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ABSTRACT

This paper addresses the problem of planning the motion of a polygonal object through
a set of planar obstacles. We propose a two-disk motion planning strategy to navigate
the object within the free space between the obstacles from an initial location to a
final location. This method makes use of the Medial Axis Transform (MAT) of the
free space which can be generated efficiently using the method developed in [10]. We
determine two minimal overlapping disks that fully enclose the moving object, and then
constrain the centers of the two disks to move continuously along a path on the medial
axis. In this paper we direct our efforts to the problem of finding the enclosing disks
for a moving object which is considered as a polygon. We formulate the problem as
an optimization problem in terms of the geometry of the polygon to determine a local
optimum for a particular edge pair. An algorithm to identify a global optimum from
the local optimization result is proposed. Simulations are presented for a variety of
polygons. The method is being used for disassembly motion planning of a subassembly
within its parent subassembly.
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1 Introduction

Planning the motion of an object (or objects) among obstacles has been a much researched topic
in robotics. The find-path problem is one of finding a path for navigating an object among ob-
stacles from its initial position (and orientation) to a final one such that there is no intersection
with the obstacles. Our interest in motion planning is motivated by our effort towards assem-
bly planning using detailed geometric models. It is desired to plan the disassembly motion for a
part/subassembly from its initial position and orientation inside an assembly of parts to a position
outside the assembly.

A variety of methods to solve the find-path problem have been proposed [3, 2], differing greatly
in the representation schemes that are employed, computational complexity with respect to both
space and time, as well as their underlying assumptions and limitations. In the configuration space
approach [6, 7] the original problem of planning motion through a space of obstacles is transformed
into an equivalent, but simpler problem of planning the motion of a point through a space of
enlarged configuration space obstacles. In the freeways approach [1], the free space is explicitly
represented by overlapping generalized cones called freeways, while translation is performed along
freeways with rotations at the intersections of freeways. However, because of their computational
complexity, these methods are fairly difficult to implement in realistic problems, with translation
and rotation combined in a continuous matter.

Rather than attempting to use a single algorithm to solve the find-path problem in its full
generality, we believe that, in planning disassembly motions, a combination of methods should
be used; each generating a portion of the motion plan, depending on the kind of obstacles and
the geometry of the moving part. Typically in a disassembly operation, the initial motions occur
with moving components maintaining contact with their obstacles (the stationary components).
However, subsequent motion in the same operation does not have obstacles close enough to maintain
contact with the moving components. Under conditions of motion with contact, we use a motion
planning method that exploits the contact conditions. In this paper, we present a motion planning
strategy which is useful when the moving subassembly is not in close proximity with the stationary
subassembly. We use a compact representation of free space and is ideal in situations of uncluttered
obstacles.

We shall describe our algorithms for two dimensional objects, which are restricted to be polyg-
onal. The statement of the problem is as follows:
Given:

1. a polygon Vo (which represents the obstacle space),

2. a polygon Vm (which represents the moving object) with an initial orientation and position
(£,), such that Pm is within Po , and

3. a final position for Vm (£/)

find a motion plan for Vm from £, to £ / , constraining Vm to lie within Vo at all times.
The free space within Vm is represented by its Medial Axis Transformation (MAT) [4, 5, 9, 8],

which is used to plan the motion for Vm. A MAT of a certain region consists of two parts: (a) a
medial axis (MA), which is the locus of points which are equidistant from two or more elements of
the boundaries of the region, and (b) a radius function, which is the distance of each point on the
MA to its nearest boundary element. This transformation is ideally suited for motion planning as
the medial axis can be used to generate a path for motion and the radius function to ensure that
collisions are avoided. A method to generate the medial axis for any arbitrary polygon is developed



in [10]. The connectivity between segments of the MA is represented in the form of a graph which
is augmented with geometric information such as the length of the segments and minimum value
of the radius function along a segment. An optimal path is then found on the graph giving us a
path for moving Vm from £,* to £ / .

Given a path on the MA within Vm, we present a method, referred to as the two-disk method,
to generate a collision free motion plan for Vm from its initial to its desired position. The method
determines two minimal overlapping disks that completely cover Vm. The centers of these disks
are then constrained to move along the given path on the MA. A collision free path is ensured by
requiring that the minimum value of the radius function along the path be no less than the smaller
of the two radii of the disks.

The problem of determining two minimal disks is solved by calculating a straight line cut
through Vm such that the two circumscribing disks around each of the generated sub-polygons
represent a minimal set. We first prove that if the cut is optimal, the resultant two minimal disks
have equal radii. We formulate the problem as an optimization problem for determining a local
optimum for a certain edge pair of the polygon. A strategy is proposed to identify the global
optimum from the results of each local optimization.

The method is efficient for a convex polygon, while for a concave polygon an additional com-
putation is necessary. We present two intuitive ways to potentially reduce the computation. As
an alternative, we propose to approximate a concave polygon by a hypothetical convex polygon,
i.e., the minimal convex polygon covering the given concave polygon. We have proved that the
maximal radii of the disks of the hyperthetical convex polygon is 1.25 times of the redii of the disks
that cover the original concave polygon. This implies that the approximation deos not result in
too conservative solution.

The rest of paper is organized as follows. The two-disk motion strategy is introduced, and
some associated theorems are stated and proved in the Section 2. In the Section 3, an algorithm
is proposed for determinating two minimal disks for an arbitrary convex polygon, which includes
three sub-problems, local optimization formulation, global optimization search, and an extension
to the concave polygon case.

2 Two-disk Motion Planning Method
This section discusses the problem of planning a motion of an object Vo , based on the medial axis
within the obstacle polygon Vo. We may recall the definition of the medial axis, that is, the locus
of points which are equidistant from two or more boundaries of the polygon Vp. It can also can
be viewed as the locus of centers of circles which make contact with the boundary at at least two
points.

From the definition of the medial axis, we may consider the planning problem as the following
way. If we determine a single enclosing circle for polygon Vmi i.e., a disk that fully covers Vm,
and constrain the center of the circle to follow the global path, we are guaranteed collision free
motion, provided the radius of the disk is no greater than the smallest value of the radius function
along the path. For objects whose aspect ratio, that is a ratio of the largest value of the distance
between two convex corners to the smallest value, is close to 1, fitting a single disk to circumscribe
the object is an acceptable strategy. However, for objects whose aspect ratio is greater than 1,
the single disk is far too conservative an approximation of the object. Naturally, if we attempt to
circumscribe multiple overlapping disks over the polygon, the radii of these disks will be smaller
than the single circumscribing disk. Surely, if an infinite number of disks are permitted, they would
cover the object snugly, thus representing the exact size of the object.



Figure 1 Motion planning on the global path by determining two minimal
overlapping disks to cover the given movable object and
constraining two centers of disks to follow the path

However, if multiple overlapping disks are used, a collision free path cannot be guaranteed
because we cannot constrain every disk to lie on the MA at all times. Thus, although multiple
disks represent a better approximation of the moving object, they cannot be used to generate valid
motion plans using our method of constraining disk centers to MA points.

It is not difficult to see that no more than two points fixed on a rigid object can lie on a given
2-D arbitrary path simultaneously. Considering the two centers of the enclosing disks as two points
on the movable object, one may see that maximally only two enclosing disks can be used for a
given arbitrary polygon, such that the centers of the disks kiss the given path. This is the rationale
of the so called two-disk strategy to navigate the given polygon Vm out of the Vo.

The two disk method plans the motion oiVm with in Vo by enclosing Vm within two overlapping
disks and moving the disks along the path such that their centers are constrained to lie on the path
at all times. This method ensures collision free motion (so long as the smallest radius along the
path is no less than the two radii) by virtue of the fact that Vm is completely enclosed by the two
disks, and each disk individually is guaranteed to lie completely within the boundary of Vo. (see
Figure 1).

Therefore, we may state our problem as follows:

Given an arbitrary polygon (Sm) find two minimal overlapping disks
that the polygon is fully covered by these two disks, i.e.,

D2) such

find

s.t.,
Sm € Di U D2

(1)

(2)

where r\ and r2 are radii of the disks D\ and IV
The solution can be obtained by solving the following problems.

Given a 2-D polygon, find a line which splits the polygon into two polygons such that
the resultant subpolygons have minimum diameters for their circumscribing disks.



Figure 2 Polygon Sm is covered
by two minimal disks

Figure 3 Optimal cut of a polygon

Then, for each resulting subpolygon, solve the following problem.

Given a 2-D polygon, find its smallest circumscribing disk.

As will be shown later, we actually solve the above two problems simultaneously. Before we
develop an algorithm, let us investigate the first problem referred to as the cutting problem (see
Figure 2), in more detail. In what follows, we prove that if the cut is optimal, then these two
minimum disks have equal diameters.

On the boundary of the given polygon (shown in Figure 3), an arbitrary point P (referred to
as the base point) is chosen. The polygon is cut into two along line PQi, where Qi is an other
arbitrary point on the boundary and referred to as the opposite point. This cut results in two
smaller polygons, the left polygon lying on the left side of the line, and the right polygon lying on
the right side. The corresponding circumscribing radii are denoted by Ri and Rr. As the point
Qi is varied in an anticlockwise direction starting from Q\, polygons with different Ri and Rr are
generated. When 0 = 0, i.e., the cut is along the tangent to the boundary,

Ri = RQ

Rr = 0
(3)
(4)

where RQ is the radius of the circumscribing disk covering the original polygon. For an arbitrary
cut

0

0

< Ri < RQ

< Rr < RQ

(5)
(6)

For any two cuts PQi and PQ%-u *h* area of the right polygon with the smaller 9 is the subset
of the area of the one with the larger 0. As illustrated in Figure 3, the right polygon generating
from the cut PQi includes the one generated from the cut PQi-\. Therefore, the function Rr

is monotonic increasing from 0 to RQ. Similarly, the radius function of the left polygon Ri is



monotonic decreeing from Ro to 0, with the increase of the cut angle 8. Our problem is to find a
cut such that the larger of Jfy and Rr is a minimum, i.e.,

nun[max( Rly Rr)] (7)

This is equivalent to the problem of minimizing the difference between Ri and Rr.

mjn[| A - JRr|] (8)

The function \Rt - Rr\ first decreases from Ro, and then increases to Ro. Due to the monotone
behavior of R\ and RT, we expect that there exists a point such that the function \Rt~Rr\ vanishes,
i.e., R\ is equal to Rr- This radius is denoted by Ropt and the corresponding cut is an optimal
solution. Therefore, we have

Theorem 1: The two minimal disks that cover a given arbitrary polygon are of equal
diameter.

Theorem 1 is applicable not only for a convex polygon, but also for a polygon that contain!
concave corners, since the monotonic behavior of Ri and Rr which is due to the monotonic behavior
of the areas of the smaller polygons, is still true. The only difference is that in the concave case,
the derivative of the function \Rt — Rr\ is not continuous. Theorem 1 allows us to simplify the
problem of finding two minimal disks to the problem of finding two identical disks.

It is noted that the optimal cut and corresponding radius Ropt is for the point P. When the
point is moved along the boundary, the corresponding optimal radius is different. Suppose an
optimal cut is obtained based on point P° (see Figure 4), i.e., P°Q%t* Let the base point P° be
perturbed to a point Pl in the anti-clockwise direction. We will show that the optimal point Q^t

corresponding to P1 always lies in an anticlockwise direction away from Qopt*
When the base point P° is moved away to the point P1 in the anti-clockwise direction, the

opposite point could move in an anti-clockwise direction (i.e., to Q\pt)^ or in a clockwise direction
(to Qlpt), or remain at the same point Qopt- Since the cut P°Qopt is the best cut for the point P°,
it is also the best cut for the point Qopt. This means the cut PlQopt is not the best cut. Since Ri
for the cut PlQlpi is smaller than R\ for the cut PlQopu and Rr for the cut PlQlpi is larger than
Rr for the cut PlQopu the function \Ri - Rr\ for the cut PlQopt is obvious smaller than that for
PxQlpt. Thus, the cut PxQl^ is not better than PlQopu and thus is not the best cut. Therefore,
an optimal cut at the base point Pl only could lie on in the anti-clockwise direction to Qopt, i.e.,
at PlQlpv

Theorem 2: // the base point is moved in an anticlockwise (or clockwise) direction,
the opposite point also moves in the same direction.

Theorem 2 allows us to search for the optimal cut in a single direction, thus reducing compu-
tational time.

3 Determination of Two Circumscribing Disks
This section addresses the problem of determining two minimal circumscribing disks for an arbitrary
polygon. As mentioned in the previous section, the optimal cut is a function of the base point.
When the base point moves along the boundary, the radii and location of the resultant optimal
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Figure 4 Illustration of Theorem 2 Figure 5 Optimal cut

disks varies. Therefore, an optimal cut determined at a certain point or over a certain edge is a
local optimum. A straightforward way to obtain the global optimum (i.e., the minimum over all
edge pair) is as follows.

First, for any two edges of a polygon (E% and Ej9i ^ j) (referred to as edge pair), optimization
is performed to obtain an optimal cut over the edge pair, such that the resultant radius of the
circumscribing disk is minimal. This process is then repeated for all possible edge pairs to obtain a
global optimum. For a polygon with n edges, the number of possible edge pairs is n(n - l)/2. Thus
local optimization must be performed n(n — l)/2 times in order to determine the global optimum
by enumerating all possible edge pairs.

To reduce computational effort associated with generating optimal cuts for all possible edge
pairs, we propose the following method. Select the edge pair where a global optimum is most
likely occur, and identify the global optimum based on the geometry conditions. In what follows,
the section 3.1 describes the formulation of the local optimization problem. In the section 3.2, we
present a method for obtaining the global optimal solution. Extension of the method to concave
polygons is discussed in the section 3.3.

3.1 Formulation of the Local Optimization Problem

Consider the convex polygon as shown in Figure 5 (an extension to concave polygons is presented
in section 3.3). A cutting line intersects the boundary of the polygon at no more than two points.
These two intersected points lie within or on both the disks. This means we will always find at least
two points on the boundary such that they are common to both circumscribing disks. Consider
the base point X on edge AB in Figure 5. Let XY be the optimal cut where the opposite point Y
lies on the edge CD. Since X and Y are common to both disks, the distance from these two points
to centers of both disks O\ and O2 should be less than the radius of the disk.

d(X,Oi)<r

d{X,O2)<r
(9)

(1Q)



d(Y,Ox)<r

d(YtO7)<r (12)

where d(P,Q) is the distance function from the point P to Q, and r is the radius of the disk to
be optimized. Since the polygon is convex, the vertices of the polygon can be grouped into two
groups; those that are contained within the left disk (0i,r), and those in the right disk (02 ,r),
(see Figure 5). The vertex for the left disk is denoted by 5, (1 < i < m) where m is the number of
vertices within the left disk, and the vertex for the right disk is denoted by Tj (I < j < n), where
n is the number of vertices within the right disk. The condition that each vertex lies within its
corresponding disk is expressed as follows.

d(SitOi)<r (l<t<m) (13)

d(TjtO3)<r ( l < j < n ) (14)

Also, the points X and Y lie on edges whose equations are given by

A(*,y) = 0 (15)

/2(x,y) = 0 (16)-

respectively. The radius of the disk r is the variable that is to be minimized. Thus we formulate a
nonlinear optimization problem as follows.
Find

min(r) (17)
s.t.,

d{X,Ox)<r ' . (18)

d(X,O2)<r (19)

d(Y,Oi)<r (20)

d(Y,O2)<r (21)

d(SuOi)<r (l<t<m) (22)

d(Tj,O2)<r (l<j<n) (23)

/i(*,y) = 0 (24)

/2(x,y) = 0 (25)
where Oi(x,y), Oa(x,y), X(x,y), Y(x,y), and r are 9 unknown variables. We have m + n + 4
nonlinear inequalities and 2 linear equation constraints for the solution of 9 unknown parameters.
Since, the minimal number of vertices for a polygon is 3, i.e., m + n > 3, thus for this case we
have 7 inequality and 2 equality constraints, to obtain 9 optimization variables. Thus the problem
normally is solvable.

Let us take a rectangle in Figure 6 as an example. We first consider AB and DC as a pair of
edges on which an optimal cutting occurs. Definition of the unknown variable set is as follows:

P = [r,O1(xuyi),O2(x2,y2),X(x3,y3),Y(x4,y4)]
T (26)

The variable to be minimized is r, radius of the disk. The equality constraints are:

X: i fe=l

8



Figure 6 Optimal cut of a rectangular on AB and CD

Y: y4 = 0

The inequality constraints axe:

d(B,Ox)<r:

d(D,O2)<r: (x2-0)2 + (y2

d(A,O2)<r: (x2-0)2 + (y2

d{X,Ox)<r: (x3-Xl)
2 + (y3

d(X,O2)<r: (x3 - x2)
2 + (jft

d(Y,Ox)<r: (x4 - xt)
2 + (y4

d(Y,Oi)<r: (xA - x2)
2 + (y4

The geometry constraints are:

0 < xi < 2

0 < yx < 2

0 < x2 < 2

0 < y2 < 2

0 < x3 < 2

0 < y3 < 2

0 < x4 < 2

0 < y4 < 2

9
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Figure 7 Optimal cut of a rectangular on AB and BC

The computed results using MATRIXx Optimization Module are

r
x\
J/i
x2
92

Jfe
XA

. y*.

1.8452 '
1.7761
1.4998
3.9255
1.5000
2.8510
3.0000
2.8509

. 0.0000 .

The history of the radius r is as follows

r=[2.5 3.0122 2.68 2.5781 2.4835 2.3915 2.3013 2.2163 2.1314
2.049 1.9696 1.8939 1.8403 1.8452 1.8452 1.8452]

The results of the optimization are shown in Figure 6. If we choose different edge pairs, the
resultant optimal radii are different. This can be seen from Figure 7, when CB and AB are selected
as an edge pair. The optimum value of each variable is as follows.

10



r

y\
X-l

V7
*3

1ft
*4

. VA .

s

2.1246
1.5834
1.5834
3.4943
3.5011
1.9325
3.7730
3.7730

. 1.9325 .

The history of the optimized radius r is

r=[2.5 2.9662 2.5370 2.3821 2.2887 2.21955 2.1725 2.1433
2.1276 2.1226 2.1246 2.1246]

The next section derives a sufficient condition for a local optima to be a global one, giving us
a means of getting the global optimum without enumerating all local maxim as.

3.2 Searching for a Global Optimum

In the previous section, we described a formulation to obtain an optimal cut passing through a
given edge pair. This results in a locally optimal cut - local over the given edge pair. A simple
way of obtaining a global optimum over the whole polygon would be to generate local optimas
over all possible edge pairs. The edges that produce the globally optimal cut are referred to as
optimal edges. This however is computationally very expensive. In this section we determine a
sufficient condition for a locally optimal cut to be the globally optimum one. We present a simple
but effective method for selecting edge pairs such that the globally optimum solution could be
obtained without much search.

Consider the problem of selecting two edges as a first edge pair on which the local optimiza-
tion should be performed. We arrange edges of a polygon in descending order of their lengths
(£i,£2,. . . ,£n), Lx > L2 > ... > Ln, where n is the number of edges of the polygon. The two
longest edges are selected first. Further selection is based on the results obtained from the locally
optimal solution for this edge pair. Based on the computed radius rx with respect to Lx and L2,
three possible cases may occur.

Case (1):
2rx < Lx and 2rx < L2 (27)

In this case, the globally optimal solution has been found , which is proved as follows by
contradiction. Let us assume that Lx is not one of the optimal edges. For the globally optimal
solution (say with radius rop), Lx is fully contained within one of the disks. The longest edge that
an optimal disk may contain is of length 2rop. Therefore,

2rov > Lx (28)

However, since the radius rop is an optimal solution, it should be less than any possible radius
including rXj i.e.,

(29)

11



Thus, from (27) we have
2rop < 2rx < Lx (30)

Unless all equalities are satisfied, (30) is contradictory to (28). Therefore our assumption that Lx

was not the optimal edge was wrong. L\ must be the optimal edge. In the same manner, we can
show that £2 is the optimal edge too. Since there are only two optimal edges for a convex polygon,
and we have identified them and the corresponding radius r\ is a global optimum.

It must be noted that the condition (27) is a sufficient condition for a global optimal solution,
but not a necessary one, i.e. an edge that does not satisfy this condition may also be an optimal
one.

Case (2):
L2 < 2rx < Lx (31)

In this case, we can determine that L\ is an optimal edge in the same manner as discussed in
case (1), but we can not identify whether L2 is the optimal edge. However, since we have identified
L\ as one of two optimal edges, we can use L\ as one edge and any other edge I, (i = 3,...,n) as
the other to perform optimization. A global optimum can be determined by taking the smallest rt.

A question is whether the sufficient condition similar to (27), i.e.,

2rt < l\ and 2r, < £t (32)

would become true, from the local optimization result, since in this case we could use it to identify
the second optimal edge as we did previously. Unfortunately, (32) cannot occur. For any edge pair
other than £2* the resultant disk should be large enough to contain L2. Thus

2r{ >L2 (33)

but

L2>Li (34)

therefore,
2rt- > Li (35)

which is contradictory to (32). Thus it becomes necessary for us to examine each case, i.e., for Lt

(t = 3,...,n), to obtain the globally optimal solution.
Case (S):

2rt > Lx and 2rx > L2 (36)

In this case, we can not identify either edge as the optimal edge. Also, because of the same
reason discussed in case 2, it is impossible to satisfy the sufficient condition similar to (27) from
the result of each case. Therefore, we have to examine each possible edge pair, i.e., for, i =
l,...,n - 1, j = i + l,...,n, perform optimization, and compare the resultant radius to finally
obtain the global optimum.

However, when we perform local optimization for each case, the following condition may hold
true.

Li < 2rti < Lj (37)

where ry is the resultant radius of the local optimization using edges Z, and Lj. In the case of
(37), we may identify Lj as being an optimal edge.

12
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Figure 8 Diagram of the algorithm for generating two minimal disks for a convex polygon

Once we have identified one optimal edge, the procedure to find the other is similar to case (2).
Based on above discussion, a block diagram for determining a global optimum is shown in Figure
8.

Simulations have been done for various polygons using the proposed algorithm. Two examples
are given in Figures 9 and 10.

3.3 Extension to Concave Polygons

The discussion so far is limited to the convex polygon case. In this section, we first discuss the
extension of the method to a concave polygon case, which causes an additional amount of compu-
tation. Then, we discuss the case when a concave polygon is approximated as a convex polygon.

Let us investigate the difference between cutting a convex polygon and a concave one. For a
convex polygon, given a certain edge pair to be cut for optimization, vertices of polygon can be
grouped into two, the one enclosed within the left disk, and the other in the right disk. Given the
two edges, this division is always clear. For a concave polygon, however, this division is not clear.
For example, a polygon shown in Figure 11 has two concave vertices, D and F. If we use the two
longest edges (AC, BC) as the first edge pair to perform local optimization, we have a problem of
determining whether D and F should be enclosed within the left disk or the right disk. An arbitrary

13



Figure 9 Generating two minimal disks for covering a triangle

division does not guarantee the correct solution. When D and F are considered in the left disk, the
two disks generated are shown in Figure 11, while when they are considered in the right disk, the
two disks generated are shown in Figure 12.

Of course, we could generate all possible divisions and find the local optimum for the two edges.
For TO vertices that are not determined, we must perform local optimization JV times, and

N =
Jfe=O

where
ik _ m!

(m -

(38)

(39)

We now suggest two ways of potentially reducing the computational cost. In the first method, we
calculate the distance from the indeterminate vertices to the two edges on which we are performing
local optimization. The vertices are grouped into two depending on their closeness to one edge over
the other. Referring to Figure 13, the vertices Vi, V2 and V3 can be grouped into two, those close
to the edge AB (Vi and V3) and those close to the edge CD (V2). Then, we calculate the distance
from those points to the two ends of the corresponding edge; V\ is close to the end A, V3 is close
to the end B, and Vj is dose to the end D. Generally we have sufficient reason to claim that, the
vertex V\ should be considered in the left part (i.e., with the ends A and C), while vertices V2 and
V3 should be considered in the right part (i.e., with the ends B and D).

As an alternative, we may first try the cut in such a way that those edges that are adjacent
to the undetermined vertices are broken. Then for the result of the local optimization using these
edges, we may be able to exclude all other cases. The rationale can be explained using an example
in Figure 14. We cut the polygon such that the edges adjacent to the undetermined vertices Vx

and V2 are broken (i.e., the edge VXA, ViC, V2B, V2D), and assume the resultant radius is TABCD-

Then, if
< rn*x(AD, ED, EF, BF) (40)

the result is an optimal solution. This is because when these edges are not broken, i.e., Vx is
included within the disk of the ends A and C, and V2 are included within the disks of the ends

14



Figure 10 Generatln two minimal disks for covering a polygon

B and D, the resultant diameter of the disk must be at least greater than the maximal length of
these edges. Therefore, the resultant radius should be greater than TABCD* and thus r^BCD is the
optimal solution. Of course, if the above equation is not satisfied, a further try must be done, and
the similar analysis can be used to identify the optimal solution.

For the polygon in Figure 11, if we consider a cut such that D and F are within the right
disk, i.e., AD, DE, EF, and FB are broken, the optimum radius of the disk r is 2.1213 and
the resultant disks are shown in Figure 12. This result implies two meaningful points. First,
because 2r < AC and 2r < BC, the edge pair (AC, BC) is the optimal edge pair. Second, since
r < jmx(AD9EDjEFyBF)y D and F should be enclosed in the right disk. Based on these two
conclusions, we claim that r is a global optimal solution.

Since an additional computation is needed to obtain an optimal solution for the minimal disks
covering a concave polygon, it is meaningful to investigate what happens if a concave polygon is
approximated as a convex one, and the proposed method is used to find an optimal radius of the
two disks for the resultant convex polygon.

For an arbitrary concave polygon, it is always possible to connect certain vertices and thus
determine a hypothetical convex polygon, as shown in Figure 15. The way of determining the
hypothetical convex polygon is suggested as follows. Connect each pair of vertices, and examine
whether the connecting line lies fully in the outside of the polygon. If it is true, we use the connecting
line to replace the edge(s) which locate within the new polygon generated by the connecting line
and other edges of the original polygon, i.e., the connecting line P1P2 replaces the edges Pi A, AB,
BCj CP2, in Figure 15. If it is not true, skip it. Then, the same process is done for a resultant
polygon generated by the previous process, till for any pair of vertices the connecting line is not
fully in the outside of the polygon. It is obvious that the generated hypothetical convex polygon
is the minimal convex polygon that contains the original concave polygon.

For the generated hypothetical convex polygon, we always can use the proposed method to
obtain the radii of the minimal disks which are denoted by r^yfVex. We suppose the radii of
the minimal disks for the original concave polygon are rcave. What we would like to know is the
difference between the r^yit;ex, and rcave, so that the effect of the approximation of a concave polygon
using the hypothetical convex polygon becomes clear. Since the area of the concave polygon is a
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Figure 11 Concave polygon case

subset of the area of the generated hypothetical convex polygon, (see Figure 15), the radii of the
disks that cover these two polygons have the following relation.

rcave S rhy,vex (41)

This means when the hypothetical convex polygon is used to approximate the concave polygon,
the result is conservative. Now we would like to know how conservative this approximation is. In
other words, it is desirable to have an upper limit of the r̂ VtVCX with respect to rcavc. In what
follows, we prove that the maximum r^ves is l.25rcave.

Referring to Figure 16, without lose of generality, we assume the radii of the minimal disks for a
concave polygon are unity. The hypothetical convex polygon is generated by connecting the vertices
A and B, and the resultant convex polygon generally cannot be fully covered by these two disks.
However, if we create two lines along the tangent of the two disks, P1P2, and P3P4, connecting to
the two disks, the area of the ringlike boundary P1P2D1P3P4D2 surely contains the hypothetical
convex polygon. This is because all vertices are enclosed in the two disks, any connecting line
between two vertices should be within the area of P1P2D1P3P4D2.

Next, we will determine two disks that fully cover the hypothetical convex polygon. Because
the ringlike area covers the convex polygon, if we can create two disks that cover the ringlike area,
the convex polygon is surely convered by the two disks. The original two disks (rcave, Oo\) and
(rCave, Oo2) intersect at F\ and F2, and the line F1F2 intersects with the lines PXP2 and P3P4 at
S\ and 5 2 , respectively, see Figure 17. Then, we draw a perpendicular bisector of the line S\ and
52 , which intersects with the boundary of the disks at 7\ and T2. Fitting each set of three points
($i,52,2i), and (5i,52,r2), we create two disks shown as dashed line in Figure 17. Since the two
disks generated contain the ringlike area P1P2D1P3P4D2 which contains the hypothetical convex
polygon, we may claim that the hypothetical convex polygon is contained by these two disks which
are denoted by (r&, Obi) and (r&, 0*2), (see Figure 18).
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Figure 12 Concave polygon cat*

Let x be the distance from the center of the original disks with the radii r^ve, Oo\, to the center
of the generated disks Obi, and 2a be the distance between two centers of the original disks Ooi

OO2J as shown in Figure 18. The radius rh can be determined by

r2 =

but,

thus,
(

The solution of the above equation is

From (43), the radios n is

x = 2 +2a

(42)

(43)

(44)

(45)

(46)

It is noted that the maximum of a is unity, when the two disks intersect at one point, the
tac-point, and the minimum of a is zero, when the two disks become one. Also, the derivative of
function rb is non-negative, and thus the radius function rj is monotonic increasing, as a €[0,1].
The maximum rj, can be determined as a = 1,

(rb)max = 125

The above derivation is based on a unity rMtie, and when

rb <

is not unity we have

(47)

(48)
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' Cut

Figure 13 Vertices are grouped into two depending
on the distance to the edges

We may note that the two disks created by each set of three points, (5i,S2,7i), and (Si,S2 J
may not be the minimal disks for the hypothetical convex polygon, but the minimal disks is
definitely not greater than these disks by the definition, i.e.,

rhytvex ^ Tb

Consider (48), we have

or,

Combining (41) with (51), we finally obtain

(49)

(50)

(51)

S ^cave S rhytvex (52)

Thus, we may have a conclusion as Theorem 3.

Theorem 3: If a concave polygon is approximated by a convex polygon, the maximal
radius of the disk covering the resultant convex polygon is 1.25 times of the radius of
the disk that covers the original concave polygon.

Theorem 3 indicates that using the hypothetical convex polygon from a concave polygon, the
optimal solution for the two minimal disks covering the given concave polygon would not be too
conservative.

4 Conclusions
We have studied the problem of planning the motion of a planar object in the free space between
obstacles. Using a path on the medial axis, we propose the two-disk motion planning strategy to
navigate the object from the initial position to the final position subjected to the given constraints.
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Cut

Figure 14 Trying to cut the polygon such that the edges
adjacent to the undetermined vertices are broken

We at first determine two minimal overlapping disks that fully cover the polygonal object, and
then constrain the centers of two disks to move continuously along the path on the medial axis.

In this paper, we focus our effort to determine the two minimal overlapping disks for a given
arbitrary polygon. We have proved that the optimal two disks have equal diameters for any polygon.
Based on the geometry of the polygon, we formulated the problem as an optimization problem to
determine a local optimum for a given edge pair. An algorithm to determine a global optimum
from the local optimization results is proposed.

Extension of the method to the concave polygon results in an additional amount of compu-
tation. Two intuitive ways to potentially reduce the computation were presented. We propose
to approximate the concave polygon by a hypothetical convex polygon. We have proved that the
maximal radius of the disk covering the resultant convex polygon is 1.25 times of the radius of the
disk that covers the original concave polygon.

Simulations were presented for a variety of polygons. The method is being used for disassembly
motion planning of a subassembly within its parent subassembly. This method for path planning
in 2-D is feasible for moving objects whose aspect ratio is in the neighborhood of 2. If the object
is fairly slim, the given solution is conservative.
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Figure 15 A concave polygon can be approximated
by a hypothetical convex polygon.

Figure 16 The optimal two disks with unit radii cover a given concave
polygon. The hypothetical convex polygon generated from the
concave polygon normally is not covered by two disk, but is
covered by a ringlike area P1P2D1P3P4D2.
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