
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

GRAPHIC DISPLAY PROCESSOR

PROGRAMMERS GUIDE

DEPARTMENT OF COMPUTER SCIENCE

Brian Rosen
January 20, 1 974

Carnegie-Melion University

This work was supported by the Advanced Research Projects Agency of
the office of the Secretary of Defense (F44620-73-0074) and is monitored
by the Air Force Office of Scientific Research.

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
1. OVERVIEW

GDP2 is a GRAPHIC DISPLAY PROCESSOR which interprets a DISPLAY
LIST stored in MEMORY. It works in conjunction with a PDP11 computer to
produce pictures, characters etc. The system also includes:

1) A KEYBOARD to communicate with the system
2) An ASYCRONOUS LINE INTERFACE (ASLI) which

is connected to another computer (our PDP10),
3) A CLOCK which interrupts the PDP11 60 times per second
4) A READ ONLY MEMORY (ROM) which contains a program

to restart the Graphics System.
5) (optionally) A SPARK PEN, which can be used for

graphic input and the pointing function (cursor positioning)
6) (coming) A REMOTE RESTART SYSTEM which allows restarting

the ROM program from the terminal.
7) (coming) A MATRIX MULTIPLIER and CLIPPING DIVIDER

for rotation, translation and windowing features
for more complex graphics.

Most of the Hardware is physically separated from the Display Tube,
Keyboard and Spark Pen. The parts of the system the user has to manipulate
or see is in the Terminal Room. The noisy stuff is in the Computer Room.

The Graphics System is an INTELLIGENT TERMINAL Each system has its
own PDP11 which is dedicated to it. The PDP11 can be programmed to assist
the GDP to create whatever picture the user wishes. For instance, in the
absense of hardware Matrix Multiplier, software on the 11 can do the matrix
multiply for the display.

This documentation purports to describe the hardware of the GDP itself.
Documentation on the PDP11, Keyboard, Clock, ROM, Spark Pen etc. systems
are elsewhere, as is the documentation on the standard PDP11 software
system implemented for the Graphics Project.

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
1 Major Subsystems

GDP2 has the following major subsytems:
1) Instruction Processing

Fetching and executing of display list instructions
2) Character Processing

Translation of character strings to vector lists
suitable for drawing

3) Line Drawing
Draws vectors on the screen

4) Control Word Processing
Mode and state alteration commands

5) UNIBUS/Memory Interfacing

Each of these subsytems is described in detail later, but the basic data
flow is as follows.

l)The PDP11 starts the Display via the UNIBUS by loading the GDP's Program
Counter (GPC)

2)The GDP fetches an INSTRUCTION from the memory location pointed to by
GPC.

3)The instruction is decoded and executed. There are four different
instructions, each of the instructions has a two bit OPCODE, and a 14 bit
OPERAND. The operand is used as a memory address. If it was an XQT
(Execute) instruction, a Display File is executed which causes characters
and/or vectors to be drawn. An INTERRUPT instruction causes the PDP11 to
be interrupted. JUMP and JUMP TO SUBROUTINE instructions alter the order
of instruction execution (which is normally sequential). After execution of an
instruction, a new one is fetched, and the process is repeated.

4)If Character Mode is enabled, an Execute instruction causes the Character
processing logic to interpret a Character String. The memory operand of the
Execute instruction is used as a pointer to a list of characters. Two
characters pointed to by the CHARACTER POINTER (CPTR) register are
fetched into the CHARACTER BUFFER REGISTER (CBUF).

5) Starting with the low byte of CBUF, the characters are indexed into a
table of addresses pointed to by a DISPATCH TABLE BASE ADDRESS
REGISTER (DTBAR). The table is located in memory.

6) The address accessed via the table is interpreted as either a list of
vectors to be displayed (the representation of the character) or as an
Interrupt Service Routine address for the PDP11. In the case of a vector list,
the Line Drawer is activated to display the character.

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
1 Major Subsystems

7) When the Line Drawer finishes the character description list, or the PDP11
restarts the GDP from the service routine, another character is displayed. If
necessary, a new fetch is made before looking up the byte in the Character
Dispatch Table.

8) Vector lists from character processing or display files causes the Line
Drawing operation to occur. Vectors are fetched from memory pointed to by
the VECTOR POINTER REGISTER (VPTR) into the VECTOR BUFFER REGISTER
(VBUF), and drawn on the screen. The drawing operation affects the X and Y
position registers XR and YR.

9) Completion of a vector list causes either a new character operation or a
new instruction operation, depending on which process (character or
instruction) initiated the line drawer process.

10) Intermixed in Instruction, Character, and Vector lists are CONTROL
WORDS which cause Mode and State changes. Among other things, there are
Control Words which affect the Intensity, Scale, and Format of vectors, turn
on and off Character Mode, cause interrupts to the PDP11, effect SETPOINTS
(loading of X and/or Y registers), and terminate lists.

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
2 Registers

Most of the registers in GWII have already been mentioned, but here
they are all together:

GPC Graphics Program Counter 16 BIT
Points to next Instruction to be executed.
Incremented by 2 after each fetch.

CPTR Character Pointer 16 BIT
Points to next character to be displayed.
Incremented by 2 on each character fetch
(two characters per fetch).

CBUF Character Buffer 16 BIT
Holds two characters to be "Displayed".

DTBAR Dispatch Table Base Address Register 16 BIT
Pointer to an in-core table of addresses, one address
for every possible character code.

VPTR Vector Pointer 16 BIT
Pointer to a list of vectors to be drawn

VBUF Vector Buffer 16 BIT
Holds a vector to be drawn on the screen

XR X Register 12 BIT
Holds current X position of the beam. The register is
sign extended to 16 bits so that negative
numbers look like regular two's complement integers
to the PDP-11.

YR Y Register 12 BIT
Holds current Y position of the beam. Sign extended like
XR.

STATE State Register 16 BIT
Contains the SCALE,INTENSITY LEVEL, CMODE, UNBLANK
and FORMAT sub-registers.

GIS Graphics Interrupt Status 16 BIT
Used as the second word of an interrupt "Vector" for the
PDP-11 during an interrupt. GIS holds the Program
Status for the interrupt service routine.

GCSR Graphics Control and Status Register 16 BIT
Holds the GO, CLEAR, CLOCK DIVIDE, WRAP
and INTERRUPT ENABLE bits.
These will be explained later.

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
2 Registers

The Instruction Processing Portion of GDP comprises a small, stored
program digital processor, although the intruction set is very limited. As we
have noted before, there are only four instructions. The format of each
instruction is very similar. You can see a diagram of it in Appendix B.
Basically, the end bits of the instruction word, bits 15 and 0, are used as the
opcode bits. Two bits gives us our four possible instructions. Since the
choice of which bits were opcode bits seems a little odd, I might explain that
bit zero is never used in an address, since the GDP always acceses full
words, and that reserving bit 15 for use as the opcode only restricts
Graphics to accessing a 16k word memory. This is no problem since the
memory accesable by the GDP is only Sk words to begin with. The address
used as an operand to the instruction always refers to a location in the 8K
Double Port Memory. This means that bit 14 of the address is ignored at
present. (There is a possibility of future expansion to a 16K Double Port
Memory). When the operand of the instruction is used, the opcode bits are
masked out, so that we always obtain even addresses in the range 0-37776.

The fetch of an instruction is made via GPC into the VPTR register which
is used as an instruction buffer. After the fetch, GPC is incremented by two.
Thus, prior to actual operation of the instruction, the GPC is pointing to the
next sequential instruction.

The JMP (jump) instruction simply causes a tranfer of the contents of the
VPTR register to the GPC. GPC<-VPTR. Another instruction is immediately
fetched, on the new location. The JMP is an unconditional jump.

The JMS (Jump to Subroutine) instruction works very much like a PDP-8
JMS instruction . The operand of the instruction is interpretted as a pointer
to a graphic subroutine. The first word of the subroutine (thus the word
pointed to by the operand) is assumed to be unused. The GDP deposits the
present value of the GPC register (which points to the next instruction in the
main stream of instructions) into this first location. Then the operand is
transferred to GPC, after being incremented by two.

M(VPTR)<-GPC
GPC<-VPTR+2

The GDP then proceeds to execute the first instruction in the subroutine
(which, of course, is the second word of that subroutine, the first word now
containing the RETURN ADDRESS). The GDP proceeds to process more
instructions in the subroutine until the subroutine ends. The end of the
subroutine is indicated by a JMP instruction, whose operand is the address of
the first word of the subroutine.

Now, when the GDP deposited that return address, it did a sneaky thing,

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
3 All You Need To Know About Instruction Processing

it blanked out the opcode bits (15 and 0) of the return address word. This is
because the opcode of the JMP instruction is 00. The "instruction" deposited
in the first location of the subroutine is actually a JMP instruction back to
the caller of the subroutine. This avoids the necessity of an indirect
addressing bit. Note that subroutines can be nestable, but cannot be
recursive or reentrant without some help from the PDP-11.

The third instruction is INTR, which causes an interrupt to the PDP11. An
interrupt is generated at Bus Request Level 4. The contents of VPTR (which
is the operand of the INTR instruction) is a pointer to a routine, not an
interrupt vector. This is contrary to most PDP11 peripheral device interfaces.
If you want to know how this is done, read on. If you don't care, skip the
next paragraph.

When the PDP11 honors the bus request, it needs an interrupt vector.
This vector is passed to the PDP11 by the device requesting an interrupt.
Usually, the address is below location 400. Then the computer uses the
interrupt vector it obtained to get a new Program Counter and Program
Status word.

PC<-M(VECTOR)
PS*-M(VECTOR+2)

In this case hwever, we already know the desired new PC. Therefore, we
pass the address of VPTR to the PDP11, not its contents. This address is in
the peripheral bank, normally 165104. When the PDP11 does the access on
the UNIBUS to get a new PC, it goes to address 165104 (VPTR) and puts the
contents of VPTR into the PDP11 PC. Now, we need a PS. The PDP11 will
access address 165106, (address of VPTR+2). It just so happens that address
165106 is an unused register (called GIS for Graphics Interrupt Status).
Before starting up the GDP, the programmer should load GIS with a suitable
interrupt status word, similar to one used in a normal interrupt vector. This
procedure is known as an INTERRUPT @VPTR.

When the PDP11 completes the interrupt service routine, before it
executes an RTI instruction, it must continue the GDP. This is done by writing
a one into the GO bit of the GCSR. Graphics then continues on, processing
the next instruction. It should be noted that the INTERRUPT ENABLE bit of
the GCSR must be set before any interrupts can be generated.

The final instruction is XQT, the execute command. It causes the GDP to
draw something on the screen. The operand of the XQT instruction is
assumed to be a pointer to a list of vectors to be drawn, or a list of
characters to be interpretted. The CMODE bit of the STATE register
determines whether the character processing logic or the vector process will
be activated. If CMODE is a one, character processing is enabled, if CMODE is
zero, then vectors are assumed.

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
3 All You Need To Know About Instruction Processing

When the vector/character process finishes, the GDP is free to fetch and
process the next instruction. As we will see later, it is possible to deactivate
the character process and activate the vector process while processing an
XQT instruction, (and vice versa) by manipulating the CMODE bit with Control
Words. Thus the state of the CMODE bit before an XQT instruction determines
initial assumptions about the vector/character determination, but the decision
can be overiden from within the data.

An example of intruction processing will now be given. The notation used
is that of a PDP-11 Assembler format, ie:
LABEL: INSTRUCTION OPERAND ;COMMENT

MLOOP: XQT BOX
JMP TG

;DRAW A BOX
;GO TO TAG ROUTINE

TG: JMS
JMS
INTR
JMP

REPOS
LABEL
CLKTIC
MLOOP

POSITION BEAM FOR TAG
DRAW THE LABEL
HAVE PDP11 WAIT FOR REFRESH
THEN REFRESH THE PICTURE AGAIN

REPOS: 0
XQT
JMP

SXY
REPOS

SPACE FOR RETURN ADDRESS
POSITION BEAM UNDER THE BOX
SUBROUTINE ROUTINE

LABEL: 0
XQT
XQT
JMP

FRSTWD
RESTLN
LABEL

RETURN ADRDRESS SLOT
DRAW FIRST HALF OF LABEL
DRAW THE REST OF THE LINE
RETURN TO CALLER

BOX: <vector sequence to draw a box on the screen>
SXY: <vector sequence to reposition beam for tag line,

and change to CHARACTER MODE>
FRSTWD: <Character list to draw part of the tag line>
RESTLN: <Character list to draw the rest of the line>

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
4 How To Use Character Processing

Character processing logic in the GDP translates eight bit character
codes into vector lists or PDP-11 service routine calls. Character lists
themselves are stored in memory in contiguous bytes, just as the PDP-11
instructions use them. The sequence of displaying a Character list is as
follows:

The GDP places the operand of a XQT instruction in the CPTR register.
Then a full word fetch is made into the CBUF register.

CBUF«-M(CPTR)
CPTR<-CPTR+2

Starting with the low byte in CBUF, the GDP constructs an address by
taking the high 7 bits of the Dispatch Table Base Address Register, DTBAR as
bits 15-9 and the character code as bits 8-1, always forcing bit 0 to be a
zero. Then a fetch is made into the VPTR register.

VPTR<-M(DTBAR<15:9>+CBUF<7:6>*2)
This has the result of looking up the character code in a memory table.

The contents of the word accesed by the table is interpretted as an
address. The lowest bit in the address is used as a flag. If the flag was a
zero, the address is used as a pointer to a list of vectors to be drawn. The
vector processing logic is called upon to draw the list of vectors. When it
finishes the list of vectors, the vector processing logic returns control to
character processing logic.

If the flag was a one, the address is used as a pointer to a PDP11
service routine. This is another case of INTERRUPT @VPTR. The contents of
the table value is used as direct pointer to the service routine. Here again,
the flag bit (bit 0) is blanked when sending out the contents of VPTR, so that
we do not get an illegal (odd) address on the interrupt procedure.

When the vector process completes the first character (or the GO bit is
set by the PDP11), a new character is processed. This time the high byte of
CBUF is used to obtain a table entry.

VPTR<-M(DTBAR<15:9>+CBUF<15:8>*2)
The same procedure is used on suceeding characters. Since full word fetches
are done into CBUF, a character string may not start on an odd byte
boundary.

Characters are not restricted in size, length, drawing time etc. Characters
are defined to be vector lists or PDP11 service routines, pointed to by eight
bit codes. That is all the restriction the hardware enforces. In particular, no
assumptions are made about vector format, intensity or scale initial
conditions. Furthermore, a vector list that comprises a character must include
any beam repositioning required. Generally, assumptions are made about any
one character set (by the SOFTWARE, not the hardware) as to whether the

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
4 How To Use Character Processing

beam is on or off initially, which vector format is set up, whether
repositioning is done after or before drawing a character etc.

Providing you have room, two or more complete character sets can be
loaded into memory, and switching can be done between character sets by
changing the contents of DTBAR (to point to the alternate character set's
dispatch table). This switching of DTBAR must be done by the PDP11
(perhaps by a routine called as a result of an interrupt character, or an INTR
instruction). With 256 possible character codes, sometimes two 128 character
sets can be accomodated in one dispatch table.

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
5 Care and Feeding of Vectors

Vector processing logic is what graphics is all about. A great deal of
effort was made in the design of the line drawer to obtain the maximum
drawing power for the GDP. Properly set up, the line drawer is capable of
drawing over 50,000 vectors in 1/60 of a second, without ever stopping the
beam.

In the GDP, vectors are always relative, with the next vector starting
where the previous one stopped. Each vector is comprised of two
components, Delta X and Delta Y. Vectors are further affected by the current
state of the INTENSITY LEVEL, UNBLANK, SCALE and FORMAT registers (which
are all part of the STATE register). Vectors are drawn in a Cartesian plane
with 12 bits of positioning per axis, of which only the middle 10 bit portions
are normally visible (but see WRAP and SCALE discussions later qp). The
representation of DX and DY is strictly Two's Complement. The screen
coordinates are expressed as integers, with 0,0 in the center of the screen.
The limits of the PHYSICAL screen are + and - 511 (base 10) in both X and Y
axes. The limits of the 12 bit VIRTUAL screen are + and - 2047. The present
screen is adjusted to have 100 points per inch on a 10 inch square (the tube
however, is specified at 68 lines per inch resolution). Because different kinds
of pictures require various lengths of vectors, and because packing density
affects the number of vectors that can be stored in the GDP's Double Port
Memory, three formats of vectors are available.

Short vectors allow high density storage, as two vectors can be
accomodated in one 16 bit word. However, this restricts the length of the
vectors to 4 bits, including sign, limiting vector length (unsealed) to less than
1/10 inch. Short vectors are very useful in character descriptions and
speech waveforms, and in other types of curve approximations.

At the other end of the stick, Long vectors allow full screen deflections
at the cost of two 16 bit words per vector. When you need to be able to get
across the entire screen, or cannot predict in advance the lengths of your
vectors, long vectors is your kind of format. In between, Medium vectors
provide an intermediate length/packing density factor. They are packed one
per word, with an eight bit DX/DY. The maximum (unsealed) length is 1.25
inches, sufficient for a great variety of uses.

Thus we have Short, Medium, and Long formats of vectors. The current
format in use is encoded in the FORMAT register. Code 0 is short, 1 is
medium and 2 is long. Code 3 is undefined (if you try it, you get medium, but
it may not always be so). The format can be changed via Control Words in
the middle of the data. Diagrams of the formats are in the Appendix. Note
that Short vectors (two per word) always are processed low byte first. Long
vectors are limited to 13 bits (including sign), but the should be sign
extended to 16 bits. Generally, sign extension does not need to be explictly
done, the normal representation of numbers in the PDP11 is exactly like that

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
5 Care and Feeding of Vectors

of the GDP, so that the only care needed is to assure that the maximum
length of either component does not exceed that permitted by the desired
format (4 bits on Short vectors, 8 bits on Medium, and 13 on Long, all
including sign).

The vector processing logic has two stages. Vectors are obtained from
memory by fetching on the VPTR register, into the Vector Buffer, VBUF.

VBUF<-M(VPTR)
VPTR*-VPTR+2

In the case of Long vectors, another fetch must be made to get the other
component.

VBUFf-M(VPTR)
VPTR<-VPTR+2

For your information, there is another register, which you can't get at, which
receives the contents of VBUF before the second fetch is made. When both
vector components are available, the line drawer extracts the DX and DY
from the VBUF according to the current format, and draws the vector. Delta Y
always has a lower UNIBUS address than Delta X. This occurs because DX in
medium and short vectors is in the rightmost byte, which has a higher
UNIBUS address.

We now turn our attention to the Intensity of the vectors. The brightness
of the vectors is controlled by two registers, INTENSITY LEVEL, and
UNBLANK. UNBLANK provides gross control of visible vs invisble lines. It is a
single bit. If UNBLANK is on (a 1) vectors are drawn visibly, if it is off
vectors are invisible. The UNBLANK bit is modified by Control Words, which
we will examine in the next section. When vectors are visible, the brightness
is further controlled by the current INTENSITY LEVEL This is a 4 bit (16
value) register. All sixteen grey levels should be distinguishable from each
other. Like UNBLANK, INTENSITY LEVEL can be changed via Control Words.

In addition, there is a bit in the GCSR called WRAP. This is used to
control wrap-around. If the WRAP bit is set, vectors which are drawn off one
edge of the 10 bit physical area will appear on the opposite edge
(wrapped-around), and continue drawing, visibly. If WRAP is off, (the default
case on existing software) vectors drawn off the edge will disappear. So long
as the virtual position does not exceed the 12 bit boundary, vectors drawn
off screen will be calculated correctly, and accurate positioning maintained.
Note that drawing offscreen does not abort drawing, it merely turns off the
intensity. This feature can be used in a clever way. If your entire picture is
made up of only relative components (see SETPOINTS, they aren't relative),
you can cause Graphics to display any arbitrary 10 bit window of the virtual
12 bit picture. The window need not be the center section, to do this, you
initialize the beam position before drawing such that the relative movements
put the desired window is the visible section of the screen. Please do not
confuse this scissoring of the vectors with true windowing and remember

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
5 Care and Feeding of Vectors

that it takes just as much time to draw an offscreen vector as one which is
entirely on screen.

The current position of the beam is always kept in the XR and YR
registers. These registers are accessable by the UNIBUS, and can also be
changed via Control Words. The registers have only 12 bits of significance,
but are sign extended to appear like 16 bit registers.

The lengths of vectors can be modified by the current SCALE value. This
register, 4 bits long, is encoded according to the table in the Appendix.
Lengths of vector components are multiplied times the scale factor.
Quasi-logarithmic scaling is provided to increase or decrease picture
segments in approximetly 202 increments. Scaling can magnify a picture up
to 3 3/4 times normal size, and as small as 1/4 of normal size. In case you
were wondering, SCALE can be changed by Control Words. A scale value of
10 (octal) gives you a normal size picture. Scaling actually modifies the DX
and DY of vectors (it does not alter memory however), thus a two times
normal size scaling factor applied to a 2,2 vector will result in a 4,4 vector
from the current X and Y beam positions. If, for example, the beam was at
3,1 before drawing the vector, the next vector will start at 7,5.

There is one more bit which affects vectors, the CLKDIV bit. This is part
of GCSR. The basic clock frequency of the line drawer can be divided by two
with the CLKDIV bit. Slower clock speed (CLKDIV-1) gets you brighter,
cleaner lines. Fast clock gives you dimmer, grainer lines, but gives you twice
as many flicker free inches of vectors. Use slow mode if you can get away
with it, high speed if your picture begins to flicker.

When processing vectors, the GDP will do a full vector look-ahead if
possible. This means that a new vector can be fetched into VBUF as soon as
the line drawer begins to draw the previous one. In fact, it is possible to
start drawing a very long vector from vector processing in character mode,
discover that the vector list is finshed, get back to character processing, find
out that you have finished the character list, go back to instruction
processing, fetch an new instruction, get back into character processing, pick
up a character, look it up in the table, reactivate vector processing and fetch
the first vector of the first character all before the previous vector is
finished drawing. Two things are noteworthy. Firstly, the line drawer will not
stop drawing when it finishes a vector if another one is waiting in VBUF.
Secondly, if you get an interrupt from the GDP, you cannot assume that the
vector drawer is finished. The DONE bit of the GCSR will not come up until
the vector is finished, so that you must examine it if you need to load or
read XR or YR. The intensity modification registers can be changed however,
because their old values are saved by the line drawer when it starts drawing
a vector. SETPOINTS (see Control Words) will not be processed until the line
is finshed drawing. This is another method of assuring that the XR and YR
registers are valid from within an interrupt service routine.

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
6 Making CONTROL WORDS Work for You

Throughout this discussion we have made reference to entities called
CONTROL WORDS. As we have intimated, they can alter the mode and state of
the GDP from within graphics data. Control Words are unique bit patterns
that are recognized in any context. They can appear in Instruction, Character
and Vector lists. With a few exceptions, they cause identical action in any
context. A diagram of the CONTROL WORD is in the Appendix, as is a table of
the available options.

A word whose upper byte is 1 0 0 0 0 0 0 0 is always a CONTROL
WORD when it is encountered in an instruction, character or vector fetch.
These are known as Full Word Control Words. In the case of a Control word
found in Long Vector data, the Control Word will be recognized in either the
DY or the DX. If it is found as the DX, the DY is discarded. The lower eight
bits of the Control Word are used to determine what action is requested. The
eight bit field is divided into two smaller fields, a four bit OPCODE and a four
bit OPERAND. The OPCODE determines the class of Control Word desired. We
will consider each class separately.

Opcode 0 is the TERMINATE class of Control Words. They are used to
delimit the end of instruction, character and vector lists. The opcode is
ignored by the hardware. It can be used by the software if desired, to flag
certain kinds of data. The TERMINATE Control Word always causes an end of
the current process and a reactivation of the next higher process. There are
four cases to be considered. A TERMINATE in an Instruction list causes
Graphics to halt. No further processing of data will be done. Note that no
indication is given to the PDP11 that the GDP has halted, except that the
DONE bit will be set (providing that the last vector is finished being drawn).
A TERMINATE in a character list will cause a new Instruction to be fetched
and processed. A TERMINATE in a Vector list will cause a new Character to
be processed if CMODE is on (that is, if the Vector process was activated
from the character process). If CMODE is off, a new Instruction is fetched.
This last case is a result of an XQT Instruction with CMODE off. In general,
objects of XQT instructions, (that is, that which is pointed to by the operand
of the XQT) and character description lists are terminated by TERMINATE
Control Words.

The second class of Control Words is INTERRUPT. These cause interrupts
to be made to the PDP11. In this case, a service routine address is not
known by the GDP, and a normal vectored interrupt is generated (at BR4,
vector 104). Again, the operand of the Interrupt Control Word is not used by
hardware but is often utilized by the service routine to determine the action
required. As with INTERRUPT <$VPTR, the GDP is put into a pause state by an
Interrupt Control Word, and must be continued by turning on the GO bit in
the GCSR.

Opcode three of Control Words is the LOAD CMODE. It is used to alter

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
6 Making CONTROL WORDS Work for You

the state of the CMODE bit. The low bit of the operand is loaded into CMODE.
The remaining three bits are ignored. There are two special cases of LOAD
CMODE. If CMODE was a 1, and it is loaded with a 0 while character
processing is activated, the following additional register transfer is done:

VPTR«-CPTR
Then, Character processing is disabled and vector processing is activated.
Similarly, if CMODE is off, and Vector processing is activated, if a LOAD
CMODE Control Word is processed with an operand of 1, the transfer:

CPTR<-VPTR
is made, and Character processing is initiated. This is used to switch from
Character processing to Vector processing and vice versa. A LOAD CMODE
Control Word, when encountered in an Instruction fetch, just changes the
state of the CMODE bit. Thus it changes the assumptions made about the
object of the next XQT instruction. LOAD CMODE with an operand of 0 when
CMODE is already a zero is a No-op, as is LOAD CMODE 1 with CMODE
already set.

The fourth opcode is the LOAD FORMAT class. The lower two operand
bits are placed in the FORMAT register. The upper two operand bits are
ignored. A change in FORMAT only affects vectors fetched after the LOAD
FORMAT Control Word, it can never affect vectors already fetched.

The next four classes of opcodes affect the INTENSITY LEVEL and SCALE
registers. For each register there are two types of Control Words, ABSOLUTE
and RELATIVE. The absolute types load the operand of the opcode into the
desired register. The relative varieties add the operand to the current value
of the register. This add is a two's complement addition, with a four bit
(including sign) number. Thus, you can alter the contents of SCALE or
INTENSITY LEVEL + and - 7. Overflow from the addition is ignored, the value
"wraps around". Thus LOAD INTENSITY RELATIVE 4, when the INTENSITY
LEVEL is at 5 will result in a final value of 9, but if the initial value was 14,
the result will be 0. We have LOAD INTENSITY ABSOLUTE, where the operand
is moved into INTENSITY LEVEL, and LOAD INTENSITY RELATIVE, where we
add the operand to the current INTENSITY LEVEL. Similarly, LOAD SCALE
ABSOLUTE is used to force the SCALE to a particular value, and LOAD SCALE
RELATIVE is used to make pictures bigger or smaller, without having to know
what the previous SCALE value was. The relative forms of these Control
Words are especially useful in subroutines, where the initial conditions are
not known, and it is desired to not alter the state permenantly. By including
LOAD SCALE RELATIVE 1 before the first vector, and LOAD SCALE RELATIVE
-1 after the last vector, a MpureH subroutine can be created which makes
part of the picture 20% bigger.

The next two classes of opcodes are similar in that the operands are
encoded to provide up to 16 different Control Word functions in one class.
They are the SPECIAL CLASS 1, and SPECIAL CLASS 2 groups. We will

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
6 Making CONTROL WORDS Work for You

consider class 1 first. In these Control Words, the upper operand bit is
ignored, giving us 8 available Control Words. The first one is another
TERMINATE. The usefulness of this control word will be seen in the section
about HALFWORD Control Words. The rest of the SPCL1 Control Words affect
the UNBLANK bit of the STATE register, and thus affect visible vs invisible
lines. ION and IOFF directly turn the UNBLANK bit on and off. The ICOM
Control Word complements the current value of UNBLANK. The IOF1
(Intensity Off for 1 vector) Control Word blanks the next vector only. This is
used to reposition the beam, prior to drawing a new figure, or piece of a
figure. Since that is the usual use for invisible vectors, I0F1 will save you 1
word each time it is used over the IOFF-vector-ION combination that would
otherwise be necessary. Sometimes however, the format you are in will not
allow you to reposition the beam with only 1 vector. Therefore the IOF2 and
I0F3 Control Words are available. These will usually suffice to move the
beam to the desired point.

The last variety of SPCL1 Control Words is the IALT. This one alternately
blanks and unblanks the beam. The first vector drawn after a IALT will be
invisible, the next visible, the third invisible etc. The alternation will continue
until the next Control Word is encountered. In fact, any of the I0FF1, IOFF2,
IOFF3 or IALT Control Words will be canceled by any Control Word, including
TERMINATE. This means that the effect of an IOFF 1, 2, 3, or IALT cannot
carry over between characters or XQT lists.

The SPCL2 Control Words are the SET class. They cause loading of the
XR, YR or STATE registers. The data to load the registers immediately follows
the Control Word in memory. There are four currently implemented Set
Control Words. SET X loads the next word into the XR register. SET Y is
similar except that the YR register is affected. SET XY loads both XR and YR.
In this case the X value is first, followed by the Y (sorry about that). A
SETXY is sometimes referred to as a SETPOINT. The SETPOINT is an absolute
placement of the beam. The current SCALE value does not affect the data,
values between +2047 and -2047 are legal. The last flavor of SET commands
is the SET STATE Control Word. This loads the STATE register with the next
word. Since SCALE, INTENSITY LEVEL, CMODE, UNBLANK and FORMAT are all
part of STATE, a completely new environment can be established in two
words with the SET STATE Control Word. The operands between 4 and 7 of
SET class are No-ops. The upper bit of the operand is currently ignored.

All other classes of Full Word Control Words are currently No-ops. We
should note that Full Word Control Words always start on even byte
boundaries, so that a null vector or character must sometimes be used to fill
up a wasted high byte.

The problem of bit wastage in Short vectors was deemed important in
the design, as was the realization that using 16 bits to turn off the beam is

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
6 Making CONTROL WORDS Work for You

poor efficiency. For this reason, HALF WORD Control Words have been
implemented. These Control Words are only available in Short vector lists.
They are recognized by a 1 0 0 0 1 in bits 7:3 of any byte in a Short
vector file. The remaining three bits are used as an operand. The operand
bits are interpretted exactly as the operand of SPCL1 Control Words. Thus
we can alter the UNBLANK bit, and TERMINATE a short vector list, at the cost
of only 8 bits.

Before we leave Control Words, we might explain how the choice of bit
patterns was made and how it affects the data. In instructions, the operand
of XQT or JMS instructions is defined to be restricted to the range
400-37776 octal. This eliminates confusion between an instruction with the
high opcode bit=»l and an operand below 400, and a Control Word. In
character processing, the character code 200 (octal) may not appear in the
high byte of a word. This also eliminates confusion between Control Words
and character data. In vector lists, we note that Long vectors may not have
values lower than -10000 (octal). Thus the Control Word pattern (which is a
very large negative number) can not occur. The lengths of the components of
medium vectors are defined to be in range +177 to -177, so that having a DX
of 400 (which is -200 octal) is illegal. Note that there is no positive
complement for this number in an 8 bit space. In short vectors, the
restriction is that DX and DY must be between -7 and +7. The octal 200 in
the upper byte which signifies a Full Word Control Word is a vector -10,0,
which is illegal. Likewise, the Half Word Control Words appear as vectors
with DX's of -10, and negative DY's, and therefore illegal. In all cases of
possible confusion of a Control Word with another data item, the exsistance
of the Control Word is assumed.

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
7 Miscellaneous Things To Know

The Double Port Memory is a great boon to Graphics because it allows
the GDP to get almost the minimum 650 ns. cycle time of the memory. The
only problem is that if the PDP11 requests a word in the Double Port
Memory, the GDP must wait until the processor is finished before it can get
its cycle. To avoid this problem, the programmer must attempt to minimize
the number of cycles the PDP11 requests on the memory. Some of the
Graphics Terminals will have more than 8K of memory. If this is available, the
more stuff that is kept in the PDP11 stand alone memory, the less accesses it
will make on the Double Port. In any case, attempt to minimize the number of
cycles the PDP11 does in the Two Port Memory.

There are a large number of No-ops in the Control Word system. These
are mainly reserved for future expansion. Opcode 17 will always be kept as
a No-op however, so that programs can use them as desired. Similarly, the
M i gnored H bits in the LOAD FORMAT, LOAD CMODE, SPCL1, and SPCL2 may be
used some day, so don't use them for anything else.

We have so far ignored the very basic instructions to programmers of
how to initialize and start up the GDP. There really are very few things to
do. First of all, a suitible Dispatch Table should be set up, and the Base
Address stored in the DTBAR. The initial STATE should be established, unless
one of the first "instructions" includes a SET STATE Control Word. The
INTERRUPT ENABLE bit in the CSR should be set, and a suitable status loaded
into the GIS register. Then, move the address of the first instruction into the
GPC, and GDP will take over from there. Don't forget to set up the PDPl l ' s
stack register if you expect interrupts. The usual method for ending a list is
an INTR to a service routine which causes a wait for a refresh clock tick. It is
preferable to run the GDP at a 60 Hz refresh rate. Slower refresh cycles will
begin to how flicker eventually. If the refresh rate is not a integral multiple
of the power line frequency, hum can sometimes be noticed. When your
display list is too big, switch to high clock speed (CLKDIV=0), and run as fast
as you can.

Although it was designed mainly for maintainance reasons, there are two
additional features of the GDP. If the CPTR register is loaded from the
UNIBUS, the GDP will begin character processing (CMODE is forced to be a 1).
This can be used to draw a single character string. Similarly, the VPTR
register can be loaded via the UNIBUS, and a vector list will be displayed.
TERMINATE Control Words in the character string or vector list in these
cases will cause GDP to halt musch like the effect of an Instruction list
TERMINATE. This does not imply that the end of character description lists
should not be TERMINATES when starting via a UNIBUS load of CPTR. The
TERMINATE here still causes a new character fetch.

The CLEAR bit of the GCSR is used to "Crash" the GDP. It is similar to a
RESET instruction, but only affects the GDP. Extensive use of this to stop the

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
7 Miscellaneous Things To Know

GDP is not recomended, because very strange things can happen in the
process of stopping the GDP. This feature is designed for diagnostic
purposes and halting a runaway display list. Writing a one into the CLEAR bit
will turn off the INTERRUPT ENABLE bit. DO NOT READ OR WRITE ANY
GRAPHICS REGISTERS UHILE GRAPHICS IS RUNNING except to write the
CLEAR bit. You will be DOOMED. Wait for an interrupt before addressing any
of the registers.

Approximate timing information about the various processes in the GDP
will be given next. These are approximate times only, and assume ho memory
conflicts by the PDP11. An instruction takes about 700 ns to fetch and
execute, execpt for JMS which takes another 650 ns for another memory
cycle for the return address deposit. Character overhead is about 1
microsecond, including the character fetch and the table access. Control
Words take 700 ns each, except for SET X, SET Y, and SET STATE, which
need 1.4 usee and SET XY which takes 2.1 usee. Vector drawing times are
estimated by determining the next power of two higher than the larger of
(DX,DY), and multipling that by 30 ns. (60 ns for slow clock speed). If the
number is less than 650 ns, then the access time of the memory overides the
draw time (this is not strictly true for short vectors, where there are two
vectors accessed per 650 ns, nor for long vectors, where 1.4 usee is
necessary to fetch the vector components).

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
APPENDIX

APPENDIX A
A l i s t of R e g i s t e r s and the i r UNIBUS address assignments.

ADDRESS REGISTER USE
165180 CSR Control and Status
1GS102 GPC Graphics Program Counter.

Points to next inst ruct ion
165104 VPTR Vector Po in ter . Points to next vector ,

a lso holds interrupt PC
165106 GIS Graphics In ter rupt Status. Holds PS for

INTR VPTR inter rupts
1GS110 STATE Holds SCALE, INTENSITY LEVEL,CMODE,UNBLANK,

and FORMAT
165112 DTBAR Dispatch Table Base Address Register

for character descr ipt ion l i s t s
165114 CBUF Character Buf fer .

Holds two 8 b i t characters to be drawn
165116 CPTR Character Po inter .

Po ints to next character to be interpret ted.
165120 VBUF Vector Buf fe r . Holds vector to be drawn
165122 XR X Reg is te r . Holds present X coordinate of beam
165124 YR Y Reg is te r . Holds present Y coordinate of beam

A P P E N D I X ^ " 1 0 D I S P L A Y V E R S I ° N 2 D 0 C U M E N T A T I 0 N

B i t s in CSR a r e :

I DONE I IE

8 7 6

WRAPICLKDVI GO ICLEAR I

3 2 1 T" 15

B I T NAME
8 CLEAR
1 GO
2 CLKDV

3 WRAP
6 I E
7 DONE

USE
Reset graphics to turn on condit ions
Continue from interrupts
I f a 1, run l ine drawer at f u l l speed,
i f a 0, run at ha l f speed. Half speed is b r i g h t e r .
I f a 1, don' t wrap around at 18 b i t boundary
I n t e r r u p t Enable for a l l in ter rupts
Graphics is not doing anything useful

B i t s in STATE a re :

SCALE I I N T L V L ICMODEI IUNBNK™ 7Tni
15 12 11 8 8

B I T NAME USE
0-1 FMT Format of vectors 0«short , l«medium,

2=long, 3=unimplemented
4 UNBLANK I f a 1, vectors drawn are v i s i b l e ,

i f 0, inv i s i b l e
7 CMODE I f a 1, Characters are/wi l l be drawn,

I f a 0, Vectors are/wi l l be drawn.
11-8 INT LVL I n t e n s i t y L e v e l , 15 is maximum, 0 is minimum.
15-12 SCALE Scale for vectors

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
APPENDIX

22

SCALE b i t 9 are encoded as fo l lows;

OCT DEC

17 15 - 3 1/2 Times Normal
16 14 - 3 II

15 13 = 2 1/2 II

14 12 = 2 II

13 11 = 1 3/4 II

12 10 = 1 1/2 11

11 9 - 1 1/4 It

10 8 - NORMAL SIZE (1 X)
7 7 - '7/8 Times Normal

CO
 6 - 3/4 ii

5 5 = 5/8 it

4 4 = 1/2 it

3 3 = 7/16 H

2 2 - 3/8 it

1 1 - 5/16 it

0 0 - 1/4 it

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
APPENDIX

23

APPENDIX B
VECTOR, CHARACTER and INSTRUCTION FORMATS

VECTORS

SHORT

I DELTA X I DELTA Y I DELTA X . I DELTA Y

15 12 11 8 7 4 3 8

MEDIUM

I DELTA X I DELTA Y I

15 8 7 8

LONG

I DELTA Y I

15 8

I DELTA X I

15 8
D e l t a X and De l ta Y are in twos complement format.
Long V e c t o r s are l imi ted to 14 b i t s (13 b i t s of magnitude plus s i g n) ,
but should be s ign extended to 16 b i t s .

CHARACTER FORMAT I S :

I 2nd CHARACTER I 1st CHARACTER I

15 8 7 8

DISPATCH TABLE BASE ADDRESS REGISTER FORMAT:

I BASE ADDRESS I unused I

15 9 8 8

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
APPENDIX

24

INSTRUCTION FORMAT I S :

IOPC1I OPERAND ADDRESS I0PC2I

15 14 1 0

FETCH: VPTR «- M(GPC)
GPC GPC + 2

INSTRUCTION ARE:
OPC

0
OPC
1

0 0 GJMP PC <- VPTR
0 1 GJMS M(VPTR) «- PC

PC VPTR + 2
1 0 GINTR INTERRUPT ©VPTR
1 1 GXQT EXECUTE

Execute a data f i l e at VPTR.
Execution is cont ro l led by the CMODE b i t .
when CMODE is a 1, the data f i l e
is assumed to be a l i s t of characters
otherwise, i t is a l i s t of vec tors .
i f CMODE - 1, than an addit ional CPTR«-VPTR
transfer is done before execut ion.

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
APPENDIX

25

APPENDIX C
CONTROL WORD FORMATS AND ACTIONS

F u l l Word Cont ro l Words are of the fol lowing form:

1 1 8 8 8 8 8 8 8 I <4 b i t opcode> I <4 b i t operand> I

15 8 7 4 3 8

Where the opcodes cause the fol lowing actions

OPCODE NAME
8 TERM

2
3
4

6
7

18

INTR

LCMD
LFMT
L ILA

L ILR

LSCA
LSCR

SPL1

ACTION
Terminate, go up 1 l eve l . I f processing vec to rs ,
then end vector l i s t and fetch next character
(i f CMODE-1) or next ins t ruct ion (i f CMODE - 0) .
I f Processing Characters, TERM causes new
i n s t r u c t i o n fe tch . TERM while processing
i n s t r u c t i o n s sets done and stops a l l ac t ion .
I n t e r r u p t PDP11 at vector 104, BR4.
Ignores operand f i e l d .
Load CMODE CM0DE«-0PERAN0<8>
Load FORMAT F0RMAT«-0PERAND<1: 8>
Load I n t e n s i t y Level Absolute
INT LVL<-OPERAND<3:0>
Load I n t e n s i t y Level Relat ive
INT LVL.-INT LVL+0PERAND<3:8>
(operand is taken to be in twos complement
representat ion)
Load Scale Absolute SCALE«-0PERAND<3:8>
Load Scale Relat ive SCALE<-SCALE+0PERAN0<3:8>
(Twos complement representation)
Special Codes 1. Operand is in terpret ted as:

Terminate same as TERM
Intens i ty On UNBLANK+-1
In tens i t y Off UNBLANK«-8
In tens i t y Complement
UNBLANK«-NOT UNBLANK
In tens i t y of for next vector on ly
In tens i t y o f f for next 2 vectors
In tens i ty o f f for next 3 vectors
In tens i t y a l ternate on and o f f
Continues u n t i l next contro l word.
Star ts as o f f .

8 TERM1
1 ION
2 IOFF
3 I COM

4 I0F1

cn

I0F2 CO I0F3
7 IALT

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION 26
APPENDIX

OPCODE NAME ACTION
11 SPL2 Special Codes 2. Operand is in terpret ted as:

0 SETX Set X XR^I(POINT); NEXT
P0INT.-P0INT+2
POINT is VPTR.CPTR or GPC,
wh i chever i s appIi cab Ie

1 SETY Set YR Same as above except
YR«-M (POINT)

2 STXY Set X and Y
XR<-M(POINT) ;P0INT«-P0INT+2
YR«-M(POINT) ;POINT«-P01NT+2

3 SETS Set State
STATED (POINT);POINT«-POINT+2

4_7 Unimplemented. Cur rent ly acts as NOPs
12-18 Unimplemented. Current ly act as NOPs.
17 NOP No Operation
NOTE: High order operand b i t of SPCL1 and SPCL2 codes is ignored.

H a l f w o r d Cont ro l Words are in the fol lowing format

I I 0 0 0 1 l < 3 b i t operand> I

The operand b i t s are in te rpre t ted the same as SPCL1 operands.
These Cont ro l Words can only occur in Short Vector (FMT=0) l i s t s .

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
INDEX

ASLI 2
Asyncronous Line Interface 2

Base Address 9

CBUF 3, 5, 9
Character Buffer 3, 5, 9
Character Fetch 9
Character Interrupt 9
Character Mode 3, 4, 7, 14
Character Pointer 3, 5, 9
Character Processing 3, 9, 17
Character Sets 10
CLEAR 5, 18
CLKDIV 5, 13
Clock 2
CMODE 5, 7, 14
Computer 2
Continue from Interrupt 7
Control Words 3, 4, 14
CPTR 3, 5, 9
Crashing Graphics 18

Dispatch Table 9
Dispatch Table Base Address 3
Dispatch Table Base Address Register 5
Display List 2
Display Tube 2
Double Port Memory 6, 18
DTBAR 3, 5, 9
DX 11
DY 11

Example of Instructions 8
Execute Instruction 3, 7

Format 15
FORMAT 5, 15
Format 4
Formats 11
Full Word Control Words 14

GCSR 5
GDP 2
GIS 5,7
GO 5, 7, 14

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
INDEX

GPC 3, 5,6
Graphic Display Processor 2
Graphic Program Counter 3
Graphics Control and Status Register 5
Graphics Interrupt Status 5,7
Graphics Program Counter 5

Half Word Control Word 16

IALT 16
ICOM 16
Initialization 18
Instruction Buffer 6
Instruction Fetch 6
Instruction Processing 3
Instuction Processing 6
Intensity 4, 12
INTENSITY LEVEL 5, 12, 15
Interrupt 7, 14
Interrupt Dismissal 7
Interrupt Enable 7
Interrupt Instruction 3,7
Interrupt Service Routine 3
Interrupt Status 7
INTR 3,7
INTRRUPT ©VPTR 9
INTRRUPT VPTR 7
Invisible Vectors 12
IOF1 16
IOF2 16
IOF3 16
IOFF 16
ION 16

JMP 3, 6
JMS 3, 6, 17
Jump Instruction 3, 6
Jump To Subroutine Instruction 6
Jump to Subroutine Instruction 3

Keyboard 2

Line Drawer 3, 11
Line Drawing 3
LOAD CMODE 14
LOAD FORMAT 15
LOAD INTENSITY 15

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
INDEX

LOAD SCALE 15
Lookahead 13

Memory 2

No-op 16, 18

Opcode 3, 6, 14
Operand 3, 6, 14

Pause 7
PDP11 2
Physical Screen 11

Read Only Memory

CM

Registers 5
Resolution 11
Return Address 6
ROM 2

SCALE 5, 13, 15
Scale 4
SET STATE 16
Set point 16
Setpoints 4
SETX 16
SETXY 16
SETY 16
Sign Extension 5, 11
SPCL1 15
SPCL2 15
Starting Graphics 18
STATE 5
State Register 5
Subroutines 6

Terminate 14, 16
Timing 19

UNBLANK 5, 12, 15

VBUF 4,5
Vector Buffer 4,5
Vector Fetch 12
Vector Format 11
Vector Intensity 12
Vector Pointer 4,5

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
INDEX

Vector Processing 4,11,17
Virtual Screen 11
Visible Vectors 12
VPTR 4, 5,6

Windowing 12
WRAP 5, 12
Wraparound 12

X Position 13
X Register 5
XQT 3, 7, 14, 17
XR 4, 5, 13

Y Position 13
Y Register 5
YR 4, 5, 13

