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Abstract

A Chebyshev-based representation of the state vector is proposed for designing optimal

control trajectories of unconstrained, linear, dynamic systems with quadratic performance

indices. By approximating each state variable by a finite-term, shifted Chebyshev series,

the linear quadratic (LQ) optimal control problem can be cast as a quadratic programming

(QP) problem. In solving this QP problem, one approach is to treat the state initial

conditions as constraints that are included in the performance index using a Lagrange

multiplier technique. A computationally more efficient approach is to tailor the state

representation such that the boundary conditions (which include the known initial

conditions) are decoupled from the coefficients of the Chebyshev series. In both

approaches the necessary condition ofoptimality is derived as a system of linear algebraic

equations from which near optimal trajectories can be designed.
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1. Introduction

The optimal control, and corresponding state, trajectories of linear, lumped parameter

models of dynamic systems are often determined from the necessary condition of

optimality. Using variational methods, this optimality condition can be represented as a

two-point boundary-value problem (TPBVP). One of the most well-known solution

approaches is the Hamilton-Jacobi approach which converts the TPBVP to a terminal value

problem involving a matrix differential Riccati equation. Although the Hamilton-Jacobi

approach casts the optimal solution in closed-loop form making it a preferred approach for

physical implementation, it is computationally intensive and sometimes difficult to employ

in solving high order systems.

For time-invariant systems, a more efficient solution method for optimal trajectory

planning is the open-loop transition matrix approach (Speyer, 1986; described in Appendix

C). Typically, the transition matrix approach converts the TPBVP into an initial value

problem which can be solved numerically. The transition matrix approach can encounter a

problem of numerical instability in determining the optimal control of high order systems

(Yen and Nagurka, 1990). This problem has been attributed principally to the error

associated with the computation of large dimension state transition matrices. An accurate

and computationally streamlined approach for calculation of state transition matrices of high

order systems remains a research challenge (Moler and Loan, 1978).

To circumvent these numerical difficulties, and in the interest of seeking alternative

solution strategies, trajectory parameterization methods have been investigated. In general,

these approaches approximate the control, state, and/or co-state trajectories by finite-term

orthogonal functions whose unknown coefficient values are sought giving a near optimal

(or sub-optimal) solution. For example, approaches employing functions such as Walsh

(Chen and Hsiao, 1975), block-pulse (Hsu and Cheng, 1981), Laguerre (Shih, Kung and

Chao, 1986), Chcbyshev (Paraskevopoulcs, 1983; Chou and Horng, 1985; Vlassenbroeck

and Van Dooren, 1988), and Fourier (Chung, 1987) have been suggested. Like the state

transition matrix approach, many of these approaches employ algorithms that convert the

TPBVP into an initial value problem. The initial value problem is then integrated with

respect to time with the state and co-state vectors approximated by truncated orthogonal

series. This technique (described in Appendix D) reduces the initial value problem into a

static optimization problem represented by algebraic equations. The truncation of the

orthogonal series results in errors, which can be minimized by including more terms, but

the transition matrix (needed to convert the TPBVP to an initial value problem) must still be



evaluated which, as mentioned above, can cause instability problems in high order

systems.

This research is part of a broader effort toward the development of computational tools

for solving optimal control problems via state parameterization. An advantage of state

parameterization is that boundary condition requirements on the state variables, such as

initial conditions, can be satisfied directly. A second advantage is that the state equations

can be treated as algebraic equations in determining the corresponding control trajectory.

This assumes that there are no constraints on the control Structure preventing an arbitrary

representation of the state trajectory from being achieved

Earlier work on parameterization of the state vector via Fourier-type series (Yen and

Nagurka, 1988) has shown that the necessary condition of optimality for an unconstrained

linear quadratic (LQ) problem can be formulated as a system of linear algebraic equations.

To ensure an arbitrary representation of the state trajectory and hence overcome the

potential difficulty of trajectory inadmissibility (in which an arbitrary state trajectory can not

be achieved), artificial control variables were proposed. These physically non-existent

variables are driven small by being heavily penalized in the performance index. Simulation

results indicated that the approach is accurate, computationally efficient, and robust relative

to standard methods.

Studies of parameterization methods for prediction for optimal control of linear time-

invariant systems have demonstrated advantages of expansions in terms of Chebyshev

functions in comparison to Walsh, block-pulse, Hermite, Laguerre, and Legendre

functions (Paraskevopoulos, 1983, 1985). Chebyshev functions can nearly uniformly

approximate a broad class of functions, making them computationally attractive

(Vlassenbroeck and Van Dooren, 1988).

This report explores the use of finite-term Chebyshev-based representations of the state

trajectory. In one approach, each state variable of a dynamic system is approximated by a

shifted Chebyshev series. The LQ problem is then converted to an equality constrained

quadratic programming (QP) problem that minimizes the performance index and satisfies

state initial conditions via Lagrange multipliers. In an alternate formulation, the state initial

conditions are satisfied directly by representing each state variable by the superposition of a

shifted Chebyshev series and a special third order polynomial. In both cases the necessary

condition of optimality can be written as a system of linear algebraic equations from which

the unknown state parameters can be solved.



2. Methodology

2.1 Problem Statement

The behavior of a linear dynamic system is governed by the state-space model

x(t) = A(t)x(t) + B(t)u(t) (1)

with known initial condition x(O)=xo where x is an Nxl state vector, u is an Mxl control
vector, A is an NxN system matrix, and B is an NxM control influence matrix.

The design goal is to find the control u(t) and the corresponding state x(t) in the time
interval [0,T] that minimizes the quadratic performance index L,

L = Li + L2 (2)
where

Li = xr(T)Hx(T) + hrx(T) (3)

L2= I [xr(t)Q(t)x(t)+u^ (4)
Jo

It is assumed that H and Q are real NxN symmetric and positive-semidefinite matrices, R

is a MxM symmetric and positive definite matrix, S is a NxM weighting matrix, h, q are

Nxl vectors and r is an Mxl vector. For now, it is assumed that the lengths of the state

and control vectors are the same (i.e.9 M=N) and B is invertible. These assumptions will

be relaxed later.

2.2 Chebyshev Polynomials

Chebyshev polynomials are defined for the interval ^€[-1,1] and have the

following analytical form:

cp^) = cos(k cos"1^) , k = 0,1,2,... (5)

or

" * 1 2 <6>

where the notation [k/2] means the greatest integer smaller than k/2. From Equation (6),
the first few Chebyshev polynomials are



(7a-0

The Chebyshev polynomials have several properties, such as satisfying (i) the recurrence

relations

, k l , 2 , . . .
(8a-b)

, k = l , 2 , ...

where the dot indicates differentiation with respect to time, (ii) the initial, final and midpoint

values

<Pk(D = 1
(-l)k

k (9a-d)

<P2k+i(0) = 0

and (Hi) the product relations

(lOa-b)

The domain of the Chebyshev polynomials can be transformed to values between 0 and

T by letting

l

giving the shifted Chebyshev polynomial \|/k(t) expressed as

(12)

From Equation (12) the first few shifted Chebyshev polynomials are



(13a-e)

V3(t)-32t3-48t2+18t-l
128t4-256t3+16Ot2-32t+l

where nondimensional time t = t / T. From Equations (5) and (12), the initial and final

values of the shifted Chebyshev polynomial and its first time derivative can be obtained as

Vk(0) = (-Dk

Vk(0) = (-l)k+1(2k2/T)

¥k(T) =

2.3 State Parameterization

2.3.1 Chebyshev State Parameterization A direct approach for state parameterization

is to approximate each of the N state variables xn(t) by a K term shifted Chebyshev series.

K

Xn(t) = X ckto ynk . ( 1 5 )

for n=l,2,...,N where

(16)

In Equation (15) ynk is the k-th unknown coefficient of the Chebyshev polynomial for the

n-th state variable. Alternatively, equation (15) can be written as

xn(t) = Cr(t)yn (17)

where

cr(t)=[c!(t) C 2 ( t ) . . . CK(0] (18)

(19)

where yn is the state parameter vector (containing the unknown coefficients) for the n-th

state variable. The state vector containing the N state variables can be written in terms of a

full state parameter vector y, i.e.,



where

C(t) =

cr(t) 0
cr(t)

0 cr(t)J
NxNK

[yn

y 2 [ya yn

yud r

yacl7"

yN2

Similarly, the state rate vector can be written as

x(t) = D(t)y

where

D(t) = C(t)

dr(t) 0

dr(t)

0 dr(t).
NxNK

(20)

(21)

(22)

(23)

(24)

dr(t)=[ci(t)C2(t)... cK(t)] (25)

The control vector u(t) can also be expressed as a function of y. From Equation (1)

(26)

(27)

From Equations (20) and (23),

u(t)

Thus, the application of Chebyshev state parameterization allows the state vector, state rate

vector, and control vector to be represented as functions of the state parameter vector.



3,32 Conversion Process The first step in solving the state parameterized LQ problem

is to convert it to a quadratic programming (QP) problem by rewriting the performance

index as a function of the state parameter vector y. From Equation (20); the terminal state

vector x(T) can be expressed as

x(T) = C(T)y (28)

By substituting Equation (28) into (3), the cost Lj is

Li = yrC(T)rHC(T)y + hrC(T)y (29)

Similarly, by substituting Equation (26) into the integrand of Equation (4),

x r Qx+u r Ru+x r Su+q r x+r r u = x rFix+x rF2x+x rF3X+x rf i+x rf2 (30)

where Fi, F2, and F3 are NxN matrices and fi and f2 are Nxl vectors given by

Vi = Q+GrRG+SG

F2 = B-rRB"1 (31a-c)

F3 = 2 B T R G + B r S

fi = q+Grr
(32a-b)

f2 = B r r

where

G = -B^A (33)

and superscript -T denotes inverse transpose. By substituting Equations (20) and (23) into

(30), the integrand of Equation (4) can be expressed as a function of parameter vector y,

i.e.,

xrQx+urRu+xrSu+qrx+rru =y r Py+y r p (34)

where

P m Fi®ccr+F2®ddr+F3®dcr

(35a-b)
p f ^ f ^ d



In Equation (35a-b), P is an NKxNK matrix, p is an NKxl matrix, and ® is a Kronecker

product sign (Brewer, 1978), e.g.,

V®W

VnW

V21W

_vnlw

Vi.W

vn nw

(36)

where V is an nxn matrix and W is an arbitrary matrix. Thus, from Equation (34), the

integral part of the performance index can be expressed as

| (yrPy+yrp)d
Jo

(37)

where

* = |
Jo

Pdt

(38a-b)

P = | Pdt
/o

Substituting Equations (29) and (37) into (2) gives the performance index L as a quadratic

function of parameter vector y, i.e..

L = yr<o

where

Q = C O V HC(T) + P*

to m C(T)rh + p*

(39)

(40a-b)

For time-invariant problems, F,, F2, F3.f, and f2are constants and can be removed

from the integrals, enabling the remaining integral parts of P'and p* to be evaluated

analytically. That is, Equation (38a-b) can be rewritten as
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P*
Jo

I cdt + fa® I
Jo Jo

r(ddr)dt [ (dcr)dt
Jo

(41a-b)

The solutions of the integral parts of P* and p* (i.e., the terms in the brackets) have been

derived and are summarized as recurrence formulas in Appendix A.

The initial conditions of the state variables can be expressed as

xo = Coy (42)

where
x0 = x(0)

C0 = C(0)
(43a-b)

Hence, the problem is to minimize Equation (39) such that Equation (42) is satisfied.

2.3.3 Lagrange Multiplier Solution Procedure The above equality constrained QP

problem can be reduced to an unconstrained problem by including the initial conditions as

constraints in the performance index via a Lagrange multiplier vector X:

L(y,X) co + \T[Coy-xo]

The necessary conditions of optimality are given by

= 0

(44)

(45)

(46)

representing a system of linear algebraic equations in terms of the elements of y and X.

Equations (45) and (46) can be written as

Cj

Co 0

- l -GO

(47)

from which the state parameter vector y can be solved.
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2,3-4 Chebvshcv-Bascd State Parameterization An alternate state representation is to
approximate each of the N state variables xn(t) by the superposition of a third-order
auxiliary polynomial and a (K-4) term shifted Chebyshev series. A motivation for this
representation, subsequently called Chebyshev-Based State Parameterization (in contrast to
just Chebyshev Parameterization above), is that the boundary values of the state variables
can be decoupled from the unknown state parameters enabling the state initial conditions to
be satisfied directly.

Mathematically, the state variable xn(t) for n=l,2,...,N is written as

K-l

xn(t) = bno + bnix + b ^ t 2 + bn3t3 + £ ankyk(t) (48)

Then the derivative of xn(t) is

K-l

xn(0 = ^(bm + 2bn2X + 3bn3T
2) + £ ank\j/k(t)

1 k=4 (49)

The constants b's can be determined by substituting the initial and final values of time (0

and T) into Equations (48) and (49), using Equations (14a-d), and manipulating

algebraically.

K-l

X ank
k=4

K-l

(50a-d)

K-l

bn2 - -3xnO-2Txno+3xnT-TxnT+S H-3+2k2)+(.l)k(3-4k2)]ank

K-l

bn3 = 2xnO+Txno-2xnT+TxnT+X [(2-2k2)-(-l)k(2-2k2)]ank
k=4

where XnO, xno, *nT
 md n̂T are the values of the state variable xn and its derivative xn at

the boundaries of the time segment [0,T], i.e.,
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XnO • Xn(O)

(51a-d)

XnT = X n (T)

By substituting Equations (50a-d) into (48), die state variable x,,(t) can be rearranged as

K

i

where

(52)
k=l

ci = l-3x2+2x3

C2 = T(X-2X2+X3)

2 3 (53a-d)
c3 = 3x-2x

C4 = T(-X2+X3)

ck=(-l)k-2(-l)k(k-l)2t+[2k2-4k-l+(-l)k(4k2-8k+l)]x2+2k(2-k)[l+(-l)]x3

+ Vk-i(0 (k=5,6,...,K) (54)

and where

Ynl = Xn0

= X n 0

(55a-e)

= an(k-i) (k=5,6,- • -,K)

Then Equation (52) can be written as Equation (17) with different definitions of ynk's and

Ck*S.

Using Equations (55a-e) the elements of the NxNK matrix C(T) in Equation (28) can

be redefined as

/I j=(i-l)K+3 i=l,2,...,N
ij(T) =

I 0 otherwise
(56)
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The conversion process is similar to the previous approach. Because the Ck's in Equations

(53a-d) and (54) are redefined, the integral parts of P*and p* change. For time-invariant

problems new closed-form expressions for the integral parts have been derived. They are

summarized in Appendix B.

2.3.5 Direct Substitution Solution Procedure The optimal control problem now can be

viewed as the search for the unknown coefficients of the state parameter vector y that

minimize Equation (39) subject to the equality constraints of Equation (55a). To isolate the

known initial condition, a new state parameter vector z is introduced as

ELEL (57)

where

(58a-b)
z2 = xo

with

XI = [MO x20 • • •

*0 = [*10 *20 • • • *

x£= [XIT X2T • • • XNT] (59a-e)

XT = [XIT X2T •

aT = [aw &]s . .

=[yi5 y ie . • • yik yis y26.--y2k-- .yN5

Vector Z2 contains the known initial values of the state vector and vector z\ is the remaining

subset of the parameter vector y. The two vectors z and y are related via a linear

transformation:

y = Oz (60)

where O is an NKxNK matrix with elements
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<J>y - 1 i = (n - 1)K + k; n - 1 , 2 . . . , N; k = 1 , 2 . . . , K

NK-N+n
. , NK- 4N + n
J=( NK-2N + n

NK-3N + n

k = l
k = 2
k 3

(k-4) k = 5 , 6 , . . . , k

(61)

otherwise

The perfonnance index L in Equation (39) can thus be rewritten as a function of z

L = zT Q* z + zT co* (62)

where

a
(63a-b)

By expanding Equation (62), the performance index can be expressed as

" 22 J

CO,

CO2 J

or, equivalently,

L =

(64)

(65)

For an unconstrained LQ problem, the necessary condition of optimality can be obtained by
differentiating the performance index with respect to the unknown state parameter vector
z\. This leads to

(flu + Qn)zi = - ( n i + Qa )*2 - cof (66)

which represents a system of linear algebraic equations from which the unknown vector z\

can be solved.

2.4 Chebyshev-Based Approach for General Linear Systems

The approaches presented above are applicable to systems with square and
invertiblc control influence matrices. For general linear systems, B is an NxM matrix
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where N is greater than M To apply the Chcbyshev and Ghebyshev-based approaches to

this more common case, j.e., general linear systems which have fewer control variables

than state variables, the state-space model of Equation (1) is modified to

x(t) = A(t)x(t) + B'(t)u' (t)

where

BNxM

(67)

(68)

U(N-M)xl

"Mxl
(69)

where u is an artificial (i.e., fictitious) control vector.

It can be guaranteed that B' is invertible if the last M rows of B are nonsingular.

However, if the last M rows are singular, the first (N-M) columns of B' in Equation (68)

can always be modified to make it invertible. In order to predict the optimal solution, the

performance index is modified to

L' * Li + (70)

where

Jo
^ (71)

s'(o=s:NxN

p!(N-M)x(N-M) 0(N-M)xM

°Mx(N-M) RMxM

pI(N-M)x(N-M)
>NxM (72a-c)

where p is a weighting constant chosen to be a large positive number. If S=0, q=0 and

r=0, then Equation (71) simplifies to die more common penalty function:
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[ur(t)u(t)]dt <73>
o

By penalizing the artificial control vector, the magnitude and influence of the artificial

control variables can be made small and the solution of the modified optimal control

problem can approximate the solution of the original LQ problem.
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3. Simulation Study

To study the effectiveness of the approaches, the solutions of unconstrained,
time-invariant LQ problems have been obtained by both the Chebyshev and Chebyshev-
based state parameterization approaches and compared with the solutions from other
numerical algorithms.

3.1 Example 1

This example considers an N input N-th order linear time-invariant dynamic

expressed in canonical form.

x(t) = Ax(t) + Bu(t) , xr(0) = [1 2 • • • N] (74)

where

x

rX ln

_XN_

, u =

"ui"
u2

.UN.

, A =

0

0

, B=INxN

0 1 0 •••

0 0 1 •.
. . . a
• • a a
a a a .

0 0 0 •••

1-2 3 . . .

The problem is to determine the control u that minimizes the performance index

(75a-d)

where

= xr(l)Hx(l)

H = 10INxN

Q = R= INxN

(76)

(77a-b)

One of the most efficient methods commonly used for solving this unconstrained LQ
problem is the transition matrix approach (described in Appendix C; more details can be
found in (Speyer, 1986)). The approach converts an optimal control problem into a linear
TPBVP (such as Equation (C.9)). By evaluating the transition matrix of this boundary
value problem, the problem can be converted into an initial value problem which can be
readily solved. In this study, the transition matrices were computed numerically using the
algorithm presented in (Franklin and Powell, 1980).

An alternate approach is a Chebyshev approach adapted from (Paraskevopoulos,
1983). It also converts an optimal control problem into a linear initial value problem.
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Then, the state and costate vectors in the linear homogeneous differential equations are

expanded in Chebyshev series with unknown coefficients. By integrating the differential

equations and introducing a "Chebyshev operational matrix", the unknown coefficients of

the Chebyshev series may be determined The state and control vectors may then be

obtained, as described in Appendix D. (In this study, die linear algebraic Equations (D.21)

were solved by an LU-decomposition routine. In Appendix B of (Paraskevopoulos,1983),

an algorithm which reduces the computational effort involved in solving Equation (D.21)

was presented.) For comparison, this approach - henceforth referred to as the "previous

Chebyshev" approach - was implemented.

In addition to the transition matrix approach and the previous Chebyshev approach, the

Chebyshev and Chebyshev-based approaches described in Section 2.3 were used to solve

this problem. The Gaussian elimination routine was used to solve the linear algebraic

equations representing the conditions of optimality in Equations (47) and (66). For the

Chebyshev approach, a six-term series is employed. For the Chebyshev-based approach, a

two-term shifted Chebyshev series in conjunction with a third-order polynomial is used.

The two-term series in the Chebyshev-based approach is equivalent to a six-term series in

the Chebyshev approach since the third-order polynomial is essentially a reformulation of

the first four terms of the shifted Chebyshev series.

Efforts were made to optimize the speeds of the computer codes, all of which were

written in "C" and executed on a SUN-3/60 workstation. Simulation results for

N=2,4,...,20 are summarized in Table 1. For the transition matrix, Chebyshev and

Chebyshev-based approaches, the execution time includes the time to evaluate (i) the

system response (control vector) at 100 equally-spaced points and (ii) the performance

index. For the previous Chebyshev approach, the execution time includes only the time to

evaluate the system response. (The table reports execution time for the transition matrix

approach in seconds, and percent execution time relative to the time of the transition matrix

approach for the previous Chebyshev, Chebyshev, and Chebyshev-based methods.)

The results show that the Chebyshev-based approach is the computationally most

attractive approach with the relative error of the performance index less than one percent

In comparison to the transition matrix approach, the Chebyshev-based approach is

increasingly more efficient for N>2. For N=20, the Chebyshev-based results suggest

greater than 70 percent savings in execution time. For N=2, the Chebyshev-based method

is less efficient than the transition matrix approach since the time to evaluate the integrals in

Equations (41a-b), a fixed time for any order system, is a significant fraction of the overall

computation cost. For high order systems the principal computational cost is due to the
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solution of the linear algebraic equation (66), which is less intensive than the solution via

the transition matrix method

The Chcbyshev approach offers less time savings than the Chcbyshcv-based approach

for high order systems, but is still much faster than the transition matrix approach. The

Chebyshev approach is more efficient than the Chcbyshev-based approach when N<4 since

the integrals in Equations (41a-b) are easier to solve. Both the Chebyshev and Chebyshev-

base approaches have the same values for the performance indices and control vectors

because the terms of the series used to approximate the state variables are the same.

The previous Chebyshev approach is computationally more costly than the transition

matrix approach. The advantage of this approach is that the relative error of the

performance index does not grow significantly when the order of the system increases.

The execution time is approximately twice the time of the transition matrix approach.

The time histories of the state and control variables for the case N=2 are plotted in

Figures la and lb, respectively. The response curves from the transition matrix and

Chebyshev/Chebyshev-based approaches drawn in these figures overlap for the scale

shown. Hence, the Chebyshev and Chebyshev-based solutions achieve convergence on

the trajectories of the state and control variables as well as on the value of the performance

index.

3.2 Example 2

This example, adapted and modified from (Meirovitch, 1990, Example 6.3), considers

a series arrangement of J masses and J springs. As shown in Figure 2, it represents a 2J

order system with a single force input acting on the last mass, mj. The displacement of

mass mj is denoted by qj. The mass and stiffness matrices are

M m2

0

mj

(78)

K

-k2

-k2 k2+k3 -k3

0

0

kj.!+kj -kj

kj

(79)
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The state equaticm of this system is

Ax(t) + Bu(t) (80)

where

x = [xi X2...X2j] =[qi q2-qj qi 4 2 - qj] (81)

0

0

(82)

=[0 0...0 1/mjf (83)

The initial conditions are

x(0)=[x1(0)x2(0)...x2j(0)f (84)

where it is presumed

xj(0) = 1

(85a-b)

XJ(0)=0 j = 1.2....J-U+1 2J

implying that the last mass only has been displaced from rest

The problem is to find the optimal control history, u(t), that minimizes the performance

index

• / " •

Jo

uRuJdt (86)

where
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K 0

0 M_

(87a-b)

R = l

The integrand term xrQx with Q of Equation (87a) represents the sum of kinetic and

potential energies of the system. The inclusion of the integrand term urRu=u2 reflects the

desire to minimize the force (as well as the total energy).

In this example, using the values mj=10[kg] and kj=l[N/m] (j=l,2,...,J) for two

different systems, J=3 and J=5, the optimal solutions were determined using the transition

matrix approach and the Chebyshev-based approach. To apply the Chebyshev-based

approach, the artificial control variable technique of Section 2.4 was employed with

p=105.

The resulting values of the performance index for the transition matrix and Chebyshev-

based approaches are summarized in Table 2. This table shows that the performance index

decreases as the number of terms of the Chebyshev-based series increases. The relative

errors with four or more terms are less than one percent which indicates that convergence

has been achieved In particular, when the number of terms is six or more, the Chebyshev-

based solution is smaller than the solution obtained by the transition matrix approach. This

is because the weighting constant p is used to penalize the artificial control vector. As

shown in the table, for J=3 a 4-term Chebyshev-based approach offers a 20 percent

savings in execution time compared with the transition matrix approach, while for J=5 it

offers a 28 percent savings compared with the transition matrix approach. This suggests

(as does Example 1) that the Chebyshev-based approach is more efficient in solving high

order systems.

The response histories for the state variables x3 and x6 (the displacement and velocity

of the last mass, respectively) and the control variable u for J=3 with four and six term

Chebyshev-based series are compared with the state and control variables of the transition

matrix approach in Figures 3a and 3b. Both the four-term and six-term solutions are close

to the transition matrix solutions. To verify that the artificial control variable technique is

successful, the time histories of the artificial control variable ui for four and six-term

Chebyshev-based series arc plotted in Figure 3c. As shown in the Figure, the artificial

control variable based on a six-term Chebyshev-based series is smaller in magnitude (closer

to zero) than the artificial control variable based on a four-term series. However, the
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magnitudes are small for both cases and hence the influence of the artificial control
variables on the system dynamics is negligible.

In summary, this example demonstrates the applicability of the Chebyshev-based
approach to general linear systems (with fewer control variables than state variables).

3.3 Example 3

This problem, adapted from (Huntley, 1979), considers the distributed parameter
problem

(88)
^ = ^ + u(y,t)
dt a 2

with boundary conditions

and initial condition

x(y,O) = 1+y

The performance index to be minimized is

I I [x2(y,t)+u2(y,t)]dydt

o so

(89)

(90)

(91)

Using a finite difference approximation, this distributed parameter system can be
approximated by the following lumped parameter N+l order system

x =Ax +Bu (92)

where

(Ay)'

-2 2
1-2 1 0

0 1-2 1
2 -2
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B * I(N+l)x(N+l)

Ay = N (93a-e)

x = [xo xi ... XNF xn = x(nAy), n=O,l-..»N

u = [uoui... UNF un = u(nAy), n=O,l,...,N

with initial conditions

xn(0) = 1 + nAy , n=0,l,...,N (94)

The performance index is approximated by

(95)

where

[1 11

jK 1,..., 1, -*-\
2 2J(N+i)x(N^i) (96)

In this example, the optimal value of the performance index and the optimal trajectories

of the state and control vectors at 101 equally-spaced points were solved by the

Chebyshev-based approach, a Riccati equation solver (Speyer, 1986), a transition matrix

approach (Speyer, 1986), and a Fourier-based state parameterization approach (Yen and

Nagurka, 1988).

The simulation results for T=l, L=4 and N=4, 5, 8,10,16,20 and 32 are summarized

in Table 3. Although the Riccati equation solver provides accurate solutions in all cases, it

is time-consuming for high order systems. The transition matrix approach is

computationally more efficient than the Riccati equation solver but it encounters numerical

difficulties and fails to provide reasonable solutions when N is equal to or larger than 16.

This instability is caused by the error in computing the transition matrix for the Hamiltonian

system. State parameterization approaches such as the Fourier-based approach and the

Chebyshev-based approach provide solutions with satisfactory accuracy and arc
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computationally more efficient than transition matrix approach for all cases. As shown in

Table 3, the 3-term Chebyshev-based approach is more accurate and computationally more

efficient than the 2-term Fourier-based approach. A K-term Chebyshev-based approach

involves N(K+3) linear algebraic equations representing the conditions of optimality. In

comparison, a K-term Fourier approach involves N(2K+3) linear algebraic equations (see

Yen, Nagurka, 1988). As N grows, the Fourier approach needs to spend relatively greater

time on solving the sytem of linear algebraic equations. For example, with N=32, the 3-

term Chebyshev-based results suggest greater than 35 percent savings in execution time

when compared with the 2-term Fourier-based approach. However, for N>10 in both

approaches, the performance indices increase slightly as the order of the system grows,

while the solutions from the Riccati equation solver indicate that the performance index

should decrease. Adding terms to the series improves the accuracy of the solutions. For

example, the performance index of a 4-term Chebyshev-type series does not increase as the

order of the system increases when N is equal to or smaller than 16.

The time histories of the state and control variables for the case N=4 obtained via a

transition matrix approach and a 3-term Chebyshev-based approach are plotted in Figures

4a and 4b, respectively. The overlap of the state and control trajectories from both

approaches indicate that convergence has been achieved.

In summary, this example compares the Chebyshev-based approach with a Riccati

equation approach, a transition matrix approach and a Fourier-based approach. The

simulation results indicate that the Chebyshev-based approach is computationally more

efficient than other approaches, especially in solving high order system.



25

4. Discussion

4.1 Chebyshev-based State Representation

Two state representations are presented in Sections 23.1 and 2.3.4. These two

representations can be viewed as equivalent, differing only in the way the QP problem is

solved. The approach described in Section 2.3.3 solves the unconstrained QP problem via

a Lagrange multiplier technique. The second approach solves the same problem by direct

substitution. To illustrate the difference between these two approaches, consider the

following problem.

Minimize x2+y2 subject to x+y=l

This problem can be readily solved by reformulation as

Minimize

where X is a Lagrange multiplier. The above expression can be differentiated with respect

to x,y and X to obtain three linear equations from which the optimal values of x,y and X can

be computed. Alternately, this problem can be solved by direct substitution. The equality

constraint can first be rewritten as

y=l-x

and then substituted into the original objective function. The problem is then converted into

the unconstrained problem:

Minimize

By differentiating the above expression with respect to x, one can obtain a single linear

equation. Direct substitution, the method used in Section 2.3.5, is computationally more

efficient than the Lagrange multiplier method, the method of Section 2.3.3. This argument

is also supported by the simulation results summarized in Table 1.

4.2 Motivation of Auxiliary Polynomial

The inclusion of the third order polynomial in the Chebyshev-based state representation

decouples the state parameters from the initial conditions. This enables the direct

substitution technique to be used in solving the converted QP problem. Furthermore, the
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elements of C(T) in Equations (40a-b) can be obtained by Equation (56) instead of via
direct substitution of Equation (16). The latter is computationally much more expensive as
the order of the system increases.

Because the auxiliary polynomial of Equation (48) in Section 2.3.4 is essentially a
reformulation of the first four terms of the Ghebyshev-type series of Equation (IS), the
Chebyshev and the Chebyshev-based approaches result in the same solutions. Further
study of the simulation results has shown that the evaluation of the integrals involving
shifted Chebyshev terms is computationally more expensive than the evaluation of the
integrals involving only polynomial terms. However, the advantage of using the integrals
involving shifted Chebyshev terms is that the system of linear algebraic equations,
Equation (66), becomes better conditioned as more Chebyshev terms are used. That is, the
condition number of the coefficient matrix Cl*n + Q\\ becomes larger as K grows, as
shown in Table 4 indicating a better conditioned system. (Here, the condition number is
taken as (Come, 1965).) Hence, roundoff errors should not present a problem as more
terms are included.

4.3 Selection of the Terms of the Chebyshev-based Series

The example problems demonstrate that solutions with high accuracies can be achieved
using two. or three term Chebyshev-based series {e.g., see Example 1 and Example 3).
However, more terms are needed in Example 2 to achieve the required accuracy.
Increasing the number of terms of the Chebyshev-based series improves the accuracy of the
solution while sacrificing computational time. A recommended procedure for selecting the
"optimum" number of the terms is to solve the problem using a K term series and a K+I
term series (where "I" is an integer increment), respectively, and check whether the relative
error of the performance index is within the required tolerance. If the relative error is
within the required tolerance, the K term series is acceptable.

For example, considering the performance index for J=3 in Table 2, the percent relative
error is 61 percent comparing K=2 and K=4 and is 0.92 percent comparing K=4 and K=6.
(Here the percent relative error is defined as the magnitude of percent relative error of a
(K+2) term performance index with respect to a K term performance index.) With a
tolerance of one percent, the results show that a four term series leads to an accurate
approximation.
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5. Conclusions

This report presents a state parameterization method based on a finite-term Chebyshev

representation of the state trajectory. Such a representation is used for predicting the

optimal state and control trajectories of unconstrained linear time-invariant dynamic systems

with quadratic performance indices. In one method, the time history of each state variable

is approximated by a shifted Chebyshev series. The unconstrained LQ problem is then

converted to an equality constrained QP problem that minimizes the performance index and

satisfies the state initial conditions via Lagrange multipliers. In a second method, the time

history of each state variable is represented by the superposition of a shifted Chebyshev

series and a third order polynomial. The inclusion of the auxiliary polynomial improves the

speed of evaluation of the integral parts in Equations (41a-b) in comparison to a standard

Chebyshev series. In both methods, the necessary condition of optimality gives a system

of linear algebraic equations from which the unknown state parameters can be solved The

results of simulation studies demonstrate computational advantages of the Chebyshev-

based method relative to the Chebyshev method, a previous Chebyshev method and a

standard state transition matrix approach.
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Appendix A Integrals for Chebyshev Approach

A.I Integrals of Chebyshev Polynomials

First, the integrals of S'cpj. 5'<Pj. <Pi<Pj, <Pi<Pj and <Pi<Pj are defined as

Sj (A.1)

I ^<pjfe)d4 (A.2)

i j <Pite)<j>j

(A-4)

(A.5)

Applying Equations (7a-d), (8a-b), (9a-b) and (10a), the integrals of £'<f>j, ^(j)j, (pj(pj,

<j>i<pj and <j>i(()j can be derived by "integration by parts". In this section, the recurrence

fonnulas for these integrals are summarized as follows.

For i=0,l,2,...; j=0,l,2,...

otjj = 0 for j - i = 1
(A.6a-b)

f o r j * ' * l

(A.7)

(A.8)
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810 — Poi for i * 0

811 = pn fori*0

(A.9a-0
812 = 2P2i - Poi for i * 0

5i3=4p3i-3pii for i *0

ei0 = 0

Cii = Poi

e*2 = 4 P H (A.10a-e)

Ei3=12p2i-3poi

£ij = 2£i(j.2) - £j(ĵ > + 2j8i(j.i) + (8 - 2j)8i(j.3) for j=4,5,...

A.2 Integrals of Shifted Chebyshev Polynomials

In this section, the integrals of r>j, t'vj/j, ViVjt Vi\|/j and Wj are derived using the

equations of the previous section. These integrals are needed to determine the integrals in

Equations (41a-b) for the Chebyshev approach.
From Equations (11) and (12) the following equations are known:

(A.I la-d)

dt =

Making use of Equations (A.I la-d), the following integrals are obtained:



32

(t)dt=(3oi

(t)dt= 5jj

/ :

c.

/T (t)dt_2(

C ()d Ii(
h " 4 ° 0

ft -m-Ao

I i Vi(t)dt = JL-(oJ 16

I t ¥ i ( t ) d t = 2 ( P o i

I t¥i(t)dt-TP

(A. 12)

(A.13)

(A. 14)

(A. 15)

(A. 16)

(A.20)
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f (A.22)

for i=0,l,2,...; j=0,l,2,...

By introducing Ck = Vk-i(t) and dk = Vk-i(t) into Equations (A. 12) - (A. 16) and

applying Equations (18) and (25), the integrals in Equation (41a-b) for the Chebyshev

approach can be summarized as:

(A.23)

ddt=P

f
f

(dcr)dt = 5

where

ot =

P=[poo Poi Pra

*V ̂ ~

Yoo

• P<XK-1)J

. Y(K-1)O

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)



8 =

5oo . . . 5o(K-i)

810 :

5 ( K - 1 ) O . . .

eoo

'10

. ^K-DO

34

(A.31)

(A.32)
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Appendix B Integrals for Chebyshev-based Approach

In order to formulate the integral parts of P* and p* for the Chebyshev-based

approach, Ck (k * 1,2,...,K) in Equations (53a-d) and (54) is redefined as

Ck

where k = 1, 2 , . . ., K, x = t/T ,

(B.I)

' Hoi

H21
U31

HOk

Hlk

H2k

H3k

Ha2 H(B
Hl2 Hl3
H22 H23
H32 H33

-

2k2

HO4 '
M-14
H24
H34J

' 1
0
-3

. 2

( - D k

-2(- l)k(k

- 4 k - 1 + ( - l)k

2k(2 -Ic)[l +

0
T

-2T
T

- I ) 2

( 4 k 2 -

( - Dk]

0
0
3
-2

8k +

0
0
-T
T

1)

(B.2)

= 5, 6,---, K (B.3)

Kk =
1 k = 5, 6,.... K
0 k = l , 2 , 3 , 4 (B.4)

Then the elements

expressed as

c c c r r
of I cdt, I ddt, I (cc r)dt , I (dc r)dt and I (dd r)dt can be

Jo Jo Jo Jo Jo

c
I Cidt=T(n,

Jo

r
d.dt = \xu

Jo

i
J Vi-i(t)dt

0

(B.5)

(B.6)
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f

\ Y,.i(Odt + ^i

o

I Vi.i(t)dt+

o

rT

CiKjl Vi.i(t)Vj-i(t)dt
Jo

MI t 2 V j . l ( t ) d t + M |3 Y j . l ( t ) d t
T Jo T Jo

r***.

+ Kj

lil ¥j
Jo

Jo

CiKjj V J .
Jo

+ KiKj| Vi.^OVj.KOdt

t 2 V i l ( t ) d t + M
T3

F
T JO

(B.7)

F
^ t3Vi-
T JO

(B.8)
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f.
Jo

f
Jo

o Jo

|

'i-i(t) Vj-i(0dt

f

T Jo

(B.9)

where the integrals on the right hand sides of Equations (B.6)-(B.1O) come from

Equations (A.12)-(A.22).
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Appendix C Transition Matrix Approach

Consider the LQ problem that minimizes

L = xr(T)Hx(T) + I (xr(t)Q(t)x(t)+ur(t)R(t)u(t))dt
Jo

subject to

x(t) = A(t)x(t) + B(t)u(t) , x(0) = xo

(C.I)

(C2)

For simplicity, cross product and linear terms of the control and state vectors have been
omitted from the performance index. The order of the system is assumed to be"N.

In the transition matrix approach (see, for example, Speyer, 1986), the Hamiltonian is
first introduced as

H =

where X can be viewed as a Lagrangian multiplier vector whose elements are often called

costate variables. It can be shown that the necessary conditions of optimality are
3//x = — =s Ax + Bu , x(0) = x0
dX

OX

Equation (C.6) can be solved for the optimal control u giving

Substituting equation (C.7) into equation (C.4) yields

x = Ax - BR!BrX

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)

Combining equations (C.5) and (C.8) gives a TPBVP that consists of 2N linear
homogeneous differential equations

A -1x
X -Q -Ar

, x(0) = (C.9)

This system of equations is often called the Hamiltonian system. Its solution has the
following forai
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(CIO)

where <|> is the transition matrix of the Hamiltonian system. By setting t2 = T and ti = 0,

equation (CIO) gives

x(T) <t>i2(T,0)

<|>22(T,0) .

x(0)
(Cll)

With the terminal condition X(T) = Hx(T) given by equation (C5), X(0) can be

determined from equation (C. 11) as

*.(0)=K(T)x(0) (C12)

where

K(T) - [<|>22(T,0) - H^I 2 (T,0)] ' 1 [H^I I(T,O) - <l>2i(T,0)] (C. 13)

The Hamiltonian system of equation (C.9) can thus be viewed as an initial value problem.

Using equation (CIO), the solution of this initial value problem can be formulated as

x(tp+At)
tp) f o r p ss lf...,P (C.14)

where P is the number of equally-spaced points for which the solution is required and At

= TIP. Note that for time-invariant problems, the transition matrix 4>(t/>+At, tp) is

independent of tp and is only a function of At. A solution approach based on equation

(C.14) is computationally much more efficient in general than solving equation (C.9)

using numerical integration-based differential equation solvers such as Runge-Kutta

methods. The corresponding optimal control u can be computed from equation (C7).

Using this transition-matrix approach, it can also be shown that the corresponding

performance index value is

L* = xr(0)K(T)x(0) ( C 1 5 )
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Appendix D Paraskevopoulos' Approach for LQ Problems

This section summarizes the method of (Paraskevopoulos, 1985) for solving the
unconstrained optimal LQ problem. Consider the LQ problem that minimizes

F
= xr(T)Hx(T) + I (xr(t)Q(t)x(t) + ur(t)R(t)u(t))dt

Jo
(D.I)

subject to

x(t) = A(t)x(t) + B(t)u(t) , x(0) = x0 (D.2a-b)

The order of the system is assumed to be N. The optimal control u*(t) is given by

u'(t) = -R-1BrX(t) (D.3)

where X(t) is a vector satisfying the canonical equation:

x(t)

-Q

-BR

-A

x(t) '

. MO .
= M

' x(t)"

X(t)

(D.4)

with the boundary conditions specified as

x(0) = x0

X(T) = Hx(t)
(D.5a-b)

Matrix M in Equation (D.4) is a transition matrix which can be written as a panitioned
matrix

e M t _ (D.6)
.<l>2l(0 022(t).

Then the TPBVP (represented by Equations (D.4) and (D.5)) can be converted to an initial
value problem with initial conditions

x(0) = x0

X(0) = K(T)x(0)=X0
where

(D.7a-b)

(D.8)

In the following, equation (D.4) will be solved using Chebyshev series. To this end,
the transformation

K(t) = [<J>22(T) - HtOaCT)]'1 [H<J>n(T).
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I (D.9)

is introduced such that when t=0 then t=-l and when t=T then t=l. Using Equation (D.9),
Equation (D.4) may be written as

x(x)
= -N

x(x)

where

Integration of Equation (D. 10) from -1 to t yields

(D.10)

(D.ll)

'x(x)"
= -N

1 x(c)da

r
I X(a)da

+

x(x= -1)'

(D.12)

where
x(x = -1) = x(t = 0) = x0

(D.13a-b)

Vectors x(t) and X(t) are then expanded in a K-term Chebyshev series as follows

= W<p(x) (D.14)

where W is a 2NxK Chebyshev coefficient matrix (to be determined) and (p(t) is a

Chebyshev function vector.

W = [w0 w , - . w K , ] 2 M

(D.15a-b)
r

Paraskevopoulos (1983) introduces a KxK Chebyshev operational matrix P which has the

following property
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1 y(o)da~

t

where

p =

a 0

a i

a3

•

ak-3

Otk-2

_Ctk-l

P<P(x)

Po
Pi

P2

0
•
•
0
0

0

Yo

Yi

0

P3

0

0

0

0

0

Y2

0

0

0

0

0 •

0 •

0 •

Y3 •

0 •

0 •

0 •

•• 0

•• 0

•• 0

• • 0
•

•• Yk-3

•• 0

•• Pk-i

0

0

0

0

0

Yk-2

0

(D.16)

with

=

for n = 0

Pn =

Yn =

n 2 - l

0

1

-1
( n - l )

0

4
1

2(n +

for n = 1

for n = 2, 3,

for n = 0

for n = 1

for n = 2, 3 , .

for

for

for

n=0

n = 2, 3,

(D.17)

(D.18a-c)

or

By using Equations (D.14) and (D.16), Equation (D.I2) may be written as

WcpCO = -NWP<p(x) + Scp(x)

W + NWP = S
where

(D.19)



x(x - -1) 0 .. 0

X(x«-1) 0 . . . 0.

Equation (D.19) can be written as

T w = S
where

:[SQ Si

w =[wo wi . . . w K . i ] r

S=[S0 S, ... SK.,f

and where the Kronecker product is defined as

P n N P2iN

P12N P22N P2KN

P 2 K N ••• P K K N .

J2NxK
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(D.20)

(D.21)

(D.22a-c)

(D.23)

2NKx2NK

From Equation (D.21) w may be obtained. Once determined, the control vector can be

calculated according to Equations (D.14) and (D. 3).



Table 1. Comparison of Simulation Results for Example 1*

KI
IN

2
4
6
8

10
12
14
16
18
20

Transition
Matrix

Perf.
Index

5.3591
44.249
153.75
373.02
741.61
1299.3
2086.3
3142.8
4509.0
6225.4

Time
(sec)

0.50
2.42
7.06

15.86
29.04
50.44
81.46

124.54
174.24
247.50

Previous
Chebyshev

%Er

1.29e-03
2.56e-03
3.67e-02
1.56e-01
1.76e-01
1.74e-01
1.61e-01
1.48c-01
1.39e-01
1.36e-01

%Time
• • *

144.0
171.9
187.0
193.8
202.8
204.0
198.3
197.0
199.6
191.8

Chebyshev

%Er %Time
**

3.21e-05
7.67e-04
5.23e-03
1.84c-02
4.41e-02
8.32e-02
1.34c-01
1.94c-01
2.61e-01
3.31e-01

* * •

120.0
81.0
73.4
69.4
70.0
67.4
64.8
62.4
62.8
60.2

Chebyshev•based

%Er %Time
**

3.21e-05
7.67e-04
5.23e-O3
1.84c-02
4.41c-02
8.32e-02
1.34e-01
1.94e-01
2.61e-01
3.31c-01

***

156.0
67.8
48.4
40.7
38.2
35.1
33.2
30.8
30.4
28.7

* Six-term series for Chebyshev and Previous Chebyshev approaches.
For Chebyshev-based approach, four terms are used in polynomial
and two terms in Chebyshev series.

** Magnitude of percent relative error of Chebyshev performance index with respect
to transition matrix performance index

*** Percent of execution time of Chebyshev approach relative to execution time of
Transition Matrix approach



Table 2. Summary of Example 2 Results

J

3

5

Transition matrix

Performance
Index

7.62051

7.62044

Time
(sec)

7.82

31.08

Chebyshev-based*

Terms

2
4
6

2
4
6

Performance
Index

20.12276
7.68190
7.61147

19.49309
7.68581
7.61124

Time
(sec)

3.06
6.26

11.74

10.02
22.44
43.20

%Error**

164
0.81
0.12

156
0.86
0.13

%Time**»

39
80

150

32
72

139

* Four terms polynomial and two terms Chebyshev series are used.

** Magnitude of percent relative error of Chebyshev performance index with respect
to transition matrix performance index

*** Percent of execution time of Chebyshev approach relative to execution time of
Transition Matrix approach



Table 3. Comparison of Simulation Results for Example 3

XT
IN

4
5
8

10
16
20
32

K1C

Perf.
Index

15.180
15.112
15.042
15.027
15.011
15.007
15.003

.Call

Time
(sec)

9.08
17.08
73.36

154.36
820.08

4313.82
43351.62

Transition
Matrix

Perf. Time
Index (sec)

15.180 4.36
15.112 7.06
15.042 21.56
15.027 38.66
Instability
Instability
Instability

Fourier
2 terms

Perf.
Index

15.180
15.112
15.043
15.031
15.042
15.068
15.170

Time
(sec)

3.42
5.18

13.76
23.38
78.00

138.34
510.18

Chebyshev
3 terms

Perf.
Index

15.180
15.112
15.043
15.030
15.042
15.061
15.165

Time
(sec)

2.94
4.30

10.74
17.72
55.98
89.14

328.94

Chebyshev
4 terms

Perf.
Index

15.180
15.112
15.043
15.030
15.027
15.038
15.112

Time
(sec)

4.06
5.90

15.22
25.58
80.90

130.56
496.26

For N=4 to N=16, the Riccati equation is integrated backward in time by a
fourth-order Runge-Kutta routine using a time step of 0.01 time unit. In
order to ensure a numerically stable solution, a time step of 0.005 time
unit is used for N=20 and a time step of 0.0025 time unit is used for
N=32.



Table 4. Condition Numbers for Example 1,2 and 3

K

4

6

8

Example 1 (N=2)

1.6732e-l

1.3247eO7

1.6116el7

Example 2 (J=3)

1.3490e83

5.1105el48

-2.2184e226

Example 3 (N=4)

2.3709e8

1.3630el0

2.0283e32
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Figure 3b Control Variable History for Example 2
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