
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Intelligent control
of external software systems

by
Allen Newell, David Steier

EDRC 05-55-91

INTELLIGENT CONTROL

OF EXTERNAL SOFTWARE SYSTEMS

Allen Newell
School of Computer Science

David Steier
Engineering Design Research Center

Carnegie Mellon University, Pittsburgh, PA

4 April 1991

We wish to acknowledge the extensive help of the other members of the CESS (Interaction with External
Software Systems) subgroup in Soar Bob Doorenbos, Jill Lehman, Xiaoping Li, Ajay Modi, Dhiraj
Pathak, and Gary Pelton. This research was supported in part by the Defense Advanced Research Projects
Agency (DOD), monitored by the Avionics Laboratory, Air Force Wright Aeronautical Laboratories,
Aeronautical Systems Division (AFSQ, Wright-Patterson AFB, Ohio 45433-6543 under Contract
F33615-90-C-1465, ARPA Order No. 7597; and in pan by the Engineering Design Research Center, an
NSF Engineering Research Center. The views and conclusions contained in this document are those of the
authors and should noc be interpreted as representing the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the National Science Foundation.

University Lfvaries
Carnegie M^icu hitivsrsi
Pittsburgh FA 15213-389

Intelligent Control of External Software Systems

1. Introduction.
A major objective of artificial intelligence (AI) is to develop intelligent agents that are capable

of interacting with an external world using a broad spectrum of problem-solving and learning
methods. The most familiar examples, already with a long history, are robotic systems, in which
the input focus is on vision and touch and the output focus is on manipulation and movement
the goal being to interact freely and effectively in the physical environment in real time.
However, in our technological world many highly specialized external environments exist that
present configurations of technical demands quite different from the generic robotic problem.
Some of these environments are also very important arenas from an applied viewpoint and
therefore offer important opportunities for the application of intelligent agents.

We examine here environments comprised of external software systems (ESSs) — software
systems that are created and exist external to the agent that uses them. With the pervasive
growth of software packages and tools, along with networks that let them intercommunicate,
software-system environments have been created in which software systems can contact and use
other software systems. We see this already in the extensive role played by servers and mail
systems on networks, which engage in sustained autonomous action. We see it also in the way
humans use such tools to compose transient assemblages of widely-distributed large software
systems, in order to accomplish some computational objective. As we move toward gigabit
networks, the reality, complexity and importance of these software-system environments will
continually increase.

Software-system environments permit many modes of interaction, depending on the nature of
the systems. Systems vary in terms of the grain size of the interaction and the amount of data
involved in their inputs and outputs. Some systems operate in an essentially batch mode,
receiving the total input for their task all at once, doing an extended computation and then
storing their results for later retrieval. Others, such as editors, split the total task into an
extended discourse of small commands and responses between the user and the system.
Humans, of course, are part of such software-system environments, interacting with the system
via workstations and terminals. But increasingly many software systems interact with each
other, as in protocols that set up communication paths or systems that receive and automatically
process mail requests, over a network.

We wish to consider a software-system environment that has a collection of software systems
and a single artificial intelligent agent* hereafter, simply agent. This agent is to accomplish its
tasks jointly by its own internal powers and by making use of the other external software systems
in the environment Our main concern is to understand what capabilities are required for this
agent in order to use these ESSs. Consequently, we will assume there are no humans in the
environment This would introduce issues of the interaction of two intelligent agents, which are
beyond the scope of this paper Ultimately, of course (and maybe not too far away), software-
system environments will be inhabited by large collections of humans, agents and other software
systems, all interacting with and using each other. But we wish to avoid the complexities of
human-agent and agent-agent interactions until we understand how a single agent can effectively
use ESSs. Moreover, this special case — the agent-ESS situation, with one agent and one or
many ESSs — is extremely important in its own right It will permit the construction of many

total software systems of high effectiveness.

Our discussioo is motivated by a particular AI agent, Soar [7], which has been under
development for several years. This agent already exhibits integrated problem solving and
learning, and has been used as a controller in several simple robotic situations. We will need
only a few details of Soar (which we will introduce as appropriate), but Soar provides us with a
concrete model of an agent and its general structure. It also provides examples of an agent
working with ESSs.

We first describe, in Section 2, a concrete example of an ESS situation, to ground the
discussion. Then, in Section 3, the main section, we provide an analysis of what capabilities are
required of an agent for it to be able to use ESSs effectively. In Section 4 we describe several
different ESS situations, which are currently being developed with Soar. These show that a
variety of critical issues arise, depending on the type of ESS situation involved. In Section 5 we
briefly place the agent-ESSs situation in the world of software technology. In Section 6, the
final one, we summarize the situation in terms of a general research agenda. Most of the issues
raised in this paper have never been seriously explored before. They must be addressed, both
theoretically and experimentally, if we are to develop the capability for agents to control ESSs.

2. An Example: Design of high-rise office buildings
Many ESS situations involve only a single ESS — e.g., the use of a database or a process

simulator by an agent. But ESS situations may more complex, as the following example
illustrates.

The evolution of engineering design is toward increased use of software design tools, each of
which represents a significant investment in design research, software development and
knowledge engineering. The design of any substantial actual artifact, e.g., a building, involves
using a number of such tools. Thus, engineering design finds itself drawn into an ESS situation,
where there is a human designer (or team) with access to all the appropriate tools on a local-area
network, and with the task of using these tools in an integrated manner to create a total design of
a complex artifact.

A good example occurs in the work of the Engineering Design Research Center (EDRC) at
CMU (an NSF engineering research center). Seven knowledge-based systems have been created
at EDRC to support the preliminary design of high-rise office buildings. The seven systems
were developed independently, originally as part of students9 PhD thesis research, with some
re-implementation and extension. Listed in the order they are usually invoked, the seven
systems are:

1. ARCHPLAN: Develops architectural plan from site, budget, geometric constraints.

2. CORE: Lays out building service core (elevators, stairs, etc.).

3. STRYPES: Configures the structural system (e.g., suspension, rigid frame, etc.).
4. STANLAY: Performs preliminary structural design and approximate analysis of

the structural system.

5. SPEX: Performs preliminary design of structural components.

6. FOOTER: Designs the foundation.

7. CONSTRUCTION PLANEX: Generates construction schedule and estimates cost

These tools, together with a computational infrastructure that allows the tools to work together,
have been combined in the EBDE (Integrated Building Design Environment) project [4]. The
development of the integration framework of IBDE has been a rather formidable undertaking,
involving the bulk of several PhD theses and a substantial effort measured in person-years.

Figure 1 shows the structure of IBDE. It adopts a hub-and-spokes approach with a centralized
global datastore to contain all the information about the building in a hierarchical object-oriented
representation. However, each tool uses its own data representation and these differ radically.
CORE uses orthogonal structures for generating alternative layouts of rectangular objects;
ARCHPLAN, STANLAY, and STRYPES use the so-called Tartan Grid for storing information
about the spatial, planar, linear, and point elements on a common orthogonal grid; PLANEX uses
labeled points for combining spatial information about each building element with associated
construction activities; and FOOTER and SPEX use ad hoc attribute-value representations.
Thus, custom-built translation modules are required to allow the datastore to pass information to
and from each tool The datastore manager is responsible for communication between the
datastore and the individual processes, retrieving and storing data when necessary, performing
format conversions and maintaining an audit trail of the producers and consumers of each data
item in the datastore. Communications with the human are relatively complex, since each
component system has its own interface (recall that each such system is a large software system-
on its own account and was developed independently); but there is also an interface that deals
with the collections of ESSs as a whole. This latter keeps audit trails and process information on
a blackboard Thus, the entire IBDE system is quite complex, which arises in part simply from
the total functionality involved (the design of an entire high-rise building) and in part from the
fact that it was assembled from individually-designed large software systems.

The IBDE structure assumes a human user, who works via the control module shown in the
figure. The function of the controller is to make it possible for the human to specify the
execution of sequences of the seven systems. This controller is rather sophisticated, using a
blackboard structure and a modified contract-net framework to allocate tasks. Nevertheless, its
functions are fundamentally low-level. It is not capable of getting a complete task performed by
the total system. That is the function of the (intelligent) human user.

Our interest here is to replace the human in Figure 1 with an agent (i.e., an AI system) that is to
perform the same overall functions as the human designer. We can take for granted the functions
performed by the controller, which permit communication and execution. The question is what
other functions axe being performed by the human (now, the agent), what knowledge must be
available in the agent to perform these functions, and how is that knowledge to be acquired. The
discovery of these functions and the construction of agents that can accomplish them is the
central core of research on agent capabilities for controlling external software systems.

An actual development path for IBDE would not begin with the replacement of the human by
an agent Rather, an agent would be inserted between the human and the controller. This agent
would attempt to do as much of the total design task as the human user-designer found useful.
Undoubtedly, this would tend toward having the agent know the details and idiosyncrasies of the
operation and results of the ESSs (the seven systems in the figure), so that the human user-
designer could operate in a higher supervisory and guidance mode. One motivation for this path

Umr

Figure 1: IBDE: An example of an external software system environment

might seem simply that society wants human-controlled and -designed engineering artifacts. But
equally strong is that no one knows all the functions that the intelligent human is performing in
Figure 1. All we know is that the human does whatever is necessary to get a total effective
design. Only when we discover what these functions are, and the ease or difficulty of
incorporating them in agents, will we be able to create total systems that have agents as
appropriate designer-assistants for humans functioning as high-level supervisors. The purpose of
the present paper is to explore what these functions might be and to consider the research
required to see how to include them in agents. We do so, as we noted above, by focusing on a
single agent with a collection of ESSs. But the ultimate application path envisioned involves
cooperative arrangements with humans and agents.

3. The Capabilities Required to use ESSs
Let us now ask what functions the agent must have. Figure 2 gives the generic situation. It

looks similar to Figure 1, except that we have expanded the agent, showing its inner structure.
We take the agent as already having some task to perform, represented within it in some fashion
independent of the ESSs that are available to it. Thus, at the most general level the agent must
accomplish all those things that will lead it to use the ESSs in some manner of its own
determination in order to accomplish some aspects of its task. However, it need not accomplish
all of its task via the ESSs, since it has problem solving and computational capabilities of its
own.

As in IBDE, some of the capabilities required for performing these steps are operating-system

Knewtodgt for uaf ng ESS*

Figure 2: Performance capabilities for using external software systems
(ESSs).

level functions. We assume, as in IBDE, that die agent has available to it a system that performs
those functions. EDRC's Distributed Problem Solving Kernel [3], used in IBDE, is an existing
(though imperfect) example. Then, as long as the agent and the ESSs are on the same network,
the operating system can locate ESSs, cause inputs to be transmitted to them, evoke them, direct
their results to be transmitted elsewhere, etc. The design of this operating system is important,
but its functions are already reasonably well understood Thus, we will not deal with it further.

Our analysis takes the following form. We view the agent as having a collection of
capabilities, defined by the functions they can perform, rather than by how they are implemented
(in particular they are not assumed to be separate modules in the agent). We are interested only
in capabilities that are required for utilizing ESSs. Capabilities can, of course, be performed
with different degrees of skill The level of skill makes a great deal of difference to the
performance of the agent as a whole, and also to its flexibility. Finally, capabilities and the skill
with which they are performed must be acquired* and they must be acquired from knowledge
sources. This also is important Much of what is involved in using ESSs is obtaining the
appropriate capabilities in the first place and keeping them current The world of ESSs is much
too dynamic to think of an agent existing at the start with all its capabilities, full fledged

3.1. Performance Capabilities
The fundamental cycle required for an agent to use an ESS consists of four capabilities. These

are the outer four capabilities in Figure 2 (the other two will be introduced presently). Within
the context of a local task to perform, the agent formulates a subtask to be performed by the ESS.
It then creates the appropriate input data structures for the ESS. Using the operating-system
functions, it communicates this input to the ESS, evokes its operation, and obtains the resulting
output It then converts the received data structures to an internal form it can process. Finally, it
interprets the results in terms of the original task.

Let us consider these capabilities in more detail
1. Formulate-subtask: The capability to formulate a computational subtask with the

potential of being performed by an ESS. The agent must decide whether a subtask
can be solved internally, or if externally, which ESS should perform the task This
capability requires understanding the functional demands of the task and the
functional capabilities of available solution methods in order to determine whether
and how an ESS can be used in the attempt to do the subtask.

2. Create-input: The capability to create appropriate input to an ESS in the ESS's
input language, starting from task knowledge in the task's own representation. The
translation capability is required because the task representation and the ESS
representation are uncoordinated. (The operating system capability we are
assuming deals only with lower-level operations of making connections and
transmitting messages.)

3. Convert-output: The translation capability, analogous to create-input, to receive
output from the ESS in the ESS's output language, and represent it in the task's
own representation.

4. Interpret-result: The capability to use the results of a computation in the service
of the original task (when expressed in the task's own representation). In many
cases, formulating the computational task determines exactly how the results are to
be interpreted, so that this capability can effectively be dispensed with. But more
generally, interpretation of results need not presuppose pre-envisionment of exactly
how the results will be used. ESSs can be deliberately used for exploratory
purposes. Also, results from a computation almost always have the potential for
surprise, requiring reconsideration of the larger task.

This basic four-capability cycle can be seen clearly in the simple situation of an agent that uses
a relational database as part of some larger task it is doing. Input to the database is via some
query language, such as SQL; output from the database is via some table structure. In
accomplishing the larger task, there comes a point where the agent needs some data it does not
have. This occurs in the context of dealing with the internal representation of the task, and the
needed data in seen in terms of this representation. There follows formulate-subtasfc to
determine exactly what dam should be requested as a function of other data in the task and the
known types of data in the database. This determination is made in terms of the internal
representation. Then comes create-input, to cast this request in terms of SQL and knowledge of
the table organization of the database. This may be entirely routine, if the request is simple
enough, but (as any user of SQL can testify) issues may arise how to express the request in SQL
and which searches are the appropriate ones. In either case it is necessary to perform a process,
which is the exercise of the create-input capability. There follows a series of activities, which

we have assigned to the operating system and taken for granted: getting the SQL request to the
database, getting the search performed, and getting the results back. The agent then faces a set
of tables in a fonnat determined by the database and some standard conventions of how to
encode such tablet in text streams. This received representation is definitely not the
representation of die internal task. Thus, convert-output is required to put this data into a form
interpretable by the processes that ate performing the internal task. Finally, interpret-result can
occur. This process is likely be minimal, since specific data has been requested and, when
delivered (and converted) can simply take its place in the ongoing processing of the internal task.
The elementary use of a database is a good illustrative example of the basic cycle, because it
makes clear the role of conversion between representations. No one organizes their internal
processing of a task around SQL and they are unlikely even to organize it around the sorts of
tables that are retrieved

Additional capabilities are involved in performance. One is related to issues of how to operate
software systems — more is required than just shipping inputs and receiving outputs, especially
if the software system is at all complex.

5. Operate-software-system: The capability of dealing with the operation of the ESS
as a software system, with its normal and abnormal operating conditions, and a
corresponding need for diagnosis and operational response. The basic four-step
cycle treats the ESS exclusively in terms of the semantics of what it does — it
delivers as output certain task-relevant knowledge if given the appropriate inputs in
the appropriate data representation. But ESSs are in fact software systems
embedded in a larger software operating environment And the (perhaps sad) state
of the an is that ESSs are not totally transparent in use. Well-designed and
debugged ESSs are better than flaky systems or systems still under development
Much can be smoothed over by a good operating system. But the software world,
especially the world of large software systems, is far from perfect An agent that
has no knowledge that its ESSs were indeed software systems, but only knew to
shove inputs at them and wait for outputs from it, would soon find itself
immobilized. Thus a capability for treating ESSs as a software system is required.

The last capability is related to being able to simulate the computations done by an ESS. We
know humans use such knowledge in working with software systems. In fact, when they have
no such knowledge we accuse them of operating mechanically or blindly, and of not
understanding what they are doing.

6. Simulate-ESS: The capability to produce internally the same results as a specific
ESS. The results may range from the exact output data structure delivered to a
given input data structure, to abstract characterizations of the behavior. They may
be accurate or only approximate. The essential feature is that the agent can do this
itself, without actually evoking the ESS, and that it has some access to its own
internal version of the computational process that produces the simulated results of
the ESS. This capability is potentially of use in formulating a subtask, interpreting
results and even operating the software. For example, it can provide sanity checks
on the behavior of an ESS. Also, knowing something of the actual computations
provided by an ESS can play a significant role in deciding what subtask an ESS
can do and formulating it for (he ESS. If ESSs are expensive, as is often the case,
being able to obtain their outputs cheaply in special cases can be useful. We know
that humans that understand a set of ESSs gradually build up this sort of capability,
but we have little idea of the full range of uses it can be put to.

3.2. Skills
Capabilities are the operational expression of some body of knowledge, realized ultimately in

operations on dffft structures. But many different ways exist to organize a given body of
knowledge. Figure 3 shows five such organizations, which form a sequence of levels of skill.
Recognition* at die top, provides the highest degree of skill and the fastest operation. As one
moves down to deliberation* interpretation* simulation and finally derivation, more and more
processing is required to determine what to do, and the capability is exercised more slowly. The
other side of this coin is that, as one moves down the sequence, the knowledge that constitutes
the capability can be represented in more and more complete ways. Thus the possibility
increases of exercising the capability flexibly in novel situations. This is just a variant of the
familiar procedural-declarative dimension.

Capability

Skill l#v#4s

Direct
recognition ^

Elementary
QSUOOfauOn «

Instruction
Interpretation

simulation

Theory-bast*
oortvstlon

Figure 3: Skill levels for capabilities.

Let us consider each of the five skill levels in more detail.
1. Direct recognition: The agent immediately recognizes what operations are

required to implement the capability. This can be viewed as a set of parallel-acting
situation-action rules (or productions). If there are enough patterns and they cover
all the situations that in fact arise, behavior is fast and direct. This corresponds to
the skill we see in expert humans using a hand calculator or doing simple
computations on a system such as an editor.

2. Elementary deliberation: The agent is skilled at performing the basic operations,
knows about plausible ways of doing things and can evaluate proposed sequences
of action. But it does not know immediately exactly the right thing to do, so it
must consider options and alternatives, and evaluate them. This corresponds, in

humans, to there being a pause to Ngive thought19 to what to do next A user with
moderate experience with relational databases exhibits this level of skill in
formulating a query in SQL — it isn't quite automatic. In AI systems this
corresponds to formulating tasks in problem spaces (i.e., heuristic search spaces)
where some search is required before discovering a solution. It is the level at
which general reasoning methods such as hill climbing, means-ends analysis, and
planning by simple abstraction are routinely used However, this activity should
not be seen as the immense combinatorial searches associated with, say, current
chess programs. Rather, this exercise of skill consists of a sequence of routinely
resolved, small problems, each representing a small act of deliberation on the pan
of the agent It is apparent why this level of skill is both slower than recognition
(the extra steps) and also why it is more flexible (deliberation is precisely the
ability to consider alternatives and bring new knowledge to bear).

3. Instruction interpretation: The agent may have a capability by virtue of having a
set of instructions that dictate explicitly the operations to be performed under
various conditions. At the extreme, of course, this is just what a computer program
is — fetch-execute — which is the fastest way of opcrationalizing a capability.
But the sort of instructional situation intended here is more open and flexible. It is
having a manual of operation of an ESS, or a set of detailed guidelines for how to
use an ESS, or a set of cliches to evoke specific ESS behavior. Thus the process of
interpretation is more complex and requires more processing than the basic fetch-
execute cycle for computer instructions. The instructions themselves are
correspondingly more expressive and cover alternative and exceptional situations.
Instruction following is like deliberation, except that die knowledge has not been
internalized, but must be extracted from a declarative data structure (the
instructions) at the time the task is performed, Hence, it is apparent why this level
of skill is slower in general than deliberation. That it might, correspondingly, be
more flexible arises from the amount of information that is kept in books, manuals,
and other documents — rather than in people's heads. Thus, access to instructional
documents opens up the range of tasks that can be solved. Unfortunately,
describing this skill level as instruction taking de-emphasizes the correlative skill
of finding the relevant instructions, which is required if the instructions are
available in documents and not simply given to the agent at execution time.

4. Model-based simulation: The knowledge of a capability may be embodied in a
model, which the agent can inspect or run to determine how to implement the
capability. For instance, in the EBDE situation, the agent could have a highly
abstract simulation model of the operation of the seven ESSs, which take in
abstract inputs, characterized only by type of information, and deliver abstract
outputs, similarly characterized Then much about how to operate the ESSs could
be obtained by running and examining the simulation modcL

5. Theory-baaed derivation: The knowledge of a capability may be embodied in a
set of principles, constraints or propositions, from which the agent can derive the
actions to implement the capability. For instance, its knowledge of SQL syntax
may be given by a BNF grammar. Or the ESSs may conform to a set of
input/output conventions, and the agent has a set of expressions for these
conventions in (say) predicate logic. Or the response time of the ESSs may be
given by a set of equations on parameters of the input data, which the agent has
access to. This mode of representing knowledge is, almost by definition, the most
general of all (as witnessed by the fact that scientific theories invariably are

10

expressed by such formalized, linguistic descriptions), and thus offers the greatest
flexibility in containing the knowledge to cover a wide range of novel
contingencies and uses. But correspondingly, the effort required to derive specific
results caa be essentially unbounded — it depends on the difficulty of the
derivations and the gfriii of the agent at doing mathematics or proving theorems

Although there might be other forms in which the knowledge of capabilities can be encoded,
the set of five in Figure 3 covers the major cases. They support the essential point that a
capability can be implemented in radically different ways, with important consequences for the
exercise of the capability, i.e., for its speed and flexibility.

We have described skill levels as pure types. An actual capability for a complex function,
such as formulating a task to be done with the IBDE collection of ESSs, might well have
elements of all these skills, for different aspects of its capability. Indeed, it might have several
different skill levels for the same aspect If an agent started out with its knowledge in
prepositional form — giving it generality, but slow response — it would be natural to expect it
to acquire more efficient levels of skill. But there would be no reason to abandon the original
forms of knowledge, especially since the higher (faster) levels of skill might well be narrower in
scope.

3.3. Acquisition from knowledge sources
Capabilities, and their realization as particular skills, must be acquired In the current world of

software systems (including programmed AI systems), the default is always that the capabilities
are simply programmed by the system's creators or maintainers. Thus, some human programmer
must design, code and debug the six capabilities of Figure 2 for each ESS, and, if these are to be
available at multiple skill levels, each level must be so designed, coded and debugged. This is
easily recognized as another instance of the knowledge-acquisition bottleneck.

The situation is actually more serious than indicated by the above, essentially static, view. The
actual world of ESSs is highly dynamic and changing. New ESSs are introduced, as in
additional modules for IBDE. Existing ESSs are continually corrected or functionally enhanced.
Agents continually find themselves spending too much effort reasoning through some situation
(say, the solution of a math model), hence need to introduce an ESS! (say, a math-model solver)
to increase efficiency. In all such cases, if the static view above holds, the agent is helpless until
some human reprograms it More generally, as any human that works with complex software
systems can testify, large fractions of life are devoted to learning about particular software
systems and developing skill in working with them.

Thus, the agent itself must be given the capability for acquiring the requisite ESS capabilities.
This implies agents that learn and that do so in a variety of ways and from a variety of sources of
knowledge. It is very likely that the degree to which agents can learn specific ESS capabilities
will be a strong limiting factor on how effective agcnt-ESS system will be. Of course, even with
only human-programmed systems, some useful arrangements will be possible. For example,
agents can be provided once and for all with the capabilities to deal with generic relational
databases. But agent-ESS system will never become an important part of software technology if
they are so limited. In sum, learning capabilities is of the essence.

It requires a capability to produce a capability. Figure 4 shows the situation. On the right is

11

the capability to be acquired. This might be either to acquire the capabiUty from scratch or to
extend the scope of the capability. Furthermore, to acquire a capability means to acquire it at
some particular skill level. In fact, if the capability exists, it does so at some skill level. Thus,
what is being acquired may be a different skill level — either a more efficient one or a more
flexible one.

Figure 4: Capabilities for acquiring ESS capabilities.

There must be some existing source of knowledge about the new capability. It is not possible
to get something from nothing. The learning capabilities exercised by the agent are really
capabilities to exploit some knowledge source that has knowledge about the capability, and
convert this knowledge into a skill leveL Thus, on the left, Figure 4 starts with various
knowledge sources. These are characterized in terms of their form, i.e., of the way they hold
their knowledge. Each of these types of sources can contain knowledge about any given
capability, e.g., about create-input, or simulate-ESS. We have indicated some important types of
sources, but the list is haidly complete.

1. Specifications in some formal language: The new capability may be described in
some formal language whose function is to specify capabilities. E.g., it might be a
formal specification language, or a high-level program description. Then the
knowledge-source access capability would contain an interpreter or compiler for
this language, as well as capabilities for analyzing the specification as a body of
text.

2. Natural language text about the capability: The knowledge about a capability
may reside in manuals, design documents, descriptions of how to use systems, etc.
— all created originally for human consumption, hence all in natural language

12

(though often with additional diagrams and formal notations).

3. Experimentation with the capability: Much knowledge about how to do
anything, such as run an ESS, comes from experimenting with doing so, and
inducting a more general capability. Indeed, for humans we know that, after a
point, the only way to learn about computer systems and how to use them is to try
out simple cases and discover how matters go.

4. Observation of the exercise of the capability: Much can be learned about how to
do something by watching an expert do it, i.e., being an apprentice. It helps, of
course, if the expert is sympathetic and provides constructive commentary. In
some ways this can be like guided experimentation.

These knowledge sources are each radically different in character and involve complex
activities to extract the knowledge they contain. Comprehending natural language is a long-
standing and difficult area of research in AL AI systems that learn from active experimentation
in an external world are just being developed. Research in AI on learning apprentices was
initiated some years ago, but they have actually received very little attention. Only the use of
formal specifications designed for acquiring a capability has the possible character of requiring
only routine operations to obtain their knowledge. Thus, each of these sources requires a
separate, complex capability to extract its knowledge. In the figure we have associated such a
capability with each knowledge source. However, the capability to exploit a source of
knowledge is relatively independent of the particular task for which the extracted knowledge is
to be put For instance, a single natural-language comprehension facility subserves the use of
language to convey any body of knowledge. So we show all these knowledge-source capabilities
as feeding into one skill-acquisition capability, which pertains to how to use the extracted
knowledge to create a given skill.

Except in special cases, the total knowledge for a capability will not all be available in a single
type of source. If human experience is a guide, to learn how to use a complex software system
involves all four types of sources — some formalized description, surrounded by natural-
language explanation, then some introductory sessions with an expert guide (whose helpful
commentary is also in natural language), and finally hours of low-level experimentation with the
system to build up familiarity and understand what all the previous instruction really meant.

All four of the knowledge sources at the left of Figure 4 are external to the agent But the
existing skill level is also a potent source of knowledge. One of the best ways to create a higher
skill level is to learn from the ability to operate at the current skill level. Thus, the figure shows
a fifth knowledge source, which is internal to the agent There would be one such potential
source for each existing level of skill, since each provides knowledge in quite different forms for
moving to a new skill level.

Each of the five skill levels in Figure 3 is a software organization and technology of its own.
Consequently, the skill acquisition capability in the center of Figure 4 stands in for five separate
capabilities, depending on what skill level is being constructed. It is simply convenient to
represent it by a single capability in the figure.

Figure 4 describes a quite general scheme for how to acquire capabilities and their skills. It
applies to the acquisition of each of the six performance capabilities of Figure 2. But it also

13

applies to each of die capabilities in Figure 4 itself — that is, to acquiring the capability of
acquiring a capability. It might seem that only the first-order acquisitions would be required, and
that all the capabilities in Figure 4 could be fixed capabilities, implemented in a fixed way for all
time. A moment*! consideration shows this not to be the case. The problems of acquisition are
much too central to working with ESSs. For example, consider a case analogous to EBDE case,
but where new ESS modules are continually being created and added, e.g., to evaluate the
intermediate results of the main design modules. Then, these added ESSs will all no doubt bear
a family resemblance to each other. An agent should to be able to exploit the commonalities of
this family of modules, and not to have to deal with each new ESS as an instance of a completely
generic ESS. That is, die capability for acquiring the capabilities for members of this family of
ESSs should improve with experience (a second-order acquisition).

The scheme laid out in Figures 2, 3 and 4 presents a bewildering array of capabilities, skill
levels and knowledge sources. Everything seems to occur in multiple alternatives. Why can't
one settle for one simple version — an operating system good enough to avoid having an
operate-softwarc-system capability, all capabilities described in some formal specification
language, and a single skill level. The fundamental reason this simpler picture cannot prevail is
the nature of real software-system environments. IBDE exists prior to trying to get an agent to
use it Not all databases use SQL; many have their own query language. If one wants to have an
agent exploit Mathematics because it has some powerful properties, then Mathematica must be.
taken as it is. Thus, the great appeal in getting agents to control ESSs is to be able to handle the
actual variability and complexity of the real software world. Certainly, demonstration agent-ESS
systems could be built by specializing all the dimensions of variability. But the challenge (and
the real usefulness) of agent-ESS system lies in confronting and conquering the variability (even
if only bit by bit).

4. The Space of ESSs and their Differing Demands
There are many ESS situations and they place quite different demands on the agents that use

them. Understanding the range of these demands is important to developing effective agents for
ESSs. Certain aspects can be critical universally for all applications, whereas others occur only
in special situations. Certain aspects cannot be developed before others. It would be pleasant if
we could describe a space of such demands, which would make the issues clear. However, at
this stage of understanding, we do not know enough to do that

We can examine briefly some actual examples of efforts to produce an agent capable of using
ESSs. These examples exhibit, with varying degrees of clarity, the roles of different capabilities
in dififerent situations, and they give hints of important research issues. All the examples involve
Soar [7], the AI agent that is our experimental vehicle for ESS research. All these Soar systems
are in early stages of development and some of them are just getting started. Consequently, the
amount of experience they provide about ESSs is still extremely limited.

Before taking up the examples, we make some general observations regarding the use of ESSs
by Soar.

First, all these Soar systems have been initiated and developed for purposes other than that of
exploring ESSs per se. For instance, the Soar/BDE effort, for which ESS's are central, is
focused on how to provide integration for engineering design of very large complex artifacts.

14

The ESS situation arises because that is the current state of engineering design, which is
beginning to produce large numbers of independent computer tools, whose integration seems
always to be left as an exercise for later. Only as we have become aware of the extent to which
ESSs are entering into many Soar systems, have we begun to focus on the common intellectual
core problems of obtaining intelligent control and use of ESSs.

Second, Soar organizes its tasks in terms of multiple problem spaces, which comprise sets of
operators, which are applied to attain a desired state within the space. Operators executed in
one space are performed in an implementation subspace (with its own operators). Thus,
capabilities are evoked by the selection and application of operators, and capabilities are
exercised by operator applications in some collection of spaces. This task organization is
implemented by a scheme of immediate recognition of patterns of elements in a working
memory, realized as an OPS5-like production system. Thus, an operator that does not require
implementation in a subspace is one that is applied simply by immediate recognition, i.e., by the
evocation of a set of actions directly in response to detected patterns in working memory. Soar
has an automatic learning mechanism (chunking) that continually creates new productions (new
recognition patterns with their immediate actions) that capture the processing performed in
subspaces, thus avoiding its recurrence.

Third, Soar, as it normally operates, moves through the three higher levels of skill: instruction
interpretation, elementary deliberation and direct recognition. The movement from deliberation
to recognition is the automatic effect of the basic chunking mechanism described above. All
deliberation produces additional recognition skill. The movement from instruction to
deliberation (often directly to recognition) occurs because of general strategies that Soar employs
in interpreting instructions, which cause chunking to learn the right knowledge to increase the
skill level. These mechanisms comport exactly with the view in Figure 3. If knowledge is
directly available, response is immediate at the recognition level of skill, but there is essentially
no flexibility of response. If a solution requires search of problem spaces with directly available
operators, response is slower at the deliberation skill level, but there is much more freedom to
bring relevant knowledge to bear and be flexible. Interpretation of instructions is even slower,
since knowledge must be accessed by working in a subspace that corresponds to the
interpretation process, imposing in effect another inner-loop of activity.

These mechanisms and methods in Soar affect only the three highest levels of skill. Nothing in
the current Soar deals with whether to use instructions, model-based simulations or theory-based
derivations as the basis for a capability, or how to structure the processing for each of these
levels of skills. That Soar provides for some changes in skill level has two effects. On the
positive side, it makes clear that varying levels of skill is a real consideration in agents, not just
something imported because we know humans exhibit varying levels of skill. It justifies the
complexity of Figure 3 as relevant for the development of agents for ESSs. On the negative side,
other mechanisms and methods exist for moving between skill levels, which would occur in
other agents. None of that variety or its effects shows up in our considerations here.

Fourth, Soar communicates with ESSs through its regular input/output facility. The external
environment is perceived by the arrival of elements placed by sensors in Soar's working
memory, and the environment is affected by central cognition placing elements into working
memory to trigger the actions of effector processes. I/O in Soar is asynchronous, so Soar does
not have to enter a busy/wait state while waiting for input to arrive or output to be transmitted

15

and can deal with multiple external devices simultaneously. Because Soar's inner operational
loop is the innmcdiafr recognition of whatever is in working memory, Soar can be strongly
interrupt driven, reacting immediately to new input and shifting its attention to deal with the
novel situation.

The following subsections describe Soar/ESS interactions, with the primary investigator for
each project given in parentheses following the name of the effort in the title of each subsection.

4.1. Soar/IBDE (David Steier)
We have already described the EBDE ESS situation (Figure 1) and it is evident in a general

way how all the basic capabilities are required IBDE actually provides a good example of
needing to model the ESSs software, since a large specialized system organization is needed to
integrate very complex individual ESSs.

The IBDE arrangement brings to the fore several aspects. First, because there are many ESSs,
formulate-subtask must be concerned with the selection of which ESS to use at a given time.
Actually, this demand goes further than just selection, since it is useful to plan out an entire
computational sequence of the ESSs. Second, the data that flows between the ESS modules in
EBDE consists of very large data structures that describe various physical structures for an entire
building. These are fundamentally incomprehensible to the agent (i.e., Soar) and, indeed, to the
human designer. They are simply too big to be read in and assimilated Thus, the strategy (for
agents and humans alike) is to analyze the results of the ESSs at one remove. Additional critic
ESSs are formed that process the output of a given IBDE module and produce compressed
evaluations that can be understood by the agent (or human). For example, one critic ESS could
make an initial rough cost estimate of the building from an early output Another could check
for the satisfaction of some overall constraint that cuts across modules and therefore is not
computed within any module in isolation. Thus, the operation of the agent is entirely in terms of
high-level abstractions about the main IBDE ESSs, not in terms of their direct input/output data.
This situation leads to the third interesting aspect of EBDE, namely, that the agent (or human)
operates in terms of a high-level model of the computation. This abstract model does not exist
currently in explicit form, although the engineers involved in IBDE clearly think in terms of such
an abstract model (with individual variations, no doubt). So there are two interesting aspects:
what should such a high-level model be like; and how is the agent to acquire it

There is an initial version of Soar/IBDE, i.e., a Soar system that operates as an agent for
IBDE.1 The current implementation acquires tool selection knowledge from model-driven
simulation in a fashion alluded to earlier, the system models the functionality of the seven EBDE
systems in terms of the types of inputs and outputs. This initial Soar/EBDE already illustrates
that learning will be an integral part of every agent-ESS system. We have shown a significant
reduction (75%) in processing effon due to learning, the skill-level shifting from the elementary
decision level to direct recognition.

lIts original name was Soar/FORS, because it initially was to operate through an experimental interface system
called FORS [10].

16

4.2. Soar/database (Bob Doorenbos)
Soar has recently acquired a capability for querying a relational database using SQL

(Structured Query Language, a standard query language) to obtain information for use in other
tasks. One can see clearly in the organization of Soar the four capabilities of the basic cycle, just
as described in Section 3.1. In some task space Soar executes an operator that requires some
data for its result The space that implements this operator exercises the formulatc-subtask
capability by creating an internal representation that indicates the unknown data it wants in the
context of the situation it believes that data depends upon. In this formulatc-subtask space it
applies an operator to make a database query. This operator is implemented in a separate
problem space (the SQL space). It contains operators that know the table structure and the
semantics of the database. These operators extract from the representation provided by
formulate-subtask the data to be used in the searches. Other operators know how to form SQL
queries, including forming complex joins. Thus, this space is exercising create-input. Because
of the complexity of SQL (i.e., the alternative ways it provides for searching the database), this
capability is more than just conversion; it approaches creating simple programs. Finally an
operator in this space sends the query to the database via Soar I/O and receives the data in return
(as a data stream). The results of interest arc picked out of the returned data and inserted in the
task representation. This occurs by another operator in the SQL space, so that this one space
exercises both create-input and convert-output capabilities. As in most database uses, converting
the result is routine and the processes that set up the query know exactly what should be done
with the returning data.

The Soar spaces and operators for doing create-input and convert-output can be viewed as a
general capability for Soar to deal with relational databases, at least of the standard variety. It is
coupled with a general set of representational conventions for how formulate-subtask must
indicate what data it wants. These conventions, however, relate to the way Soar systems in
general represent their problem-solving states. It contains no knowledge about SQL or the
specific structure of the database. It does of course contain some general knowledge on the pan
of formulate-subtask of the content of the database or it wouldn't even know to attempt to use it.

Despite the view of a general capability, provided once and for all as part of the capabilities
that Soar should offer all users, this capability cannot be programmed once and for all by a Soar
system-designer. For instance, as Soar uses databases by means of these capabilities, it learns to
do so faster. There is a continual shift from the elementary-deliberation skill level (selecting and
applying operators in spaces) to the direct-recognition skill level. Some of this learning is quite
general, and speeds up Soar cm all uses of SQL. But other parts of it are specific to the particular
database and provide speedup on subsequent uses of it (preliminary experiments show about a
factor of two for the combined effects — they haven't been separated out yet). These speed-ups
are important for Soar to use databases effectively.

Databases pose in clear form the issue of the simulate-ESS capability. Suppose, in some
circumstances, an agent can know the results from a database query without actually having to
query the data base. Can it make any use of such knowledge (except to avoid the time delay of
the query)? On the one hand is the programming intuition that if you can get the answer from
one system (the ESS) of what use could another way of obtaining the same answer be (except
speedup)? On the other hand is the intuition about humans that familiarity with a database is a
requirement for its intelligent use. Perhaps one shouldn't think of simply obtaining directly the
exact data in the database; rather, simulate-ESS would contain a more abstract or generalized

17

model of the contents of the database. The Soar database research is too recent to provide
answers, but the obvious hypothesis is that such knowledge permits more efficient or
discriminating queries.

4.3. CPD-Soar and Interval-Soar (Ajay Modi)
CPD-Soar is a system for designing chemical separation systems, collections of distillation

columns that split an input volatile fluid containing several chemical species into several fluids
that (ideally) each contain only a single chemical species. To evaluate candidate designs, it will
use ASPEN PLUS [1], a chemical process simulator, to simulate the results of a single
distillation column. ASPEN PLUS is a complex program, the result of many years of research
and development, so its calculation cannot be done independently by an agent (Soar). This is
one typical form of ESSs: a unique, practically nonreplicablc repository of expertise, which must
be accessed as an ESS by both agents and humans.

The Soar-ESS system here would appear to be quite simple: Whenever an evaluation is needed
(which is relatively straightforward to determine), provide the inputs to ASPEN PLUS, execute
it, and get the evaluation number back. There might be some number conversion in create-input
and convert-output, if Soar and ASPEN PLUS use different number representations (which they
do), but that should be i t

Additional considerations enter because ASPEN PLUS is very expensive. The basic structure
of CPD-Soar is a combinatorial search through the space of candidate separatum systems, using
evaluation functions to prune the search. To use ASPEN PLUS for every evaluation is to
completely determine the design process by minimizing the number of evaluations performed.
Thus, there is a premium on finding some way to obtain cheap evaluation functions, even if they
were much more approximate (ASPEN PLUS produces high quality answers). One path towards
this is for CPD-Soar to learn from its uses of ASPEN PLUS enough to be able to produce
internally some useful approximation to what ASPEN PLUS would produce. Here we see a
specific reason why an agent should have a simulatc-ESS capability. The most obvious way to
do this is simply to remember that to the input (U, V, W) ASPEN PLUS produced the result Z;
and indeed Soar chunking automatically provides this level of learning. The trouble is that this
exact input almost never repeats, so this learning does essentially no good at all.

Interval-Soar is an attempt to explore an hypothesis about learning to simulate ESSs. Namely,
what an agent learns from the operation of an ESS depends on what model of the ESS the agent
brings to the experience. If the model is only that the ESS produces function values (numbers in,
numbers out), then, per above, that is all that can be learned. If the model of the ESS is that it
provides information about the shape of an evaluation function, then the agent can learn about
this shape — and that might be enough to make some internal computations that would permit
Soar to bypass using ASPEN PLUS. Interval-Soar employs an extremely simple and highly
abstract model of the evaluation, namely, that it is a unimodal function. Then a sequence of uses
of the ESS evaluation, permits locating the mode of the function with increasing precision.
Since evaluation is being used by Soar to compare candidate designs, only the relative order of
two evaluations is needed. Often this can be determined by the partial knowledge that has been
built up about the value and location of the maximum of the evaluation function. More detailed
a priori models of the evaluation could, of course, be used, changing the knowledge that could be
learned from the execution of an ESS. We have an additional goal in this research, which is to

18

show that the actual learning, given the model of the ESS, occurs by chunking, Soar's basic
learning, mechanism.

4.4. Soar/Mathematica (Dhiraj Pathak)
We are attempting to get Soar to be able to use Mathematica [12]. This differs from the

systems described above in requiring a relatively long sequence of interactions between the agent
and Mathematica, each fairly small, to obtain a useful result Thus it provides some experience
along a major dimension of variation of ESS systems. Formulate-subtask must produce a
computational plan, and the other capabilities of create-input, convert-output and interpret-result
can be conceptually lumped together into the implementation process for the plan. Except when
the agent is quite expert, the initial plans developed by formulate-subtask will be quite
incomplete, because the agent will not know enough about how to do in Mathematica what it
wants to do mathematically to lay it all out in advance — this is what it means to do
experimental programming. So interpret-results will end up being a fairly intelligent diagnostic
process (unlike the database case).

One issue that has shown prominently in the work with Mathematica can be called the
transduction fallacy — the belief that the only capabilities involved in working with an ESS are
transactions between the representations of the agent and the ESS, namely, create-input and
convert-output (and indeed their most elementary functions). The arises in clear form with
Mathematica because in attempting to pose an example or trial task for Soar/Mathematica, one
necessarily couches it in some mathematical notation. Then it appears that all that is to be done
is to convert from this mathematical expression (which may be very different from the notation
and style of Mathematica) into the notation of Mathematica. After a few tries one cannot think
that any other capabilities will be involved except transductions. The fallacy, of course, is that
we, the ones who are inventing demonstration tasks for Soar/Mathematica, are doing the
formulate-subtask ourselves, and leaving just the transduction to Soar. Only when we give Soar
a larger analysis task to do, within which the use of Mathematica arises as a potential means,
does it become clear that other capabilities are involved.2

We have seen enough examples where more than transduction is involved to not be taken in by
the fallacy. Yet it seems to haunt the exploration of Soar/Mathematica in interesting ways. No
matter how far back we go, in terms of Soar's task-oriented problem spaces, the initial form of
the task is cast in some mathematical representation. It almost seems as if the primary task must
be to convert from whatever is this internal Soar notation into Mathematica notation. We have
been exploring some protocols of humans using Mathematica to see what tasks get formed early
on. Many activities go on other than simply writing down mathematical expressions (in
whatever notation). For instance, there is exploration of Mathematica to find out how to do
something with it (so there is acquisition of capabilities through experimentation). Also, there is
the fonnulation of the mathematical plan in essentially method-like or qualitative terms, before

2The transduction fallacy also tends to arise in working with Soar/database, where the only way one can imagine
to use Soar/database is to have a user make some, perhaps high-level, request of Soar to find some information — at
which point there only remains the transduction into SQL from whatever language the user used to make the request.
In our experimental work with Soar/database, we use an overall task that makes Soar determine what information it
needs and when it needs it

19

any expressions are created

Still, transductkm between mathematical notions is an activity that always seems to loom
large. This sugfMts asking what would happen if Soar cast all its mathematical expressions in
the notation of Mathematics After all, Mathematica (and other modern symbolic-mathematical
systems) are intended to be close enough to natural human mathematical notation that humans
are expected to come to think in its terms. How much simpler will a Soar system be if it thinks
entirely in terms of Mathematica? Will it really make a lot of difference (one is inclined to think
so, analogizing after the human phrases about "thinking it is terms"). But could the continual
learning of the notation conversion processes by means of chunking, simply wash out such
differences?

4.5. MFS: Model-formuIation-Soar (Xiaoping Li)
MFS is a Soar system that supports mathematical-model formulation in the area of operations

research, where one goes from a qualitative description of a problem to a set of mathematical
expressions that can be given to a standard mathematical programming package for optimization,
such as LINDO[11] or GAMS [2]. MFS currently formulates mixed-integer linear-
programming models of production-planning problems, and is at an early stage of development
(e.g., it does not yet propose and retract assumptions to perform iterative model refinement).

It appears that MFS will use four functionally distinct ESSs: (1) A database that holds the
massive given information about the model, e.g., background constants, generic process
equations; (2) a statistical package for estimating parameters to functional forms from data; (3)
an external memory to hold all the variables and mathematical expressions in the developing
candidate model and (4) the mathematical-programming package (e.g., UNDO) that is to solve
the model. The use of the database and the statistical packages do not appear special, in that the
ESS issues are those already raised in discussing Soar/database and Soar/Mathematica. But the
last two ESSs each have their special interest

The models for industrial application are often very large in terms of the numbers of variables
and constraint expressions. Maintaining the full candidate model in working memory imposes a
large processing burden on Soar — for the patterns in Soar's recognition memory continually
survey the entire working memory to find matching data (the power of recognition memory lies
in such complete and automatic surveillance). Mostly, the attention of MFS is focused on some
part of the candidate model, and the remainder can be safely ignored. One way to realize this is
to construct an external working memory, i.e., an ESS whose function is to hold the variables
and expressions of die candidate model (or several of them, if alternative candidates are
simultaneously under consideration). This is analogous to a database, except that storing
changes in it and accessing information from it should be highly tailored to the structure of the
model components, so that they can be highly efficient So it probably requires a special design.
An interesting aspect of this ESS is that its need is not usually foreseen in the early stages of
building a Soar system (here MFS), but emerges as the system is scaled up. The issue then arises
of rapid acquisition of the ESS, i.e., acquiring the basic performance capabilities to deal with the
new ESS. An essential pan of this is reorganizing the existing Soar task spaces to use the ESS,
which requires introducing a fonnulatc-subtask capability that fits in with the pre-existing
performance organization. If such reorganization and coupling with new ESS is a major
enterprise, it is unlikely ever to be undertaken. Thus, speed and ease of acquisition become

20

essentiaL

The final ESS it the optimization programming package itself. MFS will submit completed
models to the package for solving. But long before this happens MFS will have candidate
models that it believes should work, but which in fact contain conceptual errors of various kinds.
The models are large and complex, and they cannot be created correctly on the initial try, no
matter how much advance intelligent analysis occurs. Thus, the main MSF interaction with the
computational package will be in a conceptual debugging loop, in which strange things happen
when the model is submitted to the package. Initially, these may be like syntax errors, many of
which the package itself will catch and return appropriate error and warning messages. Later in
the development, the solutions will appear to be comet, except they will be unrealistic, which
must be diagnosed both in the output from the solver and then in the model in terms of what
caused the strange result Thus, interpret-result will be the capability that will require the most
development for this ESS.

4.6. Draw-Soar (Gary Pelton)
Draw-Soar takes in natural-language descriptions of a set of spatially structured and related

objects, such as, "There is a tangential line at the top of the smaller circle/ and produces a set of
commands to a drawing system (the ESS), such as McDraw, to draw the corresponding picture
on a graphic display device.3 The interaction with the ESS is two-way and fine-grained, and uses
the command-language of the ESS. The picture is composed incrementally, as enough
information accumulates to define another part of the picture. The system, as currently
envisioned, does not itself have visual capabilities for seeing the developing picture whole.
Thus, it is also in interaction with a user, which must be its eyes (this mixes the role of observer
as client and as critic, which may not be the best way). Hence, feedback comes through
additional natural-language dialog. The current system is working open-loop, just beginning to
process simple requests.

Draw-Soar provides another point along the dimension of the time-grain of interaction, even
more fine-grained than Soar/Mathematica. It can be expected that this will put a great deal of
emphasis on developing the recognition skill level, since so little gets done with each command-
interaction.

Draw-Soar provides an interesting opportunity to understand the role of simulate-ESS. The
ESS, being command-language oriented, admits of a model with a very simple structure — to
each command there is an effect — although the effect can be highly context dependent (a
change in the geometric display, whose visual effects can be profound). Thus, the agent can
develop a range of models of the ESS at different degrees of abstraction and adequacy. The
quality of the final result — the final drawing in relation to the original description — depends
strongly on the simulate-ESS capability, for any but the simplest pictures. So Draw-Soar should
be quite revealing in this respect

Strictly speaking, the three-way interaction between Draw-Soar, its drawing-package ESS, and
a human user, who sees the output of the drawing package and has two-way communication with

3Draw-Soar makes use of a developing capability for natural-language comprehension in Soar, NL-Soar [8].

21

Draw-Soar, is outside the paradigm we set ourselves for this paper, namely, the single-agent
multiple-ESS situation. But it provides the opportunity to explore a number of issues in the
acquisition of capabilities. The communication channel between the user and Draw-Soar is in
natural language, a type of knowledge source that is important to learn to exploit But the
arrangement can be used in many ways. The user could initially describe figures in terms rather
close to the command language of die drawing package, and. then gradually move toward freer
descriptions, as Draw-Soar's capabilities increase. The user could also instruct Draw-Soar
directly about the drawing package and how to use it Arrangements, using the visual feedback
from the user to Draw-Soar, could be set up for Draw-Soar to learn by experimentation or by
observing the user doing things directly. These variations need not stress the natural language
capability, employing only a small range of sentences; rather, they exploit the flexibility of
natural language to express different sorts of situations.

4.7. EFH-Soar: Learning from Electric Field Hockey (Jill Lehman)
The final Soar-ESS system arises from an analysis of humans using interactive educational

systems. The construction of the system has not yet commenced; work is still focused on
psychological aspects. However, it raises an additional ESS issue that is worth mentioning.

The scientific problem is to discover what human students learn about some subject matter by
the use of an interactive computer microworld that behaves according to the subject-matter field
and is structured so that students can explore the subject matter via die microworld. Many such
microworlds are being developed in the application of computers to education. The microworld
under investigation is Electric Field Hockey, a computer game built to educate about the physics
of electric fields. The student places positive and negative charges in a rectangular arena,
creating an electric field; then a charged particle (the puck) is released at one end, the aim being
to have it travel into the goal box at the other end. In more complex variations of the task,
barriers are placed in the arena, so the puck has to make its way around or between the barriers.
If the student understands how electric fields are determined by the distribution of charges, then
he or she can place charges so as to win the game.

The Soar system is to be a simulation of a human student Thus, it is a single agent (EFH-Soar)
with a single ESS (the Electric Field Hockey computer game), but the agent here is to model the
student, so we can discover how humans learn in such situations. The interaction is again at the
fine-grained end of the scale — students often operate in a highly interactive way, incrementally
pushing around the charges already placed in the arena.

The interesting aspect from the agent-ESS viewpoint is the nature of the learning required to
be successful* The student (EFH-Soar) should be acquiring general knowledge about electnc
fields, no longer intertwined with the game of Electric Held Hockey ESS and its details. It
should be the acquisition of the subject-matter knowledge that permits the student to be
successful at the game. All the learning issues we have raised — the acquisition capabilities in
Figure 4 — are focused on acquiring a skill for dealing with the ESS, i.e., for dealing with
Electric Field Hockey. For Electric Field Hockey acquisition must go via an outer loop through
knowledge that is independent of the ESS, and then back to developing skill in using the ESS.

The claim above is not ours. Rather it is implicit in the use of interactive microworlds for
educational purposes. Our objective is to explore this claim and discover the extent to which it

22

holds. Along the way some interesting light may be shed on what is and can be acquired in the
agcnt-ESS situation more generally.

4.8. Summary of the issues
The issues raised about the control of ESSs by these seven Soar efforts are in many ways a

congeries. The systems themselves have been generated for independent reasons, and their
involvement with ESSs has been dictated by their inner demands, not by any concern for how to
conceptualize agcnt-ESS research issues. Nevertheless, we can attempt some summary of the
issues that have arisen in this section.

1. The space of ESSs. Some of the dimensions along which ESS systems vary are
already clear. The main one seems to be the grain size of interaction, indicated by
the number of interactions between agent and ESS to get a formulated subtask
accomplished. This dimension is coupled both with speed of interaction and with
how much planning or programming has to be done (because meaningful tasks
require sequences of interactions). Hence, it is not yet clear what comprises the
essential characteristic of this dimension. A second dimension is the number of
ESSs involved, and the extent to which their functionally overlaps, so what ESS to
use requires decision. A third dimension is how dynamic the ESS situation is, in
terms of new ESSs coming on line or changes in existing ESSs. The more
dynamic, the greater the pressure on acquisition capabilities and the speed with
which they must be accomplished A final dimension is the degree of indirection
with which the agent deals with the inputs and outputs of the ESSs. Does it
understand the full semantics of the input/outputs (as in Draw-Soar) or does it have
only some abstract model of the ESSs (as in IBDE/Soar)?

2. Different performance capabilities are key to different ESSs. In at least
minimal form, all four basic performance capabilities (Figure 2) are involved in
each ESS transaction. But beyond this we saw very different emphases* Figure 5
presents a table that shows for each of the Soar-ESS systems, the capabilities that
play a prominent role in the given system. As can be seen, formulate-subtask
shows prominently in Soar/EBDE, Soar/Mathematica and Draw-Soar. Create-input
shows prominently in Soar/database and Soar/Mathematica (though the latter
depends on some of the programming in Mathematica being part of create-input).
Convert-result does not seem problematical for any of our situations. Interprct-
result shows prominently in Soar/EBDE and MFS. Simulate-ESS shows
prominently in CPD-Soar, Soar/database and Draw-Soar. Operate-software-system
was entirely absent, because our agent-ESS systems have not matured to where this
capability becomes a necessity.

3. The pervasiveness of learning. Learning capabilities show up essentially
everywhere. Figure 5 also reveals this, both by the multiple skill levels that are
primary to each system, which implies movement between levels, and in the
different knowledge sources that play a role, implying acquisition. In the case of
immediate performance, automatic skill acquisition for create-input and convert-
output already plays an important role in Soar/EBDE and Soar/database, and will in
all other systems as well. Learning simulate-ESS is the heart of CPD-Soar with
Interval-Soar. The MFS situation shows the need to acquire the four performance
capabilities for a new ESS (an external working memory). We could have used
Soar/Mathematica to make the same point, namely, the need to extract quickly
from an agent a computational function being performed internally, thenceforth to

23

be provided by an ESS. The acquisition of performance capabilities by drawing
knowledge from the full range of available sources (Figure 4) is lying just below
the surface in Draw-Soar and EFH-Soar.

4. A few emtrging issues. Not many sharp research issues have emerged yet, but
perhaps two are worthy of note. The first is the transduction fallacy, namely, that
the central problem of dealing with ESSs lies in create-input, convert-output and
the operating system that mediates between agent and ESSs. So long as this view
guides the interpretation of the essential nature of agent-ESS systems, the
necessary research to construct effective agents for ESSs will not occur on the
more intelligence-demanding capabilities of formulate-task, interpret-result and all
the varieties of acquisition. The second issue is the possibility of the agent coming
to think in terms of its ESSs, that is, to migrate the representations used by the
ESSs back into the formulation of its own tasks. Then much of what has to happen
in create-input and convert-output disappears. More exciting, the agent and the
ESSs become, so to speak, impedance matched, so that the formulation of subtasks
becomes more likely of success. How this actually works out is all future research,
but it is clearly an issue of general import for agent-ESSs systems.

5. Agent-ESS Systems as a Component of Software Technology
The effort to develop agent-ESS systems is important for AI as a relatively unexplored area of

intelligent action that is saturated with learning considerations. But its major contribution may
ultimately be to software engineering, in making the power of computer software more easily
accessible in the service of computational tasks. The type of system under discussion — a single
agent with multiple ESSs — has an immense scope for application. This is indicated already by
the collection of examples described above. Each example epitomizes an entire class of software
systems of applied interest From the large scale collection of tools (represented by Soar/IBDE),
to the routine intelligent use of databases (represented by Soar/database), to the use of highly
interactive systems (represented by Draw-Soar) — each Soar-ESS system points to a population
of application systems. That agent-ESS arrangements have important application potential
justifies developing the requisite scientific knowledge base, even if some of the capabilities seem
distant from immediate application.

Viewed generally, agent-ESS systems belong to the class of software systems that make the
software system smarter to improve system effectiveness and software productivity. With the
exception of a relatively small community at the interface between software engineering and AI
[9], this tactic has not been widely pursued to date. Some areas however should be at least

noted

One relevant area is that of intelligent interfaces in Human Computer Interaction [6]. Here, the
attempt is to develop human-agent-ESS systems, rather than just agent-ESS systems — where a
human uses a collection of ESSs via an interface that is an agent, i.e., an intelligent interface.
This places most of the intelligence of the total system in the human and casts the agent in the
role of aide, guide or facilitator. As noted earlier, this is the form a mature Soar/IBDE would
undoubtedly take. Research in intelligent interfaces complements the agent-ESS paradigm. In
the intelligent-interface work, the focus is on the interaction of an agent with the human user —
how to make that communication intelligent. In the agent-ESS work, the focus is on the
interaction of an agent with the software systems to be used Both of these types of interactions

*. Primary resevch concern
o m Secondary research concern

24

Dimensions of
variation

IF • #i •!•• • » • • mMImhHtrt^

rcf fof wnnrt nyonnwi

Formulate-iubtaafc

Create-input

Convert-output

systom

Simoiate-ESS

Recognition

Simulation

Derivation

Formal instruction!

Natural languafo

17W^M4 n îwtf MI^WI

Observation of oae

•
0

|g:wj,;::;.::::;H:x:;i

•

•

•

*

#

•

0

•

mmmm

•

0

•

•

•

ST.*

•

•

0

.•W:':::%'x¥.*::¥A*A¥:"

• •

•

0

•

•

•

•

•

0

•

o

0

0

•

•

•

•

0

s s

•

•

•

•

•

•

Figure 5: Summary of capabilities that are prominent in the Soar agents.

25

need to be understood and developed into effective technologies, so they become available as
options, in the software engineering of large systems.

A second area of potential relevance is that of distributed artificial intelligence [5], which is
concerned with collections of cooperative agents. Again, we see that the basic situation differs
from that of agent-ESSs. At the center of attention in distributed AI is agent-agent
communication and collaboration. Issues of negotiation, contracting, division of labor,
inconsistency of knowledge, diversity of goals, etc., become central. Some of these may have a
pale reflection in the agcnt-ESS situation, but basically the passive nature of the ESS removes
these issues from center stage. Instead, the focus becomes coping with the input/output
representation of the ESS, formulating the agent's task in terms that permit the ESS to provide
help, acquiring models of the ESS, etc. — as described throughout this paper. Distributed AI is
attacking a more complex set of issues. A mature agent-ESS technology would probably
contribute to the substrate on which eventually to build useful distributed AI systems. But there
does not seem to be much immediate connection in the other direction, from research in
distributed AI to agent-ESS systems.

The agent-ESS situation should be viewed as one strand in an expanding conception of
software technology — a tool in the total kit of techniques for engineering software systems.
Actually, it adds at least two tools, and contributes to a third The first relates to the aim of
software-technology research to reduce the amount of effort required to specify some
computation to be performed. The evolution has been from requiring the user to be familiar with
all the details of the hardware and software implementation, i.e., machine code, to building in
increasing amounts of abstraction and having compiler-like software bridge the gap back to the
fully specified software system that executes the application. When taken to the limit, the
scenario for completely automatic programming has users specifying computations exclusively
in terms natural to their application domain. In the long run, an intelligent agent equipped with
the capabilities we have described provides an additional radical strategy for moving towards
this goal — to wit, having the user deal with agent-ESS systems in abstract terms, because the
agent deals with the concrete details of the ESSs that are the applications. Functionally, this
casts the agent in the role of the "compiler-like" software, except that the agent engages in quite
different operations, namely, the array of performance and acquisition capabilities we have
outlined in this paper, which results in being able to adapt existing software to new uses. This,
of course, does not substitute for compilation-like techniques (nor for interpretive ones either).
Rather, it adds a third tool to the software engineering toolkit, which will be the preferred
technique in many cases.

The second role relates to reusability. The power of existing software systems, which
otherwise might have to be reimplemented or at least integrated by a programmer, can be made
accessible through an agent-ESS arrangement. The reach of this technique — how inhospitable
an existing collection of ESSs might still be made useful — would seem to depend strongly on
the acquisition capabilities of the agent The whole point of this tool is to shift to the agent the
burden currently borne by the human system programmer, who must normally refurbish the
software system through extensive efforts to understand it and reprogram it.

The third (contributory) role relates to the potential of intelligent interfaces, mentioned above,
to become an integral part of large software systems. Those efforts, as noted, focus on human -
agent communication. But they will only become effective for real applications, if the agent-

26

ESS side of the systems is equally well developed The area of intelligent interfaces is not itself
likely to provide this development, because the research issues that are central (and properly so)
to human-agent communication are quite different than those of agent-ESS operation. So there
is a role for an autonomous agent-ESS development, with the expectation that it will provide the
other half of what is needed for intelligent interfaces to be useful.

It is worth noting, finally, that ESSs and collections of them can comprise large software
systems. The issues for agent-ESS systems do differ for simple systems versus complex
systems. That can already be seen by comparing Soar/database with Soar/IBDE, which might be
taken as representing simple and mid-range points along the dimension of system complexity
and size. But both these agent-ESS systems are feasible, and both fit within the conceptual
framework we have outlined in this paper. Thus, as tools for software engineering, agent-ESSs
should be viewed as potential contributors to the large-system end of the software-system
spectrum, which is where software engineering is most in need of development

6. The Research Agenda
The considerations we have put forth can be summarized in a few points:

1. Artificial agents capable of using external software systems effectively will require
a substantial array of sophisticated capabilities, including learning capabilities and
the ability to deal with varieties of external knowledge sources.

2. These capabilities stretch from those that are central to the programming-system
parts of computer science (the operating system capabilities, even though we did
not stress them here) to those that are central to artificial intelligence.

3. We know very little yet about the details of the required capabilities — what is
required to make them work together, what it takes to handle ESS situations of
realistic size and complexity and what it takes to learn them.

4. The potentiality for application of agent-ESS arrangements is apparent If
developed, these arrangements would provide additional modes for effectively
organizing large software systems in many situations.

The exploration and development of capabilities for agent control of ESSs has become an item
on the research agenda of the Soar project, because many individual Soar systems have begun to
require such capabilities in one way or another (as their enumeration in Section 4 indicates).
This paper is our attempt to identify this arena as a fruitful one for focused research.

An extensive array of highly sophisticated capabilities appears to be required for effective
agent-ESS systems. This may seem to add up to an impossible agenda — as if no progress could
be made on providing effective agent-ESS systems until all the problems of AI have been fully
solved. That does not seem to us the proper reaction. All research — including research in
computer science and AI — moves forward incrementally, always tackling the next thing that
seems possible. The existing Soar-ESS systems already show many lines of fruitful advance. It
is relevant, however, that Soar is a highly sophisticated problem-solving and learning system, so
we are not starting from scratch in building up the agent capabilities. Thus, moving up the skill
level from deliberation to recognition has already been demonstrated in the existing Soar-ESS
systems. This occurs because Soar already has substantial general learning capabilities.
Likewise, NL-Soar (the natural-language capability in Soar) integrates completely with Soar

27

application systems (in contradistinction to the well-known difficulties of interfacing separate
language and application modules). Thus some acquisition capabilities can already be
approached in at least elementary form (Draw-Soar provides the clearest example). It is also
relevant to the feasibility of ESS research that ESSs form a highly specialized class of systems.
Although some capabilities benefit little from the specialization (natural language
comprehension would seem to be an example), most of the performance and acquisition
capabilities will be much simpler for ESSs than for general physical, chemical and biological
systems. Software systems, being constructed from sequential programming languages and
discrete data structures have relatively simple structure with good abstractions. The beneficial
effects of these simplifications are readily seen in the cuirent Soar-ESSs system, e.g.,
Soar/database and Draw-Soar.

In sum, our own reaction to the requirement for a vast array of highly sophisticated capabilities
is that it makes clear that agent-ESS systems are more than just getting the agents and ESSs
hooked up at the software level with appropriate data-conversion software (the transduction
fallacy). We see the array as providing a map for where we have to go.

Our research approach will be composed of the following activities:
1. Empirical exploration: The simultaneous development of diverse systems (such

as the collection described above) that reveal the different capabilities needed and
provide specific enough contexts to construct instances of such capabilities. These
systems, which are independently motivated applications of Soar, also provide the
test situations to determine whether we have developed an effective agent for
controlling ESSs.

2. Focused search: The selection for development of new systems that focus on
specific capabilities that need exploration and that fill out our total picture of the
full array of capabilities.

3. Human capabilities: The analysis of how humans perform the same tasks using
ESSs as do our Soar systems, in order to obtain clues to the additional capabilities
and knowledge that humans have, of which we are currently unsuspecting. Such
studies also provide benchmarks against which to calibrate agent performance.

4. Generalized capabilities: The recasting of the specific instances of the capabilities
as general abilities that can exist in Soar at all times and be available in any Soar
system that needs to make use of ESSs. Such generic capabilities become the
starting points for the development of specialized capabilities for particular ESSs
or classes of ESSs. Progress on this research activity awaits seeing diverse,
multiple instances of the different capabilities, so common structure and operations
can be discerned.

With this agenda we expect no difficulty in determining whether or not the research is making
progress. It is relatively unambiguous whether a given agent-ESS system is adequate — either
the agent can use the ESSs to help it do its tasks or it can't. Performance metrics are sometimes
helpful in evaluating the individual agent-ESS. How skilled is the agent in using this ESS? Or,
to rephrase it, how large a fraction of the agent's effort goes into operating the ESS? Suppose a
Soar system uses a database as part of its operation (by having the capabilities of Soar/database).
If 80% of its time is occupied by SQL programming (create-input), the agent-ESS performance
is pretty poor. In some cases, the norms for performance come from analyzing how fast the

28

agcnt-ESS component must be so the total system can perform the total task satisfactorily In
other cases, human performance provides revealing comparisons.

Basically, however, the evaluation of an individual agem-ESS situation is simply one of
adequacy. The important metric for evaluating research in this area is the expansion of scope
What agent-ESS situations can be handled adequately now and how is this growing? Draw-Soar
can, say, do simple drawings — can it now produce drawings of the complexity of figures in
publications? Soar/database can, say, use relational data bases employing SQL - can it now
acquire a database that uses some other query language, not necessarily more complex than SQL
but just different? Thus, progress is to be gauged by a sequence of challenge tasks, each posed
to force a substantial, but attainable, increment of development of a given agent-ESS system (or
class of them). As this sequence evolves these challenge tasks include real aoolicatinrK
providing additional calibration and measures of success. applications,

29

References

[I] Aspen Technology, inc.
Aspen Pins User Guide to Release 8.2.
1988.

[2] Brooke, A., Kendrick, D. and Meeraus, A.
GAMS: A user's guide.
Scientific Press, Redwood City, CA, 1988.

[3] Caidozo, E.
DPSK: A kernel for distributed problem solving.
PhD thesis, Carnegie Mellon University, January, 1987.

[4] Fenves, S. J., Hendrickson, C, Maher, M. L., Hemming, U, & Schmitt, G.
An integrated software environment for building design and construction.
Computer-Aided Design 22(l):27-36,1990.

[5] Gasser, L., & Huhns, M. N. (editors).
Distributed Artificial Intelligence.
Pitman/Morgan Kaufman, London, 1989.

[6] . Hancock, P. A., & Chignell, M. H. (editors).
Intelligent Interfaces: Theory, research and design.
North Holland, Amsterdam, 1989.

[7] Laird, J. E., Newell, A., & Rosenbloom, P. S.
Soar: An architecture for general intelligence.
Artificial Intelligence 33(l):l-64,1987.

[8] Lehman, J. F., Lewis, R. L., & Newell, A.
Natural Language Comprehension in Soar: Spring 1991.
Technical Report, School of Computer Science, Carnegie Mellon University, March,

1991.

[9] Mostow, D. J.
What is AI? And what does it have to do with software engineering?
IEEE Transactions on Software Engineering SE-11(11):1253-1256, 1985.

[10] Papanikolopolous, N.
FORS: Flexible Organizations.
Master's thesis, Carnegie Mellon, 1989.

[II] Schrage, L. & Cunningham, K.
Demo UNDO/PC: Language for Interactive General Optimization.
LINDO Systems Inc., Chicago, IL, 1988.
version 1.04a.

[12] Wolfram, S.
Mathematica - a System for Doing Mathematics by Computer.
Addison Wesley Publishing Co., 1988.

