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Abstract

This paper deals with the development of an MINLP synthesizer for sequential modular
simulators. Firstly, avariant of the OA/ER/AP agorithm for MINLP problems is presented that
makes use of Benders cuts in previous or subsequent iterations. An automatic process synthesis
environment is then described for the ASPEN simulator using this algorithm, with the
decomposition strategy by Kocis and Grossmann(1989). The application of this new capability is
demonstrated with several examples including the structural optimization of the hydrodealkylation

of tolune process.

1. Introduction

Sequential modular chemical process simulators, such as FLOWTRAN, ASPEN, or PROCESS
have been widely used for the design of new processes, analysis of existing processes, etc. These
flowsheeting programs contain very detailed models for calculating mass and energy balances as
well as for sizing and costing. Over the last few years important advances have been made in
flowsheet optimization with process simulators using nonlinear programming techniques (NLP).
Effective computational strategies based on successive quadratic programming (SQP) algorithm
(Biegler and Cuthrell, 1985; Han 1977; Powell 1978) have been developed. These strategies
include the feasible and infeasible path optimization (Biegler and Hughes; 1983). In fact these
advances have made optimization a standard computational option in most of the simulators

nowadays.

A major goal in chemical process design is to synthesize flowsheet structures. Processes can be
modeled and optimized using simulators with an NLP optimization capability. However, this
optimization tool is restricted to flowsheets with fixed topology, and therefore cannot be readily
applied to process synthesis problems. One of the primary goals in process synthesis is to
esfab!ish methodologies for determining optimal flowsheet'configurations. The current state of
such techniques involves: a) the heuristic approach which relies on intuition and engineering
knowledge, b) the physical insight approach which is based on exploiting basic physical
principles, and ¢) the optimization approach which uses the mathematical programming techniques.




This paper deals with the development of a process synthesis capability built around the sequential
modular simulator ASPEN using the mathematical programming approach, which requires the
solution of a Mixed Integer Nonlinear Programming (MINLP) problem (for general review see
Grossmann(1990)).

Algorithms for solving MINLP optimization include: the branch and bound method (Beale, 1977;
Gupta 1980), the Generalized Benders Decomposition (Benders, 1962; Geoffrion, 1972), and the
Outer Approximation OA method (Duran and Grossmann 1986). The OA and GBD algorithms are
in general more efficient than the Branch and Bound method. The OA algorithm requires fewer
iterations than GBD but involves the solution of a larger master problem. Another difficulty with
these algorithms is that they require the functions to satisfy convexity conditions to guarantee
convergence to the global optimum. Recent variants of the OA method, include the Quter
Approximation/ Equality Relaxation (OA/ER) strategy of Kocis and Grossmann (1987) for
handling nonlinear equations and the Augmented Penalty OA/ER algorithm of Vishwanathan and
Grossmann (1989) for reducing the effect of nonconvexities in the master problem. Also the
extension of GBD using a partitioning variable strategy by Floudas et al. (1989) shows improved
results for nonconvex functions. Since the direct application of MINLP algorithm to flowsheet
synthesis poses serious difficulties, Kocis and Grossmann (1989) developed a modeling and
decomposition strategy that requires only the NLP optimization of the existing flowsheet at each
iteration, avoiding the need of handling units with zero flows. Recently Kravanja and Grossmann
(1989) implemented this strategy in PROSYN, within an equation oriented environment in which
the simultaneous optimization and heat integration was also considered. This strategy, however,
has not been implemented in sequential modular simulators. It should be mentioned that Harsh and
Biegler (1989) have used the OA algorithm in FLOWTRAN for the optimal retrofit design but the
topology of the flowsheet was fixed. Caracotsios and Petrelli (1989) have built an MINLP
environment which can be interfaced with the ASPEN simulator. Applications to the synthesis of

complex chemical processes have not been reported in their research.

In this paper the process synthesis capability that has been implemented in the ASPEN (public
version) simulator is described. For the MINLP optimization, a variant of the GBD and OA
algorithm is proposed which is relatively easy to implement in process simulators. In addition the

decomposition strategy by Kocis and Grossmann (1989) is used to circumvent the problem of zero




flows. Several examples are presented including arestricted version of the synthesis of the HDA
process (Douglas 1988).

2. MINLP Techniques

Process synthesis involves defining a search space or a superstructure of candidate flowsheet
structures that may be based on preliminary screening (Grossmann, 1990). This superstructure
can then be modeled as an MINLP problem of the form;

Z =minc'y + f(x)
X,y
subjectto (MINLP)

h(x) =0
By + g(x)<0
yeY ;xeX

where Y={yl Ay <a,y {0,1}™: X = {xl x4<xf£x"xe R")

. The continuous variables x represent flows, operating conditions, and design variables. The
binary variables y denote the potential existence of process units.

The GBD and OA agorithms for solving the above MINLP consist of solving at each major
iteration an NL P subproblem (with all 0-1 variables fixed) and an MILP master problem as shown
in Figure 1. The NLP subproblems have the role of optimizing the continuous variables and
provide an upper bound to the optimal MINLP solution. The MILP master problem has the role of
predicting alower bound to the MINLP as well as new 0-1 variable values for each major iteration.
The predicted lower bounds increase monotonically as the cycle of mgjor iterations proceed, and
the search is terminated when the predicted lower bound coincides or exceeds the current upper
bound.

The rhain difference between GBD and the OA method lies in the definition of the MILP master
problem. The master problem in GBD is a dua representation of the continuous space, while the
master problem in OA is given by aprimal approximation.




2.1 Madter Problems

211 GBD

Based on the solution of k NLP subproblems with fixed y*, k = 1..K, the master problem of
GBD isgiven by:

Z%BBD =min OGeD
Y, UGBD

subject to (GBD)
ti .

0GBDCTY + f (k) +£ M [ gi (™) -bjy] k = 1, 2..K
j=1

yeY ; OGBDE R'
whereY = {yl Ay<a,ye {0,1}"

where Kk represents the iteration counfer, and I\)ﬁls are the Lagrange multipliers of the inequality
congraints. The mager problem of GBD containsonly the 0-1 variables, and the Lagrangian cut
in the 0-1 space. Since the master problem does not involve continuous variables, it predicts
weaker lower bd[mds

2.1.2 OA algorithm and itsextensions

The magter problem for OA isgiven by:

Z8a =min coA
¥, XPoa
subject to )
0COANCTY + f (X*¥) +VF (X*)(X - X*)
By +g (x*) +Vg (Xk)'(x - X*)<0 k = 1, 2..K (OA)

yEY;XEX;(IOAERI
whereY = {yl Ay<a, ye {01}": X = {X x<x<x"xe R"}




As the iterations ﬁrocced the master problem accumulates constraints in the X-Y space generating
richer information, so that OA converges in fewer iterations than the GBD. Extension of this
algorithm for handling nonlinear equality constraints is the OA/ER algorithm of Kocis and
Grossmann (1987). Here, linearizations of the equations at the solution of the NLP subproblem k,
are added to the master problem (OA) by relaxing them according to the sign of the Lagrange
multiplier; that is:

TX[ Vh x0)(x - x ]<0
(ER)
where T¥= [t%; ]
1if AX >0
= 0if A =0
LifAX <0

As shown by Kocis and Grossmann (1987) sufficient conditions for global optimality with the
OA/ER algorithm require convexity in the objective function and inequalities, and quasi-convexity
of the relaxed nonlinear equations. Nonconvexities can be treated using the recent variant of this
algorithm (Viswanathan and Grossmann 1990) that makes use of augmented penalty function in
the master problem. The algorithm starts with solution of the relaxed NLP. The master problem

contains the slack variables and is given by:

K K K

ZKp =min oap+ Y, (WOTgk + Y, (WhTpk+ Y (whTsk
k=1 k=1 k=1

Ys X@Ap, DK g, &

subject to
(OA/ER/AP)
aap2cTy + f (xK) +Vf (xk)T(x - xk) - gk
T¥[ Vh x}T(x - xK) ] < p
By +g (&Y +Vg (B (x - xi) < &k k=1,2,..K

ye Y ;xe€ X; aape Rl
where Y = {ylAy <a,y € {O,l}m;X={xIxLSx$xee R"}




where ¢, p¥, £ arethe slack variables with corresponding large finite weights wE, W, We.

The OA/ER/AP agorithm proceeds until thereis no decrease in the NLP solution. Experience with
this algorithm has shown a high degree of robustness with nonconvex problems.

2.13 GBDIOAIERIAP; A New Variant:

Although the OA/ER/AP agorithm is computationally efficient and has shown a high degree of
robustness, it requires solution of the relaxed NLP at the initial point. In the context of a process
flowsheer this involves optimization of the entire superstructure which can be computationally
quite expensive. Another problem with this algorithm is that the master problem growsin size as
the iterations proceed which calls for mgor restructuring of the master problem at each iteration. In
this paper we propose a hybrid method to overcome these problems and to make the algorithm
easier to implement. The basic idea is to apply the OA/ER/AP at the current iteration k, while
previous iterations are stored in the form of Benders cuts. The master problem is then given by:

Z8oea = min coccen
¥s XOGOEA,s p
subject to
OGOEANCTY +  (x*) + VI (xK)T(x - X*) + (WE)TK + (WK
TEVh(x )T (x-x")]<p®
By + g (x) +Vg (x)T(x - x") <, s
tl

OGOEA * CTy +(x¥) + VI(x*)T(x-**) + £ HithY + gj(x") + Vg(x*)T(x-x)] = 12, ..K-I
j=1

(GBD/OA/ER/APY)
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whereY = {yl Ay<a, ye {01}"; X = {x X< xs x’ x e R"}




Alternatively one can keep the first iteration in the form of OA/ER/AP and the successive iterations
treated in the form of GBD constraints as shown below (GBD/OA/ER/AP2). This formulation is
especially designed for the decomposition strategy (section 2.2), where the first iteration
constraints are richer in information.

ZIEQQE’\ min  OQOEA
y, X, CCGOEA, P

subject to
OGOEA>ClY + f (XY +Vf (XD)'(X - xI) + (WhV  +(wl) v
T! [ Vh x)T(x - x!) ] < p!

By+g(x')+Vg (x")"-x') <&
ti

0osoA A €Ty +H(X) + VEX) T (x-x¥) + X HY + gj(*> * Vgj (~) " (*-*%)I k=23,..K
j=1

(GBD/OA/ER/AP2)

XE yA- i y"<II-3H‘-1 u_i N oxr
jeBX ERR

ye Y;X€X;OCGOEA£€ R!
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The solution strategy is similar to the OA/ER/AP algorithm except that the solution does not start
with the relaxed NLP, but for afixed value of the 0-1 variables. This method has shown similar
robustness as observed in the OA/ER/AP agorithm and is easier to implement. It should also be
noted that for the convex case, where the slack variables are driven to zero (See Vishwanathan and
Grossmann 1990), this master problem does not necessarily yield non-decreasing lower bounds.
However convergence to the opfi mum can still be guaranteed when the bound predicted by the
master problem is greater or equal than the best upper bound.

AnlllustrativeExample:

The GBD/OA/ER/AP agorithm is illustrated by solving the following example problem:




Min yl + 1.5y2 + 0.5y3 + xI| + x12
subject to
xI1-x1%=0
x12-x2%=0
x13-x2-(x1-2)?=0 (EX1)
x1320
2yl -x130
l-y1-x150
3y3-x1-x2%0
yl+y2 + y3%0
yl,y2,y3=01
Table 1 presents the comparison of the step by step results obtained using
GBD/OA/ER/APL, GBD/OA/ER/AP2 with the OA/ER/AP algorithm. Thetermination criterionin
the three cases is based on the increase of the objective function in the NLP.

2.2 Decompodgition Strategy

Although one can directly use either of the two above versions of the above stated MINLP
algorithm for the optimization of supergructures of flowsheets, it is clear that in order to increase
the rdiability and the efficiency of the solution procedure, one ought to recognize the special
gructure and properties that characterize the optimal synthesis of process flowsheets. The main
difficulty which is encountered here is having to optimize "dry units’ with zero flow, which are
temporarily turned off in the supersructure. One way to handle this problem isto use very small
flows instead of zero flows (Kocis and Grossmann 1987; Caracotsios and Petrellis 1989).
However, thisis computationally inefficient since one hasto solve an NLP problem for the entire
upergructure which can also lead to numerical difficulties dueto the very small flows in the units,
for instance, linearizations can result in very poor approximations to the nonlinear functions.
Lastly, the likelihood of getting t_rapbed in multiple optima is grea_ter. in the larger NLP problem.
The‘ decomposition srategy of Kocis and Grossmann (1989) has the important feature that the
NLP optimization is only required for the flowsheet with existing units at each iteration.
Information to the master problem on the non-existing units is provided through a Lagrangian
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suboptimization procedure which enforces non-zero flows in these units.

The decomposition scheme is similar in nature to multilevel optimization methods that use
Lagrange multipliers to decompose the separable problems. The input variables in the problem can
be separated into two groups; the variables associated with existing units and the variables
associated with the nonexisting units. The initial problem is formulated using the existing units,
and the subproblem (subproblems) using nonexisting units. Material balance equations at
interconnection nodes are used to relate the initial problem, to the subproblem (for details see Kocis
and Grossmann 1989). The suboptimization procedure is used to get good points for linearizations
and hence is performed only at iteration 1. Since iteration 1 has all the information of the
superstructure GBD/OA/ER/AP2 formulation is used to solve this problem. The following
example of two reactors will illustrate the decomposition strategy.

Two Reactor Problem:

Consider the problem by Kocis and Grossmann (1989) for selecting from among two candidate
reactors to minimize the cost of producing a desired product (see Figure 2). The MINLP
formulation is given below:

Min 7.5y1 + 5.5y2 + 7v1 + 6v2 +5x
subject to
z1=09[1-exp(-0.5v1)]xl
z2=0.8[1-exp(-0.4v2)]x2
x1 +x2-x=0 (TWO-REA)
z1+22=10
vl =10yl
v2< 10y2
x1 = 20y1
x2S 20y2
yl+y2=1
yl,y2 =0,1; x1,x2,z1,22,v1,v220
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The binary variables yl and y2 denote existence of reactors 1 and 2. The material balance
congtraints for interconnection nodes include splitting of input flows xI and x2, and mixing of
outlets zI and z2. This problem was solved using GBD/OA/ER/AP2 algorithm with the
decomposition scheme shown in Figure 2(b). The plitter, the mixer and the reactor were selected
astheinitial flowsheet while the remaining units are suboptimized

| Firg NLP
a) The NLP Optimization of the initial flowsheet is given by:

Min 5.5y2 + 6v2+5x
subject to
z2=0.8[ 1-exp (-04v2)] x2
Xl +x2-x=0
zl +22=10
v2~ 10
x2" 20

The solution to this NLP is Z = 107.376 at xI= x = 15 and v2 = 4.479 and the Lagrange
multipliers for the mixer mass balance (zl + z2 = 10) is -7.5, Linearizations for the nonlinear

congraints corresponding to the initial flowsheet resultsin,
z2 - 0.666x2 - 0.800v2 + 3.584 - p2~ 0

b) The NL P suboptimization problem for the nonexistent unit isthen given by,

Min7.5yl+7vI+5x|-7.5z]
subject to
zI=0.9[1-exp(-0.5vI)]xI
xI-15=0
vIin 10
x|~ 20
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Note that the material balance equation for inlet to the interconnection node is replaced by the
congraint which fixestheinlet flowrate equal to the inlet flowrate calculated at the optimal value of
theinitial flowsheet (xI-15 = 0), and the inter connection node outlet material balance condraint is
combined with the obj ective function using the L agrange multiplier obtained at the initial flowsheet
optimization. The solution yields Z = 22.950 at zI = 11.633 and vl = 3.957. The linear
approximation to the corresponding condraint resultsin;

zl - 0.776x1 - 0.933vl - 3.693 - pi * O

Il Firg MILP magter problem

The formulation of this problem is smilar to (TWO-REA) with the only difference that the two

nonlinear equations arereplaced by thetwo linear approximations, and the integer congtraint (y2-
yl <0) is also included. The solution is 95.64 (a-£"jft) at yl=I and y2 = 0 indicating the

existence of thefirst reactor and nonexistence of the second one.
HI. Second NL P/subproblem

Continuous optimization of the NLP problem (only for the selected flowsheet) is performed. The
solution yields z=99.240.

V. Second MILP magter problem

Adding the following additional congtraints,
ax7.5yl +55y2 +7vl + 6v2 +5x - 6.722 +6v2 + 5x2
yl-y2<£0
leads to an infeasible solution and hence, the procedure terminates. Thus the optimal of second
NLP represents the g‘lobal optimum. The process synthésis environment in ASPEN uses the
GBD/OA/ER/AP2 algorithm and the decomposition strategy by Kocis and Grossmann (1989).
Appendix | describesthe stepsinvolved in this procedure.
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3. Implementation in ASPEN
3.1 Process Syntheds Capability

The MINLP process synthesis capability in ASPEN is based on ZOOM (Margen 1987), the
Mixed Integer Linear Programming (MILP) solver and on SCOPT (Lang and Biegler 1987), the
nonlinear programming (NLP) solver. The overall sructure of the process synthesis environment
is shown in Figure 3. Optimization of the MINLP process synthesis problem is decomposed into
continuous optimization of NL P problems at fixed choice of the binary variablesy, and discrete
optimization through the MILP magter problem. The MILP solver (Mager) and the NL P optimizer
areimplemented in ASPEN as unit operation blocks and can be executed easily with the ASPEN
process unit blocks.

Firg a supergructure is postulated which has embedded alternative flowsheet sructures. The
uperdructureisthen modeled asan MINLP problem. Secondly the supersructureis decomposed
into theinitial flowsheet and subsystems of non-existing units that areto be suboptimized with a
Lagrangian scheme, in order to provide a linear approximation of the entire supergructure in the
mager problem. For moreinformation on decomposition of the supergructurereaders are advised
torefer to the paper by Kravanja and Grossmann (1989). '

The process synthesis environment in ASPEN consists of the Magter block, the NL P optimizer and
the entire supersructure. The initialization of the continuous and binary variables is donein the
ASPEN input file. At this stage the scheme s trandated into the initial or the selected flowsheet
and subsystems. NL P optimization of the selected flowsheet isthefirs step in theinner loop. The
information in the Lagrangian multipliersis passed from theinitial flowsheet to the subsystems to
carry out thar optimization. Theinner loop resultsin the objective function value from the selected
flowsheet optimization, and gradients and lagrange multipliers from the selected flowsheet and
subsystems. This information is paﬁd to the Master block which internally modifies the master
problem using the equality relaxation strategy and the information from the inner loop. The
solution of the master problem resultsin a new flowsheet sructure. From this point on, the NLP
optimization is only performed on the new selected flowsheeet. The iteration stops when thereis
no improvement (decrease) in the objective function value. ‘
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2 Input ture:

The input structure of the process synthesizer follows ASPEN's keyword input language for
simulation and ZOOM's XML language for the MILP master problem. This type of environment
is very easy to code and the information is transparent to the user. The algebraic equation oriented
language for MILP master problem (XML language) is simpler than providing the data and
constraint equations through a Fortran subroutine. It internally generates the MPS files which can
be used in any other MILP solver. The ASPEN input file is keyword driven and contains all the
information about the topology of the superstructure, binary variables defining the selected
flowsheet (subsystems), along with the input data for the process.

The transfer of gradient information, and linearizations of the constraints is carried out internally.
The information is stored in arrays and used in calculation directly instead of generating new MPS
files as in ACCOPT (Carcotsios and Petrelli 1989) or in Flowtran for the retrofit strategy by Harsh
and Biegler (1989). This saves on the unnecessary I/O.

3.3 Implicit C ints Problem:

In an equation oriented environment like PROSYN and GAMS, the nonlinear equality constraints
are specified explicitly. For sequential modular simulators like ASPEN most of the constraints are
implicit. This includes the black box relation between the output variables, which are part of the
objective function or constraints in master problem and the input decision variables. The master
problem needs the linearizations of these constraints. To circumvent the problem of implicit
constraints linearization, the following strategy is used in the NLP optimization. The continuous
variable vector is separated into two categories, input variables and output variables, which results
in; |
zk p =min f (u, v)
u
subject to
g(u) + By =0
h;y (u,v) =0
ue U andv=¢(u) (implicit function)
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where u are input variables and v are output variables. The NLP problem is transformed to:

zgp =min f (u, v)

u, v
subjectto (IMP-CONS)
<
g(u) + by-0
hi(u) =0

h2 (U,V) :V-<)>(LD
UEUVEYV

where h2(u,v) are additional constraints added to the NL P problem.
4. Examples

Firstly the GBD/OA/ER/AP approabh presented in this paper isillustrated through the separation
sequence problem described by Kocis and Grossmann (1989). These authors used special models
for splitters and mixers to handle the nonconvexities in this problem. With the GBD/OA/ER/AP
approach one need not use the special modeling scheme, since the nonconvexities are treated with
the augmented penalty in the master problem. This feature is very useful for sequential modular
simulators, as this strategy does not call for changes in the modules of the simulator. Application
of the newly developed process synthesis capability for synthesis problems is also demonstrated
with arestricted version of the synthesis of a process for the hydrodealkylation of Toluene to

produce Benzene (Douglas 1988).

4.1 Separation Scheme Synthesis:

Consider the problem in Fig. 4 of selecting the optimal separation scheme to be used to separate
two components (A and B) which are available in feed streams FI and F2. The compositions of
these streams are 55 % A, 45 % B and 50 % A, 50 % B respectively and the desired product
streams are Pl and P2. Purity specifications are a minimum of 80 % A in product Pl and a
minimum of 75 % B in P2. Upper bounds are specified for the amounts of these products.
Hence, there is the possibility of producing as much as these amounts, or at the other extreme, not
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to produce any product if the separation scheme proves to be unprdfitable.

Figure 4ais the supergructure of alter native separation schemes which can be used to ddiver the
desred product streams. Alternatives embedded in this supergructure include: flash separation
with blending, distillation with blending, flash separation and distillation in paralle or the
elimination of the complete separation process. The binary variables associated with these
decisions are also shown in Figure 4a. Since the components used in this example are arbitrary,
we smulated this example by writing a small Fortran model in ASPEN. Thismodel isa black box
relating the output to the input variables and isin line with the smulator philosophy. The process
synthesis capability is used to optimize this problem and theresults are presented in Table 2. 1t can
be seen that in all the cases (with different initial conditi‘ons) the solution reaches the global
optimum YD = 1, YF = 1 with objective 510. It should be noted that Kocis and Grossmann
(1988) required a special srategy for modeling the splitters and the mixers which is not the case
here. '

4.2 The HDA Process.

The process chz)sen is the hydrodealkylation of toluene (HDA) process to produce Benzene
described extensively in Douglas (1988). The problem addressed is the selection of the flowsheet
dructure and operating conditions that maximize profit. Given a flowsheet supersructure of
alternatives, this problem can be formulated as an MINLP problem as shown by Kocis and
Grossmann (1989). In this paper, however, we will be using a somewhat smaller superstructure
and different input conditions. |

The supergructure selected for this problem is shown in Figure 5. The desired reaction in the
HDA processis toluene + hydrogen — > benzene + methane. An undesired reversiblereaction
occurs. 2benzene — > diphenyl + hydrogen. The conditions for these gas phase reactions are a
pressure of 3.45 (Mpa) and a temperature between 1150 to 1300 F. At lower temperatures, the
toluenereaction istoo slow and at higher temperatures hydrocrackirig takesplace. Also aratio of
at least 5:1 moles of hydrogen to moles of aromatics is required to prevent coking. The kinetics
and the design equations for thereadtor are given in Douglas (1988).
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A hydrogen raw material Sream isavailable at a purity of 95% (theremaining 5% ismethane). A
toluene fresh feed stream is also available. These feed streams are combined with the recycle
hydrogen and toluene streams which must be heated before being fed to the reactor. The
exothermic reaction can be carried out in a plug flow reactor operating either adiabatically (yl=I) or
isothermally (y2=I). Thereactor product sream will contain unreacted hydrogen and toluene as
well as the desired benzene product and undesired diphenyl and methane. This sream must be
guenched immediately to prevent coking in the heat exchanger. The stream will be cooled further
in order to condense the aromatics which will then be separated from the noncondensible hydrogen
and methanein aflash separator.

Thevapor sream leaving the flash ssparator contains valuable hydrogen which can berecycled. A
portion of the flash separator liquid sream is used to quench the reactor product sream and the
remainder is sent to the liquid separation system. Since this sream may contain hydrogen and
methane, it is necessary to remove these components using a stabilizing column (y3=l), or
alternatively, a second flash separator (y4=I) operating at lower pressure than the first flash.
Having removed the hydrogen and methane, the liquid streams contain benzene, toluene and
diphenyl. The benzene product is specified to be at least 99% pure, at a production rate of 1.2 |
kmoleg/s. A digtillation column isrequired to yield a product stream of this purity. The bottom
gream leaving the benzene column contains primarily toluene, with a small amount of diphenyl and
possibly some benzene. Prior to recycling the unreacted toluene, diphenyl should beremoved by a
column. This process is modeled using the ASPEN smulator. Figure 6 shows the ASPEN
representation of the superstructure. Simplifications were made wherever necessary using
guidelines and data from Douglas (1988).

The objective function is the maximization of the annualized prdfit,, The cost modéd isrepresented
by linear fixed-charge costs and the datais given in Table 3. The decomposition srategy is used to

solve this problem.

The resulting MINLP optimization problem contains 4 0-1 variables, 14 continuous decision
variablesand 11 additional congtraints (constraints made explicit). The optimal flowsheet structure
isshown in Figure 7. It isinteresting to note that if the congraint on purity is made less stringent
I.e. purity is morethan 95 % instead of 99 %, the optimal flowsheet sructure contains the flash




18

unit instead of the stabilizing column (Figure 8). In most of the cases with different initial values
the global optimum is found in 3 or less than 3 NLP iterations and 2 or less MILP iterations.

5. Conclusions

This paper has described the implementation of an MINLP process synthesizer in the ASPEN
process simulator. A variant of the GBD and the OA algorithms for solution of MINLP problems
has been presented. The proposed algorithm makes use of the OA/ER/AP approximation for one
iteration and of GBD cuts for subsequent iterations which allows a convenient implementation in

a sequential modular simulation environment.

The algorithm has been implemented along with the decomposition scheme of Kocis and
Grossmann (1989) in the sequential modular simulator, ASPEN (public version). Superstructures -
of synthesis problems with changes in the topology of the flowsheet can be handled effectively
with this new tool. Also especial modeling schemes are not needed for splitter and mixers with the
proposed implementation.The process synthesis capability in ASPEN has been illustrated using the
example of HDA process.
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Appendix |

GBP/OA[ER/AP2 algorithm and the Decomposition Strateny.

Set K=l and Z° = + «>. Select an initial flowsheet through the binary variables.

| dentify the Implicit congtraints and modify the NL P problem using equation (IMP-
CONS).

| dentify the nonlinear congtraints associated with the selected flowsheet NL P problem and
the congtraints associated with the subsystem NL P problem.

Solve the NL P problem for the selected flowsheet to get the value of the objective function -
Z* and store the gradient information and the Lagrangian multipliers. 1fK = 1, gotostep 5,

otherwiseto step 7.

Pass the information on multipliersto the NL Fsfor the subsystem with nonexisting units,
and solvethese NLP's and store the gradient infor mation.

Get the T matrix using the equation (OA/ER) for all the nonlinear equations.
Check if Z» > Z K -I; if true then the optimal solution isZ K-I; elsegoto step 7.
Formulate and solve the magter problem (equation (GBD/OA/ER/AP2)) to obtain the set of

new binary variables which defines the new flowsheet sructure. Set K = K+l and return to
step 4.

* The above procedure assumes that the sucessive NL P subproblems are feasible. If thisis not the case only an
integer cut added in the master problem.




Table 1. Comparison of GBD/OA/ER/AP with OA/ER/AP algorithms (EX1)

Major Major Objective function Binary variables
Step Iteration OA/ER/AP GBD/OA/ER/AP1 GBD/OA/ER/AP2  OA/ER/AP GBD/OA/ER/AP1 GBD/OA/ER/AP2

NLP 1 2.5353 6.5000 6.5000 0.37700.623 0 1 1 011
MILP 1 3.3956 3.0000 3.0000 010 010 010
NLP 2 3.5000 3.5000 3.5000 010 010 010
MILP 2 3.7715 5.4000 4.7000 100 100 100
NLP 3 5.0000 5.0000 5.0000 100 100 100

Optimal Solution : x1 = 1.0, x2 = 1.0, x11 = 1.0, x12 = 1.0, x13 = 0.0 obj.fun = 3.5



Table 2. Results for the Separation Synthesis Problem

Initid Point lteration NLP MILP Optimum CPU time*

YD=0,YF=0 - 1 0 (0,1) 12.62
2 478 (1,0)
3 482  (I.D
4 510 infeasible 510

YD=0O,YF=1 1 478 (1.0 10.75
2 482 (1,1)
3 510 Infeesible 510

YD=1YF=0 1 482 (1,1) 8.86
2 510 (0,1)
3 478 510

YD=1YF=1 1 510 (0,1) 6.46
2 478 510

* sees, totd-ASPEN run on VAX 3200.




Table 3. Cost Data for HDA Problem

Feedstock or product/byproduct  costs/price

($’kg-mole)
Hydrogen feed 95 % hydrogen 2.50
5 % methane
Toluene feed 100 % Toluene. 14.00
Benzene product >95 % benzene 19.90
Diphenyl product 11.84
Hydrogen purge (Heating value) 1.08
Methane purge (Heating value) 3.37
Utilities Costs
Electricity $0.04 kW/h
Heating (steam) . $8.0 106/kJ
Cooling (water) $0.7 106 /kJ
Fuel $4.0 106 /kJ
Investment costs Fixed-charge Linear
($103yr-1) cost coefficient
Compressor 7.155 0.815 Xbhp(kw)
Stabilizing column 1.126 0.375 X number of trays
Benzene column 16.3 155 X number of trays
Toluene column 3.90 112 X number of trays
Furnace 6.20 1172 X heat duty (106 kJ/yr)
Reactor (adiabatic) 74.3 1.257 X reactor volume (m3)

Reactor (isothermal) 92.875 1571 X reactor volume (m3)
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Figure 1. Main Steps in GBD and OA Algorithms
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