paraskevopoulos Approach for LQ Problems

This section summarizes the method of (Paraskevopoulos, 1985) for solving the
uncongtrained optima LQ problem. Consder the LQ problem that minimizes

F
L -y (MHx(T) + 1 X ©)QM)x(t) + U (HRE)U())dt (D.)
subject to 0
X(t) = A[)x(t) + Bu®t) , x(0) =X (D.2ab)
The order of the system is assumed to be N. The optimd control u* (t) isgiven by
u'(t) = -R-'B"X(1) (D.3)

~ where X(t) isavector satisfying the canonica equation:

X(t) A -BRBT || x(t) " ' x(t)"
= - =M (D4)
A Q AT JLMO X(0)
with the boundary conditions pecified as
X(0) =%, (D.5ab)
X(T) = Hx(t)

Matrix M in Equation (D.4) is atrangtion matrix which can be written as a panitioned
meatrix

Mt (D.6)

o11(0) qnz(t)l

<I>21(0 022(t).
Then the TPBVP (represented by Equations (D.4) and (D.5)) can be converted to an initid
vaue problem with initia conditions

X0 =% (D.7ab)

X(O) = K(T)x(0)=Xo
where
K(t) = [KB2T) - HIOACT)]": [H<I>n(T). $ax(T)) | (D9)
In the following, equation (D.4) will be solved using Chebyshev series. To this end,
the transformation '
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t=2L1. : . (D.9)

isintroduced such that when t=0 then t=- and when t=T then t=I. Using Equation (D.9),
Equation (D.4) may be written as

X(x) X(x)
, = -N
. D.10
A1) A(T) (b10
where
N ==}M (D.I1)
Integration of Equation (D. 10) from -1 tot yields
- _
o\ 1 x(c)da
X(X) I8 © X(x=-1)'
=N ( ¥ (D.12)
Alt=-1
M) | X@da| Y
where
X(x =-1) =x(t =0) = Xg
(D.13a-b)

At=-)=A(t=0)=Ay

Vectorsx(t) and X(t) are then expanded in a K-term Chebyshev seriesasfollows

x(T)
[ ] ==W<p(X) (D.14)
At) -

where W is a 2NxK Chebyshev coefficient matrix (to be determined) and (p(t) is a
Chebyshev function vector.

S W=[we w, - Wg,]owm
(D.15a-b)
o(t)=[@o(t) ¢1(7) --- Px1(D}

Par askevopoulos (1983) introduces a KxK' Chebyshev operational matrix P which has the
following property
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r‘l
1 y(o)da~P<P(x) (D.16)
where _ _
ac Po Yo 0 O = 0 O
ai Pi vi 0 0 e 0 0
a P2 0 v e (0 O
o =| O P3 0 vz .= 0 O
. : (D.17)
ak-3 0 0 e vk3 O
okz2 O O e 0 vk
 ctk-1 O *e Pki O
with
{ 1 for n=0
Op = < '—41- - for n=1
_ 1yn+l
€D for n=23...
\  n2-1
-' I 0 for n=0
Pn= 1 for n=1 (D.18a-c)
-1 _
\ TCHD) for n=23,...
0 for n=0
Yn= 1 for n=1
n= 1 =
L for =2,3
2(n + 1) =&
By using Equations (D.14) and (D.16), Equation (D.12) may be written as
W@CO = -NWP<p(x) + Scp(x)
or .

where




-
.-
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X(x--1) 0...0 _
S =[ ]=:[SQ Si .- SK'IJZNxK (D.20)
X(x«-1) 0 ... 0.

Equation (D.19) can be written as

Tw=S (D.21)
where :

T=1+PT®N

w =[wo wi ... wg.i]' (D.22a-c)

S=[So S, ... Sk.f
and where the Kronecker product is defined as

[PNN PN ... PyjgNT

P12N P22N - P2KN

PT®N = (D.23)

PikN PN e Py Nj
1K 2K : _ KK INK x2NK

From Equation (D.21) w may be obtained. Once determined, the control vector can be
calculated according to Equations (D.14) and (D.3).




Table 1. Comparison of Simulation Resultsfor Example 1*

TN Creyhar Chebyshev | Chebyshevebased
Kl
NI Perf.  Time %Er %Time] %Er %Time| %Er %Time

| ndex (%C) L b oo * *% L * % * %%k
2] 53501 050 | 129e03 1440 | 3.21e05.1200 3.21e-05156.0
a4l 44249 242 | 256e-03 1719 | 7.67e04 810 7.67e-04 67.8
6] 15375 706 | 367e02 1870 | 523e03 734 523203, 48.4
8|l 37302 1586 | 156e01 1938 | 184c02 69.4 1.84c-02 40.7
10] 74161 2004 | 176e01 2028 | 4.41e02 70.0 4.41c-02 382
121 12993 5044 | 174e01 2040 | 832e02 674 832202 351
14§ 20863 8146 | 161e01 1983 | 134c01 648 | 134e01 332
16f 31428 12454 | 148c01 1970 | 1.94c01 624 194e-01 30.8
18{ 4509.0 17424 | 13901 1996 | 261e01 628 261e-01 30.4
20| 62254 24750 | 136e01 191.8 | 3.31e01 60.2 3.31c-01 28.7

* Six-term series for Chebyshev and Previous Chebyshev approaches.
For Chebyshev-based approach, four terms are used in polynomia
and two terms in Chebyshev series.

** Magnltude of percent relative error of Chebyshev performance index with respect
to trangtion matrix performance index

*** Percent of execution time of Chebyshev approach relative to execution time of
Trangtion Matrix gpproach




Table2. Summary of Example 2 Results

Transtion matrix Chebyshev-based* |
%Error** § % Time *»
Performance| Time Performancel Time
~ Index (se0) Terms Index ()
2 20.12276 3.06 164 39
7.62051 7.82 4 7.68190 6.26 0.81 80
6 761147 | 1174 0.12 150
2 1949309 | 10.02 156 32
7.62044 13108 4 7.68581 |22.44 0.86 72
6 761124 |43200 0.13 139

* Four terms polynomial and two terms Chebyshev series are used.

to trangition matrix performance index

*** Percent of execution time of Chebyshev éppkoa:h relative to execution time of
Trangition Matrix gpproach

** Magnitude of percent relative error of Chebyshev performance index with respect




Table3. Comparison of Simulation Results for Example 3

Dlannste Trangtion Fourier Chebyshev Chebyshev

r Kic.call Matrix 2terms 3terms 4 terms
IN Perf. Time | Peaf. Time] Pef. Timef Pef. Time| Pef. Time
I ndex (sec) | Index (sec) §Index (sec) fIndex (sec) | Index (se0)
41 15.180 9.08] 15180 4.36j 15180 342} 15180 29415180 4.06
5] 15.112 17.08] 15112 7.06} 15112 5.18} 15112 4.30}15112 590
8| 15042  73.36{ 15.042 21.56} 15043 13.76) 15043 10.74|15.043 1522
10] 15.027 154.36] 15.027 38.66) 15.031 23.38] 15.030 17.72] 15.030 2558
16] 15.011  820.08| Instahility 15.042 78.00} 15.042 55.98] 15.027 80.90
20] 15.007 4313.82| Ingtability 15.068 138.34| 15.061 89.14| 15.038 130.56
32} 15.003 43351.62 | Ingtability 15.170 510.18| 15.165:328.94] 15.112 496.26

For N=4 to N=16, the Riccati equetion isintegrated backward intime by a
fourth-order Runge-Kutta routine using a time step of 0.01 time unit. In

order to ensure a numericdly

stable solution, a time step of 0.005 time

unit is used for N=20 and a time step of 0.0025 time unit is used for

N=32.




Table4. Condition Numbersfor Example 1,2 and 3

Example 1 (N=2)

Example2 (J=3)

Example 3 (N=4)

K

4 1.6732e-| 1.3490e83. 2.3709e8

6 1324707 5.1105€el48 1.3630€l0
8 1.611667 -2.2184e226 2.0283e32
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Figure la State Variable History for Example 1
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Figure Ib  Control Variable History for Example 1
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Figure 2 2J Order System for Example 2
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Figure 3a State Variable History for Example 2
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Figure 3b Control Variable History for Example 2
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Figure 3c Artificial Control History for Example 2
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