
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

KNEJI

An Interactive Interpreter

that the User can Extend

Philip L. Karlton

Joseph M. Newcomer

Department of Computer Science

Carnegie-Mellon University

September 9V 1974

ABSTRACT

KNEJI is an interpreter intended primarily for use by programmers. It

uses a SAIL-like syntax, but the semantics are somewhat more constricted.

An editor is inside KNEJI and allows the creating, editing and saving of

programs. KNEJI only exists as a .REL file that can be loaded with the

user 's program. One of its chief functions is to act as an expression

evaluator for External (in the SAIL sense) routines.

This research was supported in part by the Advanced Research Projects Agency of the

Department of Defense under contract no. F44620-73-C-0074 and monitored by the

A ir Force Off ice of Scientific Research.

KNEJI i

I Introduction 1

II The Language of KNEJI • • • 2

I L I Data types 2

11.2 Statements 2

II.2.a Setformat 2

II.2.D Print • 2

II.2.C Conditional 3

II.2.d Iteration 3

II.2.e Assignment • • 3

II.2.f Go to 4

II.2.g Execute 4

II.2.h Editor 4

II.2.Ì Return 4

II.2.J Block structure . . . 5

II.2.k Parameter binding 5

II.2.I Comment 6

II.2.m Value 6

II.2.n String Value 6

II.2.0 Read 6

II.2.P String read 6

II.2.q Extension 7

II.2.r Untrace 7

II.2.S Trace 7

II.2.t Dump • • • 7

II.2.U DDT 8

11.3 Operators • 8

11.4 Operands 9

III The Editor-Monitor 1 0

U L I Line Changing Commands . • 1 0

ULI.a I[<lnum>[,<inc>]] Insert a line in the current

program 10

September 9, 1974

IASLEQECQMENia

SECTION PAGE

ii TABLE OF CONTENTS KNEJI

HL l . b D<lnum>[:<lnum>] Delete a line or range of lines in

the current program 11

IILl.c R<lnum> Replace a line in the current program : 11

IILl .d A<lnum> Alter a line in the current program 11

ÌII.2 I/O Commands . . 11

III.2.a P[<lnum>[:<lnum>]] Print a line or range of lines 11

IIL2.b L[<pnum>] List a program on the line printer 11

III.2.C >[<pnum>][<name>] Output source to the disk 11

III.2.d <[<pnum>][<name>] Input source from the disk 12

111.3 Variable Changing Commands 12

III.3.a V«- Set all Variables 12

III.3.b V>[<name>] Output the Variable Values to Disk . 13

III.3.C V<[<name>] Input Variable Values from the Disk 13

111.4 Control Commands 13

I I IAa Z<pnum> Change the current program number . 13

I I IAb E Exit from the Editor 13

I I IAc <altmode> Exit from the Editor . 13

I I IAd C Clear Work Space 13

I I IAe @<pnum> Execute a Program 14

I I IAf ! Enter Immediate Mode 14

IV Asynchronous Breaks . . 15

V User Extensions 16

V . l What to Write I 6

V.2 Why It is Written I 7

V.3 What has been Written 18

V.3.a IGRAPH 18

V.3.b CALC 18

INDEX . 1 9

September 9, 1974

KNEJI
1

I. Introduction

KNEJI is a system of SAIL procedures which allows the user to write programs in a

simple but reasonably powerful language and run them — either from direct T T Y

commands or through program (SAIL) control. The system is designed to allow fast and

easy circuit through the program-compile-execute loop, particularly in situations where

the user is not sure at the outset what form his program will take. More importantly it

a l lows the user to interactively call SAIL routines that he has linked to the interpreter

and evaluate the expressions that he is passing as arguments.

One vers ion of KNEJI (CALC) can be used as a super desk calculator with no knowledge
of SAIL required. Another version (IGRAPH) that exists can be used for developing
image fi les for the XGP. Documentation for it already exists.

The system consists of a line-oriented editor-monitor (called, henceforth, the "editor"),
a compiler (almost invisible to the user) and an interpreter for executing (running) the
programs.

The compiler and interpreter are designed so that extensions can be made easily, thus
al lowing for individual needs. The interface is explained in Section V.

Acknowledgements: Lee Erman wrote the original interpreter (EOI) on which KNEJI was
loose ly based. Some of this documentation has been bodily stolen from EOIMAN: the
manual for that interpreter. Richard Johnsson was indispensible in debugging and
prov id ing many of the string hacking functions which allow KNEJI to run at other than
a snail 's pace. Joe Newcomer extended the system to allow dynamic data typing, local
var iables, parameterized program calls, sticky line numbers, and several other
improvements.

September 9, 1974

2
KNEJI

IL Jhs. Language. oL KNEJI

A program consists of a set of lines. Each line consists of one or more statements and

is terminated by a CR. Every statement is terminated with a semi-colon, except the

last one on a line which has an implicit semi-colon. There may be (currently) twenty

(20) programs, each with up to (currently) twenty (20) lines. These limits are easi ly

changed, but they do require a recompilation of the system. Ask, and it might be done.

When a program is executed, execution begins with the first line of the program and

cont inues sequentially except when changed by GOTO's or RETURN'S. After the last

l ine is executed, the program exits and returns to whatever program called it (either

another KNEJI program, the editor, or an external procedure).

I L L Data types

There are only two data types internally, real and string. Whenever an explicit

integer value is needed, it is obtained from a teal by truncation of the fract ion

part, and from string by using the ASCII value of the first character of the

str ing (this is consistent with SAIL usage). A string is converted to real by

f irst coercing it to an integer and then to real; a real is converted to a str ing

by f irst converting it to an integer and then using that integer as the ASCII

value of a one-character string.

II.2. Statements

Current ly, these are the statements that KNEJI recognizes.

IL2.a. Setformat

When the system displays the value of a real expression, it does it

essentially in the G format from Fortran. (The "whatever is r ight"

format.). Use this statement to change the precision of the output

display.

ILZa.i. Syntax
SETFORMAT <expression>

IL2.a.ii. Semantics
The value of the <expression> truncated to an integer becomes

the number of digits to the right of the decimal point on output.

IL2.b. Print

This statement can be used to display the value of variables on the

console.

IL2.b.i. Syntax
PRINT <variable list>

September 9, 1974

KNEJI The Language of KNEJI 3

II.2.b.ii. Semantics

The name and value of each variable in the list is displayed on
the user's console.

II.2.C Conditional

The IF-THEN statement allows conditional execution of one statement.

It is not yet possible to use compound statements.

II.2.C.L Syntax

IF <expression> THEN <statement>

II.2.c.ii. Semantics

If <expression> has a non-zero value then <statement> will be

executed.t The results of using the boolean operators on

<expression>s are zero or non-zero. Using boolean values as

arithmetic (real) operands is undefined.

II.2.d. Iteration

The WHILE-DO statement allows iterative execution control of one

statement. It is not yet possible to use compound statements.

II.2.d.i. Syntax

WHILE <expression> DO <statement>

II.2.d.ii. Semantics

As long as <expression> has a non-zero value then <statement>
will be executed. Note: The execution of a loop may be
interrupted; see Section IV.

II.2.e. Assignment

This statement is used to assign a value to a variable.

II.2.e.i. Syntax

<variable> 4- <expression>*

II.2.e.ii. Semantics

The value of <expression> is computed and the result is

assigned to <variable>. If the result is of type string then the

variable takes on a string value; if it is of type real then the

variable takes on a real value.

Expressions are converted to integer by truncation from type £ftal before being
tested for zero in a boolean context. This means that if the absolute value of
<expression> is less than 1, then <statement> will not be executed.
<expression> stands for either a E U L or siring expression throughout this
documentation.

September 9, 1974

The Language of KNEJI KNEJI

II.2.f. Go to

To begin executing a different line (not statement) in the same program.

II.2.f.i. Syntax
GOTO <expression>

ILZ.f.ii. Semantics
<expression> is evaluated and truncated to an integer. The

result is the line number to next be executed. Execution wil l

begin with the first statement at the destination line number.

II.2.g. Execute

This statement is used to execute a program.

II.2.g.i. Syntax
EX <expression> (parml,...)

II.2.g.ii. Semantics
<expression> is evaluated and converted to an integer. If the

result equals zero then the editor is called as a subroutine. If

the result equals -1 then the current KNEJI program returns (as

if the last line had been executed). Otherwise, the interpreter

is recursively called to execute program number <expression>.

If parameters are specified in the call, they are made available

for LAMBDA binding in the called program; if no parameters are

specified, the parentheses must be absent. If the executed

program returns an error flag, then the current program also

returns immediately with an error flag. See Section IV.

II.2.h. Editor

The ED statement provides a shorthand statement for calling the ed i tor-

monitor to edit a specific program.

II.2.h.i. Syntax
ED <expression>

II.2.h.ii. Semantics
The expression is evaluated and coerced to an integer; the

editor is called to edit that program.

11.2.1. Return

II.2.U. Syntax
RETURN

II.2.i.ii. Semantics

September 9, 1974

KNEJJ The Language of KNEJI 5

Execution of the current program is terminated and control
returns to its caller.

IL2.j. Block structure

The LQCAL statement allows the user to declare variables local to the
current incarnation of the program.

IL2.j.i. Syntax

LOCAL <variable list>

IL2.j.ii. Semantics

Each of the variables named in the list is declared local to the

current incarnation of the current program. The previous

(outer) value is copied into the new (inner) variable. Upon

return from the program, the previous (outer) values for all

declared variables are restored. Note: LOCAL is an executable

statement; it is perfectly possible to have a statment

"IF <cond> THEN LOCAL A". If the program attempts to declare

the same variable LOCAL more than once in the same program

incarnation, the second attempt is ignored (typical case: the

LOCAL is within a loop). If a LOCAL statement is executed in

immediate mode, it declares the variables LOCAL in the previous

program (if this occurs at the top level it is meaningless, but

you can do it anyway).

IL2.K. Parameter binding

The LAMBDA statement (the symbol X may also be used) al lows formal
parameters to be specified and bound to the actual parameters passed
to the program.

IL2.k.i. Syntax

LAMBDA <variable list>

IL2.k.ii.

X <variable list>

II.2.k.iii. Semantics

Each time the LAMBDA statement is executed, each variable in

the <variable list> is declared local (see "Block structure") and

its value is bound to the actual parameter corresponding to it.

If there are more actuals than formals, the extra actuals are

ignored. If there are fewer actuals than formals, an er ror

condition is reported. Note that LAMBDA is an executable

statement, and may be executed conditionally; also, two LAMBDA

statements in succession act independently, each binding the

formals to the actuals. With clever programming it is possible to

create programs which take a varying number of parameters

and other, much stranger, sorts of programs.

September 9, 1974

The Language of KNEJI KNEJI

II.2J. Comment

II.2.I.L Syntax

! <string without ;>

U.2.I.H. Semantics

Ignored.

II.2.m. Value

II.2.m.i. Syntax

<- <expression>

IL2.m.ii. Semantics

<expression> is evaluated and the result is displayed on the

user's console. No type conversion is performed.

II.2.n. String Value

IL2.n.i. Syntax

\ <expression>

IL2.n.ii. Semantics

<expression> is evaluated and coerced to a string, and the

result is displayed on the user's console.

II.2.0. Read

This statement is used to set variables at execution time.

II.2.o.i. Syntax

READ <variable>

II.2.0.H. Semantics

Execution is suspended until the user types a line on the

keyboard. No prompt is issued; the user should issue one with

the \ or <- command. The expression is evaluated and the result

is assigned to <variable>.

IL2.p. String read

This statement allows the user to read in strings without having to put

quote marks around them.

II.2.p.i. Syntax
STRINGREAD <variable>

II.2.p.ii. Semantics
Execution is suspended until the user types a line on the

September 9, 1974

KNEJI The Language of KNEJI 7

keyboard No prompt is issued. The line is ef fect ively

surrounded by double quotes (and each internal quote is

doubled) and assigned to <variable>.

IL2.q. Extension

II.2.q.i. Syntax

<external procedure name> [(<parml>, <parm2>,... <parmn>)]

IL2.q.ii. Semantics

The external procedure is called after evaluating each of the

expressions being passed as parameters, Le.. call by value.

Where the external procedure expects a string parameter, a

string expression must appear, and similarly for real

parameters.

II.2.r. Untrace

Should you be so unfortunate as to get the debugging version of KNEJI,

you will have to turn off the internal tracing features. Should you be a

KNEJI debugger, you are also interested in these commands.

II.2.r.i. Syntax

UNTRACE <expression>

II.2.r.ii. Semantics

The expression is evaluated and determines which implementor

tracing aids to turn off. A value of 0 turns off all tracing. A

negative value prints a list of the trace options.

IL2.S. Trace

This turns on various tracing features in the debugging vers ion of

KNEJI. Ordinary users will find that standard KNEJI does not

understand this statement.

II.2.s.i. Syntax

TRACE <expression>

II.2.s.ii. Semantics

Evaluates the expression and coerces it to an integer, which

determines which debugging trace features to turn on. A value

of 0 turns on all tracing. A negative value prints a list of the

trace options.

II.2.t. Dump

If you have the debugging version of KNEJI, this allows you to dump

certain random pieces of (presumed) useful information. Standard KNEJI

does not understand this statement.

September 9, 1974

8 The Language of KNEJI KNEJI

II.2.U Syntax
DUMP <expression>

IL2.t.ii. Semantics

Evaluates the expression and coerces it to an integer, which

tells what internal information to disgorge. A negative value

prints a list of the dump options.

This statement is only available in the debugging version of KNEJI. It

allows direct access of DDT.

II.2.U.Ì. Syntax

DDT

II.2.U.ÌL Semantics

Passes control directly to DDT. You are instructed how to get

out when this occurs.

In order to evaluate expressions, it is nice to have operators to operate on the

variables. All binary operators are infix. The unary operators with one

except ion are prefix. Operators will coerce their operands to the indicated

data type.

II.2.U. DDT

II.3. Operators

Operator

SQRT

CVS

ABS

SIN

COS

ASIN

ACOS

A T A N

RANDOM

LOG

EXP

NOT W

Î

Prec.

4

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3
3

3

Coercion

real

real

real

real

real

real

real

real

real

real

real

real

real

real

real

real

real

Meaning

Square Root

Convert to String. This function takes an

<expression> as an argument and

converts it as it would for output to the

console.

Absolute Value

Sine (argument is in degrees)

Cosine

Arcsine (value is in degrees)

Arccossine

Arctangent
0 < random value <1
Natural Logarithm

power of e (2.71828...)

Unary Plus

Unary Minus

Not

/
&
MIN

Exponentiation

Multiplication

Division

string

real

Concatenation

Minimum

September 9, 1974

KNEJI
The Language of KNEJI 9

MAX

MOD
3

3

<

>

GEQ te)

LEQ (s)

NEQ (?)

EQU

AND (A)

OR (v)

[]

real Maximum

real Modulo (arguments are coerced to

integer before computing result, which is
then coerced to type real)

real Addition
real Subtraction

real Equality (For all the following boolean

operators, the value is non-zero if true)

real Less Than

real Greater Than

real Not Less Than

real Not Greater Than

real Not Equal

string String equality

real And

real Or

string Substring. This is a postfix operator that

actually has two forms. ([<expression>

TO <expression>] and [<expression> FOR

<expression>]). The expressions are

evaluated, and truncated to integers. The

first <expression> is the position in the

string that the substring starts. The

second <expression> is either the

position of the last character of the

substring or it is the length of the

substring. For more information see the

SAIL manual. Example: "ABCDEFG"[2.8

TO 4] has a value of "BCD".

Al l of the above operators of precedence 4 are unary operators; the rest are
b inary operators.

0

0

4

II.4. Operands

Operands can be either constants or variables, and may be of type string or
real. Identifiers and constants follow the conventions of SAIL, and of most
other languages; the symbol M @ M in a numeric constant indicates "times ten to
the power", e.g., 1@2 is equivalent to 100.

Str ing constants are delimited by double quotes, e.g., "ABC"; as might be
expected, to get a double quote inside you use two, e.g., "Type ""This is a
s t r ing"""

The special symbol n (pi) is already set up in the symbol table, and has the
value 3.1415927.

September 9, 1974

10
KNEJI

III. 3 M Editor-Monitor

The editor-monitor (called the "editor") allows the user at the TTY to easily [sic]:

1) wr i te and modify programs in the language of KNEJI,

2) save and restore KNEJI programs on the disk,

3) save and restore variables on the disk.

Whi le in the editor, there is always a current program. When the editor is called via

the EX statement or ED with a program number of 0 it prompts for a program number:

PNUM<-

Legal responses are:
CR the lowest numbered program which is undefined (no lines in

the program) becomes the current program for editing.

<positive integer> becomes the current program.

E Exit.

The editor then responds with *, the signal that it is waiting for a command.

III. 1. Line Changing Commands

In the fol lowing discussion, <lnum> is a line number; <pnum> is a program

number; <v> is a variable; <name> is a filename. Brackets around a term

indicate it is optional. In any of the following commands a line number may be

g iven in the form <pnum>.<lnum> which has the additional effect of changing

the "current" program to <pnum>. Where <lnum> is optional, typing in the line

number as <pnum>. will change the current program and act as if a null line

number had been typed in.

I IL l .a . I[<lnum>[,<inc>]] Insert a line in the current program

The editor prompts with a line number (in the form <pnum>.<lnum>) and

wil l accept everything typed at it until a CR. If an existing line number

is given, the editor will use the current increment to determine a new

line number. The increment is set to 100 every time the editor is

entered, and can be changed by providing a second argument to I.

If <lnum> is omitted, the new line number will be the last line of the

program plus the current increment.

Whenever a new line is inserted into a program, it is immediately

compiled into the object language of KNEJI (with which the user need

not be concerned). If the line contains a syntax error, the compiler wil l

complain and print the line with !...! immediately following the character

recognized as being illegal. Following this, there will be a message of

the form:
COMPILE: <message>.

You will now be put in alter mode for this line, and may correct it.
KNEJI will insist upon a syntactically correct line before allowing you to

September 9, 1974

KNEJI The Editor-Monitor 11

do anything else. In order to defeat this wonderful feature, you may
do a "Q" (Quit) command to alter mode.

Use an <altmode> to escape from Insert mode.

Note: More than one statement (See Section II) can appear on a line.

I IL l .b. D<lnum>[:<lnum>] Delete a line or range of lines in the current program

The <lnum>*th line is deleted. If a range of lines is specif ied, all lines in

that range (inclusive) are deleted; note that in this case neither the

lower nor upper lines need exist, since they only specify limits.

IIL l .c. R<lnum> Replace a line in the current program

The <lnum>'th line is replaced. <lnum> must be present.

I IL l .d . A<lnum> Alter a line in the current program

Enter SOS-Alter mode on the <lnum>'th line. See the SOS manual for

details. The commands that involve breaking accross lines have no

function in KNEJI. The line is recompiled just as in Insert.

III.2. I/O Commands

The comments about <lnum> and <pnum> from Section III. 1 also apply to this
sect ion.

III.2.a. P[<lnum>[:<lnum>]] Print a line or range of lines

The <lnum>'th line is printed on the user's console. If <lnum> is

omitted, then the entire program is printed. If a range is specif ied, all

lines in that range (inclusive) are printed; note in this case that the

lines specif ied in the range need not exist, since these line numbers

speci fy only limits.

III.2.b. L[<pnum>] List a program on the line printer

Tit le: is prompted for, and any characters up to a CR are accepted as a
heading for the listing. The current time and date will also appear on
the listing.

The <pnum>'th program is listed (with line numbers). If <pnum> is
omitted then all defined programs will be listed.

IIL2.C. >[<pnum>][<name>] Output source to the disk

The source program is output to the disk as a text file with the name
<name>. If the file already exists then a warning is issued.

September 9, 1974

12 The Editor-Monitor KNEJI

If <pnum> is omitted then the entire program space is written out. This

file also contains markers so that if it is read in it can determine in

which program space to put back the source lines. If <name> is

omitted, then the output file name becomes KNEJnn.KNJ where nn equals

the program number. (If <pnum> has been omitted then nn is 0.)

III.2.d. <[<pnum>][<name>] Input source from the disk

The file <name> is read from the disk and the lines on that fi le are

added to the end of the program <pnum>.t If you want to replace a

program, first clear it (See Section IIIAd), and then read in your

new program. If <pnum> is omitted then the input routine expects to

f ind indicators in the file to put the input lines into the correct program

space. It is possible to use LINED or TECO on the file and edit it

outside of interpreter. If <name> is omitted then the same naming

conventions described for the > command are used.

As each line is read in from the disk, it is compiled. If a line has a

syntax error, the compiler gives its message and prints the line that is

in error. Correct these errors before attempting to execute your

program.

Note that lines which are read in are renumbered with the current

increment.

III.3. Var iable Changing Commands

KNEJI supports two types of variables: real and string. When an identifier is

f irst encountered it is automatically assumed to be real. If it is subsequently

assigned a string value, it becomes type string.*

IIL3.a. V<- Set all Variables

This command allows the user to set each of the variables that have

been declared so far. KNEJI gives the name of each variable and a

prompt of V " and expects a new value from the terminal. If the user

responds only with a . CR then the value will remain unchanged. A

response of <altmode> while setting the variables will cause the rest of

the variables to be skipped.

The only legal response to setting variables is a constant. String

constants must have surrounding quote marks.

Nothing is ever deleted from a program while doing input; the lines that are read

are added to the program.

There actually exists a third type of identifier (the External SAIL routines) that is

d iscussed more fully in Section V.

September 9, 1974

KNEJI The Editor-Monitor 13

Of course, individual variables can be examined and set in Immediate

Mode (See Section IIIAf.) by executing the KNEJI statements

that accomplish display and assign to variables.

III.3.b. V>[<name>] Output the Variable Values to Disk

The value of each of the variables is output the the file <name>. If

<name> is null then the filename becomes KNEJV.KNJ. This fi le is a text

file and hence can be edited with LINED or TECO.

III.3.C. V<[<name>] Input Variable Values from the Disk

The file <name> (KNEJV.KNJ if <name> is null) is read and the variables

that are defined there are set to the new values. Variables that

already have values will take on new values from the input fi le.

M A Contro l Commands

These are the commands that do not fit under the previous sections.

M A a . Z<pnum> Change the current program number

The current program number becomes <pnum>. If <pnum> is out of

bounds then the PNUM«- prompt is repeated.

M A b . E Exit from the Editor

The Editor can be entered recursively or even be called from one of
the programs.

M A c . <altmode> Exit from the Editor

Identical to the E command. This means that inside the editor one can

change the program out from underneath the one that is being

executed. Another way to get into the Editor is by typing any

character while it is executing (See Section IV). When the editor is

exited it returns to the calling context. If the outer level is exited, it

asks if you have remembered to save your program.

M A d . C Clear Work Space

KNEJI will prompt with N,P,<n>:. Give the appropriate response.

IIIAd.i. N(one)

Forget it; I have no intention of wiping out all my hard work.

IIIAd.i i . P(rogram)

Clears all the programs.

September 9, 1974

The Editor-Monitor KNEJI

IIL4.d.iii. <n> Clear Program <n>
Program <n> is cleared. If <n> happens to be the current

program then a prompt will be given asking what program you

want to be editing after clearing the current program. This

command comes in handy just before reading a program into a

particular program space.

I I IAe . @<pnum> Execute a Program

Program <pnum> is executed. If <pnum> is omitted then the current

program is executed. This command is only included for convenience

since one can execute any program in immediate mode.

I I IA f . ! Enter Immediate Mode

KNEJI will prompt with a <tab>. Each line that is typed in wil l be

compiled and executed immediately. There is no need to type the semi­

colon (See section II.) at the end of the line. For multiple statements on

one line it is necessary to put the semi-colon between each statement.

To escape from immediate mode, type an <altmode>.

September 9, 1974

KNEJI
15

IV. Asynchronous Breaks

Whi le any KNEJI program is being executed, typing any character at the keyboard
causes execut ion to be suspended after execution of the current line is terminated. A
message of the form:

"Break before <pnum>.<lnum>.

is t yped to indicate the next line to be executed. The user may respond with:

H Halt. The current program terminates with an error return.

C Continue. Continue execution of the KNEJI program,

anything else

Call the editor. After returning from the editor, the prompt is given
again.

If M C " is g iven but no line <lnum> exists (due to a deletion while in the editor) then the

message T i n e gone. Can't Continue" is displayed and the options re-prompted.

September 9, 1974

16
KNEJ1

V. User Extensions

V . l . What to Write

Since KNEJI lives as a REL file (currently on [A330PK01]/B) with unresolved

external references, it is necessary for the user to define these references. t

He does so by including the following:

e n t r y ;
b e g i n "<block name>"
d e f i n e MAXROUTINES«<number of external routines>;

p r e l o a d l w i t h <namel>, <name2>, <nameMAXROUTINES>;

i n t e r n a l s a f e s t r i n g a r r a y ENAME[1:MAXROUTINES1;

p r e l o a d l w i t h <casevall>, <caseval2>, . < c a s e v a l M A X R O U T I N E S > ;

i n t e r n a l s a f e i n t e g e r a r r a y ROUT I N E S Q : MAXROUT INES J ;

p r e l o a d l w i t h <parml> f <parm2> f . < p a r m M A X R O U T I N E S > ;

i n t e r n a l s a f e s t r i n g a r r a y PARMS[1:MAXROUTINES];

i n t e r n a l i n t e g e r EXTERNPOINTER;

e x t e r n a l i n t e g e r p r o c edu r e SYML00KUP(s t r i ng NAME);

e x t e r n a l r e a l p r o c edu r e GET !REAL (i n t ege r INDEX);

e x t e r n a l s t r i n g p r o c edu r e GET !STRING(in tege r INDEX);

e x t e r n a l p r o c e d u r e SET !REAL (i n t e ge r INDEX; r e a l V A L) ;

e x t e r n a l p r o c e d u r e SET !STRING(i n t ege r INDEX; s t r i n g V A L) ;

e x t e r n a l i n t e g e r p r o c edu r e G E T ! T Y P E (i n t e g e r INDEX);

e x t e r n a l s t r i n g p r o c edu r e C O M P I L E (s t r i n g SOURCE);

e x t e r n a l r e c u r s i v e i n t e g e r p r o c edu r e E X E C U T E (s t r i n g O B J E C T) ;

p r o c e d u r e STARTUP;

b e g i n "STARTUP";

EXTERNPO I NTER<-MAXROUT INES;

<any i n i t i a l i z a t i o n needed>

end "STARTUP";

r e q u i r e STARTUP i n i t i a l i z a t i o n [21;

<your procedure declarations here>

If the user plans to use break tables (See the Sail manual or more informât.onj

then he must include BRKSER.REL as a load file. The functions of G E T B R . a n d

RELBRK defined in there will allow the user to use break tables without

interfer ing with those defined inside of KNEJI.

September 9, 1974

KNEJI
User Extensions 1

i n t e r n a l i n t e g e r r e c u r s i v e p r o c edu r e EXTENDÍ

i n t e g e r ROUTINE; r e a l a r r a y A; s t r i n g a r r a y S) ;
b e g i n "EXTEND"

i f n o t (1<R0UTINE<MAXR0UTINES) then
beg i n

USERERR(B f l f " EXTEND c a l l e d w i t h i l l e g a l p a r ame t e r
&CRLF);

r e t u r n (0) ;
end ;

c a s e ROUTINE o f
b e g i n " P ICK"

; ! 8 IS NOT A LEGAL CASE;

<case values in ROUTINES should index into this case statment>
end " P ICK " ;

r e t u r n (l) ;
end "EXTEND";

end "<block name>"

V.2. Why It is Written

ENAME is used by KNEJI to find out the names of the routines that the user has

def ined. At compilation time, the external reference is matched against the list

of names in this array. The index that is found for the match is used to pick

values out of the next two arrays. ROUTINES should have the index in the case

statement (or some other device that the user wants to use) of the procedure

EXTEND. When her routines are called, this is how the particular routine

wanted is identified. In PARMS is the information that KNEJI needs to compile

code to evaluate the parameters that want to be passed to the user's routines.

The information that is preloaded should be a string of S's and R's.t When

KNEJI is compiling a statement, it uses this string to determine what type (and

how many in what order) of parameters to expect for each external routine.

Care should be taken when filling the array PARMS. EXTERNPOINTER is used

by KNEJI to know the lengths of the Arrays.

The procedures GETIREAL and GETJSTRING provide the user's routines with the

values of the variables that KNEJI has defined. If the name of the variable is

known, then the index into the symbol table can be found by SYMLOOKUP. If

the variable name does not already exist, SYMLOOKUP will cause it to be

entered into the symbol table. This is a handy way to have the external

routines make values available to the KNEJI programs and vice versa. The

procedures SETISTRING and SET.REAL store the value of their second argument

into the variable indexed by the INDEX argument. Although the symbol table is

available as an "external itemvar array VALS[1:'177] H the user should not

manipulate this unless she is aware of the dire consequences which may ensue.

The procedure GET.TYPE returns the current type of the variable of INDEX, so

These must be in upper case.

September 9, 1974

18 User Extensions KNEJI

that the appropriate value may be obtained without coercion (GET.REAL and

GET.STRING always coerce the value to the indicated type). The integer

returned is that obtained from TYPEIT; see the LEAP section of the SAIL

manual. The procedures COMPILE and EXECUTE will do just that on their

arguments. COMPILE expects a statement in string form; if the value returned

is not equal to the one character string conaining rubout, then that value can

be passed to EXECUTE.

The routine EXTEND is what KNEJI calls to have external (to KNEJI) routines

executed. The first parameter is the case value the user provided in

ROUTINES. The other two parameters contain the results of evaluating the

expressions that were thè parameters to the external routine. The values are

packed into the arrays A and S starting from one, g,g. if the value of

PARMS[ROUTINE]« MRSR H then A [i] will contain the value of the first parameter;

A[2] wil l contain the value of the third parameter; and S [l] will contain the

value of the second parameter.

V.3. What has been Written

Current ly, two systems have been written based on KNEJI.

V.3.a. IGRAPH

IGRAPH is an interactive system that allows the user to create pictures

on the GDP's, and to create an image file for the XGP. See the

documentation: IGRAPKXG0[A810KG00]/B (which must be printed using

the LOOK command file @IGRAPH.XMD[A810KG00]) or for the line

printer use the file IGRAPKD0C[A810KG00]/B.

V.3.b. CALC

This is a super desk calculator that uses KNEJI for express ion

evaluation. It contains almost the minimum code needed in order to

loaded with KNEJI. It looks essentially like immediate mode in the

interpreter except for two differences. The prompt is n<> " and it puts

a - V " in front of the first statement on a line if it does not contain a

V " , "\" or call one of the built in statements. This has the side effect

of typing back at you the value of any expression you type in. Of

course, you still can assign values to variables, SETFORMAT, etc.

In order to get to the editor type MEX 0 M or "ED n" to CALC. Now you

can start writing programs that can be called from CALC. Get back to

CALC the normal way, by giving the E or <altmode> command to the

editor. Of course, you could call the calculator by executing the

statement "CALC." Now you are in the calculator recursively which wil l

not hurt you, but why?

An <altmode> to CALC will exit it back to the monitor. Do not forget to

save the programs you wrote.

September 9, 1974

KNEJI

A 9

- 8

X 5

fi 9

S 9

> 9

v 9

! 6, 14

< 12

<altmode> 11, 12,

> 11

@ 14

A 11

ABS 8

Acknowledgements

ACOS 8

A l ter 11

AND 9

ASIN 8

Assignment 3

Asynchronous 15

A T A N 8

Block structure 5
Break 15

C 13

C A L C 1, 18

Calculator 1, 18

Clear 13

Comment 6

Condit ional 3

COS 8

CVS 8

I. 14

Septembi

INDEX

D 11

Data types 2

DDT 8

Delete 11

Dump 7

ED 4

Editor 4, 10, 18

EOI 1

EQU 9

EX 4

Execute 4, 14

Exit 13

EXP 8

Expression 2

Extend 7

GEQ 9

Go to 4

GOTO 2 ,4

I 10

IF 3

IGRAPH 1, 18

Immediate 14

Input 12, 13

Insert 10

Iteration 3

KNEJnn.KNJ 12

KNEJV.KNJ 13

L 11

LAMBDA 4 , 5

LEQ 9

List 11

LOCAL 5

LOG 8

MAX 9

MIN 8

MOD 9

NEQ 9

NOT 8

9, 1974

20
INDEX

KNEJI

Operands 9

Operators 8

OR 9

Output 11, 13

P 11

Parameter binding 5

Pr int 2, 11

P rogram number 13
R 11

RANDOM 8

READ 6

Recurs ion 13

Recurs ive 4

Replace 11

RETURN 2 , 4

SETFORMAT 2

SIN 8

SQRT 8

Statements 2

Str ing read 6

Str ing Value 6

T ra ce 7

Untrace 7

V 12

V<- 12

V< 13

V> 13

Va lue 6

Var iab le 12

WHILE 3

XGP 1, 18

September 9, 1974

