
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



MICROPROGRAMMING AND ITS RELATIONSHIP 
TO EMULATION AND TECHNOLOGY 

Samuel H. Fuller and Victor R. Lesser 
Carnegie-Mellon University 

Pittsburgh, Pennsylvania 

C. Gordon Bell and Charles Kaman 
Digital Equipment Corporation 

Maynard, Massachusetts 

May 16, 1974 

This report will appear in the 7th Annual Microprogramming Workshop in Palo Alto, 
California, October 1. 

This work was supported by the Advanced Research Projects Agency of the Office of 
the Secretary of Defense (contract F44620-73-C-0074) and is monitored by the Air 
Force Office of Scientific Research. This document has been approved for public 
release and sale; its distribution is unlimited. 



ABSTRACT 

The structure of microprogrammed processors, and microprogramming in general, 
is largely determined by two facts: the state of (semiconductor) technology and the 
task of emulation. This article first reviews those technological advances as well as 
those constraints and demands imposed by the emulation process that have shaped the 
evolution of microprogramming. 

The other main theme of this article is that it is a fruitless exercise to t ry to 
characterize and understand microprogramming in terms of how it differs from 'regular' 
programming. The right approach to understanding microprogramming is to recognize 
that it is primarily applied to the task of emulation (interpretation). Through this 
approach the evolution of microprogramming independent of a particular technology 
and type of instruction set being emulated, will be reviewed and future trends 
indicated. 



1. INTRODUCTION 

The structure of microprogrammed processors, and microprogramming in general, 
is largely determined by two factors: the state of (semiconductor) technology and the 
task of emulation. Therefore, this article first reviews those technological advances as 
well as those constraints and demands imposed by the emulation process that have 
shaped the evolution of microprogramming. The remainder of this article then uses 
these observations to put the past developments of microprogramming in perspective 
and forecast the major developments in the years ahead. 

The other main theme of this article is that it is a fruitless exercise to try to 
characterize and understand microprogramming in terms of how it differs from 'regular' 
programming. The futility of this approach can be seen by the numerous, 
contradictory definitions on microprogramming in the literature [Rosin, 1969; Wilkes, 
1969; Mallach, 1972]. Attempts to base a definition on features of a processor's 
architecture, such as horizontal instruction formats, lack of an explicit program counter, 
or visibility of real registers and data paths; or features of a processor's realization, 
such as the speed of main memory to that of the control (micro-) memory, are easily 
rejected on the basis of existing processors that are commonly recognized to be 
microprogrammed processors yet do not possess the required features. 

Most of this confusion in alternative definitions of microprogramming comes from 
the fact that it has been used in two very different ways: (1) in a technological manner 
to economically implement a complex instruction set or a small number of different 
instruction sets on a single processor, and (2) in a software manner to provide 
programmers with an extra degree of representational freedom, i.e. develop multiple 
instruction sets, each one appropriate for a particular task domain. The technological 
use of microprogramming was the dominant justification for the development of 
microprogrammable processors in the 1960's. But as the cost of software began to 
become the major cost of a computer system, the use of microprogramming as a 
technique for making a computer more convenient to program has and will continue to 
become the more important application. 

The right approach to understanding microprogramming is to recognize that it is 
primarily applied to the task of emulation (interpretation). Through this approach it is 
possible to understand and predict the evoluton of microprogramming independent of a 
particular technology and type of instruction set being emulated. 

The process of emulation will be taken up in considerably more depth in Section 
3, but it will be useful here in the introduction to briefly look at the different 
processors used to emulate a BASIC machine. On the one hand there are the Hewlett-
Packard 2100, DEC PDP-11, and PDP-8 that have time-sharing systems supporting 
BASIC. The only language available to the user is BASIC and he has no way of 
knowing the architecture of the processor. On the other hand there are the BASIC 
programmable calculators available from Hewlett-Packard [Spagler, 1972] and Wang 
Laboratories that operate as BASIC machines: the input keys and the displays are 
tailored to the BASIC language. It is difficult to insist that the HP-2100, PDP-11, and 
PDP-8 are not microprogrammed processors while the 'hidden' processors in the HP 
and Wang BASIC calculators are microprogrammed. The only characteristic all these 

2 



processors have in common is that they are emulating BASIC and a good case can be 
made for dropping the term 'microprogramming' altogether and simply use 'emulation' 
in its place. However, we will continue to use the term 'microprogramming' here since 
it is so widely used and it is a convenient way to indicate that we are discussing 
programming as it applies to emulation (and interpretation) rather than programming in 
general. 

Following our discussion of technology and emulation, this article then discusses 
specific hardware and software techniques for emulation. A number of different types 
of microprogrammed processors are also included as examples. 

2. SEMICONDUCTOR TECHNOLOGY 

The state of the art in semiconductor electronics has had a profound effect on 
the feasibility of microprogramming. Prior to the 1960's the only effective means of 
implementing a high speed control store was to use a diode matrix. This was the 
technology used by Whirlwind I [Everett, 1951] and by Wilkes in his original paper on 
microprogramming [Wilkes and Stringer, 1953]. Figures 2.1 and 2.2 show the structure 
of these control units. As long as these diodes were discrete components a control 
store of any reasonable size was too expensive to compete with alternate 
implementations using random logic (e.g. about 35,000 bits of control storage are 
required to implement the full PDP-11/40 architecture while the Whirlwind I had only 
4,800 'bits' in its control store). It is important to realize that both of these structures 
are just the control part of the processor and are an alternative to conventional 
sequential control circuits as shown in Figure 2.3. It was not until the middle and late 
1960's that integrated-circuit technology advanced to the point that economic read
only-memories (ROMs) and read-write memories (RAMs) became a practical reality. It 
stands to the credit of IBM's engineers that they were able to develop the IBM 
System/360 series of machines via microprogramming in the early 1960's; every model 
in the early IBM 360 line used a different, non-semiconductor technique to implement 
its control store. These ingenuous, but admittedly cumbersome and costly techniques 
could be laid aside when the IBM 370 series of machines were implemented since 
integrated circuit technology had advanced to the stage that semiconductor control 
stores were reliable. Figure 2.4 illustrates the basic structure of current 
microprogram control units. 

Semiconductor memories suitable for control stores in microprogrammed 
processors are now at the stage where 256 bit/package RAMs and IK (1024) 
bit/package ROMs are in wide use in present processors and IK RAMs and 4K ROMs 
are being designed into the newer processors. 4K RAMs and 16K ROMs have been 
announced and are available in limited quantities, but in general they are too slow to 
be seriously considered for control stores. 

For well over 10 years now semiconductor manufacturers have set a pace 
where the commercially feasible chip complexity (i.e., number of devices per chip) has 
roghly doubled every one to two years. For example, the 4K bit/package RAM (13,000 
devices) was introduced roughly two and one half years after the IK bit (4000) RAM. 
There is eve ry reason to believe that this trend will continue for at least the next four 
to six years. Hence we face a situation where we can expect to see the size of 

3 



control stores growing as technology encourages designers to use more control 
storage to cut costs in other areas, improve the performance of the microprocessors, 
or add additional capabilities. 

Memory arrays are not the only development in semiconductor technology that 
are having a significant effect on the structure of microprogrammed processors. Two 
other v e r y important developments are the programmable logic array (PLA) and 
shifters. The basic structure of a PLA is shown in Figure 2.5. It is a two-level 
combinatorial logic circuit that is 'wired' for a specific application by the masking, or 
metalization, that is used. The PLA has the same outward characteristics of a ROM 
except that it would take a ROM with several orders of magnitude more devices to 
match the function of the PLA in many applications. For example, a common PLA is a 
Rockwell Corporation package with 48 input/output terminals [Rockwell, 1973]. A ROM 
that would be equivalent to this PLA in many applications would require two orders of 
magnitude more bits. A PLA uses the same techniques that designers of digital circuits 
used a decade ago to minimize the number of gates required to realize a combinatorial 
function. However, if the function to be implemented is sufficiently ill-conditioned (e.g., 
a parity tester), the PLA offers no advantage over a ROM. Instruction decoding is an 
example of a combinatorial function amenable to minimization techniques and hence 
PLAs will be very useful for providing the decoding of instructions that must otherwise 
be done with random logic or via a sequence of microinstructions. 

PLAs do not lend themselves to dynamic alternations; there is no natural 
addressing mechanism for each of the make-or-break points in the PLA structure. A 
dynamically alterable component that could be used much like a PLA is an associative 
memory. Associative memories have been toted for some time now as a panacea for 
many problems but have yet to prove to be a cost effective unit. However, as the 
number of pins per package becomes more of a limitation than the complexity of the 
semiionductor circuit itself, associative memories may become viable components, e.g. 
the SPS-41 used an associative memory to specify sophisticated, programmable I/O 
patterns that will cause an interrupt [SPS,1972]. 

The other non-memory semiconductor device that has recently made an 
important impact on microprocessors is the shifter. For example, the Signetics 8243 
takes an eight bit byte as input, shifts it left from zero to seven positions, zeroing out 
the leftmost bits, and presents the shifted byte on eight output pins. Using a package 
like the Signetics 8243 as a basic building block, larger shifters can easily be 
constructed. The ability of cheaply implementing a fast shifter makes variable-length 
byte extraction, a common process in emulation, a much easier task. 

As will be detailed in the next sections, these technology advances will lead to 
microprommable architectures that are more uniform in structure (less ad hoc), easier 
to program and can more efficiently emulate a wide variety of different and more 
complex instruction sets. 

3. THE PROCESS OF EMULATION 

As we stated in the introduction, the right approach to understanding 
microprogramming is to examine the task it must perform: emulation. Thus, this 

4 



section spells out in detail the task of emulation and through this discussion indicates 
the appropriate representational framework and associated operations for efficiently 
performing an emulation (interpretation). In the next section we tie together our 
observations on emulation and technology to predict the future evolution of 
microprogramming. 

Our present discussion of emulation and microprogramming is especially 
appropriate given the view a major trend in microprogramming is towards more 
generalized emulation in terms of both the number and complexity of machine 
languages capable of being efficiently emulated on a single microprogrammable 
processor. Recent architectures such as the Burroughs B1700 [Wilner, 1972], which 
was designed for efficient emulation of algebraic block-structure languages, and SAAB 
FCPU [Lawson and Malm, 1973], which provides general emulation capabilities in a high 
speed processor, are examples of this more general approach to emulation. This trend 
should be heightened in the future as the variety and complexity of tasks being 
programmed on a single processor continue to increase. 

An interpreter can be characterized as a system that carries out the execution 
of a program in one representational framework by dynamically mapping each 
statement (instruction), at the point it is to be executed, into an execution sequence of 
statements in another environment which realize the semantics of the mapped 
statement. Given this definition of interpretation, emulation could be defined as the 
special case in which the interpreter maps into an environment which is directly 
executed by the hardware. However, this type of distinction between interpretation 
and emulation is often very fuzzy. For example, consider the interpretation of the IBM 
7090 on the IBM 360/65 which involves the use of two environments [Tucker, 1965], 
i.e. 360/65 microcode and 360 machine code which is in turn emulated in the 
microcode. 

This example also points up the difference between actions which are done 
solely for the sake of interpretation control and information (mapping actions) and 
those which actually cause the interpreted program to be executed (execution actions) 
[Mitchell, 1970]. In this example, mapping actions were programmed in a different 
representation environment than execution actions, respectively 360/65 microcode and 
360 machine language. As will be discussed later, the appropriate environments for 
expressing these different types of actions and the interface between them is one of 
the keys to understanding the evolution of microprogrammable processors and how the 
emulation task differs from other computational tasks. For example, the SAAB FCPU 
explicitly recognizes the distinction between mapping and execution actions by 
providing separate, asynchronous processing elements for each type of action. 

The other key to understanding the emulation process is based on a static view 
of this process in contrast to the dynamic view in terms of mapping and execution 
action so far presented. A static view of emulation comes from understanding the 
relationship between the two environments the emulator operates on, i.e. the emulated 
and execution environment. An environment consists of: (1) a data and control state 
image which includes, for example in a conventional processor, its set of working 
registers (accumulator, index register, program counter, interrupt register, e tc ) and its 
main memory which hold data and program; (2) a set of primitive actions which can be 

5 



used to modify and test the state image; and (3) a set of control rules which decide, 
based on the current status of the control state image, the sequence of primitive 
actions to execute. The ease with which each of these aspects of an environment to 
be M interpreted H can be imbedded into the corresponding aspects of "execution" 
environment is one of the main determiners of the efficiency of the interpretation 
process. 

The state diagram of one step in the emulation process, Figure 3.1, represents 
both static and dynamic aspects of the emulation process. The lefthand side of the 
diagram represents the effect of executing an instruction of the emulated computer on 
the state image of the emulated computer. The righthand side represents the 
sequence of transformations that the microprogrammed processor must perform on its 
own state image in order to emulate this instruction. In terms of this diagram, efficient 
emulation occurs when: 

1. The data and control state image of target (emulated) machine can be 
easily imbedded into host (microprogrammed processor) machine; 

2. The decoding and control sequencing function can be implemented 
efficiently. (In conventional instruction sets most of the work 
involves decoding, but in the emulation of higher-level languages 
much less of the total effort is spent on decoding.); 

3. Microinstruction semantics can operate on imbedded state image of 
emulated machine in the same way the emulated instruction does on 
its state image. 

In the initial use of microprogrammable processors for emulation, each of these 
aspects that contributes to efficient emulation could be easily attained because the 
environment(s) to be emulated was known before the design of the processor. This 
prior knowledge resulted in the design of a microprogrammable processor that had a 
state image and instruction semantics that were compatible with the emulated 
environment, and a hardwired version of the mapping action (control and decoding) 
between environments. However, as unanticipated and more complex environments 
began to be emulated a more general approach was needed: 

1. a generalized decoding structure; 

2. a means of statically reconfiguring, for the duration of an emulation, 
the state image, control structure, and primitive operation of the 
execution environment so that these aspects more nearly match 
those of the emulated environment (see Figure 3.2) [Lesser, 1972]; 

3. a means of dynamically modifying the microinstruction semantics 
based on parameters which are specified in the emulated instruction, 
i.e. microinstruction as a parameterized templates [Lesser, 1971]. 
Another way of viewing this requirement is the need for clean, 
efficient interface between the output of mapping actions and 
semantics of execution actions. 

6 



These requirements for generalized emulation together with the technological 
advances described in the last section, have led to the following concepts being 
incorporated into more advanced microprogrammable processors: 

1. flexible bit extraction and manipulation for generalized decoding: 

a. barrel shifter and mask capability (B1700 and FCPU) 

b. insertion of data in an arbitrary field of an internal register 
(FCPU) 

2. the concept of residual control as a way of configuring the 
environment: 

a. set up gating patterns between registers and buses (QM-1) 

b. set up mode of arithmetic, i.e. l's complement, BCD, etc. 
(B1700, FCPU) 

c. set up word length of data which will be applied to arithmetic 
operations, memory accesses and stores (B1700, FCPU) 

d. pseudo-interrupt register for embedding control structure of 
emulated machine (MLP-900, [Lawson and Smith 1971]) 

3. microinstructions as parameterized templates: 

a. indirect address of general registers, shift count, ALU function 
(MLP-900) 

b. execute-command (B1700,FCPU) 

This list of features when taken as a whole shed some light on what are the 
appropriate components of an environment (microprogrammed processor architecture) 
for general purpose emulation: 

1. a primitive unit of information which is the bit string. 

2. a capability for dynamically reconfiguring both the internal and 
external environment of a microprogrammable processor, i.e. word 
width, number of general registers, control structures, register 
bussing connections, arithmetic mode, etc. 

3. a capability for constructing complex address mapping functions. 
These are capabilities that are desirable in almost all types of computer environment. 
The important point is that they are crucial for effective emulation, i.e. these features 
should be looked at in terms of a matter of degree rather than specific function when 
comparing with other task domains. 

7 



The future of microprogrammable processors will inevitably result in a more 
generalized version of these concepts as technology permits. However, the aspect of 
microcomputer architectures that will probably receive the most attention in the next 
10 years is their control structure. The control structure will play a more important 
role in future years because one of the dominant trends in programming languages is 
towards more complex control structure (i.e. coroutine, data flow models, parallelism, 
etc.). Inevitably, these more complex control structures in future programming 
languages will be reflected in the machine languages that will be compiled into. 

4. HARDWARE AND SOFTWARE INTERPRETATION TECHNIQUES 

To predict the future of microprogramming it is necessary to understand how 
hardware and software techniques are used in effecting interpretation. Then, 
advances in technology can be related to advances in techniques and, hence, to 
resultant advances in computer systems. Since microprogramming is simply a variation 
of conventional programming in terms of the desire for generality and ease of coding, 
advances in microprogramming will likely follow the same pattern already seen in 
assembly level programming over the last twenty five years. This is especially true 
given the trend toward more complex and varied instruction sets which will require 
writing of many large emulators, each supporting a complex run time environment, e.g. 
PL/1 machine, operating systems machine, etc. Since emulation is the major application 
of microprogramming, specific programming support will be accented. With advances in 
technology offering more storage capacity and functional processing per unit area (at 
low cost), hardware structures will become more flexible thus providing a general 
environment for interpretation and emulation. Since sections of general structures 
usually go unused in any single application, the cost or cost-performance of generality 
is rarely acceptable to all. However, the added cost of generality may be borne by 
improved technology thus providing the user with more functional capability at a 
constant cost. In contradistinction, the consumer market for computers requires the 
lowest possible cost and, so, will trade generality for cost. Here, technology is used to 
lower cost while keeping the application specific. 

In addition to the techniques detailed in the last section for general purpose 
emulation, there are also techniques for making it easy to microprogram many large 
emulators. A list of techniques, in approximate order of increasing generality, include: 

1. More high-speed working registers. Efforts to minimize the size of 
the processor state is not as strong in microprogrammed processors 
as it is in more conventional processors. 

2. Larger control stores. Much of the current involuted character of 
microprograms is a result of squeezing a complete emulator into a 
small space (e.g. 256 words) and more reasonable 
(micro)programming will be possible with larger control stores. 

3. N-wav branches (case statements). The ability to test several 
conditions and branch to any of several sections of code which 
service them. 

8 



4. (Micro)subroutines. The ability to invoke a function or reference 
data specified indirectly at a higher level,. 

5. Memory management. Multiprogramming is already a common 
practice. For example, emulators for central processors, several I/O 
processors, and microdiagnostics often reside in the same control 
store. Problems of protection, relocation, and using overlays or 
paging from backing stores are issues of emerging concern in 
microprogramming. 

6. (Micro)interrupts. Useful when multiple emulations are being run on 
the same processors. 

The hardware components which initially supported microprogramming were 
adequate speed ROMs and multiplexors. ROMs provide tables to encode, decode, and 
sequence control. Multiplexors extract fields, assemble conditions for testing in 
parallel, and select control information from registers containing the higher level 
instructions (indirect control) rather than from the microcode (direct control). The next 
advance came with the availability of high speed, random access, alterable memory. 
With these, microprograms are easily corrected, extended, or swapped for those which 
provide different functions, for example, machine diagnosis (microdiagnostics). More 
recent advances in technology have made available low cost, small sized shifters, 
associative memories, PLAs, and decimal arithmetic units. The fast shifter is the most 
important of these since it easily extracts fields from instructions being interpreted or 
data from special formats, such as floating point numbers. 

To understand the implication of hardware and software techniques it is 
necessary to consider their application. The next section provides detailed examples. 
At this point the uses of microprogramming can be decomposed into two dimensions. 
The first compares designs by the level of language supported. The range includes 
assembly, intermediate, and high level languages. The second dimension orders 
machines by the number of environments supported, typically subdivided in two 
classes, one and many. Over the last decade the number of environments has 
increased and their level has risen from the assembly toward the procedure oriented. 
In the past when several environments were provided, one at a time was selectable 
from a small, fixed set. 

By observing the development of assembly level programming techniques and by 
observing the parallel development of microprogramming so far, a reasonable 
prediction would be the continuation of the trend. If so, the next step will be the 
generalization and sharing of resources at the microprogram level. First, relocation 
and protection schemes for alterable microstores will be developed. Then, memory 
management and demand paging schemes to effect the ability to run large 
microprograms in% comparatively little physical space will be included. The dynamic 
allocation of microstore address space will probably require a micro-operating system 
with fewer, tasks than conventional ones but many similarities with respect to space 
allocation techniques. To facilitate writing and checkout of so much code, high level 
languages designed for microprogramming will be developed, just as they are now 
being used more and more as a tool for developing system programs today. 

9 



To support these advances in microprogramming software, hardware must be 
provided. The most important advance on present components is larger microstores 
made possible by faster and denser memories. As an alternative to a fast, large 
microstore the cache structure could be used to combine a small, very fast primary 
microstore with a larger, slower secondary one. Similarly, demand paging requires a 
fast swapping medium. This might be provided by a high speed, low capacity solid 
state disk with low latency. 

Given the ability to execute so much microcode what use might be found for it? 
Extrapolating from today's machines and keeping the needs of emulation in mind, one 
natural application would be to provide multiple programming environments. By this is 
meant a time-shared computer system whose users divide into classes each requiring 
the same environment. Some of these would be machine languages for older machines, 
others would be intermediate, high level (Fortran, PL/I, COBOL), or application oriented. 
The high speed shifter is useful in all of these to extract fields. Emulating earlier 
machines would be made easier by the use of a programmable PLA or associative 
memory (to replace logic not conveniently embedded in memories due to the large 
number of inputs). Finally, note that the provision of multiple environments is a 
problem in multiprogramming and, eventually, as more environments are desired, in 
time-sharing. 

5. MACHINE SPECIES 

The various microprogrammed processors can be characterized along 
evolutionary lines, which in turn roughly correspond to their implementation 
complexity. One of the earliest computer implementations, Whirlwind I [Everett, 1951], 
formulated the control part as an encoding in a changeable, diode array memory (see 
Figure 2.1). From this Wilkes and Stringer extended the encoding, and coined the word 
"microprogramming" [Wilkes and Stringer, 1953]. 

5.1 One-Machine. Integrated Control and Data Part 

With the availability of fast, read only, random-access memories computer 
processors with a single, fixed instruction-set were designed. These early designs 
permitted instruction-sets wih more complex data-operations (e.g. multiply, divide, 
double precision). The most notable design of this type, the IBM System/360 [Blaauw 
and Brooks, 1964; Stevens, 1964] was actually a set of about 10 computer models 
implementing the same instruction set covering a performance range of about 300 and 
a price range of about 100. Over half of the models were implemented using 
programmed control interpreters. 

A Fixed Group of Conventional Instruction-Sets 

Given that, a single machine instruction set can be implemented in a single 
processor, the natural extension is to implement several machines. The earliest 
implementations of multiple instruction sets in a single physical machine used 
conventional programming. First generation, cyclic access, drum memory computers 
were "emulated" using higher speed, second and third generation computers with 
random access memories. 

10 



An early and extensive use of multiple, fixed machine emulations occurred with 
the IBM 360 microprogrammed processors as they were used to implement the IBM 
System/360 instruction-set, the 360 input-output processor instruction-sets, and 
several models of earlier IBM computers. The design methodology of these computers 
is not well understood outside IBM. The design process for these machines appears to 
be: first the primary machine (in this case the 360) is designed; the various other 
machines to be interpreted are then added to the design by installing their 
idiosyncrasies (e.g. carry and overflow conditions, state, special data path breaks) 
[Tucker, 1965]. 

A Variable Group of Conventional Instruction-Sets 

Given that a single machine can be built that implements several conventional 
instruction sets (sequentially), can a machine that implements several instruction sets, 
but on a variable basis, be built? In effect, Standard Computer Corporation attempted 
such a design in the IC-model 4 and later the MLP 900 [SCC 1968; SCC, 1969]. The 
main goal of the MLP-900 was to implement an IBM 360, together with other undefined 
machines, e.g. PDP-10, etc. In essence, the machine was designed with much generality 
using multiple register sets, and a two-stage pipeline for instruction fetching and 
instruction execution. The variable parts, which cannot be emulated easily by 
sequencing, were brought to a 4 position, multiple pole, electronic switch, which 
permitted up to 4 variable parts to be selected by direct wiring on a plugboard array. 
Although such an approach is of academic interest, the mechanical aspects of the 
plugboarding preclude the machine from being interesting in a production or economic 
sense. The myriad of details associated with the input-output section (e.g. channels, 
device state words, and transitions) add to the system definition job more than the 
central processor. 

Currently , there are no commercially viable machines that emulate a set of other 
conventional type machines on a variable basis. It appears that the machines to be 
emulated must be determined a priori, in a fixed fashion. Such a machine would permit 
any one machine to be emulated at a given instant by loading a memory with the 
information necessary to interpret the target machine. Although this has been done 
when a large machine interprets another machine, the implication in such a task is that 
the speed of emulation is essentially that of the target machine. It appears the 
necessary hardware for this task will be available in the near future and that such 
systems can exist by 1980. 

5.4. A Single Higher Level Language Interpreter Mashing. 

Since the use of higher level algebraic languages (e.g. Algol, Fortran) and more 
natural textual languages (e.g. Cobol) there has been a substantial interest in the 
development of hardware that would interpret the languages directly. To date, several 
machines have been built for single languages (using directly hardwired techniques), 
and a number of machines have been microprogrammed to interpret languages directly. 
These designs have not resulted in any particular insight about direct language 
interpretation. The implementations execute the object target language faster than the 
non-microprogrammed counterparts, and the speed improvements hold no surprises; 
the faster memory of the microcode, together with the small, register transfer 
primitives, provide the improvement. 

11 



5.5 Interpreting Many Languages Directly with a Single Machine 

To date, only the Burroughs' B1700 [Wilner, 1972] has been built with the goal 
of either the direct interpretation or compile and execution of several higher level 
languages. In that it is able to interpret the various languages, and encode the object 
code in a space of roughly one half that of a conventional small computer (the IBM 
System 3), it is successful. However, the execution time is not clear; one would expect 
a factor of two increase in the execution of the object code, too. There has been no 
attempt to compare the execution time on a technology-normalized basis. The B1700 
has also been used in the direct interpretation of several conventional machines (e.g. 
IBM 1401 and Burroughs' B2500). Considering all factors, the B1700 appears to be 
the most general* of the microprogrammed machines in existence. 

5.6 Special Purpose Machines 

An especially interesting evolution of microprogrammed machines has occurred 
for the interpretation of array data for matrix and vector operations, including time 
series evaluation (e.g., fast fourier transformation). Although there were several early 
laboratory processors, IBM's 2938 performs this function. Most recently, a 3 
processor system for these operations has been developed and is attached as a 
peripheral to a conventional minicomputer [SPS, 1972]. The three processors are 
functionally separated for: fetching data from the attached computer, collecting analog 
inputs, and storing the results back; moving data from the local array in the right order 
for the arithmetic part; and the arithmetic part. 

6. CONCLUSIONS AND FORECASTS 

In this article we have reviewed the most important constraints within which 
successful microprogrammed processors must operate: semiconductor technology and 
the task of emulation. It is our view that these constraints more strongly influence the 
direction future of microprogramming per se. In fact, as we stated in the introduction, 
there is a good case for dropping the term microprogramming altogether and simply 
realize many processors are designed to efficiently emulate the instruction set of 
' target' machine architectures. 

The major impact of semiconductor technology on microprogramming is to 
provide large and fast control storage. However, the emergence of programmable logic 
arrays and fast shifters is also bound to have a significant effect on microprocessors. 
It is relatively unclear at this point exactly what effect the processor-on-a-chip will 
have. Implementing the entire processor on a single semiconductor chip eliminates 
much of the flexibility available in constructing processors from MSI/LSI components, 
but, on the other hand, provides a complete processor at a very low cost. If 
processors-on-a-chip become sufficiently popular, emulation will come into heavy use 
as these primitive-processors are surrounded by emulation routines to transform them 
into processors with which we are comfortable working. 

*As measured by ability to access any bit in memory, to have arbitrary length 
microcode in any memory, and to operate on variable length field with both binary and 
BCD formats. 

12 



Our review of the requirements of the emulation task pointed to a number of 
central concepts that are required for efficient emulation. 

Table 6.1 summarizes the major dimensions of emulation for different levels of 
target machines. In each cell the importance of each subtask is indicated and new 
concepts or capabilities, not used by a subtask at the previous level, are noted. 

REFERENCES 

Blaauw, G. A. and Brooks, F. P., "The Structure of System/360,w ISM System 1 3,2 
(1964), 119-135. 

Everett , R. R., "The Whirlwind I Computer," AIEEzIEE QonL (1951), 70-74. 

Lawson, H. W., Jr. and Smith, B. K., Tunctonal Characteristics of a Multilingual 
Processor," IEEE Trans. Comput.r C-20, July 1971, 732-743. 

Lawson, H. W., Jr. and Malm, B., "The DATASAAB Flexible Central Processing Unit 
(FCPU): Background, Concepts, Basic Design, and Applications," Data SAAB, Linkoping, 
Sweden, 1973. 

Lesser, V. R., "An Introduction to the Direct Emuiaton of Control Structures by a 
Parallel Micro-Computer," Transactons on Computers (special issue on Micro
programming), IEEE, July 1971. 

Lesser, V. R., Dynamic Control Structures and Their Use in Emulation, Ph.D. thesis, 
Report No. CS 309, Computer Science Department, Stanford University, Stanford, Calif., 
September, 1972. 

Mallach, E. G., "Emulation: A Survey," Honeywell Computer Journal. 6,4 (1973), 287-297. 

Mitchell, J . G., The Design and Constructon of Flexible and Efficient Interactive 
Programming Systems, Computer Science Department, Carnegie-Mellon University, 
Pittsburgh, Pa., June 1970. 

Rockwell Programmable Logic Array (PLA), Pub. No. 15900N11, Rockwell Device 
Division, Rockwell International, Anaheim, Calif., August, 1973. 

Rosin, R. F., Contemporary concepts of microprogramming and emulation, Computing 
Surveys L 4(1969), 197-212. 

Spagler, R. M., "BASIC-Language Model 30 Can Be a Calculator, Computer, or Term," 
Hewlett-Packard journal, December, 1972. 

SCC, Inner Compuer—Model 9, Principles of Operation, Standard Computer Corp., Los 
Angeles, Calif., 1968. 

SCC, IC-9000 Processor Functonal Description, Form No. 9001-3, Standard Computer 
Corp. , Los Angeles, Calif., 1969. 

13 



SPS-41 User's Manual, Signal Processing Systems, Inc., Waltham, Mass., 1972. 

Stevens, W. Y., "The Structre of System/360: Part II—System Implementations," IBM 
Systems Journal, 3,2, 1964, 136-143. 

Tucker, S. G., "Emulation of Large Systems," Comm. ACMP 8,12, December, 1965, 753-
761. 

Wilkes, M. V., "The Growth of Interest in Microprogramming: A Literature Survey," 
Computing Surveys, 1,3, (1969), 139-145. 

Wilkes, M. V. and Stringer, J . B., "Microprogramming and the Design of the Control 
Circuits " Proc. Cambridge Phil. S f lU E a d Z 49, April, 1953, 230-238. 

Wilner, W. T., "Design of the Burroughs B1700," EMS* Ql AFIPS FJCC. 41, 489-497. 

14 



S E C U R I T Y C L A S S I F I C A T I O N O F THIS P A G E (Whmn Data Entered) 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1. R E P O R T N U M B E R 2. G O V T A C C E S S I O N NO. 3. R E C I P I E N T ' S C A T A L O G N U M B E R 

4. T I T L E (and Subtitle) 

MICROPROGRAMMING AND ITS RELATIONSHIP TO EMULATION 
AND TECHNOLOGY 

5. T Y P E O F R E P O R T ft. P E R I O O C O V E R E D 4. T I T L E (and Subtitle) 

MICROPROGRAMMING AND ITS RELATIONSHIP TO EMULATION 
AND TECHNOLOGY 6 . P E R F O R M I N G O R G . R E P O R T N U M B E R 

7. . A U T H O R S 

Samuel H. Fuller, Victor Lesser, 
C. Gordon Bell, and Charles Kaman 

8 . C O N T R A C T O R G R A N T N U M B E R f t J 

F44620-73-C-0074 

9 . P E R F O R M I N G O R G A N I Z A T I O N NAME AND ADDRESS 

Carnegie-Mellon University 
Department of Computer Science 
Pittsburgh, Pennsylvania 15213 

10. PROGRAM E L E M E N T . P R O J E C T . T A S K 
A R E A ft WORK U N I T NUMBERS 

I t . C O N T R O L L I N G O F F I C E NAME AND ADDRESS 

Advanced REsearch Projects Agency 
1400 Wilson Boulevard 
A r U n g l - n n . V-frp-fn-f* 2 2 2 0 9 

t2. R E P O R T D A T E 

May, 1974 
I t . C O N T R O L L I N G O F F I C E NAME AND ADDRESS 

Advanced REsearch Projects Agency 
1400 Wilson Boulevard 
A r U n g l - n n . V-frp-fn-f* 2 2 2 0 9 

13. NUMBER O F P A G E S 
24 

U . MONITCTRING A G E N C Y NAME ft AD0RESS<7/ different from Controlling Ottlca) 

Air Force Office of Scientific Research 
1400 Wilson Boulevard 
Arlington, Virginia 22209 

IS. S E C U R I T Y CLASS, (ot thla report) 

UNCLASSIFIED 

U . MONITCTRING A G E N C Y NAME ft AD0RESS<7/ different from Controlling Ottlca) 

Air Force Office of Scientific Research 
1400 Wilson Boulevard 
Arlington, Virginia 22209 1S«. D E C L A S S I F I C A T I O N / D O W N G R A D I N G 

S C H E D U L E 

16. D I S T R I B U T I O N S T A T E M E N T (ot thla Report) 

Approved for public release; distribution unlimited. 

17. D I S T R I B U T I O N S T A T E M E N T (ot the abatract entered In Block 20. It different from Report) 

18. S U P P L E M E N T A R Y N O T E S 

19. K E Y WORDS (Continue on ravaraa eldm It nacaaaary end Identity by block number) 

20. A B S T R A C T (Continue on reverse eldm It neceeemry and identity by block number) 

DD i J 2 N ^ 3 1473 E D I T I O N O F 1 N O V 6 5 IS O B S O L E T E 

S E C U R I T Y C L A S S I F I C A T I O N O F TH IS P A G E (Whmn Data Entered) 



S E C U R I T Y C L A S S I F I C A T I O N O F TH IS P A Q g f W h - i Dmtm Bntmrmd) 

•The structure of microprogrammed processors, and microprogramming 
in general, is largely determined by two facts: the state of (semiconductor) 
technology and the task of emulation. This article first reviews those 
tehcnological advances as well as those constraints and demands imposed 
by the emulation that have shaped the evolution of microprogramming. 

The other main theme of this article is that it is a fruitless exercise 
to try to characterize and understand microprogramming in terms of how it 
differs from 1 regular1 programming. The right approach to understanding 
microprogramming is to recognize that it is primarily applied to the task of 
emulation (interpretation) . Through this approach the evolution of 
microprogramming independent of a particular technology and type of instructi >n 
set being emulated, will be reviewed and future trends indicated. 

S E C U R I T Y C L A S S I F I C A T I O N O F THIS PAGBfWhmn Dmtm Bntmrmd) 


