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‘This report proposes a new graphical representation and per spective on the Evans
root locus, a well known controls design technique for stability and performance
evaluation. The visualization is based on the adjustment of a proportional control gain in
the same fashion that is employed in constructirig the root locus. Theresult is a set of
Variable Gain Plots (VGPs) that depict the polar coordinates, i.e., magnitude and angle, of
each Closed loop system eigenvalue in the complex plane as a function of the gain. The
VGPs consist of two graphs. (i) magnitude of system eigenvalues vs. gain, and (ii)
argument of system eigenvaluesvs. gain.

The VGPsimpart significant insight for determining the values of gain that render a
closed-loop system either stable or unstable. By exposing the correspondence of gain
values to specific eigenvalues, the VGPs are useful tools for identifying closed-loop
designs meeting performance specifications. An additional advantage of the VGPs is ther
ability to reveal by inspection information about closed-loop sensitivity to gain variations.
Finally, the VGPs are applicable to both single-input, single-output (SISO) and multiple-
input, multiple-output (MIMO) closed-loop feedback systems. For both cases, the VGPs
present eigenvaluetrajectoriesin an informative and unambiguous manner, and serve asa
power ful new design paradigm.
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I_ntroduction

In a sequence of two landmark papers, W.R. Evans presented a technique for
analyzing and graphically portraying the loci of closed-loop system poles (Evans, 1948,
1950). Sincethe publication of these papers, the Evansroot locus technique has become a
gandard and commonly employed synthesistool of the control design engineer. The root
locus plot has several qualities that make it a valuable classical controlstool; perhaps its
" most valued assets are the ease with which it may be implemented and the tremendous
amount of information and insight that it provides.

For most single-input, single-output (SISO) linear time-invariant systems,
sketching theroot locus as a function of gain is a smple and well documented task. Most
under graduate controls textbooks present the sketching rulesfor constructing theroot locus
plot By following these rules, the loci of roots- or system eigenvalues - may be graphed
in the complex plane as certain parametersarevaried Although the methodsare applicable
and extend to other (real valued) parameters, the most common parameter investigated is
the proportional control gain.'.Thijsisthe parameter studied in thisreport Even though the
sketch may not be exact, the approximate root locus plot provides a plethora of useful
information about system sability and performance. For example, closed-loop stability
can be determined, and damping and response speed can be estimated asthegain isvaried
However ,’the plot indicates only the trends of the bole locations for varying values of gain,
and, in general, does not present specific gain values associated with polelocations.

Thisreport promotes an alternate graphical representation of theroot locus plot that
exposes the relationship between the pole locations and the gain without sacrificing any of
the information presented in the gandard root locus. Therepresentation, based on the same
Variable Gain Analysis employed by Evans, is summarized by apair of Variable Gain Plots
(VGPs) that caststhe magnitude and angle of the system eigenvaluesin the complex plane
as an explicit function of gain. By utilizing an eigenvalue polar representation, the VGPs
present system performance information such as damping and natural frequency in aclear
and concise manner. Additionally, eigenvalue sensitivity can be obtained by examining the
slopes of the magnitude and angle plots with changing gain. The VGPs can be constructed
for, and are applicable to, both SISO and multiple-input, multiple-output (MIMO)
systems.

Thisreport isorganized into four sections. The following section is a conceptual
framework that motivates the development of a pair of plots, namely the VGPs, that offer
several advantageous features and serve asrich synthesistools. In a subsequent section,




several SISO and MIMO examples that demongtrate the utility of the VGPs for stability,
performance and sensitivity analyses are presented Finally, the results of thisreport are
summarized and futureresearch isidentified

Conceptualization

This section presents a systematic development of the VGPs, an alternate graphical
means for representing system behavior. The conceptualization beginswith the Evans root
locus plot in the traditional two-dimensional complex plane. Itisthen complemented by a
third axis representing the gain. The resulting three-dimensional plot is conformally
mapped into a new space that presents polar coordinate information associated with the
complex plane. Two orthogonal views of this new three-dimensional space show the
VGPs. They present root locus information in anovel and enhanced manner.

The development of the VGPs from the root locus plot is paralleled by the
development of the Bode plots from the Nyquist diagram. As such, a fundamental
relationship appears to exist between the Bode plots, the Nyquist diagram, Evans root
locus,-and the VGPs. A unified framework linking these four controlstoolsisdiscussed in
the closing section of this repdrt -

This section addresses the SISO case, as covered in "classical controls." The
analysis, though, may be extended to the MIMO case and examples of multivariable VGPs
are presented in the subsequent section. For purposes of illustration, a singlé "theme"
example given by the open-loop transfer function, g(s),

s fr_+3)

(s+1)(s+2) ' @

isinveﬂigated here. Thi.strans‘er function isembedded in a gandard closed-loop negative
feedback system shown in Figure (1).
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Figure 1. Closed-L oop SISO Negative Feedback Configuration.




Two Old Friends. Two-Dimendgonal Polar Representations

Ihe Nyquist Diagcam (Nyquist, 1932) ‘
The Nyquist diagram is a polar plot of a sinusoidal transfer function, g(ja>). The
magnitude e g(jco) is plotted against the angle of g(j<o) for

05a><00 ) (2)

(Thelower limit of equation (2) can alter natively be chosen as-*», with the resulting curve
being symmetric about the real axis.) Although the Nyquist diagram is a polar
representation, it is graphed in a complex Cartesan plane (two-dimensional space) where
theimplicit variableis @ Figure 2 isthe Nyquist diagram of equation (1) for co given by
equation (2). The Nyquist curve garts at a=O corresponding to a D.G gain of 1.5 and
phase angle of O\ and asymptotically approaches the origin (zero magnitude) from-90*.
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Figure2. The Nyquist Diagram of Equation (1).

It is possible to show the frequency graduation on the locus (with tick marks
denoting equal values of co) or to present superimposed constant frequency contours
(Ogata, 1990). However, even if these are added, the Nyquist diagram is not " designed”
nor convenient for identifying the frequency associated with a given point on the curve.

TheEvans Root Locus (Evans, 1948,1950)

The root locus plot drawn in the complex plane shows the location of the
characterigtic roots, i.e., the eigenvalues, in terms of some (real valued) system parameter




such asthe proportional gain. It isbased on the closed-loop transfer function of Figure 1
givenby

gouls) = o8l )

)}

wherek istheproportional gain. The stability of the closed-loop system isdetermined by
the eigenvalues, which are the solutions of

kg(s) = - | (4)

i.e.,, the denominator roots of equation (3). Theroot locusis the solution set of equation
(4) asthegain k variesin therange

o*k<~ (5)

Equation (4) isequivalent to two conditions. the anglecriterion,

Zkg(s) =+180*2m+ 1), m=0, 1, 2,... (6)

and themagnitude criterion,
lkg(s)|=I (7

The shape of the root locus plot is determined entirely by the angle criterion,
equation (6). Then, for any eigenvalue s on the root locus, the magnitude criterion,
equation (7), is invoked to solve for the corresponding value of k. (This process is
referred to as scaling the locus.) Figure 3 is the root locus plot of equation (1) for k given
by equation (5). Each branch of theroot locus starts at k=0 corresponding to a system
open-loop pole, and asymptatically approaches either afinite or infinite transmission zero.
It is possible to show the gain graduation on the locus (with tick marks denoting equal
values of k) or to present superimposed constant gaj'n contours.

The root locus gives a direct indication of closed-loop system instability by .
~ observing if branches enter the right half complex plane (indicating positive real-pan
eigenvalues). Hence, by inspection, it ispossible to determine the stability of the closed-
loop system as as the gain varies. In addition, the root locus plot is a graphical
performance tool providing metricsof natural frequency (COQ) and damping ratio (Q. These
two characteristics, known from magnitude and angle information in the Cartesian plane,
enable the calculation of many critical performance indices (damped natural frequency,
system time constants, etc.) It follows that the root locus plot may be viewed as a polar



megniflnfc and angle components. An alternative means for expressing the complex value,

istoreportitsangle, 0, and magnitude, R,

9 = tan"Y, 0) ©)
R=Vo2+0? . (10)

where 6 in equation (9) is given by the two argument inverse tangent function. Plotting 6
and R in a Cartesian plane has sgnificant advantages, as discussed below.

Figure 5. Three Dimensiona Evans Root Locus Diagram of Equation (1).

Three Dimensional Vajjchle Frequency, Plat

Equations (9) and (10) can be used to trandform Figure 4 into Figure 6. Thisfigure
shows the effect of frequency on the magnitude and angle of the open-loop system given
by equation (1). (For clarification, the curve beginsin the front upper Ieft hand comer, and
ends at the rear lower right hand comer.) Clearly, thisthree-dimensiona curveisrelated to
well-known variable frequency plots mentioned in the literature (Bode, 1940).




log Magnitude

150
- ~
‘165 ?
0 e -180 o?\.
Maqni 10 195 %
49nitude 15210

Figure 7. Three Dimensional Variable Gain Plot of Equation (3).
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Equations (9) and (10) can be used to trarfdVim Figure 5 into Rgurc 7. This figure
shows the effect of gain on the magnitude and angle of the closed-loop system given by
equation (3). Thisthree-dimensiona curveisrdated to the root-locus diagram.

An Old and a New Friend: Two Dimensional Cartesian Representations

The Bode Plots (Bode, 1940)

The Bode plots consist of two planar plots, one called the Bode magnitude plot
showing magnitude vs. frequency, and the second called the Bode phase plot reporting
phase (angle) vs. frequency. The standard Bode plots employ logarithmic scaing for both
the frequency and magnitude axes, and alinear scale for the phase axis. Figures 8ab are
the Bode meagnitude and phase plots for the open-loop system given by equation (1).

The Bode plots represent two orthogona views of the three-dimensiona Variable
Frequency Plot of Figure 6, i.e., the Bode magnitude plot is seen by observing Figure 6
from adirection orthogonal fQ the co-magnitude plane and the Bode phase plotis seen by
viewing Figure 6 from adirection orthogona to the co-phase plane. (In fact, Figures 6 and
8 were generated using the same data.) Although the same information is presented in
Figures 6 and 8, the traditional Bode plots are signific_mtly_si mpler to understand. Indeed,
Bode plots are among the control designers’ most bowen‘ljl ‘synthesistools.

The Varisble Galn Plots (VGPS)

Just as Bode plots amplify the three-dimensiona Variable Frequency Plot, VGPs
may be employed to smplify the three-dimensional Variable Gain Plot Figures 9ab are
such a representation for the closed-loop system of equation (3). (Figures 9¢,d show a
magnified view over theregion 0 £k < 03.) The Variable Gain Magnitude Plot (VGMP)
IS seen by viewing Figure 7 from adirection orthogonal to the k-magnitude plane and the
Variable Gain Angle Plot (VGAP) is seen by observing Figure 7 from a direction
orthogonal to the k-phase plane. Although the same information is presented in Figures 7
and 9, the VGPs are sgnificantly smpler to understand.
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Figure 8b. The Bode Phase Plot of Equation (1).

- Notice that the eilgenvalues are represented by asingle line at -180* on the VGAP
when they are real, since they are both on the negative real axis. Conversely, when the
eigenvalues are complex conjugates, their magnitudes are equa corresponding to a single
segment on the VGMP.,
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Figure9a. The Variable Gain Magnitude Plot of Equation (3).
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Figure9b. The Variable Gain Angle Plot of Equation (3).

The VGAP reflects the basic construction rule of the root locus, i.e., the angle
criterion of equation (6). As a result, the VGAP is symmetric along the -180* line.
Furthermore, the angle criterion dictates that the eigenvalues must lie on thereal axisor be
complex conjugates. Thus, a pair of complex conjugate eigenvalues is shown as a single
curve in the VGMP with corresponding angles symmetrically configured about the -180*
line shown in the VGAP. Ask varies, the complex conjugate eigenvalues may become
digtinct real eigenvalues, causing their anglesto become equal (at a multiple of-180*) and
per mitting their magnitudes to differ.
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Figures9c,d. Detailed VGPsover the Region0 £k <03.

The VGM P showsthe presence of two open-loop poleswith magnitudes 1 and 2 at
k=0. Ask ->°0 it shows a single finite transmisson zero with magnitude 3 and an
infinite transmission zero. The VGAP indicates that the two open-loop poles and finite
transmission zero are located in. the left-half plane since they have angles of -180*.
Furthermore, as k -* «» the VGAP shows that there is an asymptote of -180*
(corresponding to the infinite transmisson zer o).

Both VGPs highlight the break points corresponding to points where branches
leave or enter thereal axis of the root locus. For example, these break points occur at
k*0.17 and at k * 5.83. Between these break points the VGAP indicates that the loci
of the two branch points are not on thereal axisand the corresponding single curve of the
VGMP confirmsthat thetrgjectories are those of a complex conjugate pair. '

The VGAP and .the VGMP present several important stability and performance
features of the system; these are summarized in Figures 10a, b. (In Figure 10b " NA"
denotes" Not Applicable.") Stability may be determined from the VGAP by noting if the
angle of an eigenvalue meets the following criterion

180* (2m+1)-90* <|e|<180* (2m+1)+ 90* , m=0,1,2,... (12)

corresponding to a location in the second and third quadrants of the complex plane. For the
case m=0, equation (11) smplifiesto

90* <9< 270* (12

The complementary ungtable rangeis shown in the shaded region in Figure 10b.




73

- 9
3 £
4 -§ [

g 3 Magnitude - Natural Frequency =13 §'.
S @
2 24 T2 §'
2 u‘.
3 14 +1 E
] 2
0 ———H 11111 h03

(1] 10 20 30 40 5Q 60 70 80 90 100
Gain,k
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Figure 10b. ParametersintheVariable Gain Angle Plot

The calculations of performance measures are simplified with the VGPs. In
particular, the natural frequency, O)n rad/s, is the magnitude shown in the VGMP, and the
dampingratio, £, is

C=|cos-i(e)| (13)
where 6 isthe angle from the VGAP. As shown ir! Figure 10, supplementary axes can be

added to the VGPstodisplay On and C, directly. Iftheeigenvaluesare on thereal axis, the
VGMP presentsthe system time congtants.




Although the conventional root locusplot provides such performance information,
there are several advantages of the VGPs. Firgt, thevalue of k as an independent variable
is represented directly on the abscissa. Hence, the influence of gain on ordinate
(dependent) variablesis exposed explicitly. Second, the performance measures of o* and
£ arerepresented directly. Thus, given adesign- specification for On and £, the requisite
value of k may be determined by inspection. A novel feature of the VGPs is this link of
performance and gain. '

By exposing gain as an independent variable, the VGPs are well suited for
determining eigenvalue sensitivity. From the slopes of the VGPs, the sensitivity, i.e.,
change in magnitude and angle of each eigenvalue per changein gain, can be ascertained.
Thisisuseful in the synthesis of control systemsthat areless sensitive to gain variations.

In addition to the advantages above, the VGPs provide a unified approach for SISO
and MIMO systems where compensation dynamics are governed by a single scalar gain
amplifying all plant inputs. Thisis an important advantage since the root locus branches
can be identified uniquely as a function of gain. MIMO VGPs areintroduced later in two
examples. |

Illustrative Examples

This section presents examples that demongtrate the utility of the VGPs. Three
examples are presented: (i) a morecomplicated SISO example, (ii) adecoupled MIMO
example, and (Hi) acoupled MIMO example.

Non-Trivial SISO Example

Figure 11 is theroot locusplot for the negative feedback system of Figure 1 with
the open-loop transfer function '

gle)=—x)

s(s - 1)(s2 + 45 +16) (14)

(Equation (14) isemployed in example A-5-3, Ogata, 1990.) Theroot locus beginsat the
open-loop poles, i.e, the roots of the denominator of equation (14). These open-loop
poles arelocated at s={0, +1, -2+ VT}. Thereisa single finite transmisson zero at value
s=1. Theopen-loop complex conjugate pole pair migratesto thereal axiswith increasng
gain. One of these poles then proceedsto thefinite transmisson zero; the other pole moves
to an infinite transmisson zero along an asymptote of -180*. The two real open-loop
poles migrate to s=0.46, and then break out from thereal axis. As acomplex conjugate
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pole pair, they moveto the left of the imaginary axis. Subsequently, they migrate back to
the right of the imaginary axis and continue toward infinite transmission zeros aong
asymptotes of +60\ For asmall range of k, dieroot locusis located completely within the
left half of the complex plane. Thisrange, corresponding to a stable closed-loop system,
may- be found from the magnitude criterion (equation (7)) to be

23.3 <k< 357 (15)

These gain values are not evident from Figure 11.

Figure 11. Root Locus for System Given by Equation (14).

Figure 12ab are the VGPs for the system given by equation (14). Information
about the open-loop eigenvaluesis shown at k = 0: (i) thereis an unstable set of open-
loop poles a an angle of 0* having magnitudes of 0 and 1; and (ii) there is a complex
conjugate open-loop pole pair having magnitude 4 at angles of -120* and -240°. By
Inspection, these complex conj ugaté poles have a natural frequency of 4 rad/s and a
damping ratio of 0.5, athough thisinformation is"'secondary" since the open-loop system

Is unstable. In Figure 12ab additional vertical axes reporting natural frequency and
* damping ratio are shown.

For positive values of gain, the system operates under closed-loop negative
feedback and generates interesting eigenvalue trgjectories. For example, the solid black
linesin the VGMP and VGAP represent the locus of the pole pair that originates on the redl
axis. The solid gray linesin these plots track the locus of the poles that start as a complex
conjugate pair. Notice that when agiven pole pair is complex, the two poles have the same




magnitude but aredigtinguished in angle. Conversdy, when poleslieon thereal axis, they
have a principal angle of @ther -180* or 0* corresponding to negative or postive red
values, respectively. Furthermore, the VGPs show that the system is stable.only for a
specific range of k. The range matches thal'given in equation (1S). Figure 13 isan
enlargement of a section of the VGAP highlighting this stable region of the closed-loop
system from which the gains may be read directly. The 90* boundary is marked in the
figurein accordancewith thecriterion presented in equation (11).
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Figure 12a. VGMPfor Sysem Given by Equation (14).
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Figure 12b. VGAP for Sysem Given by Equation (14).
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_Figure 13. Expanded VGAPfor System Given by Equation (14).

_ The high gain asymptotes of the root locus are found by examining the VGARP for
large values of k. The finite zero a s=-I is identified by the single pole asymptotically
approaching unity magnitude at an angle of -180°. The remaining three eigenvalues
asymptotically approach infinite zeros at angles +60* and -180*. For gains higher than
those reported in Figure 12a,b, these asymptotes are increasingly prominent

Further inspection of the VGPs provides information about die closed-loop system
sengitivity to changes in gain. In the example, the system is highly sensitive to gain
variations when k is small as evidenced by the rapid change in both the angle and
magnitude of the system elgenvalues. This behavior isnhoticeable at k~3.1, where the
angle of the unstable pole pair rises abruptly. Sengitivity information is not readily
available from the standard root locus plot (Although unwieldy, some measure of
sengitivity can be estimated from the root locus by noting changes in the distances between
tick marks of equd increment gain.)

MIMO Examples

" In the MIMO examples presented below, the system is embedded in the closed-
loop feedback configuration of Figure 14. The input-output dynamics are now described
by a square transfer function matrix, G(s), whose elements are transfer functions. For the
examples, the controller is K(s) = kI, implying that each input channel is scaled by the
same constant gain k. The internal structure of G(s) is given by the state-space equations:

x(t) = Ax(t) + Bu(t) (16)

17




e

y()=Cx() (17)

wherex isthegate vector of length n, u isdieinput vector of length m, andy is the output
vector of length, m. Matrices A, B and C are the system matrix, the control influence

matrix, and the output matrix, respectively, with appropriate dimensions. The feedback
law

u(t)«kle(t) _ (18)
Is specified where the error vector, €, is
e(t)«r(t)-y(t) (19

r(s)—:?-i’)a " g BN PO -l-vy(s)

Figure 14. Closed-Loop MIMO Negative Feedback Configuration.

The eigenvalues of the closed-loop system, s = Xj (i»l,2,...,n), are the roots of
4»CL(S), the closed-loop characteristic polynomial,

dcL(s) = doufs) det[I + kG(s)1 | (20
Where the trandfer function matrix G(s) is _
| G{s)=C[sI- Al'B (21)
and where<-0L(§ isthe open-loop characteristic polynomid,
doL(s) = det{sl - A] (22)

By equating the determinant in equation (20) to zero, the MIMO generalization of equation
(4) isobtained. The presence of the determinant is the mgor challenge in generdizing the
SISO root locus sketching rulesto MIMO systems.  The closed-loop system elgenvaues
may aso be determined from equations (16) - (18) as

Xi=eig[A-B(kI)C] (23)

In the examples, theloci of closed-loop elgenvaues are cal culated from equation (23) as k
Is monotonically increased from zero.




Decotpled MIMO Exampfe

This example demonstrates the use of the VGPs for exploring the behavior of a
decoupled multivariable system. The staté space representation of the system is

19=[g 0+[ g T oo (24)
(5 Ty (25)
corresﬁonding to thetrander function matrix
1_
G(s)= Sgl N (26)
$+3

It represents two first order SISO systems with eigenvalues at s={-I, -2}. Since the
system is decoupled, the multivariable r oot locus may be consider ed to be the super postion
of two SISO root locus plots. That is, the MIMO root locus diagram depicts two
eigenvalue trajectories, one beginning at s=-1 and the other beginning at s=*-2. Both
trajectoriesfollow a graight line path along an angle of -180*. Figure IS presentsthe root
locus for this MEMO decoupled system. Notice that it does not follow the rules of the
familiar SISO root locus {e.g., the SISO rule for the portion of the root locus on the real
axisisviolated), and is not intuitive.

Ne)

e L S

-7 -6 -5 -4 =3B P =1 0
Figure 15. Root Locusfor System Given by Equations (24) - (26).

Figure 16 is the VGMP for this decoupled MIMO system. Although not shown,
the VGAP indicates that both eigenvalues have angles of-180*. Thus, the two open-loop
eigenvalues are at s={-1, -2}. Furthermore, as k increases, both eigenvalues proceed
deeper into the left half plane along the -a axis at the same constant rate. From the VGMP,

19




there is no ambiguity asto the number or location of the poles. Thus, the VGPs provide
significantly moreinsight into the behavior of the closed-loop system.
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Figure 16. VGMP for System Given by Equations (24) - (26).

Coupled MIMQ Example

This example demonstrates the use of the VGPs for under sanding the closed-loop
behavior ef a coupled multivanable system. Again, the system is a” ume”.to be enbedded
in the closed-loop configuration of Figure 14. The plant dynamics are now given by the
date space model

i() = [ Jxm+[ ]]u('t) o
Y(*)'[:; ; x(9) (28)

corresponding to the transfer function matrix

(s-D
(s+IXs+2) (s+IXs+2)
(s-2)
L(s+IXs +2) (s+1)s+2)

- G(s)= (29)

(Equation (29) is used as an example by Postlethwaite and MacFarlane, 1979, and later by
Yagle, 1981.) This coupled MIMO system has eigenvalues at s=(-1, -2}. Since the
system is coupled, the multivariable root locus is more complicated than superimposed
SISO root locus plots. The MIMO root locus diagram shown in Figure 17 depicts two

20 .




elgenvaluetrajectories, one beginning at s»-1 and the other beginning a s»-2. Asin the

decoupled example, the eigenvalue at s»-2 follows ared axistrgectory aong an angle of -

180°. The eigenvalue at s=-1 does not follow the same trgjectory. Itinitialy migratesto

the right, proceeding to s=1/24 ~ 0.042, and then reverses. Ask isincreased, the pole

moves back to the left of the imaginary axis along a-180" asymptote* For all values of k,

both eigenvalues are purely real. Notice that Figure 17 does not follow the rules of the
familiar SISO root locus, and is extremely counter intuitive.
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Figure 17. Root 'Locusfor System Given by Equations (27) - (29).

Figure 18ab presents the VGPs for the C'oupled MIMO system. Figure 19 isan
@(pmded verson of the VGMP that presents the unstable region with higher resolution. It
isclear that gain vauesin therange

| *fcE2 (30)

yield an unstable closed-loop system. Figure 19 confirms the maximum magnitude of the
eigenvalue a 0*. An abrupt change in eigenvaue angle occurs when the closed-loop
system becomes unstable. This is expected since there is a 1807 jump in angle as the
elgenva ue passes through the origin, highlighting the stable-unstable trangtion.

The standard root locus plot of this coupled MIMO example is confusing because of
the collapse of the Riemann surface into asingle complex plane. Sincetheplotisdrawn in
two dimensions, branch points may be generated by more than one gain value and,
therefore, may not be uniquely presented. The VGPs, however, display eigenvalue
meagnitude and angle information in an unambiguous and concise manner.

21 .




n e — !
0 0.5 1 15 2 2.5 3 35 4 4.5 s

Gain, k
Figure 18a. VGMP far System Given by Equations (27) - (29).
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Figure 18b. VGAP for System Given by Equations (27) - (29).
Conclusions

TheVariable Gain Plotsdeveloped in thisreport are a set of illuminating plots that
expand and enhance the control engineers’ design tool set Just as Bode plots supplement
the information given in the Nyquist diagram, VGPs complement the root locus
presentation by recasting it in a new and enlightening manner. By presenting the
magnitude and phasein separate graphs, Bode plots smplify the information contained in
the Nyquist diagram . As such, the Bode plots add a third " dimension” to the Nyquist
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diagram. Anal_ogously, the VGPs are designed to supplement the root locus by adding a
third "dimension." Inthe Bode plots, the common axislinking magnitude and argument is
angular frequency; in the VGPs, the common axis bridging magnitude and argument is
gain. .
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' Figure 19. Expanded VGMP for System Given by Equations (27) - (29).

Figure 20 highlights the correspondence of four classical controls graphical tools.
As shown, the VGPs fill what may be viewed as a "missing" quadrant of the classical
controls tool set The first row portrays the Nyquist diagram and the Evans root locus
gpanning a two-dimensional complex plane. The second row shows the Bode plots and
VGPs spanning athree-dimensional (real) space. The columns show the variable that is
used to increase the dimension, 1.e frequency for Bode plots, gain for VGPs. -

The proposed VVGPs enhance the root locus by explicitly portraying the relationship
between the gain and the location of each eigenva ue whose trgjectories are mapped by the
root locus. This information is not readily available from the root locus plot. The
enhancement enables the control designer to identify, by observation, an eigenvalue
location with a specific gain, and hence directly view the influence of the gain on stability
as well as on system performance. Furthermore, the VGPs provide a direct measure of
eigenvalue gain senditivity. The change in eigenvaue for a given change in gan is
indicated by the dope of the magnitude and angle VGPs. This measure of sensitivity
highlights the "cost™ of selecting eigenval ue locations corresponding to high gain values.

Many similarities and differences exist between the root locus and the VGPs. For
example, both the root locus plot and the VGPs can be drawn for systems with

23




transpoctatiog"gsor dead tline. Unliketheroot locusplot, the VGPs explicitly highlight
open-4o00ppo” near or at tnmsmissoii zer os. These polesaredepicted ashorizon tal lines
indicating coMtant magnitude and angle for all gains. In theroot locus plot pole-zero
cancellations are normally camouflaged.
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Figure20. A Unified Control Design Domain.
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Further work is necessary to develop intuitive geometric r elationships between the
Bode blots that present open-loop information and the VGPs that present closed-loop
information (for k * 0). The Nichols chart may provide the appropriate connection. It
presents therelationship between the frequency response of the openr-loop system and that
of the closed-loop system. In so doing, it displays four dimensions of information (i.e.,
open and closed loop gain and magnitude) in a two-dimensional format where co is the
implicit variable. The Nicholschart is a challenging chart to generate and comprehend,
however, it does provide a bridge between open-loop and closed-loop systems in the
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frequency domain. Iftheconnection between Bodeplotsand VGPsis made, then some of
the mor e power ful frequency domain synthesistools may find new applicationsin control
theory. '

Future work is also targeted at developing analogous "root locus* rules for
sketching the VGPs. Although it appearspossibleto identify theserules, their utility may
be limited given the ability for real-time computer implementation*

Finally, it appears that VGPs offer significant advantages over sandard root locus
plots for MIMO systems. The major enhancement is the generation of eigenvalue
trajectories that are represented as a function of k (where the compensation has been
assumed to be the same static gain applied to all channels). The VGP representation
provides a unique description of the eigenvalues. Typical root locus plots do not
necessarily generate unique trajectories, as some branches may overlap. This overlap
reduces the usefulness of the MIMO root locus.

Although one may suspect that the concepts of thisreport are " obvious," they do
not appear to be mentioned in the literature nor seem to beknown to control designers. The
VGPsmay beviewed as a missing classical controlstool.

In closing, isis not our intent to claim any credit for the incalculable contributions
of Nyquist (1932), Bode (1940), and Evans (1948, 1950), but rather to view their
contributionsin a new light
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