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Symbolic Design Optimization: A Computer
Aided Method to Increase Monotonicity

Through Variable Reformulation

Abstract

Monotonicity analysis, developed by [Wilde 78] and [Papalambros 79], is an approach
to simplifying and solving some nonlinear, constrained global optimization problems
without iterative numerical calculations. Unfortunately, monotonicity analysis is
limited to problems in which the objective function and constraints vary roonotonically
with the design variables. To alleviate this limitation it is sometimes possible to
reformulate the design problem to increase the degree of monotonicity and thereby
facilitate the complete or partial application of monotonicity analysis procedures.
These useful reformulations are accomplished by a transformation to alternative design
parameters, such as a critical ratio, a nondimensional parameter, or a simple difference;
e.g. the ratio of surface area to volume for heat transfer loss, the Reynold's number in
fluid mechanics, or the velocity difference across a fluid coupling. We have developed
a method by which the alternative parameters are chosen for physical significance and
for the ability to reduce the number of nonmonotonic variables in a system of
constraints. Rules have been developed for the creation of physically significant new
parameters from the algebraic combination of the original parameters. The rules are
based on engineering principles and rely on knowledge about what a parameter
physically represents rather than other qualities such as dimensions. A computer based
system, called EUDOXUS, has been developed to automate this procedure. The method
and its implementation have demonstrated successful results for highly nonlinear,
nonmonotonic, and coupled parameterized designs in various mechanical engineering
domains.



Introduction
In this paper we ait concerned with parametric design problems that can be expressed in tenns of n

design variables, V = [uv w^ ...» um]. The optimization problem is to minimize or maximize an
objective function:

/o(0> (1)
subject to k inequality constraints and r equality constraints:

f^U) <> 0 i = l , * (2)

fj(U) = 0 y = *+l,*+r (3)

In most cases the number of unknowns, n, is greater than the number of equality constraints, r, so that the
problem is underconstrained.

Optimal, rather than merely satisfactory solutions to design problems are often identified intuitively
by experienced and insightful engineers. This is true even when the design constraints are very complex
because optimal designs are frequently determined by the inequality constraints which delimit the feasible
design space. In these cases, finding an optimal solution requires the identification of the inequality
constraints which are satisfied as equalities at the optimum. This is often possible when the objective and
the constraints vary monotonically with respea to some or all of the unknowns. A procedure known as
monotonicity analysis facilitates the identification of the critical constraints at the optimum. The
necessary conditions for the optimality of monotonic systems, first explicated by Wilde and
Papalambros [Wilde 78, Wilde 86, Papalambros 79, Papalambros 88], can be summarized in the
following two rules paraphrased from [Agogino 87]:

Rule 1: When an objective function is monotonic wkh respect to a variable parameter then there
exists at least one active constraint at the optimum which bounds the variable in a direction
opposite of the objective.

Rule 2: When a variable is not contained in the objective function then it must either be bounded
from both above and below by active constraints at the optimum or not bounded at all such that
all constraints which are monotonic with respect to that variable are inactive and can be removed
from the problem definitioa

These rules can be used to solve some optimization problems symbolically (and automatically
[Agogino 87]). The active constraints which limit the degree to which the objective function can be

minimized or maximized become explicit. Some of the drawbacks of numerical techniques, e.g.
convergence and local optima, are avoided and more importantly valuable qualitative information is
obtained. Unfortunately, monotonicity analysis is limited to design optimization problems where the
objective function and constraints are monotonic either globally or over a predefined regional domain. In
the next section we illustrate, using a simple truss design problem, how reformulations of design
problems involving a transformation of variable can increase the number and degree of monotonicity
assignments thereby improving symbolic optimization procedures. Although an unlimited number of
reformulations are possible, those which are most useful exhibit three characteristics:

1. a reduction in the number of variables in some of the constraints and the objective function,

2. an increase in the degree of constraint and objective monotonicity,

3. and are based on new variables which are physically meaningful.



New variables with physical significance are especially important for establishing qualitative insights and
for making meaningful estimates when numerical methods are used.

Following the details of the example we concentrate on the methods used to identify reformulations
as driven by these attributes. In short, we take a two step approach. First, we discuss a method to create
physically meaningful new parameters based on the physical meaning of the original parameters. The
candidate parameters must then be grouped into transformation sets that produce a more monotonic
foimulatioa The second step is to assemble the new parameters into basis sets, perform transformations
of variable, and evaluate the utility of the resulting problem reformulations. Although these techniques
are independent of any computer implementation they are, in general, computationally intensive. These
ideas are implemented in a computer program called EUDOXUS.1 The final part of this paper discusses the
program implementation and effectiveness.

Figure 1: Two Bar Truss Configuration

'Eudoxus of Cnidus (b. 408 BCt d. 355 BC) was a Greek scholar who made contributions in mathematics, astronomy,
geography, philosophy, and law. His theory of proportions solved the crisis of the Pythagorean discovery of irrational numbers
and his method of exhaustion was a forerunner to modern calculus.



Two Bar Truss Example
A stnictuie must be designed to suppoit horizontal and veitical loads at a minimum height. A

simple truss of the type shown in Figure 1 is to be considered [Fox 71, Parkinson 85]. The truss consists

of a pair of tubes pinned together and to ground supports. The structure must withstand a veitical load,

Pv, and a horizontal load, Ph% without failing by yielding or buckling, and without excessive veitical

deflection, 5^^. Additional constraints enforce the requirement on minimum height, Hmin$ and maintain

an outside diameter greater than the inside diameter. The parameters describing the truss are the half-

span, B, height, //, tube outside tube diameter, do, and the inside diameter, dv The material properties,

modulus of elasticity, £, yield stress, oyig[d9 and density, p, are known. Mathematically, the problem is to

minimize truss mass:

fQ = Mass

Subject to:

Objective (4)

/ , -
2<B2 + H2

Jyi£ld + -zP* £ 0 Yielding (5)

1PV{B2

Deflection (6)

h «
d?)

ffi)
BuckUng (7)

u Tube limitation (8)

The optimization problem can be summarized as:

Minimize: f0(.do\dr,B\H+)
Subject to: f^do\d-,B\}T) t 0

f2(do\d-,B-,H') 2> 0
fz{do\d*,B\ir) Z 0
Mdo\d~) 2 0

Minimum height

from 4, Objective

from S, Yielding

from 6, Deflection

from 7, Buckling

from 8, Tube limitation

from 9, Height

(9)

Monotonically increasing trends are indicated by a (-1-) superscript and decreasing trends by a (-)
superscript. Nonmonotonicities are indicated by a (*). The objective function for mass can be decreased
by reducing B9 H9 or do or by increasing dv Unfortunately, a value change in any one of these variables



necessitates an unwanted change in competing variable values. This coupling effect in addition to the
nonmonotonicities makes qualitative conclusions about active constraints very difficult The application
of monotonicity analysis to this problem results in little information. Although the objective is monotonic
in all four of the design variables, die constraints are largely nonmonotonic. We can conclude only that at
least one of die yielding, buckling, deflection or tube constraints are active.

Alternatively, consider a reformulation based on the following parameter transformation:

H = H (10)
R = BIH

Am = ~{d2

where the aspect ratio, R, is the ratio of half width to height, Am is the metal cross section area, and A{ is
the inside hollow cross section area of the truss members. The design objective and constraints become:

gQ = Mass = 2pAmH<R2 + 1 Objective (11)

Subject to:

2Am " R
0 Yielding (12)

PH(R2 + I)1-5

g2 = o^ r—= * 0 Deflection (13)

(14)

g4 = VI + AJA{ - 1 ^ 0 Tube limitation (15)

g5 = H - H^ ^ 0 Minimum height (16)

The reformulated optimization problem can be summarized as:

Minimize: go(R+,Am+M+) from 11, Objective

Subject to: gx(R
m

9Am+) £ 0 from 12, Yielding

g2(R-*Am+,H-) Z 0 from 13, Deflection

>i •,//-,i4;+) £ 0 from 14, Buckling



g4(Am+,Ar) Z 0 from 15, Tube limitation

g5(H+) * 0 from 16, Height

In the original formulation, the minimum mass objective depended monotonically on all four design
variables. In the reformulation, the objective function monotonicity is preserved but only three variables
appear in the objective function. The reformulation similarly improves the constraints. In the case of the
yielding constraint the number of design parameters is reduced from four to two and the number of
nonmonotonic variables is reduced from two to one. Simplifications of this type in all of the constraints
make it possible to systematically apply the monotonicity rules to conclude that:

• The constraint on buckling does not {day a part in minimizing mass and the value of Ai only
needs to be chosen to satisfy buckling (constraint g3) and the tube limitation (constraint gj.

• An unconditionally active constraint is a minimum//value (// = Hmin from constraint g3).

• The constraint on yielding (constraint gx) is always active at minimum mass.

• The constraint on maximum deflection (constraint g2) may or may not be active at minimum
mass depending on the specific parameter values.

To reach these conclusions we begin with the reformulated mass expression. Since At

monotonically influences all constraints in which it appears but does not appear in the objective, Rule 2
requires that Ai is either bounded from both above and below by active constraints at the optimum or Ai is
irrelevant. The constraint monotonicities show that the only constraint which can bound Ai from above2 is
the tube constraint g4. Closer examination of that constraint, however, shows that it is unconditionally
satisfied for non-negative values of Ai and Am. The constraint is therefore irrelevant and can be deleted.
Because no other constraint can bound Ai from above, Rule 2 states that all constraints which are
monotonic in Ai can be deleted. In the present case we may therefore delete the buckling constraint, g4.
Thus, the constraints g3 and g4 are not involved in optimizing for mass. Physically, this means that the
tube hollow area, A,, can be set arbitrarily large to insure the satisfaction of the buckling constraint.3

The application of Rule 1 to H now reveals that g4 must be constrained from below and therefore
the minimum height constraint, g5, must be active. Physically this means that H takes on the minimum
allowable value, Hmin.

Only two constraints, yielding and buckling, remain and with H now determined, the design
problem involves only two variables, the aspect ratio, Rf and the metal area, Am. Both variables influence
the two remaining constraints and the objective. However, the objective and deflection constraint are
monotonic in both and the yielding constraint is monotonic in Am. Rule 1 requires that at least one of the
two constraints must be active to constrain Am from below. There are two possibilities. In the first case gx

is active to bound Am from below and g2 need not be active. Physically, this corresponds to a design

*The implicit constraint requiring a non-negative value for At bounds Ai from below. The parameter value constraints were left
implicit so as not to unnecessarily complicate the problem.

3Although the buckling stress margin improves monotonically with Ai% the tube thickness decreases and other unmodeled
failure modes, e.g. skin buckling may become important.



which is limited by yielding. The other possibility is that g2 is active to bound Am from below. Since g2

cannot also bound R from below then gx must also be active. Physically, this constraint activity
corresponds to t truss design which is simultaneously limited by both yielding and deflectioa The
yielding constraint is therefore unconditionally active. The deflection constraint may or may not be active
depending on the truss loads, material and allowable deflectioa Because the yielding constraint is active,
i.e. satisfied as an equality, we may use the constraint to eliminate Am from the objective and deflection
constraint to obtain a one degree of freedom constrained optimization. Figure 2 shows how the truss mass
and deflection depend on R for one set of specifications. In the absence of a restrictive deflection
constraint, R is chosen to minimize mass resulting in a truss mass of 58.1 kg. If deflection, however,
must remain less than approximately 1 mm the solution is forced away from the minimum mass result as
shown in die figure. Once R is determined, the value ofAm is calculated from the yielding constraint and
the remaining original variables, B, di$ and do, follow from Equations 10. The reformulated design
optimization problem was significantly easier to solve than the original problem. It may be more
important, however, that the reformulation facilitates reasoning by the designer about critical constraints
and tradeoffs.
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Identifying Reformulations for Increased Monotonicity
In general a transformation requires two steps
1. Generating new parameters and

2. Selecting useful sets of new parameters
These two steps in principle could be approached with exhaustive combinatorial methods. For life size
problems this approach is not practical. Instead we focus on generating new parameters with physical
meaning and on grouping them into basis sets using an incremental search technique that seeks to
continuously reduce the number of nonmonotonic assignments.

Generation of Parameters According to Physical Meaning
To insure that the new parameters maintain a strong element of physical meaning we use the

parameters of the original problem to algebraically construct new parameters via basic physical meaning
rules. These rules rely on knowledge about what a parameter physically represents rather than other
qualities such as dimensions.

The basic approach is to construct new parameters as algebraic combinations of the original
parameters. A similar concept is employed in dimensional analysis to nondimensionalize physical
relationships. In many engineering disciplines dimensional analysis has been found useful typically
because of the reduction in the number of parameters which have to be correlated. The goal of
dimensional analysis is to transform the parameters considered important in some physical phenomena, to
a set of dimensionless parameters often called a pi group [Buckingham 14]. The pi parameters are
constructed algebraically as products of the original parameters raised to various integer powers. The
easiest and most well known mathematical technique, but perhaps the least useful one, is based strictly on
the dimensions of the original parameters. This approach involves the choice of a repeating group of the
original parameters which can be used to algorithmically nondimensionalize each nonrepeating
parameter. This technique is described in many texts, e.g. [Streeter 79], despite the fact that it often
results in parameters with little physical meaning.

More successful approaches to dimensional analysis employ the principle of similitude, i.e. that two
systems will exhibit similar behavior if geometric, kinematic, and dynamic similarity are maintained.
Similitude approaches are based on the physical meaning of the parameters of the problem. Similitude
conditions are satisfied if two systems are geometrically similar and if the ratio of all the pertinent forces
are made the same in the two problems. The fact that almost all of the nondimensional parameters
commonly used are one of four types, ratios of lengths, forces, energies, or properties [Kline 86], follows
from the fact that all of the fundamental equations of continuum analysis can be nondimensionalized with
these four types of nondimensional parameters. In many cases the forces and energies are constructed
from more fundamental parameters. Reynold's number, for example, is the ratio of fluid inertial force to
fluid viscous force. In turn these forces are constructed from the lower level parameters such as fluid
velocity, viscosity, length, and mass density. Similarly, all of the common nondimensional parameters in
fluid mechanics can be constructed from fluid force ratios.

Similitude considerations provide a few specific rules to facilitate the identification of
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nondimensional parameters. For the construction of dimensional parameters, the rules are more varied

and plentiftil. For example, dynamic forces can be inertial or viscous which in tum can be constructed

from lower level parameters. An ineitial force may consist of the product of parameters representing a

mass and an acceleration. In turn, an acceleration can be constructed according to other rules. Caution is

required, however, because parameters may have the same dimensions yet represent distinct quantities.

For example, both torque and energy have units of newton-meters.

10



We generate physically significant alternative parameters in a similar fashion: New parameters are
constructed from algebraic combinations of existing parameters and they are constructed according to
commonly used and understood engineering physical principles. Furthermore, we explicitly represent the
physical significance of new parameters so that these new parameters can be used to generate additional
parameters. The parameters constructed will then rely on previous engineering knowledge and
experience. We have systematically collected physical meaning rules for several mechanical engineering
domains. A compilation which can be found in [Watton 89] is organized into rules for geometry,
kinematics, dynamics, solid mechanics, heat transfer, fluid mechanics, and electricity and magnetism.
The rules are of two different types: product type and linear type. Product type rules define new
parameters that are the product of constituent parameters to various exponential powers. The construction
of Reynold's number is of this type. Linear type rules define new parameters as a linear combination of
constituent parameters. In Figure 3 the rules in the geometry domain for constructing volumes and areas
are expanded in a graphical structure. The small circle nodes represent rules requiring two or more
constituent components. A direct connection between two boxes is interpreted as using a single parameter
in the construction of a new one through a simple renaming, reciprocal, or squaring. For example, any
circle area is also a cross section area. The parameters increase in generality from right to left across the
page. Although some of the rules are quite specific, such as the construction of the coil volume, the set is
not complete. The rules have been structured, however, to facilitate the addition of new parameter
construction rules. The following example demonstrates how alternative parameters are created from the
constants and variables in the original formulation of the two bar truss problem.

Example: Two Bar Truss. Consider some of the parameters and constants important in the

design of a two bar truss:

do : diameter, cylinder diameter
d{ : diameter, cylinder diameter
B : width
H : height

Note that a parameter may have multiple descriptions or names. The new parameters generated

using the rules of geometry are:

V ^ s nd.
ids «"»|Vx * BH

V2 » 0.25ndo
2 » Ao

V3 » O.lSndj1 m Ai

V4 a doldi

V5 = dJH
V6 « dJB
V, « dJH
V* = dJB
V9 m BIH m R

: circumference
: circumference
: rectangular area, cross section area
: circle area, cross section area
: circle area, cross section area
: ratio of diameters
: ratio of lengths
: ratio of lengths
: ratio of lengths
: ratio of lengths
: ratio of lengths

Note that the first two new parameters, Vxl and V& are slightly disguised original parameters.

They are not useful for transformations of variable but they are useful building blocks for other

new parameters. In the final list they will be discarded. With the new elements other parameters

of the linear type can be constructed:

11



AO-BH
ArBH

2H

n : area difference
: area difference
: area difference

+ 2B : rectangular circumference

These constructions are straightforward to perform but some errors in assigning physical meaning

have been made. The parameters Vn and Vl2 are not really meaningful area difference since tube

inside and outside areas are measured in planes perpendicular to the rectangular area spanned by H

andS. In addition, the variables K5, V6, K7, and Vg are also not very meaningful. Other candidate

parameters were created but eliminated because they were reciprocals of others or similar to others

except for a constant multiplier, such as VxX and V&

There are a number of limitations to the approach. First, is the impracticality of a complete
collection of rules. It is straightforward to create and use high level general rules, such as creating a
General Area from a S u r f a c e Area, but it is more difficult to create specific rules for
complicated geometries which can be applied successfully. Having a rule for every configuration is
impossible, nevertheless, the ability to add more rules exists in the organizational structure. What can be
accomplished with a small collection of rules, even if quite general, is considerable. The second
limitation is the possibility of making errors in the assignment of physical meaning. For example, the
area of a rectangle can be constructed as the product of a height and a width, but if there are several of
each of these quantities, then how do we construct correa rectangular areas? There are many possibilities
to consider - some of them may create areas and some of them may not. In the next section we employ
the idea of spatial proximity to help reduce the number of new parameters generated to a reasonable level
and avoid some of the more obvious errors.

Figure 4: A Simple Suspension System

12



Spatial or Component Proximity Considerations
A mechanical system generally consists of many components. For example, a helical coil spring

may be considered a single component but if it is used in a suspension system then it would be one of

several components. Figure 4 shows an example of a simple suspension system with two basic

components, a spring and a beam. The proximity with which components are connected often indicates

the "associative" importance of the parameters "measured on" or "belonging to" each component.

Parameters "measured on" the same component may form, when grouped among themselves using the

physical meaning rules, new parameters with the greatest likelihood of being important and without errors

in assigning physical meaning. The parameters measured on two spatially adjacent components may be

grouped together, as well, but with an increasing likelihood of errors and so on as the components

spatially depart from each other. This principle is similar to Huntley's addition [Huntley S3] to

dimensional analysis where he notes that there is a distinction between a length measured in the x

direction and one in the y direction.

Consider the following example. For the suspension system of Figure 4 we can, for the purpose of
this example, design for wheel deflection, 8 ^ ^ , and stiffness, kw, disregarding what other important
functions might be desired:

6
9Gdx

= hx(d9Dfn,x,t) (17)

8/iD3/3

The original design parameters are {n,d,D,x,/}. The parameters {nfd,D) are all strictly spring design
parameters, while / and x are beam design parameters. The following table indicates which design
parameters belong to which components, where X indicates ownership, and o no ownership:

parameter

n -No.coils

d -Wirediameter

D -Coildiameter

x -Position

/ -BeamLength

spring

X

X

X

0

0

beam

0

0

0

X

X

If we include all design parameters despite ownership then the set used to generate new design

parameters is {n,D,d,x,/} and 16 new product type design parameters can be generated with the present

set of rules. If only X relationships are used then we have two separate sets {n9d9D} and {x,/} and

mixing between the two is not permitted. With this restriction 12 new product type parameters can be

generated. The second set of groupings produces fewer new parameters to consider and helps avoid some

obvious errors in physical meaning.

In the computer implementation we assign both a primary and secondary ownership of parameters

to the components of the mechanical configuration. The most restrictive criterion is to group only

members of common primary ownership. If this fails to generate enough candidate new parameters the

13



condition can be relaxed by including parameters of secondary ownership as welL Finally, all parameters
can be grouped together ignoring component ownerships for those designs where generating sufficient
candidates is difficult (usually not the case). This approach to component proximity considerations is
rather primitive because all the rules of candidate parameter construction are treated the same. A
refinement would be to use a set of meta-rules to specify the degree to which a spatial or component
proximity condition should be applied.

Methods to Generate Transformations
So far we have discussed only how to create new parameters which have the strong possibility of

being physically significant and meaningful to a designer for a specific mechanical design problem. The
result of this approach is to produce a list of possible new parameters algebraically constructed from
parameters in the original problem. Needless to say, such a list can be of significant length and not all of
the new parameters can be used in any one transformation. Usually there are many possible subgroupings
of the new parameters, (in addition to some original parameters) which will "span" the original design
space. In this section, we are concerned with creating and using spanning sets to perform transformations,
including techniques to algebraically perform the transformation and to explore as many spanning sets as
possible. The choice of transformation depends fundamentally on the desirable characteristics of the
transformed design equations and measures of those characteristics.

Monotonicity Measure of Improved Formulations
Any measure of design equation structure can be used to select among alternative transformations of

variable. In this paper we focus on improvements which facilitate the application of monotonicity
analysis.4 A refined measure could be based on the actual application of monotonicity analysis to the
transformed design equations. The measure which we employed and implemented in EUDOXUS is an
expedient alternative: It is a simple sum of the number of nonmonotonic variable occur usually rences in
the design equations. In the original formulation of the truss problem there were six occurrences of
nonmonotonicities. The reformulated equations exhibited only two, a net improvement of four in the
measure of degree of monotonicity. Counting the nonmonotonicities programmatically for symbolic
mathematical representations requires certain restrictions. If the constraints are polynomials of any order
(including variables to negative exponents) and the ranges on all variables and constants are nonnegative
(as is often the case in mechanical design) then conclusions about global monotonicities can be drawn.
When these restrictions are not present other means can be employed, e.g. applying interval arithmetic to
the symbolic derivative of a constraint or objective. In the case of the truss, the simple restrictions apply
and the measure of monotonicity is easily implemented and quickly computed. A more refined measure
based on a full implementation of the monotonicity analysis reasoning could be tailored specifically to
reward the identification of irrelevant variables, the elimination of constraints, or a reduction in the
number of objective variables, however the measure would be significantly more difficult to implement
and compute.

4We have used a similar approach in previous work which was focussed on design equation coupling [Walton 89, Walton 90]

14



Combinatorial and Incremental Approaches to Forming Basis Sets
How ait die basis sets of the successful reformulations to be formed from the large number of new

parameters generated? Two methods have been explored, namely the combinatorial algorithm and the

incremental heuristic. Prior to describing these methods we first discuss what constitutes spanning and

basis sets. We have used the term spanning set to refer to an alternative set of variable parameters which

will "span" the same design space as the original variable parameters. We want each variable to be

independent from the others in the set so that it forms a basis or basis set for describing the design space.

A basis set is a spanning set where the elements are independent In this sense, when we refer to sets of

new variable parameters which span the original design space, we mean a minimal set which can act as an

alternative coordinate system for the design description. For a parameterized design description the

variable parameters form a basis for the solution space. We explore a change of basis by symbolically

transforming the design equations. When the transformation of variables involves exclusively either

linear or product type new parameters, the transformation is straightforward (for the details see [Watton

90, Watton 89]). More generally, however, a new basis might involve a combination of new parameter

types such as polynomials or variables based on transcendental functions. These types of new parameters

may be useful, but there is difficulty in creating algorithms to handle the algebra symbolically.

Nevertheless, many, if not most new parameters of interest are of the linear type or of die piodua type

and a transformation that involves a combination of both types can be achieved incrementally. In fact,

using the incremental technique it is possible to obtain some polynomial type new parameters [Watton

89]. This is the case for the two bar truss example.

We first discuss a combinatorial algorithm which evaluates all basis sets which can be constructed

from some combination of the available parameters. This method is most useful on small problems and

as a benchmark against which other methods may be evaluated. The computational expense of this

method depends on the total number of candidate variables generated which depends on the number of

variables in the original formulation. The algorithm is straight forward. For example, if the original

system of design equations has a basis set of five design parameters, then all combinations of groups of

five from die total list of candidates and the original five design parameters are generated. Original

parameters are included because many useful reformulations include mostly the originals parameters with

the addition of a few new parameters. Each set generated is then tested to determine if it is a basis set

One quick test is to check that each original parameter of the basis set is either contained in the new set or

is used in the construction of at least one new parameter in the set The final test is when the proposed

basis is solved to isolate the original parameters in order to execute the transformation. If this inverting

procedure is possible then a valid basis exists. The final step is to perform the substitutions and check the

resulting reformulations for measured improvements over the original formulation. This method becomes

impractical for most realistic design problems since the number of proposed basis sets to check increases

with the size of the list of candidates, n, and the size of the basis set, m, according to:

combinations = t/
 w! - (18)

m!(n - m)!

Another drawback is that of the two types of new parameters generated, namely product type and linear

type, a proposed basis set that includes both types cannot be used unless an incremental approach is

employed due to the limitations of the specific transformation methods we employ. Probably, the most

15



useful property of die combinatorial method is the fact that it can be used to compare the effectiveness of
less powerful methods.

Alternatively, we consider an incremental heuristic which intelligently focuses the search for basis
sets that lead to improved formulations. This heuristic involves replacing one of the original members of
a basis set with a new parameter to form a new basis set After applying the transformation the new set of
equations is evaluated for improvements in the measure of monotonicity. For all improved
reformulations, the same procedure is applied again. When none of the remaining new parameters can be
used to create a reformulation that has an improved measure then the bottom of a branch is reached. The
basis set along with the design equations it produces is offered as an answer. The bottom of a branch is
also reached when the list of new parameters is exhausted. The incremental method will not explore all
combinations, but it should focus on sets of new variables which will offer improvements. The
incremental method suffers from what is called the horizon problem. The algorithm, as described, does
not explore paths where the measure does not improve continuously from node to node. A useful
reformulation may be overlooked because the measure had to get worse before getting better. This
problem is somewhat compensated by the fact that multiple paths to the same new basis set generally
exist. One advantage of the incremental method over the combinatorial method is that it can handle basis
sets which contain both linear and product type new parameters. This is because it seeks only to add me
new parameter at a time and thus at any point can use either the linear variable or produa variable method
of transformation - whichever is appropriate. To help overcome the horizon problem relaxed conditions
of incremental search are pennitted. In this situation the search is permitted to continue along paths where
the measure of monotonicity may not initially improve. This allows one to find more reformulations (at a
time penalty) and also allows the linear type parameters to be more fully utilized.

Implementation and Execution Details
The techniques discussed in this paper were implemented and tested on a Symbolics Maclvory

computer. Common Lisp was chosen for the implementation because it is well suited for the symbolic
computations needed to transform systems of algebraic expressions. In this section, we will discuss the
basic structure and flow control of the EUDOXUS implementation, including its limitations. The program
flow chart is shown in Figure 5. An example of the input and output of the program can be seen in
[Watton89].

The flow chart shows that the initial stage involves defining the appropriate description of the
design problem to be considered. This is done in the form of an input file. The main aspects to be
included in this file are the design equations in algebraic symbolic format with an indication of which
parameters are the variables and the constants. Information on each parameter must include units, and a
physical meaning name or type (e.g. area , d iameter , torque , v e l o c i t y ) . The constraints are
limited to algebraic expressions constructed with basic operations (e.g. addition, subtraction, division,
multiplication, exponentiation) and function calls (e.g. sine, cosine, log, etc.). Differential and integral
equations are not admissible. The user must specify which design parameters are permitted to be used in
the construction of candidate new parameters. Extensive checking routines insure that the problem is well
posed. The implementation is not limited by the size of the design problem as measured by the number of
expressions and parameters except by execution time and virtual memory space.
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Figure 5: Flowchart of the EUDOXUS Implementation

The implementation is limited, however, by the type and quantity of routines used in the

mathematical manipulations. Such basic functions as collecting like terms and canceling terms in

division are limited to the simplest of cases. In addition, because the methods implemented in EUDOXUS

are not complete and algorithmic but based on a generate and test scheme it is not possible to defend them

strictly on a theoretical basis. A summary of the results for the truss problem is presented in Table 1. The

first row indicates whether the run used the incremental or combinatorial method, the second row

indicates if the incremental method was relaxed, and the third row indicates if the incremental method

was verbose or not. A relaxed incremental mode permits a noncontinuous improvement in the
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Two Bar Truss - (6 constraints, 4 variables)

method

relaxed

verbose

no. product vars.

no. linear vars.

cpu time (sec)

no. answers

truss-1
incr.

no

no

9
4

16
2

truss-2
incr.

no

yes

9
4

18
16

tniss-3

incr.

yes

n/a

9
4

221
59

truss-4
incr.

no

yes

9

0

15
16

truss-5
comb.

n/a

n/a

9

0

50
44

Table 1: Computer Execution for the Two Bar Truss

monotonicity measure by one step. This helps alleviate the horizon problem, especially when working

with combinations of linear and product type new parameters. A verbose run presents all improvements

over the original system while the incremental mode operating in a non-verbose manner will present only

those reformulations which are improvements from the previous node. The remaining rows provide

details on the results. The number of answers in the last row are the number of reformulations discovered

with an improved measure of monotonicity.

To compare the incremental and combinatorial method we restrict ourselves to the situation where

only product type new parameters are generated (tmss-4 and tmss-5). Comparing tniss-4 and truss-5 we

see that the combinatorial method takes three times as much cpu time to find almost three times as many

reformulations. The 16 answers of truss-4 are a subset of the 44 answers of tmss-5. The trend for the

combinatorial method is to take ever more time to find fewer additional reformulations. Only small

problems are reasonable candidates for the combinatorial method. Small is measured by the number of

new variables generated which is usually a function of the number of variables in the original

formulation

The other advantage of the incremental method is that it can be more focused operating in a non-

verbose manner that presents only critical reformulations which are improvements from the previous

node. Sometimes the use of a certain new parameter is the reason for an improvement, but often that new

parameter can be grouped with others that make no difference to the measure of improvement It is these

essentially repeat reformulations which can be eliminated with the incremental technique. The

combinatorial method is blind to which of the new parameters are the most critical ones in any particular

reformulation. Comparing tiuss-1 and truss-2 we see that of the 16 incremental reformulations only 2 of

them are different since the answers of truss-1 are a subset of those for truss-2. This will allow the user to

choose the most critical reformulations from those discovered with the incremental technique.

The situation in truss-3 is special. The relaxed conditions of incremental search are permitted which
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allows the linear type parameters to be fully utilized. The result is 59 improved formulations in 221
seconds. Without relaxing the search conditions (truss-2) only about a quarter of these reformulations
were found and none contained new linear type parameters. In fact, truss-3 is the only run that contained
the reformulation used earlier in the two bar truss problem.

Conclusion
Mechanical design is a process of generating artifacts that will perform as required. It is generally

an iterative process that involves both a synthesis of form and an analysis to determine if that form meets
the required functions. If a satisfactory solution is possible the next step is optimization with respect to a
particular objective. Reformulating parametric constraints that describe candidate design artifacts can be
an important and useful part of this process. In this paper we have outlined a series of methods that have
been implemented to automate the procedure of finding useful transformations of mechanical design
constraints. We demonstrated the utility of using variable transformations for constrained nonlinear
optimization problems. Increasingly monotonic representations help identify the active constraints of an
optimization through the application of monotonicity analysis rules.
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