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This report examines the use of Gain Plots (GPs), a new graphical representation
and per spective on the Evans root locus, for analysis and design of multivariablefeedback
control systems. The development is based on the adjustment of a scalar, forward loop,
proportional control gain cascaded with a square multi-input, multi-output (MIMO) plant
employed in an output feedback configuration. By tracking the closed-loop eigenvalues as
an explicit function of gain, it is possible to visualize the MIMO root loci in a set of plots,
the GPs, depicting thepolar coordinates of each eigenvalue in the complexplane. The GPs
consist of two graphs: (i) magnitude of system eigenvalues vs. gain, and (ii) argument
(angle) of system eigenvalues vs. gain. The concept of GPs is developed in detail in a
companion reportfocusing on single-input, single-output systems (Kurfess and Nagurka,
19914q).

By identifying closed-loop eigenvalue trajectories, the GPs impart significant
insightfor determining the values of scalar gain that render a MIMO closed-loop system
either stable or unstable. Furthermore, by exposing. the correspondence of gain values to
specific eigenvalue angles and magnitudes, the GPsare useful for evaluating the migration
of closed-loop eigenvalues toward finite and infinite transmission zeros. The GPs reveal
MIMO eigenvalue information unambiguously in a new and precise manner, that is not
availablein astandardMIMO root locusplot. Thus, GPssignificantly enhance the control
engineer's multivariable systems tool box.
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I ntroduction

Sincetheir introduction, classical controlstools have been popular for analysis and
design of single-input, single-output (SISO) systems. These methods may be viewed as
specialized versions of more general tools that are applicable to multi-input, multi-output
(MIMO) systems. Although modern " state-space” control methods (relying on dynamic
models of internal sructure) have been promoted as the predominant tools for multivariable
system analysis, the classical control extensions offer several advantages, including
requiring only an input-output map and providing direct insght into stability, performance,
and robustness of MIMO systems. Furthermore, multivanable frequency-domain
techniques extend the control engineer's MIMO tool set, complementing the tools of
modern state-space control. The promise of intuitive, graphically-based methods for the
analysis and design of MIMO systems has been a prime motivator of this work in post-
modern (neo-classical) controls.

An early graphical method for investigating the stability of linear, time-invariant
(LTI) SISO systems was developed by Nyquist (1932) and is based on a polar plot of the
loop transmission transfer function. The MIMO analog of the Nyquist diagram is the
multivariable Nyquist diagram which is used in conjunction with the corresponding
multivariable Nyquist criterion (Rosenbrock, 1974; Lehtomaki, et aL, 1981; Friedland,
1986). This criterion is complicated because it is expressed in terms of the determinant of
the return difference transfer function matrix ([I + G(s)] where G(s) is the plant trander
function matrix, rather than just 1 + g(s) for the SISO case where g(s) is the plant transfer
function). Despite the complication, significant research has supported the MIMO Nyquist
extension for assessment of multivariable system stability and robustness (M acFarlane and
Postlethwaite, 1977).

It can berationalized that the Bode plots (Bode, 1940) recast the information of the
Nyquist diagram, with frequency extracted as an explicit parameter, and follow from a
logical progression of frequency-domain tools (Kurfess and Nagurka, 1991a). The MIMO
analog or extension of the classical Bode plots is the sngular value Bode-type plot that
shows maximum and minimum singular values of trangfer function matrices as a function
of frequency (Doyle and Stein, 1981). These generalized magnitude vs. frequency plots
are useful for analysis, providing tremendous insight into performancé in terms of
command following, disturbance reection, and sensor noise sensitivity, as well as for
design, in terms of frequency shaping (Doyle and Stein, 1981; Safanov, et al., 1981;
Athans, 1982; Macig owski, 1989).




Although promoted as an SISO tool, Evans root locus method (Evans, 1954) is
applicable to both SISO and MIMO systems, since it plots the trajectories of closed-loop
eigenvalues (of either SISO or MIMO systems) in a complex plane. However, the
generalization to the multivariable root loci has not met with the success of the MIMO
versions of the Nyquist diagram and Bode plot The MIMO root locus plot does nat, in
general, follow the straight-forward sketching rules applicable to SISO systems and does
not provide insight into stability, performance, or robustness. Part of the problem liesin
the fact that " multivariable root loci live on a Riemann surface ... as compared with the
single-input, single-output case where the root loci lie on a smple complex plane (a trivial,
i.e., one sheeted, Riemann surface)" (Postlethwaite and MacFarlane, 1979). Asareault,
multivariable root loci tend to have strange looking patterns when drawn in a single
complex plane and are generally not useful for compensator design insight The possibility
of loci being multi-valued functions of gain makes the MIMO root locus plot confusing and
hence avoided.

Jug as frequency-domain tools such as the Nyquist diagram and Bode plots have
been extended to multivariable Nyquist diagrams and singular-value Bode-type plots,
respectively, gain-domain tools such as Evans root locus plot can be enhanced by a set of
Gain Plots (GPs) that are applicable to MIMO systems. A digtinct advantage of the GPsis
that they provide, in a unique fashion, significant insight into the stability, performance,
and robustness of LTI MIMO systems. The conceptual framework of the GPs and their
applicability to SISO systems has been developed in a companion report (Kurfess and
Nagurka, 1991a).

This report presents an overview of the GPs, introduces basic definitions and
concepts of MIMO systems, and presents a sequence of examples of increasngly more
complicated multivariable systems that demongtrate the usefulness of the GPs. In addition
to being an important analysis and design tool, the GPs promise to be a highly effective
research tool for MIMO system synthesis.

Gain Plots

S0 Sysem Overview

Gain Plots (Kurfess and Nagurka, 1991a) are an alternate graphical representation
of the root locus plot that depict the behavior of system eigenvalues as an explicit function
of gain. This section summarizes the concept of GPs. A SISO system is analyzed since it




provides significant intuition on GPs. A subseguent section develops GPs for multivariable
systems.

“Given aplant trandfer function, g(s), embedded in a sandard closed-loop negative
feedback system, the closed-loop stability can be determined by examining thereal parts of
the eigenvalues. Assuming a Satic compensator, given by scalar k in the forward loop, the
eigenvalues are the solutions of the closed-loop characterigic equation

kg(s) = -| @

Theroot locus is the solution set of equation (1) asthe gain k varies from zero to infinity.
Equation (1) isequivalent to two conditions. the anglecriterion,

Zkg(s) =+180*(2m+ 1), m=0, 1, 2,... 2

and the magnitude criterion,
lkg(s)|=l 3

The shape of the root locus plot is determined entirely by the angle criterion. Then, for any
eigenvalue, s, on the root locus, the magnitude criterion is invoked to solve for the
corresponding value of k.

For example, Figure 1 isthe root locus plot of the open-loop transfer function,
a(s),
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Each branch of the root locus sarts at k=0, corresponding to a system open-loop pole
(s=-1,-2), and asymptotically approaches either a finite (s=-3) or an infinite (s —» -<»)
transmisson zero. The transmisson zeros represent complex frequencies at which system
transmission paths vanish.

An alternative visualization of the root locus plot can be obtained by explicitly
graphing the eigenvalue magnitude vs. gain in a Magnitude Gain Plot (MGP) and the
eigenvalue angle vs. gain in an Angle Gain Plot (AGP). Figure 2a,b is the set of GPs for
the system of equation (4). The MGP is presented using a log-log scale and the AGP
using a semi-log scale (Kurfess and Nagurka, 1991a).
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Figure 1. Evans Root L ocus Plot of Equation (4).
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Figure 2a,b. Magnitude and Angle Gain Plots of Equation (4).




The angle criterion dictates that the eigenvalues must lie on the rea axis or be
complex conjugates. Thus, apair of complex conjugate eigenvauesis shown as asingle
curve in the MGP with corresponding angles symmetricaly configured about the 180° line
shown inthe AGP. Asthe gain is adjusted, complex conjugate elgenvaues may become
distinct real eigenvaues, causing their angles to become equa (at a multiple of 180") and
permitting their magnitudes to differ.

The MGP shows the presence of two open-loop poles with magnitudes 1 and 2 at
k=0. Ask-» °0 it shows a single finite transmission zero with magnitude 3 and an
asymptote tending toward an infinite transmisson zero. The AGP indicates that the two
open-loop poles and finite and infinite transmission zeros are located in the left-haf plane
on thereal axis, since they al have angles of 180". High gain asymptotic behavior of the
closed-loop elgenvauesis discussed in detall in (Kurfess and Nagurka, 1991b).

From the GPs, bresk points (corresponding to points where branches leave or enter
the real axis of the root locus) can be observed to occur a k « 0.17 and at k * 5.83.
Between these break points the AGP indicates that the loci of the two branch points are not
on the real axis and the corresponding single curve of the MGP confirms that the
trgectories are those of a complex conjugete pair.

Basic MIMO Definitions and Concepts

A LTI MIMO systlem can be represented in the sandard state-space form as
X(t) = Ax(t)+Bu(t) (5)

y(®) = Cx(t) +Du(t) (6)

where X is the state vector of length n, u is the plant command or control input vector of
length m, and y is the plant output vector of length, m. Matrices A, B, C and D are the
system matrix, the control influence matrix, the output matrix, and the feed-forward
matrix, respectively, with appropriate dimensions. The input-output dynamics are
governed by a square transfer function matrix, G(s), '

G(s) =C[sl-A]''B + D ©)
The system is embedded in the closed-loop configuration, shown in Figure 3,

where the controller is a static compensator, ki, implying that each input channd is scaled
by the same congtant gain k. (Note that the plant transfer function matrix and any dynamic




compensation may be combined in the trander function matrix G(s).) The control law is
given by

u(t) = kle(t) | ®
where
et) = r(t)-y(t) ©)

isthe error and r(t) is the reference (command) signal vector of length m that y(t) must
track. The closed-loop trander function matrix is

Gals)i=[l +kG(9)]"kG(s) (10)

To develop the MIMO root locus plot, the migration of the eigenvalues of GCL(S) in the
complex planeis graphed as scalar k variesin therange 0 £k < «>. The eigenvalues of the
closed-loop system, s = X{ (i=l,2,...,n), are the roots of <>CL(S), the closed-loop
characterigic polynomial,

tcLls) = pols) det{I + kG(s]] (ID
where 0L (9 isthe open-loop characterigtic polynomial,
doLls)}=defsI -A] (12)

The roots, or solutions of equation (12), are the open-loop poles. By equating the
determinant in equation (11) to zero, the MIMO generalization of the SISO characteristic
equation (1 + kg(s) = 0) is obtained. The presence of the determinant is the major
challenge in generalizing the SISO root locus sketching rules to MIMO systems and
complicates the root locus plot. For example, the root locus branches " move" between
several copies (Riemann sheets) in the s-plane that are connected at singularity points
known as branch points (Yagle, 1981; Athans, 1982).
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Figure 3. MIMO Closed-L oop Negative Feedback Configuration.

Although it is not possible to sketch MIMO root loci by inspection, the closed-loop
system eigenvalues may be computed numerically from equations (5) - (9) as




Xi=eig[A-B(k)C] , i=1,2,...,n '(13)

In the examples, the loci of the eigenvalues are calculated from equation (13) as k is
monotonically increased from zero.

As the gain increases from zero to infinity, the closed-loop eigenvalues trace out
"root loci" in the complex plane. At zero gain, the poles of the closed-loop system are the
open-loop eigenvalues. At infinite gain some of these eigenvalues approach finite
transmission zeros, defined to be those values of s that satisfy the generalized eigenvalue
problem

fsl-A -B I[x(0)1_ro] 1
[ C DJluJLoJ (14

where [ x(0) u ]" is the right generalized eigenvector corresponding to the generalized
eigenvalue, i.e., transmission zero, with x(0) representing the initial state and u being a
vector representing input direction in the multi-input case. In the absence of pole/zero
cancellation, the finite transmission zeros are the roots of the determinant of G(s).
Algorithms have been developed for efficient and accurate computation of transmission
zeros (Davison and Wang, 1974; Laub and Moore, 1978; Westreich, 1991).

The high gain behavior of the root loci can be viewed another way (Friedland,
1986). The eigenvalues can be considered as always migrating from the open-loop poles
to their matching transmission zeros. However, those eigenvalues that do not have
matching zeros in the finite part of the s-plane are considered to have matching zeros at
infinity. In the global SISO perspective, whenever the excess of poles over zeros is greater
than two, the eigenvalues migrate towards a magnitude of «»in a Butterworth configuration
and therefore as k—> the closed-loop eigenvalues must become unstable. However, this
may not be the case with MIMO systems as is demonstrated in the following section.

MIMO Examples

Decoupled MIMO Example

This example demonstrates the use of the GPs for exploring the behavior of a
decoupled multivariable system. The state space model of the system is

<0-[ 3 S0+ 0o




y() =[ (1) ? x(t) (16)

corresponding to the diagonal trandfer function matrix

- 0

s+1

G(9):= 17)
S o I
s+ 2]

It representstwo decoupled firg order SISO systemswith eigenvalues at s={-1,-2}. The
open-loop system is assumed to be embedded in the feedback configuration of Figure 3.
Since the system is decoupled, the multivariable root locus may be considered to be the
superpostion of two SISO root locus plots. That is, the MIMO root locus diagram, shown
in Figure 4, depicts two eigenvalue trajectories, one beginning at s=-1 and the other
beginning at s=-2. Both trajectoriesfollow a graight line path along the negativereal axis.
The MIMO root locus does not follow the rules of the familiar SISO root locus (e.g., the
SISO rulefor the portion of theroot locus on thereal axisisviolated), and isnot intuitive.

Im[s]
1
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+

Figure4. MIMO Root Locusfor Sysem Given by Equation (17).

Figure 5 isthe MGP for this decoupled MIMO system. Although not shown, the
AGP indicates that both eigenvalues have angles of 180° for all values of k. Thus, at low
gain the GPs confirm that the two open-loop eigenvalues are at s={-I, -2}. Furthermore,
as k increases, both eigenvalues proceed deeper into the left half plane along the negative
real axis at the same congtant rate. From the MGP, there is no ambiguity as to the number
or location of the eigenvalues. The MGP also provides the control engineer with other
useful information. For example, from the MGP it can be seen that gains greater than 10
correspond to system time constants faster than approximately 0.1 sec. In summary, for
this decoupled MIMO example, the GPs provide more insight into the behavior of the
closed-loop system than does the MIMO rooat locus of Figure 4.
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Figure 5- Magnitude Gain Plot for System Given by Equation (17).

Coupled MIMO Example

This example demondirates the use of the GPs for understanding the closed-loop
behavior of a coupled multivariable syssiem. The open-loop plant dynamics of this system
are given by the state space model

<-4 9Jew+{ 2 o as>
(t)—-[ 1 1y (19)
corresponding to the trander function matrix
(s-1) s
e =| * + 1)(s+ 2) (st)I)K 52;~ 2) (20)

(s + |x3+2) (s+1)(s+2)J

(Equation (20) is used as an example by Postlethwaite and MacFarlane (1979) and later by
Yagle (1981).) The presence of off-diagonal termsin G(s) of equation (20) indicates a
coupled MIMO system. Also, from equations (18) or (20), the system has open-loop
eigenvauesat s={-I,-2}.




Since the system is coupled, the multivariable root locus is more complicated than
superimposed SISO root locus plots. The MEMO root locus diagram, shown in Figure 6,
depicts two eigenvaluetrajectories, one beginning at s=*-| and the other beginning at s=-2.
Asin the decoupled example, the eigenvalue at s=-2 follows along the negativereal axis as
thegain increases. Theeigenvalue at s=-1 doesnot follow the sametrajectory. Itinitially
migrates to the right, proceeding to s=1/24 * 0.042, and then reverses. As the gain
increases, it moves back to theleft of the imaginary axis along thereal axis. Figure 6 does
not follow therules of the familiar SISO root locus, and is extremely counter intuitive.
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Figure6. MIMO Root L ocus for System Given by Equation (20).

Figure 7a,b presents the GPs for the coupled MIMO system. The MGP shows that
the gain valuesfor the ungablerange are

| £k <2 2i)

and confirms the maximum magnitude of the eigenvalue at O\ An abrupt change in
eigenvalue angle occurs when the closed-loop system becomes ungtable. Thisis expected
sincethereisa 180* jump in angle as the eigenvalue passes through the origin, highlighting
the stable-unstable trangtion.

The MIMO root locus plot of this coupled MIMO example is confusing because of
the collapse of the Riemann surface into a single complex plane. Since the plot is two
dimensional, branch pointsthat may be generated by more than one gain value may not be
presented uniquely. The GPs, however, display eigenvalue magnitude and angle
information in an unambiguous and concise manner.
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Figure 7a,b. Gain Plotsfor System Given by Equation (20).

Complex MIMO System

The previous two examples have addressed MIMO systems having eigenvalues that
remain on thereal axis. Thisexample demonstrates the utility of the GPs for systems that
possess complex conjugate root loci. The state space representation for this example
(taken from Hung and MacFarlane (1982) and studied in detail by Maciegjowski (1989)),

0 0 112 ©0 -1 0 0 0
0 -00%4 -0171 0 0071 0120 1 0

x=| 0 0 0 1 0 |x+| o 0 0 Ju (22)
0O 0049 0 -0856 -1013 4419 0  -1665
0 0200 0 1053 -0686) t 155 0 -0073.
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100 0O
¥=|0 10 0 O|x (23)
J

00100

represents a linearized mode of the vertical plane dynamics of an aircraft with thfeeinputs
three outputs and five sate variables. The fifth order system has no finite transmisson
zeros and has open-loop eigenvalues of \i = {0, -0.7801+1.0296j, -0.0176+0.1826j}.
The pole at the origin indicates that the open-loop system is marginally stable. To
determine the stability of the closed-loop system, the MEMO root locus may be drawn;
however, littleinsight is offered by thisplot, shown in Figure 8, sinceit is not clear if all of
the eigenvalues exist in the left-half plane for low values of gain. The MIMO root locus
suggests that at high gain the system is ungtable, but fails to indicate the range of gain for
which instability occurs. In fact, the closed-loop system is never stable for positive gain
values, although this is not evident from the root locus plot. Another interesting
characterigtic of the MIMO root locusisthat it is completely counter intuitive. 1t should be
noted, however, that poleswith imaginary components are part of a complex conjugate pair
asrequired since A isreal.
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Figure 8 MIMO Root Locusfor System Given by Equations (22) and (23)

In contrast to the MIMO root locus, the GPs for this complex system reveal a
subgtantial amount of information about the closed-loop system stability. Figure 9a,b is
the pair of GPs for the MIMO system given by equations (22) and (23). Several interesting
phenomena occur asthe gain increases. The firs and most noticeable isthat the eigenvalue
at theorigin initially migratesto the right-half plane, becoming ungtable. Its maximum resl
value is s«0.010 at a gain of k«0.018, behavior which is obscured in the MIMO root




locus. This eigenvalue then becomes stable at a gain of k«0.043, at which point the two
other eigenvalues whose angles are symmetric about zero are already ungtable. The AGP
of Figure 9b shows this behavior clearly. Thus, the GPs provide an unambiguous means
by which stability may be determined.
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Figure 9a,b. Gain Plots for System Given by Equations (22) - (23).

Therate at which the eigenvalues migrate towar ds a magnitude of infinity is seen in

the MGP. The single eigenvalue that begins at the origin proceeds towards infinity along
the negativereal axis at arate proportional to k (the high gain MGP dope is unity). This
dopeischaracterigic of afirs order SISO system. Thereal eigenvalue possesses an MGP
dope of unity for all gain values except when its magnitude is small (near zero). The two




complex conjugate pole pairs proceed toward infinity at arate proportional to k™ (shown
as-ahigh gain MGP slope of 1/2), indicative of a SISO second order system (Kurfess and
Nagurka, 1991b).

Finaly, unusual behavior is exhibited by the complex conjugate pole pairs as they
break into thereal axis and proceed to+D°. Figure 10a,b presents the GPs shown in Figure
9a,b for gain values between 10° and 10°. Each complex conjugate pair demonstrates the
typical break point behavior of the GPs. When the eigenvalues are complex, they are
symmetric about either the 180" or 0" line with equal magnitudes. When they are purely
real, they possess equal angles (180* or 0*) but different magnitudes. This striking
behavior is seen even more dramatically in Figure 11, which is the MGP expanded
vertically of Figure 10a.
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Figure 10a,b. Gain Plots for System Given by Equations (22) - (23).
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From Figures 10 or 11, the MGP dopes of the two complex conjugate pole pairs at
high gains have avalue of /2. Ask-*», there are four paralle lines with the same slopes.
This group of four lines may be separated into two sets of identical lines within each set.
The MGP in Figure 11 clearly depicts the two sets of two identical lines. An interesting
phenomenon isthat the two identical lines are comprised of an eigenvalue magnitude from
each of the original complex conjugate pairs. It isasif the complex conjugate eigenvalues
have swapped partners. This phenomenon is not visible from the MIMO root locus and
does not appear to bereported in the controlsliterature.




Conclusions

GPs arepromoted as offering significant advantages over sandard root locus plots
for MIMO systems. The major enhancement is the visualization of eigenvalue trajectories
as an explicit function of gain (where the compensation has been assumed to be the same
static gain applied to all control channels). This representation provides a unique
description of the eigenvalues, and is contrasted to typical root locus plots that do not
necessarily generate unique trajectories as some branches may overlap. This overlap,
reducing the usefulness of the MIMO root locus, dows not occur in the GPs.

Several interesting research topics may shed significant light on a more complete
understanding of the GPs. In particular, work by MacFarlane and Postlethwaite (1977,
1979) and Hung and MacFarlane (1982) on reating characteristic frequency plots to
characterigtic gain plots may yield subgtantial ingght into thereations between GP methods
and singular value frequency methods.

In conclusion, GPs enhance the multivariable root locusin much the same way that
singular value frequency plots are an alternate and extended presentation of the
multivariable Nyquist diagram. A view of multivariable analysis and design tools that
includesthe GPsis shown in Figure 12. Thus, the GPs may be consdered asfilling a gap
in the multivariable controls toolbox.
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Figure 12. The Multivariable Controls Toolbox.
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