
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SIX12 User's Manual*

T. Lane
R. K. Johnsson
C. B. Weinstock

Urn. A. Uulf
August 18, 1973

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa. 15213

This document is an introduction to SIX12, an extensive debugging aid
for Bliss programs on the PDP-1B. It applies to the version of
August 9, 1973; the program released in Nov. 1972 under the same name
has only an ancestral similarity.

ftThis research was partially supported by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (F44628-73-
C-8074) and is monitored by the Air Force Office of Scientific
Research.

Contents

Introduction 1

A Philosophy for Using SIX12 4

SIX12 Expressions • 6

Basic Bl iss 10

Peeking and Poking 12

Breakpointing f Tracing 14

Getting In and Out of SIX12 17

Concerning DDT • 19

Console Input Monitoring 20

Monitoring Variables 21

Macros, symbol definition 22

Line printer and disk I/O •••• 24

Display . 26

Miscellaneous operators 29

Using SIX12 38

Defining your own operators 32

A Compressed Version 35

Introduction:

SIX12 is a specialized debugger adapted to the Bliss environment. It
is not intended as a substitute for DDT; the user is expected to load
both with his program and use whichever is more convenient to the
need of the moment. Under this assumption there has been no attempt
to duplicate functions already we 11-per formed by DDT, such as

1) breakpointing and tracing at the instruction level,

2) symbolic typeout and typein in any mode required (at last
count DDT could display or accept values in over a dozen
di fferent modes).

SIX12 is oriented to the Bliss programming environment in two ways:

1) It conforms to Bliss philosophy and notation. A debugging
command is syntactically an expression, which is read in,
evaluated, and the value (if any) printed. However, some
modification has been made to the Bliss syntax in the
interests of flexibility. In particular, an expression Is
not always required to yield a full word value. It may yield
no value, a word, or a vector value (several words). Also
the syntax accepted for operators has been expanded to
include nullary operators, which have no operands, and
postfix operators which follow their operand. For example,

A AND 7 uses the infix operator "AND"
•A uses the prefix operator "."
GO uses the nullary operator "GO"
137/ uses the postfix operator "/"
BREAK Rl,ERROR,PRINT uses the prefix operator "BREAK",

which accepts a vector operand.
A higher-priority infix operator
"," is used to form the vector
from elementary operands.

(As demonstrated in the last example, with this syntax we
can get by without any keyword forms. To SIX12 everything
is an operator or operand. The user may find it more
convenient, of course, to visualize commands formatted in
this way as a keyword plus list of arguments.)

2) SIX12 is routine-oriented. By this we mean that
breakpointing, tracing, and similar functions dealing with
flow-of-control, all occur at the abstract routine I eye I
rather than at the individual machine instruction level (as

1

in DDT). That is, the smallest unit of code that SIX12 can
see is a routine (or FUNCTION). Breakpoints must always be
set at either the entry or exit of a routine, and tracing of
execution is always in terms of routine calls and returns.
DDT is used when code must be dealt with below the routine
level.

Advantages of SIX12 over DDT:

1) Source language debugging - SIX12 accepts Bliss-like
notation, and does tracing and breaking in a form easily
relatable to the original source program.

2) Facilities that DDT simply does not have, for instance

a) the ability to monitor data (not instruction) locations
and report when they are modified,

b) the ability to interrupt the program on console input.
If any character is typed while the program is executing
(i.e., when not in TTY input wait), SIX12 will intercept
control and wait for completion of the debug command.

3) ExtendabiIity. SIX12 permits easy definition of new
operators; in addition simple macros can be defined and used
in expressions.

4) SIX12 can be used to debug in shared high-segments. DDT
breakpoints cannot be used in shared code, but the SIX12
linkage has been designed so that two or more people can be
debugging the same or different routines, and still others
running without using the debugger, all in the same high-
segment without interference.

Disadvantages:

1) No access to program at machine code level.

2) Limited variety of modes for symbolic typeout or type in of
values.

3) Speed, or rather lack of it. SIX12 requires some computation
at every routine call or return, while DDT requires time
only at breakpoints (and less time at that).

4) Space required. SIX12 uses about 4.5K in the high segment

2

and IK in the low segment (in the standard version), besides
the 2K low-segment space for DDT, and the program-dependent
low-seg space for the symbol table (which, however, is
required even for DDT).

The first two of these are alleviated by the ease with which one can
pass from SIX12 to DDT and back. Thus the full facilities of DDT are
still available to the SIX12 user.

3

A Phi losophu for Using 51X12

As you read the following description of SIX12 you will find that it
contains, except for syntactic differences, most of the features that
one would expect in any debugging tool - the ability to display
and/or modify memory, the ability to suspend program execution at
selected points, the ability to trace execution, etc. -You may, if
you wish, use SIX12 in a manner analogous to the way that other
debuggers, e.g. DDT, have been used. This is not, however, the
optimal way to use SIX12.

In principle a language-specific debugger can be far more powerful
than one which works exclusively at the machine-language level. A
FORTRAN-speci f ic debugger, for example, can have specific knowledge
about the format of data structures, the nature of subroutine calling
conventions, the nature of register conventions, etc., for the code
generated by the FORTRAN compiler. In some sense the "power" of a
debugger is directly related to the number of assumptions it can make
about the run-time representation of programs.

In the case of assembly language programs, and to a lesser extent
Bliss programs, there are relatively few such assumptions which a
debugger can safely make. In order to write systems programs both
assembly language and Bliss allow the user much more freedom to
specify the program structure than do languages such as FORTRAN. The
response made to this dilemma by DDT, for example, is to make no
assumptions - and then do the best it can from there.

SIX12, being Bliss-specific, can make a few more assumptions that DDT
does — concerning the nature of calling conventions, for example.
Beyond that, SIX12 is based on quite another philosophy — namely,
the user knows.
The thrust of SIX12 is to provide a reasonable, interactive interface
between the user at a terminal and his program in the machine. It is
also intended that the user to able to exercise portions of his
program interactively, most likely in a bottom-up fashion, during the
initial testing phases of the program.

In order to realize these intentions SIX12 provides two main
functions and several supporting ones: the main functions are those
of symbol table searching, terminal i/o, etc. These will be
explained below - for the present we are concerned with the parsing
and evaluation of terminal input. The parser is fixed but quite
flexible and probably should not be changed by the user. The
evaluation of the input, however, is defined by normal Bliss
routines. Initially a set of routines is supplied which defines a
Bliss-like evaluation. However, the user may easily augment and/or

4

replace these routines to provide program-specific debugging
faciIi t ies.

Thus, the recommended mode of use of SIX12 is for the user to supply
a set of program-specific debugging routines. These routines might,
for example, provide displays of elaborate data structures, check the
consistency of a data structure, provide test environments, etc. The
user then uses SIX12 as an interface to these routines and to his
program itself.

5

/

SIX12 expressions:

SIX12 contains a fairly intelligent syntax analyzer/evaluator which
can evaluate quite complex expressions. For instance, all of the
following are legal Bliss expressions; they are also legal in SIX12
and produce the same result.

.ALPHA
sun «- . s u n + 3
NOT .FLAGS<1,1>
nYROUTINE (7, ,B, XYZO)

The syntax analyzer recognizes two classes of objects: operators and
operands. The meaning of operators is not built into the analyzer,
but is defined by a table of evaluation routines. This makes it
simple to add new operators or redefine old ones; this can even be
done at runtime if the necessary routines were compiled and loaded
separately from SIX12. (The methods for defining your own operators
are discussed later; we assume everywhere in this paper that you have
not tampered with any standard operators.) The meaning of operands,
however, is built into the analyzer. The possible types of operand
are

<number> <string> <symbol>

A number is a sequence of digits, possibly preceded by a number sign
Its value is the equivalent binary integer. The number is assumed

to be written in the default radix or base, which can be set or
examined by one of the standard operators (BASE). The escape
character # is provided to ease the use of two radices: a number
preceded by # is taken to be written in octal radix regardless of the
default radix, unless the default radix is octal, in which case the
number is taken as decimal. For example,

default radix is this input has this value
IB (decimal) 34 808042
IB (") 34 B0B034
2 (binary) 10110 880326

34 000034
8 (octal) 34 000034
8 (") 34 000042

Thus when the default base is decimal, this is the same as the Bliss
source convention. Uhen SIX12 is initialized, the default base is
octal (as with DDT).

Strings are input as either

* string* or "string"

6

corresponding to left- and right-adjusted ASCII strings respectively.
In either type of string the other string delimiter can appear
freely, and double occurrences of the string delimiting character are
used to denote it once. This is precisely the same as the Bliss
convention. However, note the following differences:

? is not implemented as an escape character;
Carriage return cannot appear in a string? it terminates

the string just as if the matching delimiter had been
encountered (CR or LF always terminate debug input
expressions);

RADIXS8, ASCIZ and SIXBIT stringtype converters have not
been implemented. They could be easily included by
defining appropriate operators.

Examples:

'HI!* "Q" fa CR or LF terminates me anyway

A long-string, as in the last example, generates a vector value.

Symbols are the most complex type of operand. A symbol is looked up
in the Loader-generated symbol table, and its value is the value
entered for it in the table. Thus a name is an address, as in Bliss.
(He get around the fact that a name should be a byte pointer by some
monkeying with the definition of . (contents) and <- (store). The
gory details come later on.) DDT has a complex search convention to
deal with the problem of multiply defined symbols (which exists
because the table only contains six characters of a name). SIX12 uses
this much simpler rule: identical symbols are implicitly numbered in
the order in which they were loaded. If you want other than the
first one, the name is suffixed by %n, where n is the ordinal you
want. Examples:

HELP gives value of (first) symbol 'HELP 9

L0TS0FME%5 gives value of fifth symbol 'LOTSOF*

There are symbol table searchers included in the standard set of
operators to help you decide which ordinal you want, or remember what
name you need in the first place. See Pi solau.

Note: since names (letter-digit strings) can also refer to operators
(e.g., AND OR) the % convention is also used to distinguish symbols
from operators. An unadorned name is first searched for in the table
of operators, then in the symbol table, taking the first match in the

7

process. However, name%n is only searched for in the symbol table.
Thus *0R%r always gets you the symbol OR but *0R' is taken for the
operator OR.

Further note: The only source of program symbols that SIX12 has is
the Loader symbol table (also used by DDT). Therefore, locals,
forma Is. structures, and so on are unknown to SIX12. Only globals,
owns, routines (or functions) and module names will be present in the
table.

Ue have now fully discussed operands, and turn to the operators which
work upon them. Operators are denoted either by names (e.g., GEQ,
BREAK) or by special characters (e.g., S + f). In the latter
category, * " % space tab CR LF may not name operators.

The syntax analyzer distinguishes four syntactic types of operators,
namely

Nullary, having no operands:
Prefix, preceding its operand:
Postfix, following its operand:
Infix, having both operands:

<operator>
<operator> <operand>

<operand> <operator>
<operand> <operator> <operand>

The same symbol may
parses. For example

represent more than one operator in different

+ E
E + F

show "+" in prefix and infix parses; these two instances will
actually result in the invocation of two different routines to
evaluate •'+". In theory the same symbol could be given all four
parses, invoking 4 different evaluation routines; in practice this is
a poor idea. An operator with more than 1 parse can introduce
ambiguity: the classic case is with 7 " , which in the standard
definition has postfix (A/ prints contents of A, as DDT would) and
infix (A/B does division) parses. Now, does

A/-N

invoke postfix "/" followed by infix or prefix "-" followed by
infix "/"? Uith the definitions given above the second is clearly the
correct choice, but the analyzer can hardly be expected to know that.
In point of fact this will be evaluated in the first way, due solely

8

to an arbitrary design decision. The moral of this story is that the
analyzer cannot be expected to always do the right thing. It works
fine for pure Bliss expressions; a key thing is to be wary of using
expressions which yield a null value (as x/ does) in larger
expressions. The analyzer assumes that operators will yield a value,
and gets confused when they don't (since its assumptions about the
parsing of subsequent operators must be junked). If an expression
with side-effects blows up, always check to see how much of it had
already been evaluated. Two good rules to follow are 1) parentheses
can fix lots of things, and 2) avoid semicolons - you can afford to
do i t on two I ines.

Uith these words of warning we pass to a description of the standard
set of operators. This is the meat of what you can do with SIX12.

9

Basic Bliss:

He do not pretend to have implemented a Bliss interpreter. However, a
fair subset of the simple expressions (not control expressions) is
available, and more could be implemented if you need it. The
following operators are defined exactly as in Bliss:

+ - for example -El or E2+E3
* / as A*B (beware of E/ , which is not an error)
t as AtB (shift)
AND NOT OR logicals
GEQ thru LSS the relational

Parentheses () also behave as in Bliss: as grouping indicators
(arbi traryexpression) or as routine callers R(elist) • For
i nstance

5*(.ALPHA-1)
MYR0UTN(41, .PARM)

The value of the second expression is the value returned by calling
the routine MYROUTN with two actuals.

Angle brackets < > have the same meaning, of creating a byte pointer.
However, index and indirect fields are not accepted; there must be
exactly two values within the brackets, i.e.

addr<pos,size>

is the only allowable syntax for them.

Dot . performs the same function, 'contents*, and left arrow «- the
same function, 'store', as in Bliss. For instance

• Al
.FLAG<17,1>
SE *- .SE * 200

You should be aware, however, of this difference. SIX12 evaluates
names as addresses, not byte pointers, so that the left half of a
name's value is normally zero. The motive for this is that we can
then display the addresses corresponding to program names without
trashing things up with a nonzero left-half. (Also, we can't assume
that every value in the symbol table should be converted to a
fullword pointer.) In order that both

• A and .A<3,3> or A<-0 and A<0,18><-0

10

will work properly, dot and left arrow have been modified. If the
left half of a pointer word is zero, it is treated as a fujlword
pointer, but words with nonzero left halves are taken as true byte
pointers. (The same applies to the MONITOR operation, which may be
given either word addresses or byte pointers). The only way this
will be noticeable to the user is that sometimes . will act like e,
and «- wi I I do a store where nothing should happen. He mean that .41,
which will yield zero every time in Bliss (being equivalent to
.41<0,0>) will yield the contents of word 41 in SIX12 (corresponding
to @41 in Bliss). Similarly for 41 <- E. Note: A f- B should be
wr i tten A <- B<0,36> .

Atsign @ does exactly the same thing as Bliss (the above doesn't
apply).

Brackets [] perform a structure access according to the standard
VECTOR structure. Hence El IE21 is equivalent to (El+E2)<0,36>.
(Perhaps someday we will get structure information from the
compiler...)

11

Peeking and Poking:

One basic requirement on a debugger is the ability to examine and
modify program locations.

The only standard operator for changing memory locations is left
arrow (<-), which should need no more explanation. We should point
out. however, that SIX12 never parses from right to left. Therefore,

A «> B *- C <- 0

will not work in SIX12. In order to discourage accidental use of
this construct, left arrow is defined to have no value... in the
example above, the address of B would be stored into A, then a syntax
er.ror would occur since the second «- would have no left operand.

One Bliss-compatible method for examination of program locations is
provided in the dot (.) and atsign (@) operators. As we mentioned in
passing previously, SIX12 prints out the result of every evaluated
expression. Thus one need only type .ALPHA to see the contents of
ALPHA; for example, a terminal interaction could look like this:

&.FLAGS,.PNTR
677 677

5737 FFAREA+5

(Note: & is SIX12's prompt character).

A DDT-type notation has also been implemented. The operator "/", used
in a postfix fashion, prints out the contents of the fullword whose
address is its argument:

&STACKCNT/
STACKC/ 566005322 566..SPACE+203

The infix operator "!" does the same thing for a consecutive set of
words; A!N prints N words beginning at A. For example:

&BUFFI3
BUFF/ 5Z 57
BUFF+1/ 122 122
BUFF+2/ 0 0

Note: In all cases, values or contents are first printed numerically

* Would you rather see the value of 'XYVAR' as 4322 or
4480004322? The situation is even worse if you're working in
decimal, as then the ha If words are not separable by eye.

12

(in the default radix), then in symbolic ha If word format (like DDT SR
•H; offsets are in the default radix).

13

Breakpointina. Tracing;

wNote: it should be apparent that setting a conditional act ion on a
frequently-called routine is a poor idea. For simple conditions such
as the examples, the test requires several milliseconds (on the
KA10).

VovTwo notes: 1) IF is a noise word and can be dropped. 2) Commas
in a list of routines can be replaced by spaces. NEVER drop commas
surrounding anything but a simple operand (number, symbol). Thus, in

TRACE T34, .PNTR, EXIT
the commas are necessary, but they aren't for

TRACE T34 EXIT METOO
The same applies to commas anywhere else in SIX12 (e.g., routine
cat Is)•

14

The other basic requirement for a debugger is the ability to trace
execution of a program and stop it ('break') where necessary. As we
said earlier. SIX12 does this on a routine level. The basic terms are
of setting (and later clearing) actions on routines. Such actions
may be set conditionally. Conditions are fully general because they
are given as SIX12 expressions. When required, the text given is
evaluated; it must yield 1 in the low-order bit of its value for the
action to be taken. (If the expression yields a vector value, only
the first word is considered; a test which yields a null value always
fails.) For instance, simple conditions* might be

.FLAGS<17,1>
or .CCOUNT GTR 0

The standard syntax for setting unconditional actions is

actionname Iistofroutines
e.g.,

BREAK R2,PRINT,ERR3

The syntax for setting conditional actions is
IF 8text of condition testS actionname I istofroutines

e.g.,
IF $.VALUE<10,1>« TRACE TESTIT

where $ (=altmode!! !) delimits the text which is saved for
evaluation.^
The syntax for clearing actions is

Dact i onname Ii stofrout ines

i.e. same mnemonic with D prefixed, as in

DBREAK ZURICH

This clears either conditional or unconditional action.

Conditional and unconditional actions do not coexist. There cannot be
both conditional and unconditional instances of a given action on a
given routine, nor can there be more than one condition governing a
given action on a given routine. Thus, if a conditional or
unconditional break is set on a routine, any previously set break of
any type on the same routine is cleared, but other actions, say
trace, on that routine are unaffected.

The possible actions are:

BREAK list

ABREAK list

TRACE list

TRACE AFTER list

Stop execution at routine entry, with the message
<=> AT: routine («-cal l-loc) parameters

Stop execution at routine exit, with the message
<=> AFTER: routine VALUE: value

Print a message when each routine is entered or
left, without breaking. The messages look
I ike this:

•—> routine (<-cal l-loc) parameters
< — routine VALUE: value

Initiate trace mode when the routine is
entered, so that all routine calls and
returns are traced until the routine is
exited. The original routine call and return
are not traced. (Yes, Virginia, it still works
if the routine is recursive!)

list Equivalent to TRACE plus TRACE AFTER; thus the
routine and its subroutines are traced.
This lends a degree of abstraction to tracing.
Tracing is turned off when an OPAQUE routine
is entered, and remains off until the matching
exit. OPAQUE 'outranks* TRACE; thus, even if
routines with TRACEs set on them are called
within the scope of an OPAQUE, they are not
traced.

OPAQUE AFTER list This does OPAQUE except that the routine itself
is traced. Since we know that no trace printout
will be required between entry and exit, paper
is conserved by printing tracing notices for
entry and exit on one line:

— > routine (•-caller) parms VALUE: value
(assuming of course that tracing was on when
the routine was entered).

TRACE FROM

OPAQUE list

15

These last five control the trace facility during program execution*
The user may turn tracing on or off by means of the SETTRACE,
CLRTRACE and GOTRACE operators, overriding OPAQUEs or TRACEs (see
Getting In and Out of SIX12, next section). The TRACE and OPAQUE
operators merely set or reset a switch controlling the printing of
trace output. The user can manually set or clear this switch before
resuming program execution.

Conditional actions set on routine exits may need to test the value
which the routine is returning. This value is available as the
contents of the global SIXVREG. In general, the user should never
attempt to access any registers directly in SIX12 expressions.
However, SIXVREG can be treated the same as the VREG (e.g., it can be
modified, and the new value will be in the VREG when program
execution resumes).

1G

Getting in a M Qui of

By getting into SIX12 we mean stopping execution of the user program
and causing SIX12 to begin reading and executing user commands.
Getting out is the reverse process of resuming user execution.

Getting in:

a) One method of entering SIX12 during execution is through a
(previously set) breakpoint; see last section.

b) Another is through a break caused by terminal input
monitoring, or the MONITOR (of data locations) operation.
See Console Input Honitori no and Monitoring Variables.

c) You can enter SIX12 before program execution begins (but
after stack initialization) by entering DDT and setting
STARTFLG in SIXI.. to 1. For instance,

JDEBUG program files,SYS:SIX12
LOADING
LOADER n+nK CORE
DDI EXECUTION

SI XI..*: STARTFLG! 1 <CR>
SG

Here 8 - altmode, and & is SIX12's prompt for an input.
SIX1..8: can be dropped if the name STARTFLG is not used in
your program.

d) You can explicitly call SIX12 from your program. Call the
external name "SIX12" with one parameter, e.g.,

EXTERNAL SIXI25

SIX12Q23); ! HELP !!

SIX12 prints the parameter value and stop location:
PAUSE a 61 location
&

e) You can get into SIX12 from DDT by PUSHJ SIXDDT»X. See
Concerning DDI.

17

Getting out of SIX12 is accomplished by executing one of 3 operators;

GO resumes user program without any special action.

GOTRACE turns on tracing before starting. This cancels the
effect of any active OPAQUE.

RETURN exp The action of this depends on how you got into SIX12.
For entry methods (c) and (e) above, it is the same
as GO (but exp is the value of the CCL flag in method
(c), if your main module was compiled with C C D . For
method (d), exp is the value returned for the call to
SIX12 (calls terminated by GO or GOTRACE return - 1) .
For methods (a) and (b) above, if you stopped at a
routine exit (ABREAK), execution resumes normally but
exp is the value returned to the caller of the
routine being left. If you stopped at a routine entry
(BREAK), execution of that routine is suppressed
completely, and control returns to its caller with
the value exp. Thus RETURN is useful for hand-
simulating unwritten or malfunctioning code.

18

Cpncgrning QQI:

Ue have not tried to duplicate the many useful facilities already
available in DDT. Instead, we have implemented easy transfers between
SIX12 and DDT.

You can get into DDT from SIX12 by issuing the command

&DDT

To return to SIX12, type 8P to DDT.

If you are in DDT but you didn't get there from SIX12, you can enter
SIX12 by typing

PUSHJ SIXDDTSX

Subsequently issuing GO to SIX12 returns you to DDT. (Clearly, you
must not do this if the stack has been destroyed.)

Note: If you have changed the default register declarations in such a
way that the SREG is not register 0. you must issu€

PUSHJ SREG,SIXDDTSX

instead. You must modify the routine SIXDDT in SIX12 if you change
the default registers.

19

Console Input floni tor ino:

If anuthina is typed when the program is not in a TTY input wait,
SIX12 will shortly fake a breakpoint at some routine entry or exit,
and wait for completion of the command. (The input is taken as the
beginning of a debug expression. Many people cause interrupts by
typing carriage return, so that they can get a prompt character
before doing anything.) This monitoring is the normal state for
SIX12. It can be disabled, permitting type-ahead, by the operator

&DI SABLE

but will be automatically re-enabled whenever a break occurs (for
some other reason, of course). If you issue DISABLE and subsequently
regret it (e.g., get caught in an endless loop), you can re-enable
monitoring by entering DDT and setting ENABFLG in SI X L . to 1; the
normal procedure is

tc
tc
..DDT

SIX1..S: ENABFLG! 1 <CR>
$P
<CR>
&

Here 8 =* altmode; & is SIX12's prompt for an input. SIX1..S: can be
omitted if your program does not use the name ENABFLG.

28

Moni torina Variables:

SIX12 can keep track of the contents of specified program locations,
and report when they change. The contents of each location being
monitored is compared against its last reported contents at every
routine call and return. When any changes are found, SIX12 reports
them and stops program execution (the same as a breakpoint). The
monitoring message is

vn'ov BEFORE routine-name at an entry
or DURING routine-name at an exit,

followed by a list of changes found, in the format

location OLD: oldvalue NEU: newvalue

The syntax for requesting monitoring is

MONITOR Iistoflocations

where each location may be a word address or a byte pointer, as in

&M0NIT0R ACCUM, BUFHDR<8,18>, FLAGS<38,1>, FLAGS<21,1>, 41

(The input base was decimal here.)
The syntax for stopping monitoring is

DMONITOR Iistoflocations

For example, the request shown could lead to a message as follows:

*** Pur i no GETCHR
CHAR Pld: 122 Newi 5£
FLAGS<30.1> Pld: 1 Uewi 0
&

where & indicates that SIX12 is waiting for a command. When the user
issues GO, execution will proceed from the exit of GETCHR.

Note: Values are always printed in the default radix. Uhen a
monitoring request is not for a full word, the position and size
fields are printed in decimal.

21

Macros, sumbol def ini t ion:

As a more or less free spin-off from conditional actions, we have
implemented simple text substitution macros (no arguments at
present). The format for defining a macro is

MACRO name«8macro texts

where S (» altmode!!) delimits the macro text on both sides. The
macro is invoked merely by writing its name, as in

&MACR0 CALLR=8R4P(.A, 37)8
&RESULT 4. CALLR
&CALLR

5884 BUFF6Rt345

Macros can be deleted by the operator

FORGET Iist of names

6 9 # \ &F0RGET CALLR

Space for the text is not reclaimed. See Disk I/O for a recovery
method if you run out of text space. The PRINT MACRO operation can
be used to examine the text of a macro; see the section on Pisolau.
Note: Macro names always have precedence over both operators and
symbols} but a name followed by %n is never taken to be a macro.

New entries can be made in the symbol table; these names will also be
available to DDT. The format is

BIND name = expression

The name is defined as a global with value that of the result of
evaluating the expression. For example,

&BIND P0INT= @©PNTR
&P0INT

1234567 t n 234567
&DDT

PQINT«1..234567 8P
&

The BIND operation should be used rather than MACRO to define a name
with a constant value, as table lookup is much faster than macro

22

substitution. BIND is a good way to create debugging temporaries
with user-specified names. For example,

&BIND HYTEflP « .J0BFF<8,18>; JOBFF <- .JOBFF + 1
or

&BIND DBGCHR= *2

(as explained later, $2 names the third of a set of temporary
locations set aside in SIX12 for debugging use.)

23

Line printer and disk I/O:

Normally, all output from SIX12 is directed to the user's terminal.
Under certain circumstances (such as when tracing, or dumping a large
area of memory), it may be preferable to save the output on disk, or
send it to the line printer. SIX12 contains a facility for doing
this, which is controlled by the following operators:

opens a file named SIXI2.LPT on logical device LPT: . It
does not initiate output to the file. (By assigning the
logical name LPT: to some other device in advance, the user
can cause the output to go anywhere.)
sets the output switch for output to the file. All
subsequent printout from SIX12 (except error messages) will
be directed to the file, not printed on the terminal,
resets the output switch for output to the terminal. It
does not close the file, so that more file output may be
done later in the same file.
sets the output switch for output to both terminal and file
simultaneously. The worth of this option is doubtful, but
it is included for completeness.
closes the file opened by LPTOPEN. All file output between
one pair of LPTOPEN and LPTCLOSE forms a single file, no
matter how many LPTONs and LPTOFFs have intervened.
An automatic LPTOFF is executed at every break. Thus output
will normally go to the terminal during user interaction.
LPT I/O uses logical channel 17. Do not use i t when your
program is using channel 17.

An option is provided for saving the state of SIX12 on a disk file,
and restoring it at a later session without having to do considerable
type-in, or save the whole core image. The operator

LPTOPEN

LPTON

LPTOFF

LPTDUP

LPTCLOSE

Notes:

SAVE 'filespec'

for monitoring, and saves all presently defined macros, requests
routine actions (including conditions) in a disk file .specif led by
fi lespec, which is input as a string and must be enclosed by sing
quotes. The filespec may not contain a device specification.

e

LOAD 'filespec'

deletes any existing macros, monitoring requests, or routine actions,
then loads the information in the SAVE-written file named by
f i lespec.

Notes:

24

1) SAVE and LOAD use logical channel IB. You can use them in a
program using that channel just as long as you do not issue them when
your program has something open on 16. 2) The monitor and routine-
actions tables contain absolute memory addresses. Thus SAVE/LOAD
should not be used to preserve monitors or routine actions across a
program reload. 3) Since all previously existing macros are deleted
by LOAD, text space is compacted. The correct way to recover from a
•No space for macro text* error is to delete any unneeded macros,,
then issue

&SAVE 'TEMP*
&L0AD 'TEMP'

25

Pi solau:

SIX12 has facilities for printing some information in a more
meaningful format than could be obtained from dot or slash. In
particular, special operators are available for displaying the run­
time stack, the symbol table, and SIX12's internal tables.

These operators display the run-time stack in terms of routine calls.

CALLS displays the complete stack of routine calls. Each call is
displayed in the format

routine (<-call ing-loc) parameters

The first line (i.e., the current routine) is prefixed with
Bs if execution stopped at the routine's entry, or A: if at
i ts exi t, as in

A: WHERE (*-CALLER+17) 1: 5 2: 8
CALLER (^MAIN.F+12) 1: 45

which indicates that we are at the exit of 'INHERE'.
LCALLS displays the call stack plus the locals area for each routine

(including saved registers and 'displays' for functions) —
this may not be very useful to a user not familiar with the
Bliss runtime environment. Locals are displayed after the
call to the routine which owns them.

CALL n displays the last (topmost? innermost?) n calls on the stack.
If n is omitted (i.e., CALL is used as a nullary operator),
only the last call (to the present routine) is printed.

LCALL n works like CALL but also displays locals.

Two operators are included for searching the symbol table.

PRS listofsymbols (PRint Symbols)

For each symbol given, PRS prints every entry in the symbol
table, in the format

name%ordinal value type module

For instance,

&PRS CTYPE,CX
CTYPE%1 488368 Own MAIN..
CTYPE%2* 5681 Own INPU..
CX%1 588848 Global DEQL..

26

A * next to a name (following the ordinal) means that that
entry will not be used for typeout by SIX12 or DDT (i.e.,
•K has been performed on it).

SEARCH 'partially-specified-symbol'

This allows searches using the "wild-card" convention that
question-mark means any character, as in

&SEARCH 'P?C?'
PICK 5BB050 Own TABL..
PAC 2221 Global INPU..
&SEARCH '??????'
(prints every entry in symbol table)

The partially-specified symbol (only one per search) must
be entered in single quotes. SEARCH does not print
ordinals.

The PRINT operation displays the state of SIX12.

PRINT OPER name or PRINT OPER "char"

displays the definition (priority and routine name for each
defined parse) of the specified operator, as in

PRINT OPER "t" PRINT OPER AND

Note: Priorities are displayed in decimal.

PRINT MACRO name

prints the text of the macro named 'name*. For instance,

PRINT MACRO CALLR

PRINT ACTION actionname routine

prints the status of the specified action on the specified
routine. The action must be given as one of

BREAK ABREAK OPAQ OPAQAFT TRACE or TRACEAFT
(remember that TRACE FROM - TRACE + TRACE AFTER).

The possible responses are

'Action not set'
'Unconditional'

or the text of the condition test.

27

For example,

&PRINT ACTION OPAQ XYZ
Apt ion nal §sl
SPRINT ACTION ABREAK PPP
.X LSS 3

28

tligggl laneous pperators:

BASE n

UBASE n

be n, and prints the new base in
numbers are assumed to be in this

I appear in this base (except for items
in decimal). If n is omitted BASE only
base. The initial default base is 8

sets the default base to
decimal. Subsequent input
base, and output wi
specified to appear
prints the current
(for octal).
sets the maximum displacement to be allowed when printing
symbolic addresses in the form 'symbol+offset'. This works
in exactly the same way as n8UU in CMU-DDT. (U is for Uulf
for historical reasons.) UBASE functions in the same way as
BASE except that the value is printed in the current
default base. The UBASE is initialized to 1000 octal.

not altmode.) This names the n-th of an array
in SIX12 which are reserved for use as

debugging temporary storage. In the standard version n must
be 0 - 19. As pointed out previously, BIND can be used to
give meaningful names to them:

(DoIlar sign,
of locations

&BIND CHKSUM = 810

SETTRACE Turns on the trace flag. Uhen execution resumes tracing
will begin immediately. This cancels the effects of any
active OPAQUE. The GOTRACE operator described earlier is
equivalent to

SETTRACE ; GO

CLRTRACE Turns off the trace flag. This cancels the effects of an
active TRACE AFTER or a previous SETTRACE.

NODEBUG This performs

J0B41 o 255000000000
GO

(JFCL 0,0)

Thus, the DEBUG UUO is rendered a no-op. This can be used
to improve execution time if you are only running a program
without intending to debug it.

29

Using SIX12:

The modules to be debugged must be compiled as follows:

1) Each module must be compiled with the DEBUG switch set. This
can be accomplished by including "DEBUG" in the module head,
or by specifying "/D" in the compiler command string.

2) The main module (the one including the STACK specification)
must include "TIMER=EXTERNAL(SIX12)" in i ts module head. (At
present, timing and debugging cannot be specified
simultaneously.)

Once you have compiled all your files, load them with SIX12 and DDT;
be sure that local symbols are loaded for your program files. The
easy way to do this is with the monitor DEBUG command:

J3EBUG your program files,SYS:SIX12

If you prefer to use LINK, you can issue

Jl LINK
&/DEBUG your program files,SYS:SIX12
*/G0

Usually, SIX12 should be loaded last so that its program symbols will
be scanned last in a symbol table search. To reduce the chance of
confusion further, you can load SIX12 without its local symbols, as
in

J3EBUG your program files,SYS:SIX12%U

(All global symbols in SIX12 begin with the letters S I X. The only
non-global symbols that you are likely to need are STARTFLG and
ENABFLG, which can be accessed as SIX1.0 and SIX1.0+1, respectively.)

The debugging linkages generated by the DEBUG switch use the 837
user UUO. I f your program does not use user UUOs (opcodes 881- 837),
you can skip the following. If you do use UUOs, you must

1) not use opcode 837,
2) arrange for your UUO handler to link to SIX12 properly.

(2) is merely a matter of getting the proper jump address for SIX12's
UUO entry point. Because the entry point is not a global symbol, you
must retrieve the jump address from location 41 before loading it
with a branch to your own handler. (SIX12 loads 41 with a PUSHJ to
itself immediately after stack initialization.) Your UUO
initialization'code might look something like this:

38

GLOBAL UUOROUTS[49]; EXTERNAL UUOSUITCH, J0B41$

UUOROUTSt 837] <- .J0B41<8,18>; ! *** DEBUG ONLY ***
! PUT PUSH J SREG, UUOSUITCH INTO LOC. 41

J0B41 <- 2G8t27 OR SREG<8,8>?23 OR UU0SUITCH<8,8>;

where the routine

MACHOP JRST = 2 5 4 ;
GLOBAL ROUTINE UUOSUITCH - JRST(8.UU0R0UTSt .J0B41<27,9> 3,8,1);

must be in a separate module which is compiled without FSAVE, TIMING,
or DEBUG switches (/F, /T, or /D).

31

Def i n i na uour own operators:

As previously advertised, SIX12 is capable of easy extension. The
method for this is normally to define new operators or revise
standard ones to suit your needs. (Please review what we said about
operators under fSIX12 expressions', if it is not fresh in your
m i nd.)

The syntax (print name, priority, possible parses) of an operator is
defined by an entry in a syntax analyzer table. Its semantics are
defined by a routine which the table entry points to. To evaluate the
operator, the analyzer calls this routine using a standard linkage
convention. The content of this section is a description of 1) the
linkage convention and, 2) the proper method for making entries in
the syntax table.

Linkage: Since operands and values can be vectors, it is not possible
to transfer them by standard Bliss linkage. Instead, global variables
are set to point to an operand and give its length. The variables
are:

SIXLP contains a pointer to the first word of the left operand.
(Undefined if no left operand.)

SIXLC contains the number of words in the left operand. (Zero
i f no left operand.)

SIXRP contain corresponding values for the right operand.
SIXRC

These variables are set at the routine call; the routine may destroy
them if it wishes. (The contents of the operands may also be
destroyed.) To return a value, the routine should set these two
variables:

SIXVP must contain the address of the first word of the value.
(The left half of SIXVP is ignored.)

SIXVC must contain the number of words in the value.

If no value is to be returned these can be left unmodified. (The
criterion for finding a value is that SIXVC be positive; it is set to
zero before calling the routine.) Note that operands and values are
always vectors of fulIwords.

An evaluating routine may need to determine what parse it has been
called under. The parse in use can always be determined by examining
SIXLC and SIXRC, but a more convenient way is provided. Evaluating
routines are called with a single parameter (standard Bliss linkage),
which has the value

32

0
1
2
3

for null parse (no operands)
for prefix parse (a right operand only)
for postfix parse (a left operand only)
for infix parse (both operands);

thus bit 0 denotes the presence of a right operand and bit 1 that of
a left operand.

Ue suggest examining the source of SIX12 to see the best ways to code
operators. The macro APPLY and the routines XBASE, LPAREN are
recommended objects of study.

The table: For each operator symbol, the table of operators contains
the symbol itself (print name), and information on each of the four
possible parses for the symbol. This information consists of the
priority of operation and the address of the evaluating routine for
that parse. (If both are zero, the parse does not apply.) Priorities
are in increasing sequence, that is an operator of priority 15 is
evaluated before one of priority 14. If the user is making a
permanent modification to SIX12, he should modify the table in the
source program; this is explained by notes in the source. Otherwise,
in order to avoid recompiling SIX12, the user can create his new
routines separately, compile them (without /D, of course!), load them
together with SIX12 and the program to be debugged, and modify the
operator table at run-time. To facilitate this approach, the linkage
variables explained above are all global names, and an operator is
provided for modifying the table at run-time.

sets the parse information as requested. "Parse" can be one of

NULL PREFIX POSTFIX INFIX

or 0 - 3. Note that only the specified parse is affected; the others
remain set as before. (If a new operator symbol is being defined, the
other 3 are initialized to zero, i.e. "parse not applicable".) For
example,

&DEFINE SIXBIT,PREFIX = 100,CONVRT

where CONVRT names a routine to translate ASCII inputs to SIXBIT
outputs, could be used to implement the SIXBIT stringtype. Once this
has been entered, the user could issue

&FILNAM «- SIXBIT *ABCDEF'
Again,

or
DEFINE name,parse = priority,routine
DEFINE "char",parse = priority,routine

33

&DEFINE "?",8 = 18,DISPLAY

would make it possible to call the routine DISPLAY by typing a
question mark. (If DISPLAY expected no arguments and returned no
interesting value, this could be done even if DISPLAY had not been
written explicitly as a SIX12 operator...) Thus

& ?
(output from DISPLAY)
&

34

A Compressed Version

The PRINT OPER operation can be used to verify the effects of DEFINE.
Remember that priorities are printed in decimal by PRINT OPER.

A smaller version, SIX12S, exists for those who find that standard
SIX12 is too large and/or too slow. SIX12S has no macros,
conditional actions, or SAVE/LOAD facility. This means much faster
breakpoint checking, and much less code and table space inside SIX12.
Otherwise it is identical to regular SIX12. The operators not
defined in SIX12S are

SIX12S:

MACRO PRINT MACRO
IF Stestft action rtn-list
SAVE LOAD
GEQ through LSS (you (you won't need them without conditionals).

FORGET
(i.e., condi tional actions)

To use this version (at CMU), access

SIX12S.BLI, SIX12S.REL on DSKB:[L130BL98]
(it will not be put on SYS: at CMU).

35

