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Abstract

This paper deals with the development of an MINLP synthesizer for sequential modular

simulators. Firstly, a variant of the OA/ER/AP algorithm for MINLP problems is presented that

makes use of Benders cuts in previous or subsequent iterations. An automatic process synthesis

environment is then described for the ASPEN simulator using this algorithm, with the

decomposition strategy by Kocis and Grossmann(1989). The application of this new capability is

demonstrated with several examples including the structural optimization of the hydrodealkylation

of tolune process.

1. Introduction

Sequential modular chemical process simulators, such as FLOWTRAN, ASPEN, or PROCESS

have been widely used for the design of new processes, analysis of existing processes, etc. These

flowsheeting programs contain very detailed models for calculating mass and energy balances as

well as for sizing and costing. Over the last few years important advances have been made in

flowsheet optimization with process simulators using nonlinear programming techniques (NLP).

Effective computational strategies based on successive quadratic programming (SQP) algorithm

(Biegler and Cuthrell, 1985; Han 1977; Powell 1978) have been developed. These strategies

include the feasible and infeasible path optimization (Biegler and Hughes; 1983). In fact these

advances have made optimization a standard computational option in most of the simulators

nowadays.

A major goal in chemical process design is to synthesize flowsheet structures. Processes can be

modeled and optimized using simulators with an NLP optimization capability. However, this

optimization tool is restricted to flowsheets with fixed topology, and therefore cannot be readily

applied to process synthesis problems. One of the primary goals in process synthesis is to

establish methodologies for determining optimal flowsheet configurations. The current state of

such techniques involves: a) the heuristic approach which relies on intuition and engineering

knowledge, b) the physical insight approach which is based on exploiting basic physical

principles, and c) the optimization approach which uses the mathematical programming techniques.



This paper deals with the development of a process synthesis capability built around the sequential

modular simulator ASPEN using the mathematical programming approach, which requires the

solution of a Mixed Integer Nonlinear Programming (MINLP) problem (for general review see

Grossmann(1990)).

Algorithms for solving MINLP optimization include: the branch and bound method (Beale, 1977;

Gupta 1980), the Generalized Benders Decomposition (Benders, 1962; Geoffrion, 1972), and the

Outer Approximation OA method (Duran and Grossmann 1986). The OA and GBD algorithms are

in general more efficient than the Branch and Bound method. The OA algorithm requires fewer

iterations than GBD but involves the solution of a larger master problem. Another difficulty with

these algorithms is that they require the functions to satisfy convexity conditions to guarantee

convergence to the global optimum. Recent variants of the OA method, include the Outer

Approximation/ Equality Relaxation (OA/ER) strategy of Kocis and Grossmann (1987) for

handling nonlinear equations and the Augmented Penalty OA/ER algorithm of Vishwanathan and

Grossmann (1989) for reducing the effect of nonconvexities in the master problem. Also the

extension of GBD using a partitioning variable strategy by Floudas et al. (1989) shows improved

results for nonconvex functions. Since the direct application of MINLP algorithm to flowsheet

synthesis poses serious difficulties, Kocis and Grossmann (1989) developed a modeling and

decomposition strategy that requires only the NLP optimization of the existing flowsheet at each

iteration, avoiding the need of handling units with zero flows. Recently Kravanja and Grossmann

(1989) implemented this strategy in PROSYN, within an equation oriented environment in which

the simultaneous optimization and heat integration was also considered. This strategy, however,

has not been implemented in sequential modular simulators. It should be mentioned that Harsh and

Biegler (1989) have used the OA algorithm in FLOWTRAN for the optimal retrofit design but the

topology of the flowsheet was fixed. Caracotsios and Petrelli (1989) have built an MINLP

environment which can be interfaced with the ASPEN simulator. Applications to the synthesis of

complex chemical processes have not been reported in their research.

In this paper the process synthesis capability that has been implemented in the ASPEN (public

version) simulator is described. For the MINLP optimization, a variant of the GBD and OA

algorithm is proposed which is relatively easy to implement in process simulators. In addition the

decomposition strategy by Kocis and Grossmann (1989) is used to circumvent the problem of zero



flows. Several examples are presented including a restricted version of the synthesis of the HDA

process (Douglas 1988).

2. MINLP Techniques

Process synthesis involves defining a search space or a superstructure of candidate flowsheet

structures that may be based on preliminary screening (Grossmann, 1990). This superstructure

can then be modeled as an MINLP problem of the form;

Z = mincTy + f(x)

x, y

subject to (MINLP)

h(x) = 0

By + g(x)<0

y e Y ; x e X

where Y={yl Ay < a , y {0 , l} m ; X = {xl x^<xf£xUxe Rn)

The continuous variables x represent flows, operating conditions, and design variables. The

binary variables y denote the potential existence of process units.

The GBD and OA algorithms for solving the above MINLP consist of solving at each major

iteration an NLP subproblem (with all 0-1 variables fixed) and an MILP master problem as shown

in Figure 1. The NLP subproblems have the role of optimizing the continuous variables and

provide an upper bound to the optimal MINLP solution. The MILP master problem has the role of

predicting a lower bound to the MINLP as well as new 0-1 variable values for each major iteration.

The predicted lower bounds increase monotonically as the cycle of major iterations proceed, and

the search is terminated when the predicted lower bound coincides or exceeds the current upper

bound.

The main difference between GBD and the OA method lies in the definition of the MILP master

problem. The master problem in GBD is a dual representation of the continuous space, while the

master problem in OA is given by a primal approximation.



2.1 Master Problems

2.1.1 GBD

Based on the solution of k NLP subproblems with fixed yk, k = 1...K, the master problem of

GBD is given by:
ZGBD = min

subject to (GBD)
ti

+ f (Xk) +£ Mj [ gj(xk) -bjy] k = 1, 2....K

y e Y ;

where Y = {yl Ay < a, y e {0,1 }m

where k represents the iteration counter, and Mj1 s are the Lagrange multipliers of the inequality

constraints. The master problem of GBD contains only the 0-1 variables, and the Lagrangian cut

in the 0-1 space. Since the master problem does not involve continuous variables, it predicts

weaker lower bounds.

2.1.2 OA algorithm and its extensions

The master problem for OA is given by:

subject to

ocoA^cTy + f (X*) +Vf (x*)T(x - x*)
By + g (x*) +Vg (xk)T(x - x*) < 0 k = 1, 2....K (O A)

where Y = {yl Ay < a, y e {0,1 }m ; X = {xl xL< x< xU x e Rn}



As the iterations proceed the master problem accumulates constraints in the X-Y space generating

richer information, so that OA converges in fewer iterations than the GBD. Extension of this

algorithm for handling nonlinear equality constraints is the OA/ER algorithm of Kocis and

Grossmann (1987). Here, linearizations of the equations at the solution of the NLP subproblem k,

are added to the master problem (OA) by relaxing them according to the sign of the Lagrange

multiplier, that is:

(ER)

where Tk= [t^i ]

1 if A? > 0

<ii= Oif X? = 0

-1 if X? < 0

As shown by Kocis and Grossmann (1987) sufficient conditions for global optimality with the

OA/ER algorithm require convexity in the objective function and inequalities, and quasi-convexity

of the relaxed nonlinear equations. Nonconvexities can be treated using the recent variant of this

algorithm (Viswanathan and Grossmann 1990) that makes use of augmented penalty function in

the master problem. The algorithm starts with solution of the relaxed NLP. The master problem

contains the slack variables and is given by:

Kk + Z (w*)Tsk

k=l
y, xptAP, pk, qk, £

subject to

(OA/ER/AP)

f (xk) +Vf (xk)T(x - xk) - qk

Ẑ > = min a,

y, *#AP> Pk, $

K

*P + X (wq
k=l

K

)V + X
k=l

B y + g (X*) +Vg ( x ^ x - xK)<s* k=l,2,...K

Y ; x € X;aApe R

where Y = {yl Ay < a, y e {0, l} m ; X = {xl x ^ x < xU x € Rn}



where qk, pk, £ are the slack variables with corresponding large finite weights w£, w*,, wk.

The OA/ER/AP algorithm proceeds until there is no decrease in the NLP solution. Experience with

this algorithm has shown a high degree of robustness with nonconvex problems.

2.13 GBDIOAIERIAP; A New Variant:

Although the OA/ER/AP algorithm is computationally efficient and has shown a high degree of

robustness, it requires solution of the relaxed NLP at the initial point. In the context of a process

flowsheer this involves optimization of the entire superstructure which can be computationally

quite expensive. Another problem with this algorithm is that the master problem grows in size as

the iterations proceed which calls for major restructuring of the master problem at each iteration. In

this paper we propose a hybrid method to overcome these problems and to make the algorithm

easier to implement. The basic idea is to apply the OA/ER/AP at the current iteration k, while

previous iterations are stored in the form of Benders cuts. The master problem is then given by:

CCGOEA

P

subject to

OGOEA ĉTy + f (x*) + Vf (XK)T(x - X*) + (w£)TpK +

T K [Vh(x K ) T (x -x K ) ]<p K

By + g (xK) +Vg (xK)T(x - xK) <, sK

OGOEA * cTy +f(xk) + Vf(xk)T(x-*k) + £ HjtbjY + gj(xk) + Vgj(x
k)T(x-xk)] k = 1,2, ...K-l

(GBD/0A/ER/AP1)

yk- £ M
jeBk

y € Y; x € X; aooEAe R

where Y = {yl Ay < a, y e {0,1 }m ; X = {xl xL< x< xU x e Rn}



Alternatively one can keep the first iteration in the form of OA/ER/AP and the successive iterations

treated in the form of GBD constraints as shown below (GBD/OA/ER/AP2). This formulation is

especially designed for the decomposition strategy (section 2.2), where the first iteration

constraints are richer in information.

Z Q Q E ^ min OQOEA

y, x, CCGOEA, P

subject to
OGOEA>CTy + f (X1) +Vf (X1)T(X - xl) V V

B y + g (x1) +Vg (x 1 ) 7 ^ - x1) < sk

ti

OCGOEA ^ cTy +f(xk) + Vf(xk)T(x-xk) + X Hhy + gj(xk> + vgj(^k)T(x-xk)l k = 2,3,...K

(GBD/OA/ER/AP2)

X y^- 7 y^ <IBH- 1 u _ i ^ xr

j e B k ielSI^

ye Y;X€X;OCGOEA€ R 1

where Y = {y!Ay <a, y {0,1 J*; X = {xlx^x^x U x e Rn}

The solution strategy is similar to the OA/ER/AP algorithm except that the solution does not start

with the relaxed NLP, but for a fixed value of the 0-1 variables. This method has shown similar

robustness as observed in the OA/ER/AP algorithm and is easier to implement. It should also be

noted that for the convex case, where the slack variables are driven to zero (See Vishwanathan and

Grossmann 1990), this master problem does not necessarily yield non-decreasing lower bounds.

However convergence to the optimum can still be guaranteed when the bound predicted by the

master problem is greater or equal than the best upper bound.

An Illustrative Example:

The GBD/OA/ER/AP algorithm is illustrated by solving the following example problem:



Min yl + 1.5y2 + 0.5y3 + x l l + xl2

subject to

x l l - x l 2 = 0

x l2 -x2 2 = 0
x l 3 - x 2 - ( x l - 2 ) 2 = 0 (EX1)

l - y l - x l - 0

3 y 3 - x l - x 2 ~ 0

y l + y 2 + y 3 - 0

yl, y2, y3 = 0,1

Table 1 presents the comparison of the step by step results obtained using

GBD/OA/ER/AP1, GBD/OA/ER/AP2 with the OA/ER/AP algorithm. The termination criterion in

the three cases is based on the increase of the objective function in the NLP.

2.2 Decomposition Strategy

Although one can directly use either of the two above versions of the above stated MINLP

algorithm for the optimization of superstructures of flowsheets, it is clear that in order to increase

the reliability and the efficiency of the solution procedure, one ought to recognize the special

structure and properties that characterize the optimal synthesis of process flowsheets. The main

difficulty which is encountered here is having to optimize "dry units" with zero flow, which are

temporarily turned off in the superstructure. One way to handle this problem is to use very small

flows instead of zero flows (Kocis and Grossmann 1987; Caracotsios and Petrellis 1989).

However, this is computationally inefficient since one has to solve an NLP problem for the entire

superstructure which can also lead to numerical difficulties due to the very small flows in the units;

for instance, linearizations can result in very poor approximations to the nonlinear functions.

Lastly, the likelihood of getting trapped in multiple optima is greater in the larger NLP problem.

The decomposition strategy of Kocis and Grossmann (1989) has the important feature that the

NLP optimization is only required for the flowsheet with existing units at each iteration.

Information to the master problem on the non-existing units is provided through a Lagrangian
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suboptimization procedure which enforces non-zero flows in these units.

The decomposition scheme is similar in nature to multilevel optimization methods that use

Lagrange multipliers to decompose the separable problems. The input variables in the problem can

be separated into two groups; the variables associated with existing units and the variables

associated with the nonexisting units. The initial problem is formulated using the existing units,

and the subproblem (subproblems) using nonexisting units. Material balance equations at

interconnection nodes are used to relate the initial problem, to the subproblem (for details see Kocis

and Grossmann 1989). The suboptimization procedure is used to get good points for linearizations

and hence is performed only at iteration 1. Since iteration 1 has all the information of the

superstructure GBD/OA/ER/AP2 formulation is used to solve this problem. The following

example of two reactors will illustrate the decomposition strategy.

Two Reactor Problem:

Consider the problem by Kocis and Grossmann (1989) for selecting from among two candidate

reactors to minimize the cost of producing a desired product (see Figure 2). The MINLP

formulation is given below:

Min 7.5yl + 5.5y2 + 7vl + 6v2 +5x

subject to

z l = 0 . 9 [ l - e x p ( - 0 . 5 v l ) ] x l

z2 = 0.8 [ 1 - exp (-0.4 v2) ] x2

xl + x2 -x = 0 (TWO-REA)

zl + z2 = 10

vl ^lOyl

v 2 ^ 10y2

xl ^ 20yl

x2^ 20y2

yl + y2 = 1

y l , y2 = 0,l; xl,x2,zl,z2,vl,v2 ^0
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The binary variables yl and y2 denote existence of reactors 1 and 2. The material balance

constraints for interconnection nodes include splitting of input flows xl and x2, and mixing of

outlets zl and z2. This problem was solved using GBD/0A/ER/AP2 algorithm with the

decomposition scheme shown in Figure 2(b). The splitter, the mixer and the reactor were selected

as the initial flowsheet while the remaining units are suboptimized

I First NLP

a) The NLP Optimization of the initial flowsheet is given by:

Min 5.5y2 + 6v2+5x

subject to

z2 = 0.8 [ 1 - exp (-0.4 v2) ] x2

xl + x2 -x = 0

zl + z2=10

v 2 ^ 10

x2^ 20

The solution to this NLP is Z = 107.376 at xl= x = 15 and v2 = 4.479 and the Lagrange

multipliers for the mixer mass balance (zl + z2 = 10) is -7.5, Linearizations for the nonlinear

constraints corresponding to the initial flowsheet results in,

z2 - 0.666x2 - 0.800 v2 + 3.584 - p2 ^ 0

b) The NLP suboptimization problem for the nonexistent unit is then given by,

Min7.5yl+7vl+5xl-7.5zl

subject to

zl=0.9[l-exp(-0.5vl)]xl

xl-15=0

vl^ 10

xl^ 20
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Note that the material balance equation for inlet to the interconnection node is replaced by the

constraint which fixes the inlet flowrate equal to the inlet flowrate calculated at the optimal value of

the initial flowsheet (xl-15 = 0), and the interconnection node outlet material balance constraint is

combined with the objective function using the Lagrange multiplier obtained at the initial flowsheet

optimization. The solution yields Z = 22.950 at zl = 11.633 and vl = 3.957. The linear

approximation to the corresponding constraint results in;

zl - 0.776x1 - 0.933vl - 3.693 - pi ^ 0

II First MILP master problem

The formulation of this problem is similar to (TWO-REA) with the only difference that the two

nonlinear equations are replaced by the two linear approximations, and the integer constraint (y2-

yl < 0) is also included. The solution is 95.64 (a-£wjft) at yl=l and y2 = 0 indicating the

existence of the first reactor and nonexistence of the second one.

HI. Second NLP subproblem

Continuous optimization of the NLP problem (only for the selected flowsheet) is performed. The

solution yields z=99.240.

IV. Second MILP master problem

Adding the following additional constraints,

a> 7.5yl + 5.5y2 +7vl + 6v2 +5x - 6.7z2 +6v2 + 5x2

yl-y2<£0

leads to an infeasible solution and hence, the procedure terminates. Thus the optimal of second

NLP represents the global optimum. The process synthesis environment in ASPEN uses the

GBD/OA/ER/AP2 algorithm and the decomposition strategy by Kocis and Grossmann (1989).

Appendix I describes the steps involved in this procedure.



13

3. Implementation in ASPEN

3.1 Process Synthesis Capability

The MINLP process synthesis capability in ASPEN is based on ZOOM (Marsten 1987), the

Mixed Integer Linear Programming (MILP) solver and on SCOPT (Lang and Biegler 1987), the

nonlinear programming (NLP) solver. The overall structure of the process synthesis environment

is shown in Figure 3. Optimization of the MINLP process synthesis problem is decomposed into

continuous optimization of NLP problems at fixed choice of the binary variables y, and discrete

optimization through the MILP master problem. The MILP solver (Master) and the NLP optimizer

are implemented in ASPEN as unit operation blocks and can be executed easily with the ASPEN

process unit blocks.

First a superstructure is postulated which has embedded alternative flowsheet structures. The

superstructure is then modeled as an MINLP problem. Secondly the superstructure is decomposed

into the initial flowsheet and subsystems of non-existing units that are to be suboptimized with a

Lagrangian scheme, in order to provide a linear approximation of the entire superstructure in the

master problem. For more information on decomposition of the superstructure readers are advised

to refer to the paper by Kravanja and Grossmann (1989).

The process synthesis environment in ASPEN consists of the Master block, the NLP optimizer and

the entire superstructure. The initialization of the continuous and binary variables is done in the

ASPEN input file. At this stage the scheme is translated into the initial or the selected flowsheet

and subsystems. NLP optimization of the selected flowsheet is the first step in the inner loop. The

information in the Lagrangian multipliers is passed from the initial flowsheet to the subsystems to

carry out their optimization. The inner loop results in the objective function value from the selected

flowsheet optimization, and gradients and lagrange multipliers from the selected flowsheet and

subsystems. This information is passed to the Master block which internally modifies the master

problem using the equality relaxation strategy and the information from the inner loop. The

solution of the master problem results in a new flowsheet structure. From this point on, the NLP

optimization is only performed on the new selected flowsheeet. The iteration stops when there is

no improvement (decrease) in the objective function value.
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3.2 Input Structure:

The input structure of the process synthesizer follows ASPEN's keyword input language for

simulation and ZOOM'S XML language for the MILP master problem. This type of environment

is very easy to code and the information is transparent to the user The algebraic equation oriented

language for MILP master problem (XML language) is simpler than providing the data and

constraint equations through a Fortran subroutine. It internally generates the MPS files which can

be used in any other MILP solver. The ASPEN input file is keyword driven and contains all the

information about the topology of the superstructure, binary variables defining the selected

flowsheet (subsystems), along with the input data for the process.

The transfer of gradient information, and linearizations of the constraints is carried out internally.

The information is stored in arrays and used in calculation directly instead of generating new MPS

files as in ACCOPT (Carcotsios and Petrelli 1989) or in Flowtran for the retrofit strategy by Harsh

and Biegler (1989). This saves on the unnecessary I/O.

3.3 Implicit Constraints Problem:

In an equation oriented environment like PROSYN and GAMS, the nonlinear equality constraints

are specified explicitly. For sequential modular simulators like ASPEN most of the constraints are

implicit This includes the black box relation between the output variables, which are part of the

objective function or constraints in master problem and the input decision variables. The master

problem needs the linearizations of these constraints. To circumvent the problem of implicit

constraints linearization, the following strategy is used in the NLP optimization. The continuous

variable vector is separated into two categories, input variables and output variables, which results

in;
zfoLP = minf(u,v)

u

subject to

g(u) + B y~0

hi (u, v) = 0

u G U and v = <|>(u) (implicit function)
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where u are input variables and v are output variables. The NLP problem is transformed to:

u, v

subject to (IMP-CONS)

g(u) + b y - 0

hi(u) = 0

h2 (u,v) = v - <)>(u)
U € U, V € V

where h2(u,v) are additional constraints added to the NLP problem.

4. Examples

Firstly the GBD/OA/ER/AP approach presented in this paper is illustrated through the separation

sequence problem described by Kocis and Grossmann (1989). These authors used special models

for splitters and mixers to handle the nonconvexities in this problem. With the GBD/OA/ER/AP

approach one need not use the special modeling scheme, since the nonconvexities are treated with

the augmented penalty in the master problem. This feature is very useful for sequential modular

simulators, as this strategy does not call for changes in the modules of the simulator. Application

of the newly developed process synthesis capability for synthesis problems is also demonstrated

with a restricted version of the synthesis of a process for the hydrodealkylation of Toluene to

produce Benzene (Douglas 1988).

4.1 Separation Scheme Synthesis:

Consider the problem in Fig. 4 of selecting the optimal separation scheme to be used to separate

two components (A and B) which are available in feed streams Fl and F2. The compositions of

these streams are 55 % A, 45 % B and 50 % A, 50 % B respectively and the desired product

streams are PI and P2. Purity specifications are a minimum of 80 % A in product PI and a

minimum of 75 % B in P2. Upper bounds are specified for the amounts of these products.

Hence, there is the possibility of producing as much as these amounts, or at the other extreme, not
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to produce any product if the separation scheme proves to be unprofitable.

Figure 4a is the superstructure of alternative separation schemes which can be used to deliver the

desired product streams. Alternatives embedded in this superstructure include: flash separation

with blending, distillation with blending, flash separation and distillation in parallel or the

elimination of the complete separation process. The binary variables associated with these

decisions are also shown in Figure 4a. Since the components used in this example are arbitrary,

we simulated this example by writing a small Fortran model in ASPEN. This model is a black box

relating the output to the input variables and is in line with the simulator philosophy. The process

synthesis capability is used to optimize this problem and the results are presented in Table 2. It can

be seen that in all the cases (with different initial conditions) the solution reaches the global

optimum YD = 1, YF = 1 with objective 510. It should be noted that Kocis and Grossmann

(1988) required a special strategy for modeling the splitters and the mixers which is not the case

here.

4.2 The HDA Process:

The process chosen is the hydrodealkylation of toluene (HDA) process to produce Benzene

described extensively in Douglas (1988). The problem addressed is the selection of the flowsheet

structure and operating conditions that maximize profit. Given a flowsheet superstructure of

alternatives, this problem can be formulated as an MINLP problem as shown by Kocis and

Grossmann (1989). In this paper, however, we will be using a somewhat smaller superstructure

and different input conditions.

The superstructure selected for this problem is shown in Figure 5. The desired reaction in the

HDA process is toluene + hydrogen — > benzene + methane. An undesired reversible reaction

occurs: 2benzene — > diphenyl + hydrogen. The conditions for these gas phase reactions are a

pressure of 3.45 (Mpa) and a temperature between 1150 to 1300 F. At lower temperatures, the

toluene reaction is too slow and at higher temperatures hydrocrackirig takes place. Also a ratio of

at least 5:1 moles of hydrogen to moles of aromatics is required to prevent coking. The kinetics

and the design equations for the reactor are given in Douglas (1988).
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A hydrogen raw material stream is available at a purity of 95% (the remaining 5% is methane). A

toluene fresh feed stream is also available. These feed streams are combined with the recycle

hydrogen and toluene streams which must be heated before being fed to the reactor. The

exothermic reaction can be carried out in a plug flow reactor operating either adiabatically (yl=l) or

isothermally (y2=l). The reactor product stream will contain unreacted hydrogen and toluene as

well as the desired benzene product and undesired diphenyl and methane. This stream must be

quenched immediately to prevent coking in the heat exchanger. The stream will be cooled further

in order to condense the aromatics which will then be separated from the noncondensible hydrogen

and methane in a flash separator.

The vapor stream leaving the flash separator contains valuable hydrogen which can be recycled. A

portion of the flash separator liquid stream is used to quench the reactor product stream and the

remainder is sent to the liquid separation system. Since this stream may contain hydrogen and

methane, it is necessary to remove these components using a stabilizing column (y3=l), or

alternatively, a second flash separator (y4=l) operating at lower pressure than the first flash.

Having removed the hydrogen and methane, the liquid streams contain benzene, toluene and

diphenyl. The benzene product is specified to be at least 99% pure, at a production rate of 1.2

kmoles/s. A distillation column is required to yield a product stream of this purity. The bottom

stream leaving the benzene column contains primarily toluene, with a small amount of diphenyl and

possibly some benzene. Prior to recycling the unreacted toluene, diphenyl should be removed by a

column. This process is modeled using the ASPEN simulator. Figure 6 shows the ASPEN

representation of the superstructure. Simplifications were made wherever necessary using

guidelines and data from Douglas (1988).

The objective function is the maximization of the annualized profit,. The cost model is represented

by linear fixed-charge costs and the data is given in Table 3. The decomposition strategy is used to

solve this problem.

The resulting MINLP optimization problem contains 4 0-1 variables, 14 continuous decision

variables and 11 additional constraints (constraints made explicit). The optimal flowsheet structure

is shown in Figure 7. It is interesting to note that if the constraint on purity is made less stringent

i.e. purity is more than 95 % instead of 99 %, the optimal flowsheet structure contains the flash
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unit instead of the stabilizing column (Figure 8). In most of the cases with different initial values

the global optimum is found in 3 or less than 3 NLP iterations and 2 or less MILP iterations.

5. Conclusions

This paper has described the implementation of an MINLP process synthesizer in the ASPEN

process simulator. A variant of the GBD and the OA algorithms for solution of MINLP problems

has been presented. The proposed algorithm makes use of the OA/ER/AP approximation for one

iteration and of GBD cuts for subsequent iterations which allows a convenient implementation in

a sequential modular simulation environment

The algorithm has been implemented along with the decomposition scheme of Kocis and

Grossmann (1989) in the sequential modular simulator, ASPEN (public version). Superstructures

of synthesis problems with changes in the topology of the flowsheet can be handled effectively

with this new tool. Also especial modeling schemes are not needed for splitter and mixers with the

proposed implementation.The process synthesis capability in ASPEN has been illustrated using the

example of HD A process.
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Appendix I

GBP/ OA/ ER/ AP2 algorithm and the Decomposition Strategy

Step 1 : Set K=l and Z° = + «>. Select an initial flowsheet through the binary variables.

Step 2 Identify the Implicit constraints and modify the NLP problem using equation (IMP-

CONS).

Step 3: Identify the nonlinear constraints associated with the selected flowsheet NLP problem and

the constraints associated with the subsystem NLP problem.

Step 4: Solve the NLP problem for the selected flowsheet to get the value of the objective function

Zk and store the gradient information and the Lagrangian multipliers. If K = 1, go to step 5,

otherwise to step 7.

Step 5: Pass the information on multipliers to the NLFs for the subsystem with nonexisting units,

and solve these NLP's and store the gradient information.

Step 6: Get the T matrix using the equation (OA/ER) for all the nonlinear equations.

Step 7* : Check if Z^ > Z K-l; if true then the optimal solution is Z K-l; else go to step 7.

Step 8: Formulate and solve the master problem (equation (GBD/OA/ER/AP2)) to obtain the set of

new binary variables which defines the new flowsheet structure. Set K = K+l and return to

step 4.

* The above procedure assumes that the sucessive NLP subproblems are feasible. If this is not the case only an
integer cut added in the master problem.



Table 1. Comparison of GBD/OA/ER/AP with OA/ER/AP algorithms (EXl)

Major Major
Step Iteration OA/ER/AP

Objective function
GBD/OA/ER/AP1 GBD/OA/ER/AP2

NLP
MILP
NLP
MILP
NLP

1
1
2
2
3

2.5353
3.3956
3.5000
3.7715
5.0000

6.5000
3.0000
3.5000
5.4000
5.0000

6.5000
3.0000
3.5000
4.7000
5.0000

OA/ER/AP

Binary variables
GBD/OA/ER/AP1 GBD/OA/ER/AP2

0.377 0 0.623 0 1 1
0 1 0 0 1 0
0 1 0 0 1 0

1 0 0 1 0 0
1 0 0 1 0 0

Optimal Solution : xl = 1.0, x2 = 1.0, x l l s 1.0, xl2 = 1.0, xl3 = 0.0

0
0
0
1
1

obj.fun

1
1
1

0
0

=

1
0

0
0
0

3.5



Table 2. Results for the Separation Synthesis Problem

Initial Point

YD=0,YF = 0

YD = O,YF=1

YD = 1,YF = O

YD = 1, YF= 1

Iteration

1
2
3
4

1
2
3

1
2
3

1
2

NLP

0
478
482
510

478
482
510

482
510
478

510
478

MILP

(0,1)
(1,0)
( l .D
infeasible

(1.0)
(1,1)
Infeasible

(1,1)
(0,1)

(0,1)

Optimum

510

510

510

510

CPU time*

12.62

10.75

8.86

6.46

* sees, total-ASPEN run on VAX 3200.



Table 3. Cost Data for HDA Problem

Feedstock or product/byproduct

Hydrogen feed

Toluene feed
Benzene product
Diphenyl product
Hydrogen purge
Methane purge

Utilities

Electricity
Heating (steam)
Cooling (water)

Fuel

Investment costs
($103yr-l)

Compressor
Stabilizing column
Benzene column
Toluene column

Furnace
Reactor (adiabatic)

Reactor (isothermal)

costs/price

95 % hydrogen
5 % methane

100 % Toluene
>95 % benzene

(Heating value)
(Heating value)

Costs

$0.04 kW/h
$8.0 106/kJ
$0.7 106 /kJ
$4.0 106 /kJ

Fixed-charge
cost

7.155
1.126
16.3
3.90
6.20
74.3

92.875

($/kg-mole)

2.50

14.00
19.90
11.84
1.08
3.37

Linear
coefficient

0.815 Xbhp(kw)
0.375 X number of trays
1.55 X number of trays
1.12 X number of trays

1172 X heat duty (106 kJ /yr)
1.257 X reactor volume (m3)
1.571 X reactor volume (m3)
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Figure 1. Main Steps in GBD and OA Algorithms
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