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This report proposes a new graphical representation and perspective on the Evans

root locus, a well known controls design technique for stability and performance

evaluation. The visualization is based on the adjustment of a proportional control gain in

the same fashion that is employed in constructing the root locus. The result is a set of

Variable Gain Plots (VGPs) that depict the polar coordinates, i.e., magnitude and angle, of

each closed loop system eigenvalue in the complex plane as a function of the gain. The

VGPs consist of two graphs: (i) magnitude of system eigenvalues vs. gain, and (ii)

argument of system eigenvalues vs. gain.

The VGPs impart significant insight for determining the values of gain that render a

closed-loop system either stable or unstable. By exposing the correspondence of gain

values to specific eigenvalues, the VGPs are useful tools for identifying closed-loop

designs meeting performance specifications. An additional advantage of the VGPs is their

ability to reveal by inspection information about closed-loop sensitivity to gain variations.

Finally, the VGPs are applicable to both single-input, single-output (SISO) and multiple-

input, multiple-output (MIMO) closed-loop feedback systems. For both cases, the VGPs

present eigenvalue trajectories in an informative and unambiguous manner, and serve as a

powerful new design paradigm.
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Introduction

In a sequence of two landmark papers, W.R. Evans presented a technique for

analyzing and graphically portraying the loci of closed-loop system poles (Evans, 1948,

1950). Since the publication of these papers, the Evans root locus technique has become a

standard and commonly employed synthesis tool of the control design engineer. The root

locus plot has several qualities that make it a valuable classical controls tool; perhaps its

most valued assets are the ease with which it may be implemented and the tremendous

amount of information and insight that it provides.

For most single-input, single-output (SISO) linear time-invariant systems,

sketching the root locus as a function of gain is a simple and well documented task. Most

undergraduate controls textbooks present the sketching rules for constructing the root locus

plot By following these rules, the loci of roots - or system eigenvalues - may be graphed

in the complex plane as certain parameters are varied Although the methods are applicable

and extend to other (real valued) parameters, the most common parameter investigated is

the proportional control gain. This is the parameter studied in this report Even though the

sketch may not be exact, the approximate root locus plot provides a plethora of useful

information about system stability and performance. For example, closed-loop stability

can be determined, and damping and response speed can be estimated as the gain is varied

However, the plot indicates only the trends of the pole locations for varying values of gain,

and, in general, does not present specific gain values associated with pole locations.

This report promotes an alternate graphical representation of the root locus plot that

exposes the relationship between the pole locations and the gain without sacrificing any of

the information presented in the standard root locus. The representation, based on the same

Variable Gain Analysis employed by Evans, is summarized by a pair of Variable Gain Plots

(VGPs) that casts the magnitude and angle of the system eigenvalues in the complex plane

as an explicit function of gain. By utilizing an eigenvalue polar representation, the VGPs

present system performance information such as damping and natural frequency in a clear

and concise manner. Additionally, eigenvalue sensitivity can be obtained by examining the

slopes of the magnitude and angle plots with changing gain. The VGPs can be constructed

for, and are applicable to, both SISO and multiple-input, multiple-output (MIMO)

systems.

This report is organized into four sections. The following section is a conceptual

framework that motivates the development of a pair of plots, namely the VGPs, that offer

several advantageous features and serve as rich synthesis tools. In a subsequent section,
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several SISO and MIMO examples that demonstrate the utility of the VGPs for stability,

performance and sensitivity analyses are presented Finally, the results of this report are

summarized and future research is identified

Conceptualization

This section presents a systematic development of the VGPs, an alternate graphical

means for representing system behavior. The conceptualization begins with the Evans root

locus plot in the traditional two-dimensional complex plane. It is then complemented by a

third axis representing the gain. The resulting three-dimensional plot is conformally

mapped into a new space that presents polar coordinate information associated with the

complex plane. Two orthogonal views of this new three-dimensional space show the

VGPs. They present root locus information in a novel and enhanced manner.

The development of the VGPs from the root locus plot is paralleled by the

development of the Bode plots from the Nyquist diagram. As such, a fundamental

relationship appears to exist between the Bode plots, the Nyquist diagram, Evans root

locus, and the VGPs. A unified framework linking these four controls tools is discussed in

the closing section of this report

This section addresses the SISO case, as covered in "classical controls." The

analysis, though, may be extended to the MIMO case, and examples of multivariable VGPs

are presented in the subsequent section. For purposes of illustration, a single "theme"

example given by the open-loop transfer function, g(s),

g{z)_ fr + 3)
(s + l)(s + 2) (1)

is investigated here. This transfer function is embedded in a standard closed-loop negative

feedback system shown in Figure (1).

•N e(s) k u(s) g(s) y(s)

Figure 1. Closed-Loop SISO Negative Feedback Configuration.



Two Old Friends: Two-Dimensional Polar Representations

The Nyquist Diagram (Nyquist, 1932)

The Nyquist diagram is a polar plot of a sinusoidal transfer function, g(ja>). The

magnitude erf g(jco) is plotted against the angle of g(j<o) for

a > < o ° (2)

(The lower limit of equation (2) can alternatively be chosen as -*», with the resulting curve

being symmetric about the real axis.) Although the Nyquist diagram is a polar

representation, it is graphed in a complex Cartesian plane (two-dimensional space) where

the implicit variable is CD. Figure 2 is the Nyquist diagram of equation (1) for co given by

equation (2). The Nyquist curve starts at co=O corresponding to a D.G gain of 1.5 and

phase angle of 0\ and asymptotically approaches the origin (zero magnitude) from-90*.

Real

-0.2

-0.4

-0.6 -

-1.0 L

Figure2. The Nyquist Diagram of Equation (1).

It is possible to show the frequency graduation on the locus (with tick marks

denoting equal values of co) or to present superimposed constant frequency contours

(Ogata, 1990). However, even if these are added, the Nyquist diagram is not "designed"

nor convenient for identifying the frequency associated with a given point on the curve.

The Evans Root Locus (Evans, 1948,1950)

The root locus plot drawn in the complex plane shows the location of the

characteristic roots, i.e., the eigenvalues, in terms of some (real valued) system parameter



such as the proportional gain. It is based on the closed-loop transfer function of Figure 1

given by

where k is the proportional gain. The stability of the closed-loop system is determined by

the eigenvalues, which are the solutions of

kg(s) = -l (4)

i.e., the denominator roots of equation (3). The root locus is the solution set of equation

(4) as the gain k varies in the range

°*k<~ (5)

Equation (4) is equivalent to two conditions: the angle criterion,

Zkg(s) = ± 180*(2m + 1), m = 0, 1, 2, . . . (6)

and the magnitude criterion,

|kg(s) |=l (7)

The shape of the root locus plot is determined entirely by the angle criterion,

equation (6). Then, for any eigenvalue s on the root locus, the magnitude criterion,

equation (7), is invoked to solve for the corresponding value of k. (This process is

referred to as scaling the locus.) Figure 3 is the root locus plot of equation (1) for k given

by equation (5). Each branch of the root locus starts at k=0 corresponding to a system

open-loop pole, and asymptotically approaches either a finite or infinite transmission zero.

It is possible to show the gain graduation on the locus (with tick marks denoting equal

values of k) or to present superimposed constant gain contours.

The root locus gives a direct indication of closed-loop system instability by

observing if branches enter the right half complex plane (indicating positive real-pan

eigenvalues). Hence, by inspection, it is possible to determine the stability of the closed-

loop system as as the gain varies. In addition, the root locus plot is a graphical

performance tool providing metrics of natural frequency (C0Q) and damping ratio (Q. These

two characteristics, known from magnitude and angle information in the Cartesian plane,

enable the calculation of many critical performance indices (damped natural frequency,

system time constants, etc.) It follows that the root locus plot may be viewed as a polar



magniflnfc and angle components. An alternative means for expressing the complex value,

is to report its angle, 0, and magnitude, R,

9

(8)

(9)

(10)

where 6 in equation (9) is given by the two argument inverse tangent function. Plotting 6

and R in a Cartesian plane has significant advantages, as discussed below.

Figure 5. Three Dimensional Evans Root Locus Diagram of Equation (1).

Variable Frequency Plot

Equations (9) and (10) can be used to transform Figure 4 into Figure 6. This figure
shows the effect of frequency on the magnitude and angle of the open-loop system given
by equation (1). (For clarification, the curve begins in the front upper left hand comer, and
ends at the rear lower right hand comer.) Clearly, this three-dimensional curve is related to
well-known variable frequency plots mentioned in the literature (Bode, 1940).



Figure 6. Three Dimensional Variable Frequency Plot of Equation (1).

Figure 7. Three Dimensional Variable Gain Plot of Equation (3).
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Equations (9) and (10) can be used to transfcMm Figure 5 into Rgurc This figure
shows the effect of gain on the magnitude and angle of the closed-loop system given by
equation (3). This three-dimensional curve is related to the root-locus diagram.

An Old and a New Friend: Two Dimensional Cartesian Representations

The Bode Plots (Bode. 1940)

The Bode plots consist of two planar plots, one called the Bode magnitude plot
showing magnitude vs. frequency, and the second called the Bode phase plot reporting
phase (angle) vs. frequency. The standard Bode plots employ logarithmic scaling for both
the frequency and magnitude axes, and a linear scale for the phase axis. Figures 8a,b are
the Bode magnitude and phase plots for the open-loop system given by equation (1).

The Bode plots represent two orthogonal views of the three-dimensional Variable
Frequency Plot of Figure 6, i.e., the Bode magnitude plot is seen by observing Figure 6
from a direction orthogonal to the co-magnitude plane and the Bode phase plot is seen by
viewing Figure 6 from a direction orthogonal to the co-phase plane. (In fact, Figures 6 and
8 were generated using the same data.) Although the same information is presented in
Figures 6 and 8, the traditional Bode plots are significantly simpler to understand. Indeed,
Bode plots are among the control designers9 most powerful synthesis tools.

The Variable Gain Plots (VGPs)

Just as Bode plots simplify the three-dimensional Variable Frequency Plot, VGPs
may be employed to simplify the three-dimensional Variable Gain Plot Figures 9a,b are
such a representation for the closed-loop system of equation (3). (Figures 9c,d show a
magnified view over the region 0 £ k < 03.) The Variable Gain Magnitude Plot (VGMP)
is seen by viewing Figure 7 from a direction orthogonal to the k-magnitude plane and the
Variable Gain Angle Plot (VGAP) is seen by observing Figure 7 from a direction
orthogonal to the k-phase plane. Although the same information is presented in Figures 7
and 9, the VGPs are significantly simpler to understand.



Figure 8a. The Bode Magnitude Plot of Equation (1).

O. -60 -

-75 -

-90

Figure 8b. The Bode Phase Plot of Equation (1).

Notice that the eigenvalues are represented by a single line at -180* on the VGAP
when they are real, since they are both on the negative real axis. Conversely, when the
eigenvalues are complex conjugates, their magnitudes are equal corresponding to a single
segment on the VGMP.
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Figure 9a. The Variable Gain Magnitude Plot of Equation (3).
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Figure 9b. The Variable Gain Angle Plot of Equation (3).

The VGAP reflects the basic construction rule of the root locus, i.e., the angle

criterion of equation (6). As a result, the VGAP is symmetric along the -180* line.

Furthermore, the angle criterion dictates that the eigenvalues must lie on the real axis or be

complex conjugates. Thus, a pair of complex conjugate eigenvalues is shown as a single

curve in the VGMP with corresponding angles symmetrically configured about the -180*

line shown in the VGAP. As k varies, the complex conjugate eigenvalues may become

distinct real eigenvalues, causing their angles to become equal (at a multiple of-180*) and

permitting their magnitudes to differ.
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Figures 9c,d. Detailed VGPs over the Region 0 £ k < 0 3 .

The VGMP shows the presence of two open-loop poles with magnitudes 1 and 2 at

k = 0. As k -> °o it shows a single finite transmission zero with magnitude 3 and an

infinite transmission zero. The VGAP indicates that the two open-loop poles and finite

transmission zero are located in the left-half plane since they have angles of -180*.

Furthermore, as k -* «» the VGAP shows that there is an asymptote of -180*

(corresponding to the infinite transmission zero).

Both VGPs highlight the break points corresponding to points where branches

leave or enter the real axis of the root locus. For example, these break points occur at

k * 0.17 and at k * 5.83. Between these break points the VGAP indicates that the loci

of the two branch points are not on the real axis and the corresponding single curve of the

VGMP confirms that the trajectories are those of a complex conjugate pair.

The VGAP and the VGMP present several important stability and performance

features of the system; these are summarized in Figures 10a, b. (In Figure 10b "NA"

denotes "Not Applicable.") Stability may be determined from the VGAP by noting if the

angle of an eigenvalue meets the following criterion

180*(2m+l)-90*<|e |<180*(2m+l) + 90* , m = 0 ,1 ,2 , . . . (11)

corresponding to a location in the second and third quadrants of the complex plane. For the

case m=O, equation (11) simplifies to

90* < 9 < 270*

The complementary unstable range is shown in the shaded region in Figure 10b.

(12)
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Figure 10a. Parameters in the Variable Gain Magnitude Plot
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Figure 10b. Parameters in the Variable Gain Angle Plot

The calculations of performance measures are simplified with the VGPs. In

particular, the natural frequency, 0)n rad/s, is the magnitude shown in the VGMP, and the

damping ratio, £, is

C=|cos-i(e)| (13)

where 6 is the angle from the VGAP. As shown in Figure 10, supplementary axes can be

added to the VGPs to display On and C, directly. If the eigenvalues are on the real axis, the

VGMP presents the system time constants.
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Although the conventional root locus plot provides such performance information,

there are several advantages of the VGPs. First, the value of k as an independent variable

is represented directly on the abscissa. Hence, the influence of gain on ordinate

(dependent) variables is exposed explicitly. Second, the performance measures of o^ and

£ are represented directly. Thus, given a design specification for 0)n and £, the requisite

value of k may be determined by inspection. A novel feature of the VGPs is this link of

performance and gain.

By exposing gain as an independent variable, the VGPs are well suited for

determining eigenvalue sensitivity. From the slopes of the VGPs, the sensitivity, i.e.,

change in magnitude and angle of each eigenvalue per change in gain, can be ascertained.

This is useful in the synthesis of control systems that are less sensitive to gain variations.

In addition to the advantages above, the VGPs provide a unified approach for SISO

and MIMO systems where compensation dynamics are governed by a single scalar gain

amplifying all plant inputs. This is an important advantage since the root locus branches

can be identified uniquely as a function of gain. MIMO VGPs are introduced later in two

examples.

Illustrative Examples

This section presents examples that demonstrate the utility of the VGPs. Three

examples are presented: (i) a more complicated SISO example, (ii) a decoupled MIMO

example, and (Hi) a coupled MIMO example.

Non-Trivial SISO Example

Figure 11 is the root locus plot for the negative feedback system of Figure 1 with

the open-loop transfer function

(Equation (14) is employed in example A-5-3, Ogata, 1990.) The root locus begins at the

open-loop poles, i.e., the roots of the denominator of equation (14). These open-loop

poles are located at s={0, +1, -2 ± VT}. There is a single finite transmission zero at value

s—1. The open-loop complex conjugate pole pair migrates to the real axis with increasing

gain. One of these poles then proceeds to the finite transmission zero; the other pole moves

to an infinite transmission zero along an asymptote of -180*. The two real open-loop

poles migrate to s=0.46, and then break out from the real axis. As a complex conjugate
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pole pair, they move to the left of the imaginary axis. Subsequently, they migrate back to
the right of the imaginary axis and continue toward infinite transmission zeros along
asymptotes of ±60\ For a small range of k, die root locus is located completely within the
left half of the complex plane. This range, corresponding to a stable closed-loop system,
may be found from the magnitude criterion (equation (7)) to be

23.3 < k < 35-7

These gain values are not evident from Figure 11.

(15)

<
-1

Figure 11. Root Locus for System Given by Equation (14).

Figure 12a,b are the VGPs for the system given by equation (14). Information
about the open-loop eigenvalues is shown at k = 0: (i) there is an unstable set of open-
loop poles at an angle of 0* having magnitudes of 0 and 1; and (ii) there is a complex
conjugate open-loop pole pair having magnitude 4 at angles of -120* and -240°. By
inspection, these complex conjugate poles have a natural frequency of 4 rad/s and a
damping ratio of 0.5, although this information is "secondary" since the open-loop system
is unstable. In Figure 12a,b additional vertical axes reporting natural frequency and
damping ratio are shown.

For positive values of gain, the system operates under closed-loop negative
feedback and generates interesting eigenvalue trajectories. For example, the solid black
lines in the VGMP and VGAP represent the locus of the pole pair that originates on the real
axis. The solid gray lines in these plots track the locus of the poles that start as a complex
conjugate pair. Notice that when a given pole pair is complex, the two poles have the same

15



but are distinguished in angle. Conversely, when poles lie on the real axis, they
have a principal angle of either -180* or 0* corresponding to negative or positive real
values, respectively. Furthermore, the VGPs show that the system is stable only for a
specific range of k. The range matches that given in equation (IS). Figure 13 is an
enlargement of a section of the VGAP highlighting this stable region of the closed-loop
system from which the gains may be read directly. The 90* boundary is marked in the
figure in accordance with the criterion presented in equation (11).

10 20 30 40 60 70 80 90 100

Figure 12a. VGMP for System Given by Equation (14).

-270

20 30 40 50 60
Gain, k

70 80 90 100

Figure 12b. VGAP for System Given by Equation (14).
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Figure 13. Expanded VGAP for System Given by Equation (14).

The high gain asymptotes of the root locus are found by examining the VGAP for
large values of k. The finite zero at s=-l is identified by the single pole asymptotically
approaching unity magnitude at an angle of -180°. The remaining three eigenvalues
asymptotically approach infinite zeros at angles ±60* and -180*. For gains higher than
those reported in Figure 12a,b, these asymptotes are increasingly prominent

Further inspection of the VGPs provides information about die closed-loop system
sensitivity to changes in gain. In the example, the system is highly sensitive to gain
variations when k is small as evidenced by the rapid change in both the angle and
magnitude of the system eigenvalues. This behavior is noticeable at k~3.1, where the
angle of the unstable pole pair rises abruptly. Sensitivity information is not readily
available from the standard root locus plot (Although unwieldy, some measure of
sensitivity can be estimated from the root locus by noting changes in the distances between
tick marks of equal increment gain.)

MIMO Examples

In the MIMO examples presented below, the system is embedded in the closed-

loop feedback configuration of Figure 14. The input-output dynamics are now described

by a square transfer function matrix, G(s), whose elements are transfer functions. For the

examples, the controller is K(s) = kl, implying that each input channel is scaled by the

same constant gain k. The internal structure of G(s) is given by the state-space equations:

(16)
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(17)

where x is the state vector of length n, u is die input vector of length m, and y is the output
vector of length, m. Matrices A, B and C are the system matrix, the control influence
matrix, and the output matrix, respectively, with appropriate dimensions. The feedback
law

u(t)«kle(t)

is specified where the error vector, e, is

e(t)«r(t)-y(t)

(18)

(19)

Figure 14. Closed-Loop MIMO Negative Feedback Configuration.

The eigenvalues of the closed-loop system, s = Xj (i»l,2,...,n), are the roots of
4»CL(S), the closed-loop characteristic polynomial,

1 (20)

(21)

A] (22)

By equating the determinant in equation (20) to zero, the MIMO generalization of equation
(4) is obtained. The presence of the determinant is the major challenge in generalizing the
SISO root locus sketching rules to MIMO systems. The closed-loop system eigenvalues
may also be determined from equations (16) - (18) as

Xi = eig[A-B(kI)C] (23)

In the examples, the loci of closed-loop eigenvalues are calculated from equation (23) as k
is monotonically increased from zero.

where the transfer function matrix G(s) is

and where <|>OL(S) is the open-loop characteristic polynomial,

18



Decotmled MIMO Examnfe

This example demonstrates the use of the VGPs for exploring the behavior of a
decoupled multivariable system. The state space representation of the system is

(24)

(25)

corresponding to the transfer function matrix

G(s)

1 0
0 1

s + 1

0 _
2J

(26)

It represents two first order SISO systems with eigenvalues at s={- l , - 2 } . Since the

system is decoupled, the multivariable root locus may be considered to be the superposition

of two SISO root locus plots. That is, the MIMO root locus diagram depicts two

eigenvalue trajectories, one beginning at s=-l and the other beginning at s=*-2. Both

trajectories follow a straight line path along an angle of -180*. Figure IS presents the root

locus for this MEMO decoupled system. Notice that it does not follow the rules of the

familiar SISO root locus {e.g., the SISO rule for the portion of the root locus on the real

axis is violated), and is not intuitive.

JO)

« • <• < *
-3 -2 -1

- .0.3
. .0 .2
- .0.1

- 7 - 6 - 5 - 4 - 3 - 2 - 1 0

Figure 15. Root Locus for System Given by Equations (24) - (26).

Figure 16 is the VGMP for this decoupled MIMO system. Although not shown,

the VGAP indicates that both eigenvalues have angles of-180*. Thus, the two open-loop

eigenvalues are at s={- l , - 2 } . Furthermore, as k increases, both eigenvalues proceed

deeper into the left half plane along the -a axis at the same constant rate. From the VGMP,
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there is no ambiguity as to the number or location of the poles. Thus, the VGPs provide

significantly more insight into the behavior of the closed-loop system.

UJ

0.5 1.5 2 2.5 3
Gain, k

3.5 4.5

Figure 16. VGMP for System Given by Equations (24) - (26).

Coupled MIMO Example

This example demonstrates the use of the VGPs for understanding the closed-loop

behavior ef a coupled multivanable system. Again, the system is a^ume^ to be embedded

in the closed-loop configuration of Figure 14. The plant dynamics are now given by the

state space model

. . . r_i m . . r t 11 . .
(27)

(28)

corresponding to the transfer function matrix

(s-D

G(s) (s+lXs + 2) (s+lXs + 2)
-6 (s-2)

L(s+lXs

(29)

(Equation (29) is used as an example by Postlethwaite and MacFarlane, 1979, and later by

Yagle, 1981.) This coupled MIMO system has eigenvalues at s=( - l , - 2 } . Since the

system is coupled, the multivanable root locus is more complicated than superimposed

SISO root locus plots. The MIMO root locus diagram shown in Figure 17 depicts two

20 .



eigenvalue trajectories, one beginning at s»-l and the other beginning at s»-2. As in the
decoupled example, the eigenvalue at s»-2 follows a real axis trajectory along an angle of -
180°. The eigenvalue at s=-l does not follow the same trajectory. It initially migrates to
the right, proceeding to s=l/24 ~ 0.042, and then reverses. As k is increased, the pole
moves back to the left of the imaginary axis along a -180# asymptote* For all values of k,
both eigenvalues are purely reaL Notice that Figure 17 does not follow the rules of the
familiar SISO root locus, and is extremely counter intuitive.

jCD

0 . 3 - •

0 . 2 - •

- 1 0 - 8 -6 ' -4 -2 0

Figure 17. Root Locus for System Given by Equations (27) - (29).

Figure 18a,b presents the VGPs for the coupled MIMO system. Figure 19 is an
expanded version of the VGMP that presents the unstable region with higher resolution. It
is clear that gain values in the range

l* fc£2 (30)

yield an unstable closed-loop system. Figure 19 confirms the maximum magnitude of the
eigenvalue at 0*. An abrupt change in eigenvalue angle occurs when the closed-loop
system becomes unstable. This is expected since there is a 180# jump in angle as the
eigenvalue passes through the origin, highlighting the stable-unstable transition.

The standard root locus plot of this coupled MIMO example is confusing because of
the collapse of the Riemann surface into a single complex plane. Since the plot is drawn in
two dimensions, branch points may be generated by more than one gain value and,
therefore, may not be uniquely presented. The VGPs, however, display eigenvalue
magnitude and angle information in an unambiguous and concise manner.
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Figure 18a. VGMP far System Given by Equations (27) - (29).
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Figure 18b. VGAP for System Given by Equations (27) - (29).

Conclusions

The Variable Gain Plots developed in this report are a set of illuminating plots that

expand and enhance the control engineers9 design tool set Just as Bode plots supplement

the information given in the Nyquist diagram, VGPs complement the root locus

presentation by recasting it in a new and enlightening manner. By presenting the

magnitude and phase in separate graphs, Bode plots simplify the information contained in

the Nyquist diagram . As such, the Bode plots add a third "dimension" to the Nyquist

22



diagram. Analogously, the VGPs are designed to supplement the root locus by adding a
third "dimension.'' In the Bode plots, the common axis linking magnitude and argument is
angular frequency; in the VGPs, the common axis bridging magnitude and argument is
gain.

S
LJLJ

0.8 1.2 1 . 4 1 . 6
Gain, k

Figure 19. Expanded VGMP for System Given by Equations (27) - (29).

Figure 20 highlights the correspondence of four classical controls graphical tools.
As shown, the VGPs fill what may be viewed as a "missing" quadrant of the classical
controls tool set The first row portrays the Nyquist diagram and the Evans root locus
spanning a two-dimensional complex plane. The second row shows the Bode plots and
VGPs spanning a three-dimensional (real) space. The columns show the variable that is
used to increase the dimension, i.e.f frequency for Bode plots, gain for VGPs.

The proposed VGPs enhance the root locus by explicitly portraying the relationship
between the gain and the location of each eigenvalue whose trajectories are mapped by the
root locus. This information is not readily available from the root locus plot. The
enhancement enables the control designer to identify, by observation, an eigenvalue
location with a specific gain, and hence directly view the influence of the gain on stability
as well as on system performance. Furthermore, the VGPs provide a direct measure of
eigenvalue gain sensitivity. The change in eigenvalue for a given change in gain is
indicated by the slope of the magnitude and angle VGPs. This measure of sensitivity
highlights the "cost1* of selecting eigenvalue locations corresponding to high gain values.

Many similarities and differences exist between the root locus and the VGPs. For

example, both the root locus plot and the VGPs can be drawn for systems with
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transpoctatioo^gs or dead tune. Unlike the root locus plot, the VGPs explicitly highlight

open-4ooppo^ near or at tnmsmissioii zeros. These poles are depicted as horizon tal lines

indicating coMtant magnitude and angle for all gains. In the root locus plot pole-zero

cancellations are normally camouflaged.
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Figure 20. A Unified Control Design Domain.

Further work is necessary to develop intuitive geometric relationships between the

Bode plots that present open-loop information and the VGPs that present closed-loop

information (for k * 0). The Nichols chart may provide the appropriate connection. It

presents the relationship between the frequency response of the openr-loop system and that

of the closed-loop system. In so doing, it displays four dimensions of information (i.e.,

open and closed loop gain and magnitude) in a two-dimensional format where co is the

implicit variable. The Nichols chart is a challenging chart to generate and comprehend;

however, it does provide a bridge between open-loop and closed-loop systems in the
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frequency domain. If the connection between Bode plots and VGPs is made, then some of
the more powerful frequency domain synthesis tools may find new applications in control
theory.

Future work is also targeted at developing analogous "root locus'* rules for

sketching the VGPs. Although it appears possible to identify these rules, their utility may

be limited given the ability for real-time computer implementation*

Finally, it appears that VGPs offer significant advantages over standard root locus

plots for MIMO systems. The major enhancement is the generation of eigenvalue

trajectories that are represented as a function of k (where the compensation has been

assumed to be the same static gain applied to all channels). The VGP representation

provides a unique description of the eigenvalues. Typical root locus plots do not

necessarily generate unique trajectories, as some branches may overlap. This overlap

reduces the usefulness of the MIMO root locus.

Although one may suspect that the concepts of this report are "obvious," they do

not appear to be mentioned in the literature nor seem to be known to control designers. The

VGPs may be viewed as a missing classical controls tool.

In closing, is is not our intent to claim any credit for the incalculable contributions

of Nyquist (1932), Bode (1940), and Evans (1948, 1950), but rather to view their

contributions in a new light
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