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This paper proposes a new graphical representation and perspective on the Evans

root locus, a well known controls technique for stability and performance evaluation. The

visualization is based on the adjustment of a proportional control gain in the same fashion

that is employed in constructing the root locus. The result is a set of Gain Plots (GPs)

depicting the root loci in polar coordinates, i.e., magnitude and angle, of each closed loop

system eigenvalue in the complex plane as a function of the gain.

The GPs impart significant insight for determining the values of gain that render a

closed-loop system either stable or unstable. By exposing the correspondence of gain

values to specific eigenvalues, the GPs are a useful pole-placement tool for identifying

closed-loop designs meeting performance specifications. An additional advantage of the

GPs is their ability to reveal by inspection information about the gain sensitivity of closed-

loop eigenvalues.

This paper develops the concept of GPs and applies them to single-input, single-

output (SISO) systems. A companion paper (Nagurka and Kurfess, 1991a) extends the

concepts to multivariable closed-loop feedback systems. For both cases, the GPs present

eigenvalue trajectories in an informative and unambiguous manner.
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Introduction

In a sequence of two landmark papers, W.R. Evans presented a technique for

analyzing and graphically portraying the loci of closed-loop system poles (Evans, 1948,

1950). Since the publication of these papers, the Evans root locus technique has become a

standard and commonly employed tool of the control engineer. The root locus plot has

several qualities that make it a valuable classical controls tool; perhaps its most valued

assets are the ease with which it may be implemented and the tremendous amount of

information and insight that it provides.

For most single-input, single-output (SISO) linear time-invariant systems,

sketching the root locus as a function of gain is a simple and well documented task. Most

undergraduate controls textbooks present the sketching rules for constructing the root locus

plot By following these rules, the loci of roots - or system eigenvalues - may be graphed

in the complex plane as certain parameters are varied Although the rules are applicable to

any real valued parameters, the most common parameter investigated is the proportional

control gain. In accordance with convention, this is the parameter studied in this report.

Although it may not be exact, the approximate root locus plot provides a plethora of useful

information about system stability and performance. For example, closed-loop stability

can be determined, and damping and response speed can be estimated as the gain is varied.

This report promotes an alternate graphical representation of the root locus plot that

exposes the relationship between the pole locations and the gain without sacrificing any of

the information presented in the standard root locus. The representation, based on the same

variable gain analysis employed by Evans, is summarized by a pair of Gain Plots (GPs)

that casts the magnitude and angle of the system eigenvalues in the complex plane as an

explicit function of gain. By utilizing an eigenvalue polar representation, the GPs present

system performance information such as damping and natural frequency in a clear and

concise manner, and, as such, serve as a new graphical pole-placement tool. Additionally,

gain sensitivity of the closed-loop eigenvalues can be obtained by examining the slopes of

the magnitude and angle plots with changing gain. The GPs can be constructed for, and

are applicable to, both SISO and multiple-input, multiple-output (MIMO) systems.

This report specifically addresses SISO systems as covered in "classical controls/'

Multivariable systems are considered in a companion report (Nagurka and Kurfess,

1991a). For purposes of illustration, the open-loop transfer function, g(s),
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is used as a "theme" example in the following two sections. This transfer function is
embedded in a standard closed-loop negative feedback system shown in Figure (1).

r ( s ) -*< -s e(s)?\
k u(s) g(s) y(s)

Figure 1. Closed-Loop SISO Negative Feedback Configuration.

The report is organized as follows. A conceptual framework that motivates the
development of the GPs is presented in the next two sections. First, the development of
classical frequency-domain techniques is unfolded via a sequence of novel and intriguing
three-dimensional representations; then, in parallel fashion, a sequence of gain-domain

methods is proposed. A subsequent section describes important properties and advantages
of GPs that make them such a rich design tool. A non-trivial SISO example, that
demonstrates the utility of the GPs for stability, performance, and gain sensitivity analyses,
is then solved. Finally, a high-level perspective, suggesting a framework that locks
together three key classical control tools and the GPs, is discussed in the closing section of
this report The highlights of this unifying framework are summarized in Figure 2.

Frequency-Domain Conceptualization

This section presents a unified framework for viewing classical control frequency-
domain tools such as the Nyquist diagram and Bode plots. The premise is that the Bode
plots present the information of the Nyquist diagram in an enhanced perspective by
exposing frequency explicitly. Furthermore, the Bode plots are the result of a natural
progression of perspectives on the classical Nyquist diagram. Although this progression
does not necessarily reflect the chronological unfolding of events, it serves as a useful
paradigm that logically bridges the fundamental frequency-domain tools of classical
controls. This transition from the Nyquist diagram to two different three-dimensional
representations, including one that reveals the classical Bode plots via orthogonal views, is
summarized in Figure 3.
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Figure 3. Progression of Frequency-Domain Tools.

Later in this report, it is shown that this development of the Bode plots from the

Nyquist diagram is paralleled by the development of the GPs from the Evans root locus

plot As such, fundamental relationships appear to exist between the Nyquist diagram, the

Bode plots, the Evans root locus, and the GPs.



The Nyquist Diagram (Nyquist, 1932)

The Nyquist diagram is a polar plot of a sinusoidal transfer function, g(jco),

graphed over the range

0 £ C0< oo £)

(The lower limit of equation (2) can alternatively be chosen as -o©, with the resulting curve

being symmetric about the real axis.) Although the Nyquist diagram is a polar

representation, it is graphed in a complex Cartesian plane where the implicit variable is co.

Figure 4 is the Nyquist diagram of equation (1) for co given by equation (2). The Nyquist

curve starts at co=O corresponding to a D.C. gain magnitude of 1.5 and phase angle of 0#,

and asymptotically approaches the origin (zero magnitude) from -90*.

I1

Re[s]

Figure 4. The Nyquist Diagram of Equation (1).

It is possible to show the frequency graduation on the locus (with tick marks

denoting equal values of co) or to present superimposed constant frequency contours

(Ogata, 1990). However, even if these are added, it is not convenient to identify the

frequency associated with a given point on the Nyquist diagram.



Three-Dimensional Nyquist Diagram

The Nyquist diagram can be conceptualized as a two-dimensional "collapsed"
perspective of a three-dimensional curve, as shown in Figure 5 for the transfer function of
equation (1). In this representation, two of the axes remain the same as in the Nyquist
diagram, i.e., real and imaginary components, and a third axis is added to denote the
frequency, co. Note that as CD->°O the curve approaches the origin of the complex plane.
Although the three-dimensional curve is one means to incorporate frequency information
into the Nyquist diagram, it does not present the controls engineer with an intuitive feel for
the system behavior, partly because of the difficulty in following the contour and in
extracting coordinate information.

Three-Dimensional Bode Plot

An alternative three-dimensional representation can be conceptualized that maps the
real and complex components of g(s) to magnitude and angle components. Here, the
complex transfer function, g(s), is written as

where the transfer function angle and magnitude are given, respectively, as

Zg(s>= tan-H/m[g(s)],*e[g(s)])

g(s)]}2 + {/m[g(s)]}2 (5)

where Zg(s) in equation (4) is given by the two argument inverse tangent function.

Equations (4) and (5) can be used to transform Figure 5 into Figure 6, showing the
effect of frequency on the magnitude and angle of the open-loop system given by equation
(1). Clearly, this three-dimensional curve is related to well-known variable frequency
plots mentioned in the literature (Bode, 1940).

The Bode Plots (Bode, 1940)

The Bode plots consist of two planar plots, one called the Bode magnitude plot
showing magnitude vs. frequency, and the second called the Bode angle (or phase) plot
reporting angle vs. frequency. Figures 7a,b are the Bode magnitude and angle plots for the
open-loop system given by equation (1).
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Figure 5. Three-Dimensional Nyquist Diagram of Equation (1).

The Bode plots represent two orthogonal views of the three-dimensional Bode plot

of Figure 6, i.e., the Bode magnitude plot is seen by observing Figure 6 from a direction

orthogonal to the o-magnitude plane and the Bode angle plot is seen by viewing Figure 6

from a direction orthogonal to the co-angle plane. (In fact, Figures 6 and 7 were generated

using the identical data set) Although the same information is presented in Figures 6 and

7, the traditional Bode plots are significantly simpler to understand. Indeed, Bode plots are

among the control engineers9 most powerful tools.

Gain-Domain Conceptualization

In analogous fashion to the frequency-domain progression, the development of the

GP's follows a gain-domain evolution beginning with the Evans root locus plot. The

traditional two-dimensional root locus plot is then complemented by a third axis

representing the gain. The resulting three-dimensional plot is conformally mapped into a

new space that presents polar coordinate information associated with the complex plane.



The GPs are the result of two orthogonal views of this new three-dimensional space A
summary of this development is traced in Figure 8.

CO

Figure 6. Three-Dimensional Bode Plot of Equation (1).

The Evans Root Locus (Evans, 1948, 1950)

The root locus plot drawn in the complex plane shows the location of the

characteristic roots, i.e., the eigenvalues, in terms of some (real valued) system parameter

such as the proportional gain. It is based on the closed-loop transfer function of Figure 3

given by

g (S)= M s ) (6)
gciAs> l+kg(s)

where k is the proportional gain. The stability of the closed-loop system is determined by
the eigenvalues, i.e., the denominator roots of equation (6).

kg(s) = -l (7)



The ropt locus is the solution set of equation (7) as the gain k varies in the range

Equation (8) is equivalent to two conditions: the angle criterion,

Zkg(s) = ± 180#(2m + 1), m = 0,1,2, ...

and the magnitude criterion,

(8)

(9)

(10)

10
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Figure 7a,b. The Bode Plots of Equation (1).
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Figure 8. Progression of Gain-Domain Tools.

The shape of the root locus plot is determined entirely by the angle criterion. Then,

for any eigenvalue s on the root locus, the magnitude criterion is invoked to solve for the

corresponding value of k. (This process is referred to as scaling the locus.) Figure 9 is the

root locus plot of equation (1) for k given by equation (8). Each branch of the root locus

starts at k=0 corresponding to a system open-loop pole, and asymptotically approaches

either a finite or infinite transmission zero. It is possible to show the gain graduation on the

locus (with tick marks denoting equal values of k) or to present superimposed constant gain

contours.
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Figure 9. Evans Root Locus Plot of Equation (1).



The root locus gives a direct indication of closed-loop system instability by
observing branches that enter the right half complex plane (indicating positive real-part
eigenvalues). Hence* by inspection, it is possible to determine the stability of the closed-
loop system as as the gain varies. In addition, the root locus plot is a graphical
performance tool providing metrics of natural frequency (On) and damping ratio (£). These
two characteristics, known from magnitude and angle information in the Cartesian plane,
enable the calculation of many critical performance indices (damped natural frequency,
system time constants, etc.) It follows that the root locus plot may be viewed as a polar
representation graphed in a complex Cartesian plane where the implicit variable is k. In
summary, insight into the performance characteristics requires "polar coordinate"
information from the root locus.

As noted above, the shape of the root locus plot is based completely on the angle
criterion. This presents difficulties for using the root locus plot for direct evaluation of
gain. It was also noted that it is possible to reconstruct - via scaling - the implicit
parameter k from the root locus magnitude criterion. However, even if this is done (and
tick marks denoting values of k are added to the locus), it is not convenient to determine the
gain associated with a specific point on the locus using the traditional root locus plot. For
example, from Figure 9 the gain k « 5.8 generating the break-in point at s * -4.4 cannot
(readily) be determined by inspection. It will be shown that an alternate graphical
representation may be employed to circumvent this difficulty.

Three-Dimensional Root Locus

Just as the Nyquist diagram can be extended by adding a frequency axis, the Evans
root locus plot can be presented in three-dimensional space where the real and imaginary
axes of the s-plane comprise two of the dimensions, and the gain, k, is added as a third
axis. Figure 10 presents such a three-dimensional root locus for the closed-loop system of
Figure 3 with open-loop transfer function of equation (1). The original Evans root locus is
the projection of this three-dimensional locus onto the real-imaginary plane. The idea for
adding a third dimension for gain was suggested by Cannon (1967) in depicting a break-
point as a saddle point. Two saddle points may be seen in Figure 10. Again, the portrayal
of three-dimensional information does not provide the controls engineer with an intuitive
feel for system behavior.

10
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Figure 10. Three-dimensional Root Locus Diagram of Equation (1).

Three-Dimensional Gain Plots

The three-dimensional representation described above can be viewed alternatively

by mapping the real and complex components to magnitude and angle components. Here,

the complex value, s, is expressed as

where the angle, 6, and magnitude, R, are

6 =

In equation (12) 9 is given by the two argument inverse tangent function.

(11)

(12)

(13)

11



Equations (12) and (13) can be used to transform Figure 10 into Figure 11 showing
the effect of gain on the magnitude and angle of the closed-loop system given by equation
(3). This three-dimensional curve, still related to the root-locus diagram, is difficult to
visualize.

Figure 11. Three-Dimensional Gain Plot of Equation (1).

The Gain Plots (GPs)

Just as two-dimensional Bode plots simplify the three-dimensional Bode plot,
two-dimensional GPs may be employed to simplify the three-dimensional Gain Plot.
Figures 12a,b are such a representation for the closed-loop system embedding the system
of equation (1). The Magnitude Gain Plot (MGP) is seen by viewing Figure 11 from a
direction orthogonal to the k-magnitude plane and the Angle Gain Plot (AGP) is seen by
observing Figure 11 from a direction orthogonal to the k-angle plane. Although the same
information is presented in Figures 11 and 12, the GPs are significantly simpler to
understand.

12
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Figure 12a, b. The Magnitude and Angle Gain Plots of Equation (1).

The AGP reflects the basic construction rule of the root locus, i.e., the angle
criterion of equation (9). As a result, the AGP is symmetric along the 180* (=-180#) line.
Furthermore, the angle criterion dictates that the eigenvalues must lie on the real axis or be
complex conjugates. Thus, a pair of complex conjugate eigenvalues is shown as a single
curve in the MGP with corresponding angles symmetrically configured about the 180* line
shown in the AGP. As k varies, the complex conjugate eigenvalues may become distinct
real eigenvalues, causing their angles to become equal (at a multiple of 180#) and permitting
their magnitudes to differ.

The MGP shows the presence of two open-loop poles with magnitudes 1 and 2 as
k _» o. It also shows a single finite transmission zero with magnitude 3 and an infinite
transmission zero as k -» «>. The AGP indicates that the two open-loop poles and finite
transmission zero are located in the left-half plane since they have angles of 180#.

13



Furthermore, the AGP shows that there is an asymptote of 180* (corresponding to the
infinite transmission zero) as k -»<*».

The GPs highlight the break points corresponding to points where branches leave

or enter the real axis of the root locus. For example, these break points occur at k * 0-17

and at k » 5.83. Between these break points the AGP indicates that the loci of the two

branch points are not on the real axis and the corresponding single curve of the MGP

confirms that the trajectories are those of a complex conjugate pair.

Properties of Gain Plots

The AGP and the MGP highlight several important stability and performance

features of the system, some of which are summarized in Figures 13a,b. Stability may be

determined from the AGP by noting if the angle of an eigenvalue meets the following

criterion

180#(2m + 1) - 90# < M < 180#(2m + 1) + 90* , m = 0, ±1, ±2, ... (14)

corresponding to a location in the second and third quadrants of the complex plane. For the

case m=0, equation (14) simplifies to

90# < 9 < 270# (15)

This range is shown in the shaded region in Figure 13b.

Performance measures are presented directly by the GPs. In particular, the natural
frequency, CDn (rad/s), is the magnitude shown in the MGP, and the damping ratio, £, is

C-|cos-i(e) | (16)

where 6 is the angle from the AGP. As shown in Figure 13, supplementary axes can be

added to the GPs displaying On and £. If the eigenvalues are on the real axis, the MGP

presents the system time constants.

Although the conventional root locus plot provides such performance information,

there are several advantages of the GPs. First, the influence of independent variable gain

on ordinate (dependent) variables is exposed explicitly. Second, the performance measures

of o>n and £ are represented directly. Thus, given a design specification for o>n and £, the

requisite value of k may be determined by inspection making the GPs a useful graphical

pole-placement tool. A novel feature of the GPs is this link of performance and gain.

14



10'
Magnitude of s vs k

0/5

3
Magnitude = Natural Frequency I

10'

360

270

180|

901

<>L
10-:

Angle of s vs k

Unstable Region

Unstable Region

10r l 10u

k
101 102

1.0

0.0 *J

1.0 g>

0.0 |

-1.0

Figure 13a,b. Parameters in the Gain Plots.

The GPs are also well suited for determining eigenvalue sensitivity to changes in
gain. The slopes of the GPs directly give the change in magnitude and angle of each
eigenvalue per change in gain. This information is useful in the design of robust control
systems that are less sensitive to gain variations. An in-depth treatment of asymptotic
behavior of SISO high gain eigenvalues (and its relation to sensitivity) is covered in
(Kurfess and Nagurka, 1991a).

The classical concepts of gain and phase margins have analogs using the GPs, The
gain margin is the amount of gain that can be increased before the closed-loop system
becomes unstable. This can be determined from the AGP by identifying the gain interval
for which all eigenvalues have angles within the stable region. In principle, a system with
a larger gain margin should be relatively more stable than one with a smaller gain margin.
The phase margin is the largest angular interval corresponding to unity magnitude gain for
which the closed-loop system is closed-loop stable. It can be determined from the AGP

15



by identifying the minimum distance from any of the poles to the unstable region at k = 1.
These concepts of relative stability are the subject of a separate report (Nagurka and
Kurfess, 1991b).

In addition to the advantages above, the GPs provide a unified approach for SISO
and MEMO systems where compensation dynamics are governed by a single scalar gain
amplifying all plant inputs. The advantage of the GPs to uniquely identify locus branches
as a function of gain is of paramount importance in MIMO systems analysis, where this
information is typically hidden in presenting multivariable root loci. MIMO GPs are
discussed in detail in a companion report (Nagurka and Kurfess, 1991a).

Illustrative Example

This section presents a more complicated SISO example given by the open-loop
transfer function

s(s - l)(s2 + 4s +16)
(17)

(Equation (17) is studied in example A-5-3, Ogata, 1990.) Figure 14 is the root locus
plot for this system embedded in the negative feedback system of Figure 1. The root locus
begins at the open-loop poles located at s={0, +1, -2 ± V3"}. The open-loop complex
conjugate pole pair migrates to the real axis with increasing gain. One of these poles then
proceeds to the finite transmission zero at s=-l; the other pole moves to an infinite
transmission zero along an asymptote of 180*. The two real open-loop poles migrate to
s»0.46, and then break out from the real axis. As a complex conjugate pole pair, they
move to the left of the imaginary axis. Subsequently, they migrate back to the right of the
imaginary axis and continue toward infinite transmission zeros along asymptotes of ±60*.
For a small range of k, the root locus is located completely within the left half of the
complex plane, corresponding to a stable closed-loop system. This range may be found
from the magnitude criterion to be

23.3 < k < 35.7 (18)

These gain values are not evident from Figure 14.

Figures 15a,b are the GPs for the system given by equation (17). Information
about the open-loop eigenvalues at k = 0 shows (i) there is an unstable set of open-loop
poles at an angle of 0* having magnitudes of 0 and 1, and (ii) there is a complex conjugate
open-loop pole pair having magnitude 4 at angles of 120* and 240*. By inspection, these

16



complex conjugate poles have a natural frequency of 4 rad/s and a damping ratio of 0.5,

although this information is "secondary" since the open-loop system is unstable. In Figure

15a,b additional vertical axes reporting natural frequency and damping ratio are shown.

Negative damping ratios correspond to an unstable system.

-51

Figure 14. Root Locus Plot of Equation (17).

For positive values of gain, the system operates under closed-loop negative

feedback and reveals interesting eigenvalue trajectories. For example, the solid and solid

dashed lines in the MGP and AGP track the locus of the poles that start as a complex

conjugate pair. The dotted and dotted dashed lines in these plots represent the locus of the

pole pair that originates on the real axis. Notice that when a given pole pair is complex, the

two poles have the same magnitude but are distinguished in angle. Conversely, when

poles lie on the real axis, they have a principal angle of either 180* or 0* corresponding to

negative or positive real values, respectively. Furthermore, the GPs show that the system

is stable only for a specific range of k, matching that given in equation (18). Figure 16 is

an enlargement of a section of the AGP, highlighting one of the complex conjugate poles

near the stable region of the closed-loop system, from which the gains may be read

17



directly. The -90* boundary is marked in the figure in accordance with the criterion
presented in equation (14).
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Figure 15. Magnitude and Angle Gain Plots of Equation (17).

The high gain asymptotes of the root locus are found by examining the AGP for
large values of k. The finite zero at s=-l is identified by the single pole asymptotically
approaching unity magnitude at an angle of 180*. The remaining three eigenvalues
asymptotically approach infinite zeros at angles ±60° and 180*. For gains higher than those
reported in Figure 15a,b, these asymptotes are increasingly prominent

Further inspection of the GPs provides information about the closed-loop system
sensitivity to changes in gain. In the example, the system is highly sensitive to gain
variations when k is small as evidenced by the rapid change in both the angle and
magnitude of the system eigenvalues. This behavior is noticeable at k»3.1, where the
angle of the unstable pole pair rises abruptly. Clearly, as k-** (i) the angles in the AGP

18



asymptotically approach the Butterworth configuration, and (ii) the magnitudes of the

eigenvalues are related to the gain via a power law relationship depicted as a straight line on

the MGP (Kurfess and Nagurka, 1991a).
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Figure 16. Expanded Angle Gain Plot of Equation (17).

Conclusions
The Gain Plots proposed in this report are a set of illuminating plots that expand

and enhance the control engineers' design tool set. By presenting the magnitude and angle

in separate graphs, the GPs simplify and supplement the information contained in the

Evans root locus, in analogy to the role the Bode plots play with respect to the Nyquist

diagram. As such, the GPs add a third "dimension" (a gain domain) to the Evans root

locus plot, whereas the Bode plots add a third "dimension" (a frequency domain) to the

Nyquist diagram. In the GPs, the common axis linking magnitude and argument is gain; in

the Bode plots, the common axis bridging magnitude and argument is frequency.

19



Figure 17 highlights the correspondence of four classical controls graphical tools.
As shown, the GPs fill what may be viewed as a "missing" quadrant of the classical
controls tool set The first row portrays the Nyquist diagram and the Evans root locus
spanning a two-dimensional complex plane. The second row shows the Bode plots and
GPs spanning a three-dimensional (real) space. The columns show the variable that is
used to increase the dimension, i.e., frequency for Bode plots, gain for GPs. The columns
correspond to the earlier progressicxi figures (Figures 3 and 8) where the three-dimensional
representations have been removed. Strong connections exist between the four tools
identified in Figure 17, with all tools being valuable for stability and performance
evaluation.
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Figure 17. Quadrant Representation of Graphical Control Tools.

The proposed GPs enhance the root locus by explicitly portraying the relationship
between the gain and the location of each eigenvalue whose trajectories are mapped by the
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root locus. This information is not readily available from the root locus plot. The

enhancement enables the control designer to identify, by observation, an eigenvalue

location with a specific gain, and hence directly view the influence of the gain on stability

as well as on system performance. Furthermore, the GPs provide a direct measure of

eigenvalue gain sensitivity. The change in eigenvalue magnitude and angle per change in

gain is indicated by the slope of the GPs. This measure of sensitivity highlights the "cost"

of selecting eigenvalue locations corresponding to specific gain values, and provides the

designer with a novel graphical means to assess control system robustness.

Many similarities and differences exist between the root locus and the GPs. For

example, both the root locus plot and the GPs can be drawn for systems with transportation

lags or dead time. Unlike the root locus plot, the GPs explicitly highlight open-loop poles

near or at transmission zeros. These poles are depicted as horizontal lines indicating

constant magnitude and angle for all gains. In the root locus plot pole-zero cancellations

are normally camouflaged.

Current work is targeted at developing analogous "root locus" rules for sketching

the GPs. Although several of these rules have been identified (including the rule for high

gain magnitude asymptotes), their utility may be limited given the ability for real-time

computer implementation.

Further work is necessary to develop intuitive geometric relationships between the

Bode plots that present open-loop information and the GPs that present closed-loop

information (for k * 0). The Nichols chart may provide the appropriate connection. It

presents the relationship between the frequency response of the open-loop system and that

of the closed-loop system. In so doing, it displays four dimensions of information (i.e.,

open and closed loop gain and magnitude) in a two-dimensional format where co is the

implicit variable. The Nichols chart is a challenging chart to generate and comprehend;

however, it does provide a bridge between open-loop and closed-loop systems in the

frequency domain. If the connection between Bode plots and GPs is made, then some of

the more powerful frequency domain tools may find new applications in control theory.

In closing, controls engineers have historically embraced powerful graphical design

methods with striking success. These methods supply significant insight, permitting rapid

system analysis and synthesis. This report proposes a new graphical design tool, the Gain

Plots, and presents a global perspective of these plots with respect to important classical

control tools. The GPs provide a broad spectrum of information about the closed-loop
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control system, including stability, performance, and robustness attributes, and may be

viewed as a missing classical controls tool
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