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Designs evolve from a preliminary concept by a process of iterative evaluation and
refinement. Every cycle of this process necessarily consists of assessing the extent
to which functional specifications have been satisfied. It is hypothesized that
providing a tool for automatically modeling and analyzing devices and relating
individual component characteristics to device behavior would aid the conceptual
designer by facilitating the consideration of more varied alternatives. In this paper
we discuss issues pertaining to automated modeling to support design including
issues of modeling relevance and model simplification. We propose a framework
for automatic modeling based on the modular aggregation of bond graph fragments
corresponding to components and connections. Although a component based
modeling paradigm is convenient for the designer, it leads to bond graph models
which are difficult to analyze and difficult to comprehend due to the presence of
redundant, irrelevant and circuitous structure and due to a high degree of
dependency among energy storage elements. Bond graph simplification methods
have been developed that mitigate these problems. These methods identify and
eliminate inert elements and redundant and constraining junction structures and
replace dependent energy storage elements with functionally equivalent
modifications to the remaining storage elements. The application of these methods
makes it possible to apply standard equation formulation techniques and results in
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Introduction
There has been increasing interest, in recent years, in developing computer tools
that can aid designers in evaluating and comparing alternative solutions at the
preliminary design stage. Analysis at this stage is primarily motivated by the need
to determine behavioral trends rather than specific numerical values. The designer-
analyst would, for instance, be interested in the relative importance of bicycle
wheel weight and frame weight rather than the specific value of effective mass.
Computer tools which formulate mathematical models from physical descriptions
of systems free the designer from modeling details. This class of tools have been
referred to as "self-formulating" in the literature. [Haug 89, Mclnnis 89, Paul
70, Sheth 72, Orlandea 77] discuss different methods to automatically analyze
mechanical systems. [Haug 89], for example, describes the Dynamic Analysis and
Design System which represents mechanical devices internally by a set of
constrained second order differential equations. Each massive element is assigned
three co-ordinates: X, Y and 6 to account for planar motion. Kinematic connections
are expressed as algebraic constraints among the body co-ordinates. The "planar"
bicycle of Figure 1 would be modeled in this system as an aggregate of four
massive objects, the two wheels, the frame and the sprocket, joined by several
kinematic connections. The mathematical formulation in DADS results in a set of
twenty-three second-order coupled differential-algebraic equations. This is a
convenient enough model for simulation but its size and complexity make it hard
for the designer to appreciate the design trade-offs. Because analysis at the
preliminary stages of design is invariably followed by design refinement,
techniques which establish a close correspondence between behavior and individual
component characteristics are very useful to the designer. In this paper we present
some techniques that allow building and analyzing symbolic models of dynamic
behavior given a description of the artifact in terms of its components and
kinematic connections among them.

Figure 1: A bicycle with two different boundary conditions.



An Environment for Automated Modeling of Dynamic Systems
[Paz-Soldan 88, Balasubramaniam 91] discuss general requirements for an

effective design-oriented modeling system. The essence of modeling of any sort is
to include only the effects relevant to the question posed. Typically the designer or
modeling expert determines on an ad hoc basis which characteristics must be
included to conrectly predict device behavior Engineering judgment is required in
choosing an appropriate model for any given context and the design tool should
support the use of such skills. While modeling a bicycle as shown in Figure 1 for
example, the bicycle frame can be considered as a rigid massive body or as a
compliant massive structure. Modeling insight allows the engineer to concentrate
on the relevant aspects of the problem, while ignoring dimensions where nothing
interesting is happening. Making such simplifying assumptions involves in part
reasoning about and deleting parts of the model which either correspond to
constrained degrees of freedom or degrees of freedom which are not excited. In the
case of the bicycle, for example, the rotational inertia of the frame may or may not
be relevant depending on the boundary conditions on the problem as illustrated in
Figure 1. Proficient modellers routinely delete irrelevant characteristics of
components to simplify analysis.

Approach
Natural interface and modeling flexibility requirements of a design-oriented
modeling system as discussed by [Paz-Soldan 88, Balasubramaniam 91] can be met
through a novel use of bond graphs, a formal graph based representation used for
physical system modeling [Paynter 61, Rosenberg 75]. A modular fragment of a
bond graph is associated with each component and with each type of kinematic
connection. The designer builds up devices by selecting components and
specifying the kinematic connections among components. As the components are
connected the bond graph fragments corresponding to the components are
assembled into a device model. Bond graph theory provides a consistent basis for
this process of aggregation, so that the kinematic constraints specified by the
designer, are sufficient information for assembling the component bond graph
fragments. This modular component based approach to constructing a device model
is very convenient for a designer. By contrast the standard method of constructing a
bond graph model as explained in [Rosenberg 83] is unsuitable because the
designer has to be familiar with bond graphs and their construction rules. In
addition the kinematic degrees of freedom of the device must be determined prior
to the formulation of the dynamic model. Mclnnis and Elmaraghy [Mclnnis
89] propose a systematic method to automatically construct bond graph models
which follows the direct formulation procedure in [Rosenberg 83]. While the user
does not have to be familiar with bond graph construction procedures, the
kinematic problem still has to be solved a priori. This places an additional burden
on the designer but leads to fairly straight-forward models which can be analyzed



easily. By contrast the modularity of our approach, which allows the designer to
remain oblivious to the modeling details, results in circuitous bond graphs that have
to be simplified before analysis can proceed further. Fortunately this can be done
algorithmically by using the methods explained in subsequent sections.

Several other researchers have used also bond graphs in design related research
[Rosenberg 75, Finger 89, Ulrich 89, Hoover 89, Macfarlane 89, Prabhu 89, Hood

87]. While [Finger 89, Ulrich 89, Hoover 89, Prabhu 89] address issues of design
synthesis and use bond graphs as the representational framework for their synthesis
strategies, [Macfarlane 89, Hood 87] use it as a tool for analysis. [Bos 85] gives a
bibliography of bond graph literature through 1985.

We summarize the issues that need to be addressed in implementing a design
oriented analysis tool as follows:

• Develop models for the set of primitive components and kinematic
connections.

• Develop simplification rules and transformations so that dominant
behavior is clearly brought out and equations can be readily formulated
in an explicit form.

Bond Graph Representation
The number of power connections that can be made to a primitive bond graph
element is not the same as can be made to the physical component which it
represents. For example, a conventional spring has two connections, however, the
bond graph compliance element, C, which represents a spring is a one port element.
A natural interface demands that the user continue to think of a spring as a two-port
device. To overcome this problem we use bond graph fragments with topology
similar to the physical components which they model. Figure 2 shows a "two-port-
spring11 model. The -0- is a power conserving, common force multi-port element.
As such, the bond graph fragment shown in Figure 2 requires that the same force
acts on both ends of the spring and that the spring velocity is actually the difference
of the velocities at the two ends. This simple example illustrates the possibility as
well as the utility of creating such models for more complicated components, for
instance, an engine valve spring with significant inertia. Figure 3 shows the bond
graph mass model for planar motion. The model has three external connection
sockets. Each socket corresponds to a distinct location and includes three bond-
graph ports to accommodate rotation as well as independent X and Y velocities.
The forces and moments at these ports excite the rotational and translational energy
storage modes of the mass. The degree to which a force at one of the ports causes
rotation or translation depends on the location of interaction. The -TF- elements in
the model account for this by transforming a force and moment at an arbitrary
position to equivalent forces and moments about the center of mass. The moduli of
the transformer (TF) elements depends only on the location of force/moment
application relative to the center of mass. A mass may of course interact with other



Figure 2: Internal model of a spring.
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Figure 3: Bond graph model of a massive body.



Figure 4: Bond graph model of a rigid connector.

components at an arbitrary number of points. We define a composite mass to
accommodate this arbitrary degree of connectivity by establishing rigid connections
among many mass elements and thereby preserve the natural designer interface. A
consistent power-sense assignment, conventionally indicated by a "power half
arrow11 is shown by a hatched circle in the figure for graphical convenience.

Kinematic connections are also modeled as bond graph fragments. The model of a
connector has a -1 - , or common velocity, junction corresponding to every velocity,
X, Y or rotational, that it constrains. A pinned connection includes two -1 -
junctions corresponding to common X and Y velocities. A rigid connection, as in
Figure 4, includes an additional -1 - junction because rotation of two rigidly
connected masses is also identical.

Need for Simplification
Even a simple component such as a mass can exhibit a variety of different
behaviors depending on the kinematic constraints imposed on it. One way to create
models appropriate to the context is to have simple ad-hoc models for each class of
behavior and then let the designer decide which physical effects are relevant and
significant enough to be modeled. The designer then has to be aware of the
implications of choosing a particular behavioral model for a component. Making a
design modification in some component or altering the boundary conditions may
require that models of other components in the device be changed. For instance,
modeling the rotational inertia of the bicycle frame is not required when the
bicycle-wheels remain on horizontal ground Qeft-hand side of Figure 1) but
becomes necessary when this constraint is relaxed as in the right-hand side of



Figure 1. Alternatively very general component models which incorporate
characteristics relevant to a broad range of behavior can be employed. Complex,
general models of this sort free the designer from modeling details but result in
overly complex device models that obfuscate basic characteristics and therefore
hinder simple reasoning about device behavior. If general, complex models are to
be used it is necessary that systematic methods are available to remove superfluous
modeling elements or analysis results.

The advantages [Balasubramaniam 91] of the latter option in a design-oriented
system justify the computational expense of simplifying the first-cut models
produced. The models may contain constrained elements which will not be excited
at all for̂ the configuration under study. They may also contain a number of energy
storage elements, masses and springs, connected so that they cannot all be

>: independently assigned energy variables. The standard techniques of equation
formulation from bond graphs are computationally difficult if dependent elements
are present and fail completely for certain classes of bond graphs.1 Because the
first-cut graphs we produce often contain such intractable elements it is necessary
to simplify the graph before we formulate the equations of motion.

Techniques for Bond Graph Simplification
We have identified two classes of simplification procedures, both of which arise
from studying the causal assignment in a bond graph.

Simplification: Inert bond graph segments
The first step of simplification is to remove bonds and junction structure elements
which have not been connected. Because each of the ports on the model represents
a point of mechanical interaction, the absence of a connection indicates that no
force is applied at that point in the associated direction. An open port therefore
behaves exactly as if a source of effort of zero magnitude was applied. The effects
of these effort sources are propagated through the model. A zero effort source
incident on a -0- junction has the effect of imposing a zero effort on all of the other
power bonds emanating from that junction. The -0- and the original effort source
can therefore be replaced by zero effort sources on the remaining bonds. The
effects of these new zero effort sources are then propagated. An effort source of
zero magnitude incident upon a -1- junction has no effect, because efforts at a -1-
junction must sum to zero and because the variable associated with a -1- junction is
a velocity and therefore does not affect any aspects of causality assignment. We
can therefore simply delete zero effort sources incident on -1- junctions. Dual
reasoning allows us to propagate and delete zero flow sources, i.e. ground
connections. We also delete two-port -1- junctions and two-port -0- junctions
(being careful to respect sign convention). %

1This class includes bond graphs, with constraining junction structures which we discuss later.
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Figure 5: Two shafts locked by meshing gears.

Inert elements also arise when kinematic constraints on a multi-degree of freedom
body interact to impose zero velocity or effort on elements which are not explicitly
constrained. This would arise, for instance, if two gears keyed to a shaft are meshed
with two other gears which are keyed to another shaft as illustrated in Figure 5.
Neither shaft can rotate unless the two gear ratios are identical. The way the gears
are coupled imposes zero velocity on them. In bond graph terms the connected set
of -0-, - 1 - and TF junctions, henceforth referred to as a junction structure,
constrains tH* attached elements. We seek to identify and delete bond graph
elements and junction structures that represent such static parts.
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The constitutive equations describing a junction structure consist of a set of effort
equations and flow equations. In general the flow equations have the form:

(1)

where [f+] is the column of flows (velocities) imposed by the junction structure on
the elements connected to it, [f J is the column of flows imposed on the junction
structure, [f|] is the column of internal flows and Aj, A2, A3, A4 arc matrices of
constants. Equation 1 expresses flow variables in terms of other variables more
fundamental in a causal sense and hence the terms on the diagonal of the partition
A2 arc all zero. Now, let there exist a junction structure in a bond graph with
admissible causality such that all external bonds impose effort on the junction
structure.2 In this specific case, [f J is a null column because none of the external
bonds impose flow. Then Equation 1 for this junction structure must take the form:

(2)

From Equation 2, it is possible to identify conditions for a junction structure to
impose zero velocity on all elements connected to it These junction structures are
not really n-ports because the behavior of internal variables is independent of what
is externally imposed and some effort/flow variables cannot be expressed in terms
of state variables. Such a junction structure is illustrated in Figure 5 which shows
the bond graph and corresponding flow equations of two shafts locked by two pairs
of meshed gears.

A junction structure cannot cause any element to have zero velocity if that element
is imposing flow causality on the junction structure because this violates the
definition of causality. Hence if the junction structure is to impose zero velocity on
all attached elements then it is necessary that the elements impose only efforts on
the junction structure. From the flow equation, which was derived for the above
situation we have:

2 [Karnopp 75a] states that such a junction structure cannot exist While that argument is valid if
bond graphs are created using the standard rules prescribed in [Rosenberg 83], such junction
structures can arise when bond graphs are assembled from sub-system models. Our contention is
that a junction structure such as this represents kinematic constraints which although self-consistent
within the bond graph frame-work represent either redundant constraints admitting motion or
conflicting constraints precluding motion.



[A2] [f,] (3)

and hence [ I - A j H f ^ O (4)

If Det[I - A2] is equal to zero then fj is arbitrary and f+ is not necessarily equal to
zero. If Det[I - A2] is not equal to zero then [fj] = 0 and hence from the flow
equation [f+] = 0. From these arguments we conclude that the necessary and
sufficient condition for a junction structure to impose zero velocity on all elements
connected to it is that all external bonds impose effort on the junction structure and
Det[I - A2] * 0. For the example shown in Figure 5, we can sec that the
determinant is zero only if the gear ratios are exactly the same for the two pairs. In
all other cases the two shafts are completely locked.

To determine if a junction structure is constraining, we first check that valid
causality can be assigned to the junction structure. We then strip away all the
elements and check that efforts are imposed on all the junction structure ports. This
determines if the junction structure could stall other elements attached to it. If
flows are imposed on one or more of the ports, then these ports are deleted and the
reduced junction structure is examined to determine if it is constraining. This
iterative procedure will isolate a constraining junction structure if one exists. The
final step is to evaluate Det[I - A2] to check if the junction structure is redundant or
constraining.

If on the other hand, the bond graph under consideration does not have such a
structure then all the ports will be deleted. When there are no ports remaining we
can conclude that a constraining junction structure did not exist in the graph.

Bond graph junction structures with causal or power loops and conditions under
which they can be solved have been discussed in [Perelson 75, Rosenberg
79, Karnopp 75b, Ort 73]. All causal loops whose external bonds impose effort (or
flow as the case may be) are constraining junction-structures. The conditions for a
junction structure to be constraining can be alternatively derived from the theorems
in [Rosenberg 79]. However, in the context of the modeling methodology presented
here, these structures are not pathological. Rather, they model device behaviors,
such as kinematic redundancy which are of interest to the designer.

Simplification: Dependent energy storage elements
The second issue, removing dependent energy storage elements, can be resolved
because bond graph representation allows us to identify two primary classes of
behavior preserving graph transformations to replace connected inertias and springs
by their equivalences, and thus obtain a minimal representation of the system.

The first set of these transformations are well known in circuit theory: Energy
storage elements connected in parallel or series are replaced by their equivalents,
after moving them across transformers if necessary. Similarly elements connected

10
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in a star arrangement can be transformed into delta formation and vice-versa. An I
clement is not independent Le. has derivative causality, when current or velocity is
imposed on it. In a general star network of Fs, current or velocity will be imposed
on one I. Figure 6 shows a mechanical, electrical and bond-graph version of the
star connection. In the equivalent delta form, as in Figure 7, all of the I elements
have integral causality.3

later.
independence of the state-variables in the delta form is, however, illusionaiy as we illustrate

11



The second set of transformations come from the energy expressions. In a number
of cases of derivative causality, the energy contribution from a dependent element
can be expressed as a linear combination of the energy contributions from more
than one other energy storage element In this case the dependent inertia cannot
simply be added to a single inertia as with a parallel connection but must be
distributed among several of them. If the parametric values of the independent
elements are suitably changed and the dependent element removed, the energy
expressions will not change. Since graph simplifications that do not change the
expressions for kinetic and potential energy leave the dynamic equations unaltered,
this method can also be used to eliminate derivative causality.

Consider a system with N inertias. Among the N let there be M inertias having
derivative causality. Every inertia has a velocity associated with it. The velocities
of the M dependent inertias can all be expressed as a linear combination of the
N-M velocities of the independent inertias. Each of the N inertias results in a
contribution to the Lagrangian proportional to the square of its associated velocity
and of the form of a sum of quadratic expressions of the form v?, v?, vt-v; where
v., Vj e (The set of velocities associated with the N-M independent inertias). If all
of the inertias result in P such linearly independent terms, the coefficient matrix of
the contributions from the N inertias can be written as a (NxP) rectangular matrix
such that:

M s f s ( 5 )

The lower bound in Equation 5 arises because each of the (N-M) independent
inertias contributes one and only one term to P. The upper bound is the number of
possibly different quadratic combinations of (N—M) velocities.

We define a basis set as some set of Q inertias such that the rank of the (QxP)
co-efficient matrix of the contributions from the Q basis inertias is the same as the
rank of the original (NxP matrix. Such a basis will include all of the P linearly
independent terms in the kinetic energy portion of the Lagrangian. If such a basis
set can be identified then the effect of the remaining (N-Q) inertias can be
distributed among the inertias comprising the basis set

When N>Q9 then Gauss elimination followed by row interchanges will reduce the
(NxP) rectangular matrix to a (QxP) matrix and (N-Q) rows with zeros in them.
The values of the equivalent inertias for the system can be determined directly from
the rows of the (QxP) portion of the transformed inertia coefficient matrix. Thus
(N-Q) of the M derivative inertias can be eliminated.

Figure 8 shows a rack and pinion arrangement with the corresponding bond graph.
The kinetic energy expression in the Lagrangian can be shown to be:

12
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Figure 9: Simplified bond graph of a rack and pinion.

If we replace lh by a source of zero effort in the bond graph and add the mass of Ih

to Ia and lb and subtract /^r2 from Iw then expression 6 will not change. The
resultant graph is shown in Figure 9. It can be shown that state-equations derived
from the bond graphs in Figure 8 and Figure 9 are identical.

This class of transformations is especially useful because the energy expressions
give a global view of the possible simplifications and thus avoid graph walking. In
fact, the parallel-series simplifications are pre-compiled special instances of this
method. The expression for kinetic energy also remains invariant in the star-delta
transformation. Although the delta form has all integral causality, it actually has
only as many independent state variables as the corresponding star form. The
apparent additional state is actually a linear combination of the other states and the
initial conditions but does not show up in the causal assignment. A similar situation
arises when two inductances are connected in parallel across ^voltage source.
Although causality will show that both inductances have integral causality it is
clear that the states are related. In the presence of derivative causality, the
formulation of state-space equations from bond graphs involves inverting a matrix.

13



While the star-delta transformation serves to mitigate this problem, the numerical
integration routines have to solve larger systems of equations unless the
independence of the equations is checked explicitly and "dependent states"
eliminated The other two transformations do address the problem of dependent
energy storage elements directly and make the bond graph more comprehensible
and are expected to make symbolic equation-formulation computationally more
tractable.

Domain Description
We have restricted our test domain to planar motion. Component models for spatial
motion would be larger and more cumbersome but would not present any
theoretical difficulties. Although our implementation handles only linear behavior,
the representation and the simplification techniques are general enough to handle
non-linear behavior as well. Non-linear behavior in such systems may arise from
non-linear constitutive laws describing specific components. It may also arise from
the nature of component connectivity, as in a four-bar mechanism, or from changes
in component connectivity as in a Geneva mechanism. While the first two cases
essentially fall within the modeling framework described above, the third will
simplify to two or more different models - the active one being decided by the state
of the system. For all three cases, if the non-linear parameters are determined by
the state-variables then forward integration in time can be used to obtain solutions
quite readily.

Example: Bicycle
A device such as the bicycle shown in Figure 1 consists of a number of rigid
masses which interact with each other and impose kinematic constraints on each
other. Consider the motion of the bicycle in a plane arising as a result of a force
applied to the pedal when the pedal arm is horizontal. The designer/modeller first
selects mass primitives to represent the crank assembly, the frame, and each of the
two wheels and then establishes kinematic connections between components. The
pinned connections between the wheels and the frame are represented by bonds
which impose common translation^ velocities on the frame and each wheel. The
no-slip wheel/ground rolling connection also imposes common translational
velocity but in the case of rolling the point of common velocity is on the periphery
of the wheel. At the contact point, therefore, the vertical and horizontal velocities
of the tire are zero, assuming that the tire remains on the road. The rear wheel also
interacts with the crank assembly through the chain. We have chosen to neglect the
massive characteristics of the chain and to include the kinematic characteristics as a
simple transformer element as indicated in Figure 10. Although we know from
experience that there is no motion of the crank assembly relative to the rear wheel,
these constraints are not imposed by the chain, and therefore are not included as

14



kinematic constraints between the crank and the rear wheel4 The crank assembly
does, however, share common translational velocities with the frame. Lastly, the
crank interacts with the applied force at the pedal. The aggregate model comprised
of the basic multi-port massive models representing the wheels, frame, and crank
assembly is shown in Figure 10. Also shown in the figure are bonds representing
the kinematic constraints among these elements. The figure therefore represents a
bond graph suitable for determining the motion of the bicycle resulting from a force
applied to the pedal.

It is clear, however, that this model is much more complex than necessary.
Complexity is significant from the point of view of a designer or modeller trying to
understand the behavior of the device, and also has significant ramifications on
equation formulation techniques. A perusal of the figure shows that the overall
bond graph is circuitous, redundant, exhibits a high degree of derivative causality,
and includes elements and bonds which we know from our own experience have no
relevance to the dynamic behavior of the bicycle. It is important therefore that we
are able to simplify the bond graph representing the bicycle prior to the application
of equation formulation techniques.

The first step of simplification is to remove bonds and junction structure elements
which have not been connected after propagating their effect as explained in the
section on deletion of inert elements. Next we consider the simplifications arising
from the specific physical location of the interaction ports. The attachment
locations appear as the transformer moduli in the multi-port massive body bond
graph element. All of these transformers are needed in the general case, however,
the specific geometry of the bicycle causes many of them to be degenerate. For
example, the vertical force applied to the tire at the point of contact with the ground
does not contribute a torque on the wheel because the point of contact is directly
below the axle. In this specific case the parameter TFxl is zero. Because the
torque is zero, the bond emanating from TFxI incident on the -1- junction has no
effect since a zero effort applied to a -1- junction has no effect as discussed
previously. Dual reasoning allows us to conclude that the deletion of the bond
connecting TFxl and the -0- junction will have no effect. All other zero modulus
transformer elements and their connected bonds may be deleted for exactly the
same reason. These simplifications are shown in Figure 11. The same figure also
shows simplifications arising from the deletion of zero value flow source
connections propagated through one junctions up to zero junctions as justified by
reasoning dual to the justification for deleting zero value effort source elements and
their connected bonds.

4Redundant constraints can be included, however, there are liabilities as well as benefits to doing
so.
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Figure 10: First Cut Mcxicl of the Bicycle
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The resulting bond graph is a much simplified version of the original but is still too
complex, the greatest degree of remaining complexity is embodied in the frame
element where three inertial elements and four bond graph circuits are present.
Although we know intuitively that this is too complex (inertia in the vertical
direction cannot, for example, be important for a bicycle moving horizontally in a
plane) we need to identify unambiguously the source of these unnecessary
complexities. The bond graph fragment highlighted in Figure 11 is a critical sub-
structure.

TFi-

Figure 12: Simplified example of constraining junction structure.

Consider the slightly simplified version of the highlighted area shown in Figure 12
consisting of two -1- junctions, two transformer elements and two inertial elements.
Assigning either of the inertial elements integral causality results in an
inconsistency and therefore cannot be valid. Assigning both of the inertial
elements derivative causality admits a consistent assignment of causality but one in
which causality is circuitous and in which equation formulation techniques would
require a simultaneous solution of algebraic equations. In this particular case those
algebraic equations can be satisfied only if the two transformer moduli are
reciprocals5 of each other. In that case the graph represents a kinematic
redundancy. If not, the velocity corresponding to each of the -1- junctions must be
identically zero. This is an example of the constraining junction structure discussed
previously. Going back to the bicycle problem, we can algorithmically isolate the
sub-graph shown in Figure 13. The determinant of [I - A2] in this case is given by
(1- the product of the moduli of TFxl and TF^). The determinant is zero only if the
horizontal position of the front axle and the rear axle are identical. This clearly
cannot be the case for a stable bicycle. Hence the entire structure shown in Figure
13 can be deleted from Figure 11 to arrive at the simplified bond graph shown in
Figure 14.

5Figurc 12 is really a bond graph model of the example in Figure 5. The transformer moduli in
any bond graph are assigned such that they represent the ratio of flows in the causal direction
through the -TF- junction. The -TF- ports in Figure 12 have opposing causal directions. Hence the
corresponding moduli will be exact reciprocals if the gear ratios of the two pairs are identical
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Although spread over most of the page, Figure 14 is really quite simple. It consists
of an acyclic bond graph with inertial elements, transformer elements, a force
source and the junction structure. If we view this structure as a tree emanating
from the force source, we may simplify the tree by moving from the leaves up
towards die root by determining equivalent inertias across transformers and by
combining inertias. Alternatively we could have used the energy approach to
determine the equivalent inertia. We arrive at the bond graph shown in Figure 15.
This simple bond graph shows us that the bicycle behaves as an inertia. The
effective inertia depends on the translational mass of all elements as well as the
rotational inertia of the front wheel, the rear wheel and the crank. The relative
importance of these inertias is determined by the transformer moduli which depend
on the chain sprocket ratio, crank arm length, and the wheel diameters.

The simplification made it possible to consider not only motions in the horizontal
direction, but also the resulting rotational velocities and a force in the vertical
direction. Although direct formulation methods were employed, constraint forces
did not need to be considered explicitly.

We can use the same model to analyze a situation such as shown in the right-hand
side of Figure 1. Here the bicycle is shown tipping over after crashing into a wall.
At the instant of crashing the boundary conditions on the bicycle change. The front
wheel now makes contact at two points and the rear-wheel is not constrained to
remain on the ground. The bicycle bond graph with revised boundary conditions is
shown in Figure 16. The model can be reduced to two separate bond graphs as
shown in Figure 17. These can be further simplified to two equivalent inertias.
The equivalent inertia in this case depends on the rotational inertia of the bicycle
frame which can no longer be deleted.

Summary and Conclusion
We have presented some issues and ideas underlying automated modeling in a
design tool. In our design environment we define as primitives idealized physical
components and kinematic connections in terms of bond graph fragments that
describe their behavior. These bond graph fragments are not only accurate models
of the physical objects but also satisfy the iequirements of natural interface. The
user specifies the kinematic connections between different components of the
design and the system translates this into a procedure for aggregating component-
level models to form a device-level model. This model is then simplified to a much
reduced problem. The simplification procedures propagate externally imposed
boundary conditions to delete constrained parts of the model and also replace
dependent energy storage elements by their equivalents. Simplifying the model
facilitates drawing inferences about dominant behavior and makes analysis and
simulation more tractable. Characterizing the resulting equations of motion
symbolically will enable us to evaluate design trade-offs and determine high level
form-function relationships for the designed device.
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Figure 13: Constraining junction structure.

20



Figure 14: Model without statically constrained elements.
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Figure 15: Final simplified bond graph model of the bicycle.
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Figure 16: First-cut model of bicycle tipping.

23



1
•

• •
\ /

P.Aib

=1—f ny: 7?

C IS

1 1

Figure 17: Simplified tipping model.

24



References
[Balasubramaniam 91]
Balasubramaniam, L., Paz-Soldan, J. P. and Rinderle, J. R., "Automated Modeling to Support
Conceptual Design/ Computer Aided Design, 1991, pp. under review.

[Bos 85]
Bos, A. M. and Breedveld, P. C, "1985 Update of the Bond Graph Bibliography t" Journal of the
Franklin Institute, Vol. 319, No. 1/2, Feb 1985, pp. 269-286.

[Finger 89]
Finger, S. and Rinderle, J. R., "A Transformational Approach to Mechanical Design Using a Bond
Graph Grammar," Proceedings of the First ASME Design Theory and Methodology
Conference, September 1989.

[Haug 89]
Haug, E J, Computer-Aided Kinematics and Dynamics of Mechanical Systems Volume I: Basic
Methods, Allyn and Bacon, Boston, 1989.

[Hood 87]
Hood, S. J. and Palmer E. R., "The Design Analysis for Reliability Tool," Proceedings of the
American Control Conference, June 1987.

[Hoover 89]
Hoover, S. P. and Rinderle, J. R., "A Synthesis Strategy for Mechanical Devices," Research in
Engineering Design, Vol. 1, No. 2,1989, pp. 87-103.

[Kamopp 75a]
Kamopp, D. and Rosenberg, R., System Dynamics: A Unified Approach, John Wiley & Sons, New
York, 1975.

[Karnopp 75b]
Kamopp, D., "Some Bond Graph Identities Involving Junction Structures," Journal of Dynamic
Systems, Measurement and Control, Dec 1975, pp. 439-441.

[Macfarlane 89]
Macfarlane, J. F., Qualitative and Symbolic Analysis of Dynamic Physical Systems, PhD
dissertation, University of Minnesota, 1989.

[Mclnnis 89]
Mclnnis, J. B. and Elmaraghy, W. H., "Automated Bond Graph Construction and Analysis for
MSBD," Proceedings of ASME Computers in Engineering, July 1989, San Francisco

[Orlandea 77]
Orlandea, N., Chace, M.A and Calahan, D.A, "A Sparsity-Oriented Approach to the Dynamic
Analysis and Design of Mechanical Systems," Journal of Engineering for Industry, Vol.
99,1977, pp. 773-784.

[Ort73]
On, J. R and Martens, H. R., "The Properties of Bond Graph Junction Structure Matrices," Journal
of Dynamic Systems, Measurement and Control, Dec 1973, pp. 362-367.

[Paul 70]
PauU B. and Krajcinovic, D., "Computer Analysis of Machines with Planar Motion," Journal of
Applied Mechanics, Vol. 37,1970, pp. 697-712.

[Paynter 61]
Paynter, H. M., Analysis and Design of Engineering Systems, MIT Press, Cambridge, 1961.

25



[Paz-Soldan88]
Paz-Soldan, JJP. and Rinderle, J.R., "Conceptual Design Environments: Requirements and
Representation," Internal Lab Report CMU-MEDL-88-24, Department of Mechanical Engineering,
Carnegie-Mellon University, 1988.

Pcrelson, A. S.v "Bond Graph Junction Structures," Journal of Dynamic Systems, Measurement, and
Control, Jut* 1975, pp. 189-195.

[Prabhu89]
Prabhu, D. R. and Taylor, D. L., "Synthesis of Systems from Specifications Containing Orientation
and Positions Associated with Power Flow," Design Automation Conference, 1989.

[Rosenberg 75]
Rosenberg, R. C, "The Bond Graph as a Unified Data Base for Engineering System Design,"
Journal of Engineering for Industry, Vol. 97, No. 4, November 1975, pp. 1333-1337.

[Rosenberg 79]
Rosenberg, R. C. and Andry, A. N., "Solvability of Bond Graph Junction Structures with Loops,"
IEEE Transactions on Circuits and Systems, Vol. CAS-26, No. 2, Feb 1979, pp. 130-137.

[Rosenberg 83]
Kamopp, D. and Rosenberg, R., Introduction to Physical System Dynamics, McGraw-Hill, New
York, 1983.

[Sheth 72]
Sheth, P. N. and Uicker, J. J., Jr., "IMP, A Computer Aided Design Analysis System for
Mechanisms and Linkages," Journal of Engineering for Industry, Vol. 94,1972, pp. 454-464.

[Ulrich 89]
Ulrich, K. T. and Seering, W. P., "Synthesis of Schematic Descriptions in Mechanical Design,"
Research in Engineering Design, Vol. 1, No. 1,1989, pp. 01-16.

26


