
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

NEW ALGORITHMS AND LOWER BOUNDS FOR THE
PARALLEL EVALUATION OF CERTAIN

RATIONAL EXPRESSIONS AND RECURRENCES

H. T. Kung
Carnegie-Me11on University
Pittsburgh, Pennsylvania

A preliminary version of this paper has been presented at the Sixth Annual
ACM Symposium on Theory of Computing, Seattle, May, 1974.

Author's Address: Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pa. 15213.

This research was supported in part by the National Science Foundation under
Grant GJ32111 and the Office of Naval Research under Contract N00014-67-A-
0314-0010, NR 044-422.

KEYWORDS AND PHRASES: Parallel algorithms, lower bounds, parallel evaluation,

rational expressions, recurrence problem.

CR CATEGORIES: 3.15, 5.10, 5.25.

ABSTRACT

The parallel evaluation of rational expressions is considered. New

algorithms which minimize the number of multiplication or division steps

are given. They are faster than the usual algorithms when multiplication

or division takes more time than addition or subtraction. It is shown, for

example, that x11 can be evaluated in two steps of parallel division and

Tlog2 nl steps of parallel addition, while the usual algorithm takes ["log2 nl

steps of parallel multiplication.

Lower bounds on the time required are obtained in terms of the degree

of the expressions to be evaluated. From these bounds, the algorithms pre

sented in the paper are shown to be asymptotically optimal. Moreover, it

is shown that by using parallelism the evaluation of any first order ration-
1 a

al recurrence of degree > 1, e.g., y ^ = — (y. H), and any nonlinear poly-
1 ^i

nomial recurrence can be sped up at most by a constant factor, no matter

how many processors are used and how large the size of the problem is.

1. INTRODUCTION

In this paper we consider the parallel evaluation of certain rational

expressions. We assume that several processors which can perform four

arithmetic operations, +, X, /, are available, and that the time re

quired for accessing data and communicating between processors can be ig

nored. This problem has been studied by many people. (See the surveys

written by Brent [3] and Kuck [12].)

Almost all papers in this field assume that every arithmetic operation

takes the same time. However, this assumption is false for two reasons.

For many processors, floating number multiplication takes more time than

addition. Furthermore, if we deal with expressions involving, for example,

matrices or multiple-precision numbers then multiplication is likely

more expensive than addition. (Here we interpret arithmetic operations as

matrix or multiple-precision number operations.) In Section 3 of this

paper, we assume that multiplication takes more time than addition. Hence,

to get better algorithms, we should avoid using multiplications. We derive
n 2 3 n n

new algorithms for the parallel evaluations of x , {x ,x ,...,x }, II(x+a.),
n 1 X

E a.x1, etc., where the a. are scalars. Each of the algorithms minimizes
0 1 1

the time needed for the multiplications to within a constant and can be

shown to be faster than the best previously known algorithm for large n.

Moreover, all the algorithms, except the one associated with Theorem 3.4,

have the following two characteristics:

1. To run the algorithms each processor is either masked or performing

the same operation at any time. Hence the algorithm can be run on

single-instruction stream-multiple-data stream (SIMD) machines

(Flynn [4]) such as ILLIAC IV.

-2-

2. The algorithms require a very simple interconnection pattern.

All we need is a binary tree network between processors.

In Section 4 we prove lower bounds on the time needed for the parallel

evaluation of certain rational expressions, under the assumption that all

processors can perform different operations at any time. This assumption

corresponds to multiple-instruction stream-multiple-data stream (MIMD)

machines (Flynn [4]) such as C.mmp, the multi-mini-processor system at

Carnegie-Melion University (Wulf and Bell [19]). It is clear that lower

bounds with respect to MIMD machines also hold with respect

to SIMD machines. The lower bounds obtained in the paper imply that the

algorithms introduced in Section 3 are asymptotically optimal with respect

to MIMD machines, although most of these algorithms can be run on SIMD

machines, as noted above.

Section 5 deals with the problem of the parallel evaluation of rational

expressions defined by recurrences. We show that, by using parallelism, the

evaluation of an expression defined by any first order rational recurrence

of degree > 1 or any nonlinear polynomial recurrence can be sped up at most

by a constant factor, no matter how many processors are used. Consider,

for example, the evaluation of the y n defined by the recurrence,

1 a
yi+l " ^ V y T ^ ' 1"0»1f2f...,n-1,

which is the *rell-known recurrence for approximating Jai. We show that for

evaluating y n any parallel algorithm using any number of processors cannot

be essentially faster than the obvious sequential algorithm for any n.

Thus the theory for nonlinear recurrences is completely different from the

-3-

theory for linear recurrences, where good speed-ups have been obtained

(for example, Heller [5], Kogge [9], Kogge and Stone [10], Maruyama [13],

Munro and Paterson [14] and Stone [15]).

In the next section, we give basic definitions and an abstract formula

tion of the general evaluation problem considered in the paper.

2. ABSTRACT FORMULATION AND DEFINITIONS

Let F be an algebraically closed field, e.g., F is the field (£, of

complex numbers, and let x be an indeterminate over F. F[x] and F(x) de

note the ring of polynomials and the field of rational expressions in x

over F, respectively. Our problem is to evaluate a set of polynomials in

F[x], {f^(x),f^(x),...,f^(x)}, under the following assumptions:

1. By evaluating {f^(x),...>fm(x)} we mean computing the values of

fj(x)..,f (x) over F(x), given F U {x}. The four binary opera

tions, +, -, x, /, associated with the field F(x) are the ones

we are allowed to use.

2. The elements in F are called scalars. A multiplication of two

elements in F(x) is called a scalar multiplication if one of the

two elements is a scalar; otherwise it is called a nonscalar multi

plication. Scalar or nonscalar addition (subtraction) is similarly

defined. A division whose dividend is a scalar is called a scalar

division. Let M, M , A, A denote the time needed for one non-
9 s9 9 s

scalar multiplication, scalar multiplication, nonscalar addition

(subtraction), scalar addition (subtraction) , respectively. Let

D, D denote the time needed for a division whose dividend is a * s
nonscalar, scalar, respectively.

-4-

3. At any given time, up to k operations may be performed. This

means that there are k processors which can perform the operations,

+* -> X, /, at any time but some processors may be idle. If in

some time interval all processors, except the ones masked, perform

the same operation, say, addition, then we refer to that time

interval as a parallel step of addition.

If the positive integer k in (3) is greater than one, we say
{f1(x),...,f^(x)} is to be evaluated in parallel; while if k is equal to one,
we say it is to be evaluated sequentially. We define T^(f^(x),...,f^(x))
to be the minimum time needed to evaluate {f^(x),...,fm(x)} with k processors.

To illustrate our notation given in (2), we consider an example. Let

F - (£ and let x be a ixA matrix A whose entries are in C / . Suppose that we
3

use an 0(jj) algorithm for matrix multiplication and inversion. (Here we
3 2 2

interpret division as matrix inversion.) Then M - 0(4), M « 0(j&) , A « 0(A)
s

A o = 0(A), D =* 0 (j J 3) , D = 0 U 3) . s s

3. NEW ALGORITHMS WHICH USE DIVISIONS FOR THE PARALLEL EVALUATION OF x U,
2 3 n n n i {x ,x ,...,x }, II(x+a.), 2 a.x , etc.

1 1 0 1

In this section we assume that M > A. We first consider a well known

problem, that of evaluating x11. Knuth [11, § 4.6.3] gives a rather detailed

survey of sequential algorithms for solving this problem. It is known that

there exists a sequential algorithm which takes time jlog n + 0 ^ g ° f O g n)j M*

(In this paper all logarithms are taken to base 2.) However, as pointed out

in Borodin and Munro [1], it is easy to show the following:

-5-

Lemma 3.1,
If division is not used, flog nTM is a lower bound on the time for the

parallel evaluation of x11, no matter how many processors are used.

Hence, if division is not used, any parallel algorithm cannot be essentially

faster than the fastest sequential algorithm. In the proof of the follow

ing theorem we give an algorithm for the parallel evaluation of x11 which

uses divisions and which takes time less than ["log n"|M when n is large.

Theorem 3.1.
If k 2: n. x11 can be evaluated in two steps of parallel division and

flog nl + 2 steps of parallel addition. More precisely,

(3.1) T (xn) £ Tlog nlA + 2(A +D). n s s

Proof
We establish the theorem by exhibiting an algorithm.

Algorithm 3.1. [An algorithm for the parallel evaluation of x11.]

1. Compute A, = x-r., i=1,...,n, in parallel, where the r are in F

and are the n distinct zeros of xn-r for any non-zero element r

in F.

2. Compute ̂ t • sjk^9 i«l,...,n, in parallel, where s i
 8 5 rj(nr) .

n
3. Compute C = 2 B. in parallel.

1 X

4. Compute D - l/c

5. Compute E « D+r.

Note that C • 2 B. - Ss./A, • S r./[nr(x-r.)]
1 1 1 1 i 1 i i

= P(x)/[nr(xn-r)]

n
where P(x) = 2 r n (x-r,). Evaluating the first derivative of

1-1 j/1 J ,
x -r - n(x-r.) at r., we have nr. • II (r.-r.). Thus P(r) • r. II (r.-r.)

1 1 1 1 ĵ i 1 J 1 1 j/l 1 J

iH,...,n. This implies that P(x) s nr, since the degree of P(x) is n-1.
Hence C • l/(xn-r) and so E s D + r = l/c + r = x11. Therefore Algorithm 3.1

indeed evaluates x11. Since the number of available processors is ̂ n, steps

1, 2, 3, 4, 5 can be done in time A , D , flog nlA,D , A , respectively.
s s s s

So Algorithm 3.1 takes time ["log nlA + 2(A +D) . I
s s

Note that flog n]A + 2(A +D) < [log n]M when [log n] > 2(A +D)/(M-A).
s s s s

In fact,

lim [log n]M/[riog nlA + 2(A +D)] - m/A.
s s

n-*»

Hence we have sped up the evaluation of x11 by a factor m/A for large n.

Remarks on Algorithm 3.1.

1. The choice of r in step 1 depends on the application of the algorithm.

For instance, if the algorithm is used to compute A n for a real matrix

A then the number r should be chosen such that A - r^I is nonsingular

for all i; otherwise the algorithm would break down at step 2, where we

have to compute s^A-r^I) ' for all i. (Note that for matrix computa

tion, in the algorithm divisions should be interpreted as matrix inver

sions, and scalars, r^ r, should be interpreted as r^I, rl, respectively,

where I is the identity matrix.)

-7-

2. Since the constants, r^, s^, are in F and it is assumed in Section 2

that elements in F are given as free, Theorem 3.1 does not count the

time needed to compute r^ and s^. In practice, these constants have

to be either stored in a table or computed. (We find a similar

situation in the fast Fourier transform where certain constants, i.e.,

powers of an nth root of unity, are needed.) Strictly speaking, the

algorithm is really a form of "preconditioning11. The same remark holds

for algorithms below.

3. The algorithm raises x to the nth power without using any multiplica

tions but with two divisions. This may be surprising to those who are

dealing only with sequential algorithms. This again demonstrates that

there exists intrinsic difference between sequential and parallel computa

tion (see Stone [16] for other examples).

Using the same ideas, we can immediately obtain the following

Theorem 3.2.
n Let a.,...,a be n distinct elements in F. If k £ n, then TI(x*a.) can i n -J l

be evaluated in two steps of parallel division and flog nl + 1 steps of

parallel addition. More precisely,

n
(3.2) T (n(x+a)) <; Tlog n]A + A + 2D .

n i x s s

Proof
We establish the theorem by exhibiting an algorithm.

- 8 -

Algorithm 3.2. [An algorithm for the parallel evaluation of n(x*a.).]
1 1

1. Compute A^ • x + a^, i«1,...,n, in parallel.

2 . Compute B. s b./A#, i-1,...,n, in parallel, where b. - [n (a.-a.)]"\
1 1 1 1 ĵ i J 1

n
3. Compute C a J B in parallel.

1 1

4. Compute D = l /c .

n n n
Note that C = SB, = J b./A. « l/lI(aH-0. Hence the algorithm indeed evalu-

n 1 1 1 1 1 1 1

ates II(x+a#). Since the algorithm clearly takes time ["log n]A + A + 2D with n •j 1 s s
processors, we have proven (3.2).

The obvious algorithm for the parallel evaluation of TI(x+a#) does the
1 1

following:

1. Compute A^ - x+a^, i=1,...,n, in parallel.

n
2. Compute D • n A. in parallel.

1 1

It takes time [l o g nlM + A . Hence Algorithm 3.2 achieves a speedup factor
s

M/A for large n without significantly complicating the algorithm. It is

conceivable that in general a computer organization which is suitable for

executing the obvious algorithm is also suitable for executing Algorithm 3.2.

It should be noted that Theorem 3.2 and Algorithm 3.2 can be extended
n m^

to cover the general expression TI(x+a.) where the a are n distinct elements
1 1 i

in F and the are positive integers, since partial fraction expansions can

still be used when factors are raised to powers greater than one. The exten

sion is straightforward and will not be given in detail here.

-9-

Corollarv 3.1.

If P(x) is the nth degree Chebyshev polynomial with respect to some

interval, then

(3.3) Tn(P(x)) £ Tlog nlA + A g + 2D g.

Proof
Since the zeros of P(x) are distinct and are known analytically, the

(3.3) follows from Theorem 3.2. •

There are several potential applications of Algorithms 3.1 and 3.2.

For example, by using Algorithms 3.1 and 3.2 we can compute A n and P(A) ,

respectively, where A is a matrix and P(x) is some Chebyshev polynomial.

A n and P(A) n can then be used to approximate the dominant eigenvectors of

A. (See, for instance, Wilkinson [18, Chapter 9].)

Lemma 3.2.
1 2 3 n If k ̂ Tpir&l) - 1, then the set {x ,x ,...,x } can be evaluated in two

steps of parallel division and Tlog nl 4- 2 steps of parallel addition. More

precisely,

(3.4) Tk(x2,x3,...,xn) £ Tlog nlA + 2(Ag+Dg)

provided k £ jn(rri-l) - 1.

Proof
We establish the lemma by exhibiting an algorithm.

-10-

Algorithm 3.3. [An algorithm for the parallel evaluation of {xZ,...,xn}

by using at least ̂ n(rH-l) - 1 processors.]

1. Assign i processors for the evaluation of x 1 for each is2,..,,n.

Use Algorithm 3.1 to evaluate x*" for each i. Since k ^ jn(nH-l) - 1,

x ,...,x can be evaluated simultaneously.

2. Step 4 of Algorithm 3.1 will not be performed for the evaluation of
2 n-1

x ,...,x " until the time when step 4 of Algorithm 3.1 is ready to

be performed for the evaluation of x11.
Clearly, the lemma can be proven from Algorithm 3.3. •

Theorem 3.3.
2 3 n

If k ̂ n, then the set fx ,x , ...,x } can be evaluated in five steps of

parallel nonscalar multiplication or division and flog nl + 5 steps of paral

lel addition. More precisely.

(3.5) Tn(x2,x3,...,xn) £ r iog n]A + A + 4(A g+D g) + M.

Proof

We establish the theorem for the case n ^ 9 by exhibiting an algorithm.

Using the same ideas of the algorithm, the theorem can be easily proven for

n £ 8.
2 3 n

Algorithm 3.4. [An algorithm for the parallel evaluation of {x ,x ,...,x 3

by using n processors.]
1. Compute A i • x*, i«2,...,m by Algorithm 3.3, where m •

-11-

2. Compute B^ - A^, 1=2,...,m by Algorithm 3.3;

3. Compute « Bi*Aj» i ' 9 • • • , m~^ 9 i n P a r a H e l » where A^ = x

and B- = A . 1 m

Note that C. . - AX«A. - x 1 * ^ and that fx2,...,xn} C {B } U f c . . I i, j«1,... ,m-1}

Hence Algorithm 3.4 indeed evaluates {x2,...,xn}. Also note that since

m̂(nH-l) - 1 ̂ n for n ̂ 9, there are enough processors to perform steps 1 and

2 by Algorithm 3.3. The total time needed for steps 1 and 2 is
2

2[Tlog mlA + 2(As+Dg)]. Since (m-1) £ n, step 3 can be done in time M.
Therefore Algorithm 3.4 takes time Tlog nlA + A + 4(A +D) + M. •

s s

The following corollary shows how the above results can be used to pro

duce efficient parallel algorithms with small parallelism.

Corollary 3.2.

If n > k > 1. then x 1 1 can be evaluated in 61 steps of parallel non-

scalar multiplication or division and (flog kl + 5)4 steps of parallel ad-

dition, where & log n
log k . More precisely,

T k(x n) <: j&Criog klA + A + 4(As+Ds) + 2M],

f or n > k > 1.

Proof
We establish the corollary by exhibiting an algorithm.

-12-

Algorithm 3.5. [An algorithm for the parallel evaluation of x11 by using k

processors, where n > k > 1.]

Since I - |^°| °| , n £ k̂ . We have the following two cases:

Case 1. n - k̂ .

Let y Q - x. For i-0,...,jM,

k
1.1. compute y^ by Algorithm 3.1;
1.2. set y 1 + 1 <-y*.

Clearly, yg - x11. By Theorem 3.1,

T. (xn) <: A [r iog klA + 2(A +D)]. k s s
o

Case 2. n < k .
Let n = S a.k , where 0 £ a. < k. The algorithm for Case 1 can be

0 1 1

modified as follows:

Let ŷ • x and z Q = 1. For i=0,..., J M ,

1.1. compute [y?,y*?, •.. ,y^} by Algorithm 3.4;

1.2. compute 8 5 Z^Y^ 1

1.3. set y i + 1 <- y ±.

It is straightforward to show that z • x11. By Theorem 3.3, we have

T, (xn) £ jl[riog k]A + A + 4(A +D) 4- 2M]. •
K- S 3

It is possible to slightly improve the bounds in Corollary 3.2 by using

more complicated algorithms than Algorithm 3.5.

-13-

Corollarv 3.3,
n

If k ̂ n, then a general nth degree polynomial £ a.x can be evaluated
0 I

by one step of parallel scalar multiplication, five steps of parallel non-

scalar multiplication or division and 2flog nl + 6 steps of parallel addi

tion. More precisely,

n i
(3.6) T,(S â .x1) £ (2flog nl + 2) A + 4(A C+D q) + M + M .

Proof
The theorem is proven by an algorithm which computes {x2,...,xn} in

time ["log n]A + A + 4(A 4-D) + M by using Algorithm 3.4, then {a ,a x,...,a x11]
s s u I n

in one step of scalar multiplication and finally combine these in further

f log nl + 1 steps of parallel addition. •

Note that the dominant term of the upper bound in (3.6) is 2f log n]A,

while all other upper bounds we have derived so far have the dominant term

("log nlA (see (3.1) ̂ (3.5)). In the following theorem we show that the

upper bound in (3.6) may be improved to have Tlog nlA as the dominant term

by using 2n processors.

Theorem 3.4.
1

n i 2 T~ (E a.x2") £ (log n)A + O((log n)^)M.
^ n Q 1

Proof

We apply a recursive evaluation procedure due to Brent [2], Maruyama [13]

and (independently) Munro and Paterson [14, Algorithm A]. The procedure

-14-

will not be described here. However, we note that the procedure requires
2 1

x at time iA + constant, for i a1 , . . . , L l o g nj. We then assign n process-
2 1

ors for the procedure and another n processors for the evaluation of x

for all i by using Algorithm 3.1 for each i. Hence at time iA + constant,

is always available. •

2 1

4. LOWER BOUNDS

In this section we assume that different processors may perform different

operations at any time. We shall prove lower bounds under this general

assumption. Let f(x) be a rational expression in F(x). Define the degree

of f(x) to be

deg f - max(deg f̂ , deg f^)9

where f ̂ (x), f^M are two relatively prime polynomials in F[x] such that

f - f/f 2.

Lemma 4.1.

Let f(x).g(x) € F(x) and h(x) =* f(x) op g(x) where op € f+,-.x»/1.

Then if op is a nonscalar addition, multiplication or division then

deg h ^ deg f 4- deg g« otherwise deg h = max (deg f» deg g).

Proof

Assume that op is a nonscalar multiplication. Then

• h - (ff,/^). op (8l/g2) - (f 1-g 1)/(f 2-g 2) f

and hence deg h £ max (deg f̂ + deg g^, deg f 2 + deg g 2) £ deg f + deg g.

Since the proofs for other cases are similar, they will be omitted. •

-15-

Theorem 4.1.

Let f (x) g F(x) with deg f = n. Then

Tfc(f(x)) ^ flog nlU Vk,

where U 858 min(A,M,D).

Proof

The proof follows from a growth argument on degree. Consider an arbi

trary algorithm for the parallel evaluation of f(x) by using arbitrary num

ber of processors. Let denote the set of rational expressions which can

be created by the algorithms in time iU. It suffices to show by induction

that elements in have degrees at most 2 L. Obviously, the statement holds

for i = 1. Suppose that it holds for i £ j. Let r1 € R j + - | • W e want to

prove deg r-j <. 2^ + 1. If r 1 £ R̂ then deg r̂ £ 2^ < 2 ^ . We are done.

Suppose that r̂ £ Ry Let us consider how r̂ is computed from R̂ by the

algorithm. Since r̂ is created by the algorithm, is the result of a

binary operation op^ of the algorithm with operands r̂ ^ and r̂ ^ Similarly,

for i=l,2, if r. . ̂ R., r- - is the result of another binary operation op- .

of the algorith with operands r. . - and r- . 9 . Hence r is associated
1 , 1 , 1 I,i,z l

with a binary tree whose internal nodes represent results of the binary

operations and whose leaves represent the elements in R̂ which are used for

computing r^. By the construction of the tree, the rational expressions

associated with internal nodes are not in R^. (It is clear that the tree is

finite, since there is a positive lower bound on the time needed for every

operation.) We note that if the binary operation associated with an internal

node is a nonscalar addition, multiplication or division then the two suc

cessors of the node must be leaves. Hence along each path of the tree there

-16-

is at most one node with which a nonscalar addition, multiplication or

division is associated. Then by Lemma 4.1 and the induction hypothesis

one can easily show that deg r̂ £ 2^+"'. The induction is complete.

By Theorem 4.1 and the results obtained in Section 3, we have the
following

Corollary 4.1.

If M > A and D > A, then

T (x) <: Tlog nlA + 2(A +D) n s s

T (n(x+a.)) Tlog n]A + A + 2D n .J l s s

["log nlA 2 3 T (x ,x ,...,x) £ Tlog nlA + A + 4(A +D) + M
" s s T

T 2 n (s a i x l) * < l oS n > A + O(dog n))M, where ^ n 0

a ^ 0.
n '

Hence the lower and upper bounds are asymptotically optimal as n -» °°.

Suppose that we have a problem for which D, D , M are much greater than
s

A or M . Hence we want to minimize the number of divisions and nonscalar s
multiplications. The following theorem gives a lower bound on the time need

ed for divisions and nonscalar multiplications.

Theorem 4.2.

Suppose that we do not count the time needed for addition, subtraction

and scalar multiplication. Let f(x) g F(x) with deg f • n. Then

Tk(f(x)) ^ log n
log^k+12

where V « min(D,D , M)
s

-17-

Proof
Consider an arbitrary algorithm for the parallel evaluation of f(x)

by using k processors. Let be the set of rational expressions in F(x)

which can be evaluated in time iV by the algorithm. We shall show by in

duction that there exists a common denominator for the elements in R^

such that deg £ (k+l)1 and such that if r £ R^ then r = r/D^ for some

r € F[x] with deg r ^ (k+l)1. The induction statement clearly hods for

i « 1. Assume that it holds for i ^ j. Let r-j,...,^, I <> k, be the re

sults immediately following from the nonscalar multiplications or divi

sions of the algorithm, which occur in the time interval (jV,(j+l)V].

Then
R •+1 53 & ui ri + ^ l 1 1 ^ 1 1 ^ F and r € R..}. •J+l ,

Assume that r. - s. op. t. where s.,t. £ R. and op. £ fx,/}. By the indue-l l ri i i l j ri 1 9 1 • J

tion hypotheses, s # « s./d. and t. - t./D. where s.,t. 6 F[x] and both

have degree ^ (k+1)^. Hence r, « s.t./D2 when op. - x and r. = s./t.
l l r j ri i r i

when op£ • /. Without loss of generality, assume that op t • / for i £ h £ i
and op. = x for i > h. Define l

t-...t,D. if h « Z,
D. = Z" 1 J

j + 1 Jt- ... t, D 2 if h < jj.

It is easy to check that D ^ is a common denominator for the elements in

R j + 1 , and that deg D^ + 1 <> (k+l)^ + 1, since deg t± £ (k+1)^ and deg D^ <; (k+1)"^.

Also, it is easy to show that if r 6 R^ + 1 then r = r/D^+1 for some r € F[x]

with deg r £ (k+1)^ + 1. Therefore the induction is complete and hence we

have proven the theorem. •

-18-

Corollary 4.2.

Suppose that we do not count the time needed for addition, subtraction

and scalar multiplication. If k £ n. then

log n
l o g i k + n V £ T k(x n) £ log n (4Dg+2M),

where V • min(D,D ,M) . Hence the bounds are within a constant factor of s

the best possible.

Proof
The result follows from Corollary 3.2 and Theorem 4.2. I

5. RESULTS ON NONLINEAR RECURRENCE PROBLEMS

It frequently occurs in applied mathematics that the solution to some

problem is given by a recurrence relation. Hence we often have to compute

y n form y0*y_T,• • • ,y_m where y n is defined by y ± + 1 - coCy^• • • >y i - m) for

some function cp(x̂ ,... >x
m+«|) • It *-s natural to try to use parallel computa

tion to speed up the process of computing y . Karp, Miller and Winograd [8]

studied some general aspects of parallelism and recurrence. Recent work in

this area includes, for example, Heller [5], Kogge [9], Kogge and Stone [10],

Maruyama [13], Munro and Paterson [14] and Stone [15]. These works concen

trate essentially on linear recurrence problems. In particular, Kogge [9]

has given a unified treatment for general linear recurrence problems and

has shown that for a general class of linear recurrence problems we can

have the n/log n speed-up ratio, which can be shown to be, in some sense,

optimal. Therefore the linear recurrence problem is essentially settled.

However, we do not know how to construct efficient parallel algorithms for

-19-

even very simple nonlinear recurrence problems. (Note that nonlinear recur

rence problems occur in practice very often.) For example, it seems very

difficult to use parallelism for the following nonlinear recurrence:

(5.1) y - I (y + i -) f

which is the well-known recurrence for approximating J a . (The question of

using parallelism for the recurrence problem (5.1) was asked by

H. S. Stone [17].) In this section we shall show that any parallel algor

ithm using any number of processors cannot be essentially faster than the

obvious sequential algorithm, for any first order rational recurrence of degree

> 1. like (5.1), and for any nonlinear polynomial recurrence problem like

(5.2) y. + 1 = 2yjy._1 + 3y._2.

Lemma 5.1.

If co(x),fr(x) g F(x), then deg(cp « ft) • (deg cp) (deg •) . (Note that

stands for composition.)

Proof

Write cp • cPjA3^* where cp-j > 9 2
 a r e t w o ve^-at^ve^y P^ime polynomials in

F[x]. We may assume that the leading coefficient of cp~ is unity. We write
m1 "h n1 njJ cpj(x) = a(x-a1) ...(x-ah) and cp2(x) = (x-b^ ...(x-b^) , where the a is

in F, the a^ are distinct elements in F, the b̂ ^ are distinct elements in F

and the m^, are positive integers. Clearly, deg cd1 " 23^ and deg <p̂ - au.

Since cp1 and cpg are relatively prime, we have a ± £ by Vi,j. Let ^ and ^ 2

be two relatively prime polynomials such that - ty^/^* Note that

-20-

a(ir(x)-a.) 1... -a.)
(cp • t) GO - *

(if(x)-bp '...(^(x)-^)
n 2

m m
a (i|r (x) -a * (x)) ... (if (x) -a * (x)) *

(5 # 3) , _ J U _] kJ
(t1(x)-b1t2(x)) 1-..(ir1(x)-bjlt2(x)) 1

Claim that ^ (x)-a^^^ (x) and ^ (x)-b^2 (x) are relatively prime for all

i,j. We prove this by contradiction. Assume that there exists h(x) £ F[x]

with deg h ^ 1 such that ty-j-a^ 8 3 h^h and ty-|-bjty2
 5=5 h

2
h where the h19h^ € F[x],

These imply that ^ « [(hj-hp/Cb -a^]h and ^ - [h] + a,,^-h2)/(b -a^]h.

Hence h is a common divisor for ^ and ^ 9 This is a contradiction. Similar

ly, we can prove that there are no nontrivial common divisors between \|r2(x)

and ^ (x) - a^^(x) and between ^2(x) and ^ (x) - b^^Cx). Therefore, from

(5.3), one can compute the degree of cp • i/ as follows: Assume that

deg cp s deg cp̂ ̂ deg cp2 and deg i|r 5 8 deg ^ ^ deg i/^. (The proofs for the

other cases are similar and will be omitted.) The numerator of (5.3) has

degree (Ibu)deg i/^ • (deg cp) (deg ty). The denominator of (5.3) has degree

(Sn^deg ^ + Can± - Da^deg ^ - (deg cp2) (deg ^) + (deg ̂ - deg cp2)(deg ^) ,

which is £ (deg cp) (deg ty). Hence deg (cp © if) - (deg cp) (deg i(r). •

Theorem 5.1.

Let y n be defined by y^ + 1 » c p ^) where cp(x) € F(x) with deg cp 8 8 d. Then

-21-

(5.4) T k(y n) ;> [n log dlU, Vk

where U = min(A,M,D).

Proof

Let y Q • x. Then y^ * $(x) where § is the n times self-composition

of cp. Then by Lemma 5.1, deg § » (deg cp)n - d n. The theorem follows from

Theorem 4.1. •

Under the assumptions of Theorem 5.1, y^ clearly can be computed sequen

tially in time n^Gpfc)). If deg cp = d > 1, then by (5.4) we have

V 7 T * dog d)U = c ° n s t a n t >
k. n

Hence we have the following

Corollary 5.1.

By using parallelism the evaluation of an expression defined by any

first order rational recurrence with degree > 1 can be sped up at most by a

constant factor.

Consider, for example, the recurrence problem (5.1). Assume that we

work with real numbers and that every arithmetic operation takes the same

time U. Then to evaluate y^ the obvious sequential algorithm takes time 3nU,

while by Theorem 5.1 any parallel algorithm takes time at least nU. Hence

by using parallelism the evaluation of y^ can be sped up at most by a factor

of 3, for all n. This is completely different from the evaluation of linear

recurrence where n/log n speed-ups can be obtained.

Now we consider higher order recurrences, i.e. y ^ 8 8 ^(y^^y^^^ • • • »y^ - m)

for m > 0. Suppose that cp is a multivariate polynomial of degree > 1. Let

-22-

yQ = y^ = . . . = y m
a s x . Then ŷ ,y2, .. • ,y^ are rational expressions in x.

It is very easy to see that there exists a constant 8 > 1 such that the

degree of y^ in x is a 8* for all i. For example, consider the third order

recurrence (5.2). Let a^ be a lower bound on the degree of y^ in x. Then

by (5.2) we have a^+j ^ 2â , + a^ ^. By a standard technique on difference
i 2

equations, we know can be chosen as 8 where 8 m 28 + 1 and hence 8 > 1.
Since the degree of y in x is £ 8 n, by Theorem 5.1 we have

n

\(y n) * Tn log 81U

where U • min(A,M,D). Let T̂ (cp) denote the time for evaluating cp(x̂ ,x 2, •.. > x
i +^ +i)

sequentially. Then (y) £ nT^ (cp) and hence

T1 (y n } Tl (c p)

*=—7—r- ̂ 7; TTTT = constant, Vn,Vk.
\(y n) (log 8)U

Hence, we have the following

Corollary 5.2.

By using parallelism the evaluation of an expression defined by any non

linear polynomial recurrence can be sped up at most by a constant factor.

6. SUMMARY AND CONCLUSIONS

It is convenient to think that the paper consists of two parts. In the

first part, we have given a general technique to construct parallel algorithms

which minimize the number of multiplication or division steps. This technique

is useful when multiplication or division is expensive. Some rather surpris

ing algorithms are derived. For example, Algorithm 3.1 evaluates powers of

x using additions instead of multiplications. This demonstrates the intrinsic

difference between sequential and parallel computation.

-23-

In the second part of the paper, we have shown (Theorems 4.1 and 4.2)

lower bounds on the time to evaluate rational expressions. The lower bounds

are asymptotically close to the upper bounds established by the algorithms

in the first part of the paper. Using the lower bound results, we have

shown that by using parallelism the evaluation of an expression defined by

any first order rational recurrence of degree > 1 or any nonlinear polynomi

al recurrence can be sped up at most by a constant factor, no matter how

many processors are used and how large the size of the problem is. This is

probably the first and may be the only known example of a problem which can

not be essentially sped up.

ACKNOWLEDGMENTS

I want to thank Professor J. F. Traub for his helpful comments on this

paper.

-24-

REFERENCES

(Note: References [6,7] are not cited in the text.)

[1] Borodin, A. B. and Munro, I. Notes on Efficient and Optimal Algorithms,
University of Toronto and University of Waterloo, 1972.

[2] Brent, R.P."On the Addition of Binary Numbers," IEEE Trans. Comput. C-19
(1970), 758-759.

[3] Brent, R. P. "The Parallel Evaluation of Arithmetic Expressions in Log
arithmic Time," in Complexity of Sequential and Parallel Numerical Al
gorithms, (J. F. Traub ed.), Academic Press, New York, 1973, 83-102.

[4] Flynn, M. J. "Very High-Speed Computing Systems," Proc. IEEE, 54 (1966),
1901-1909.

[5] Heller, D. "A Determinant Theorem with Applications to Parallel Algor
ithms," SIAM J. Numer. Anal. 11 (1974), 559-568.

[6] Hyafil, L. and Kung, H. T. "The Complexity of Parallel Evaluation of
Linear Recurrences," Proc. 7th Annual ACM Symposium on Theory of Com
puting, 1975, 12-22.

[7] Hyafil, L. and Kung, H. T. "Bounds on the Speed-Ups of Parallel Evalu
ation of Recurrences," Second USA-Japan Computer Conference Proceedings,
1975.

[8] Karp, R., Miller, R. and Winograd, S. "The Organization of Computations
for Uniform Recurrence Equations," J.ACM 14 (1967), 563-590.

[9] Kogge, P. M. "Parallel Solution of Recurrence Problems," IBM J. Res.
Develop. 18 (1974), 138-148.

[10] Kogge, P. M. and Stone, H. S. "A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations," IEEE Trans.
Comput. C-22 (1973), 786-793.

[11] Knuth, D. E. The Art of Computer Programming, Vol. 2, Seminumerical
Algorithms, Addision-Wesley, Reading, Mass., 1969.

[12] Kuck, D. J. "Multioperation Machine Computational Complexity, in Com
plexity of Sequential and Parallel Numerical Algorithms (J. F. Traub
ed.), Academic Press, New York, 1973, 17-46.

[13] Maruyama, K. "On the Parallel Evaluation of Polynomials," IEEE Trans.
Comput. C-22 (1973), 2-5.

[14] Munro, I. and Paterson, M. "Optimal Algorithms for Parallel Polynomial
Evaluation," JCSS 7 (1973), 189-198.

-25-

[15] Stone, H. S. "An Efficient Parallel Algorithms for the Solution of a
Tridiagonal System of Equations,11 J.ACM 20 (1973), 27-38.

[16] Stone, H. S. "Problems of Parallel Computation," in Complexity of
Sequential and Parallel Numerical Algorithms (J. F. Traub ed.),
Academic Press, New York, 1973, 1-16.

[17] Stone, H. S. Private Communication, 1973.

[18] Wilkinson, J. H. The Algebraic Eigenvalue Problem, Oxford University
Press (Clarendon), London and New York, 1965.

[19] Wulf, W. A. and Bell, C. G. "C.mmp — A Multi-Mini-Processor," AFIPS
Conference Proc., Vol. 41, Part II, FJCC 1972, 765-777.

SecurUj^lass i f ica t iof^

DOCUMENT CONTROL DATA R & D

1 . O R I G I N A T I N G A C T I V I T Y (Corpormtm author)

Department of Computer Science; Carnegie-Melion U.
Pittsburgh, Pennsylvania 15213

2a, R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

unclassified
1 . O R I G I N A T I N G A C T I V I T Y (Corpormtm author)

Department of Computer Science; Carnegie-Melion U.
Pittsburgh, Pennsylvania 15213 2 6 . G R O U P

3 R E P O R T T I T L E ™ — ' " ~ M M M

NEW ALGORITHMS AND LOWER BOUNDS FOR THE PARALLEL EVALUATION OF CERTAIN RATIONAL
EXPRESSIONS

4 . D E S C R I P T I V E N O T E S (Type ot report and inclusive dm tea) |

H. T. Rung

6 . R E P O R T O A T E

February. 1974
7a. T O T A L N O . O F P A G E S 7 6 . N O . O F R E F S

12 16
0 4 . C O N T R A C T O R G R A N T N O .

N00014-67-A-0314-0010, NR 044-422
6 . P R O J E C T N O .

C.

d.

9a. O R I G I N A T O R ' S R E P O R T N U M B E R (S) 0 4 . C O N T R A C T O R G R A N T N O .

N00014-67-A-0314-0010, NR 044-422
6 . P R O J E C T N O .

C.

d.

9 6 . O T H E R R E P O R T N O (S) (Any other number* that may be eaai&ied
thlm report)

approved for public release; distribution unlimited
1 1 - S U P P L E M E N T A R Y N O T E S

1 3 . A B S T R A C T

1 2 . S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Mathematics Program
Office of Naval Research 3
Arlington, Virginia 22217

This paper presents new algorithms for the parallel evaluation of certain
polynomial expressions. In particular, for the parallel evaluation of x , we
introduce an algorithm which takes two steps of parallel division and flog2tl~l
steps of parallel addition, while the usual algorithm takes f"log2nl steps of
parallel multiplication. Hence our algorithm is faster than the usual algorithm
when multiplication takes more time than addition. Similar algorithms for the
evaluation of other polynomial expressions are also introduced. Lower bounds on
the time needed for the parallel evaluation of rational expressions are given. All
the algorithms presented inthe paper are shown to be asymptotically optimal.
Moreover, we prove that by using parallelism the evaluation of any first order

rational recurrence, e. g., y.,- » ̂ "(y.+^—), and any non-linear

polynomial recurrence can be sped up at most by a constant factor, no matter how
many processors are used.

D D , ~ , 1 4 7 3

Security Classification

Security Classification
1 4 .

K E Y W O R D S
L I N K A L I N K B L I N K C 1 4 .

K E Y W O R D S
R O L E W T R O L E W T R O L E W T

•

1

Security Classification

