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ABSTRACT 

There are important classes of programs which must be highly efficient on a particular 
computer, independent of how fast that computer may be; systems programs are one such 
class. In order to be able to write these programs in a higher-tevel language and accrue 
the benefits associated with the use of such languages, we must have compilers which will 
produce highly efficient representations of these programs. This paper describes the design 
and implementation of a highly optimizing compiler for the Bliss language [Wul71]. 

A notational scheme is described in terms of which an overview of the compiler is 
presented. The logical phases of the compiler are then described in some detail. 
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I. INTRODUCTION 

There are important classes of programs which must be highly efficient on a particular 
computer, independent of how fast that computer may be — systems programs are one such 
class. We must assume that such programs will continue to exist in the future. In order to 
be able to write these programs in a higher-level language and accrue the benefits 
associated with the use of such languages, we must have compilers which will produce highly 
efficient representations of these programs on a particular computer. This paper attempts 
to describe one such compiler. 

Not all optimization techniques Known are employed in the compiler to be discussed, nor 
is every aspect of optimizing compilers which is discussed original. Our purpose in writing 
this paper is neither to survey known optimization techniques nor to present only original 
research. Our purpose is, rather, to present various new and known techniques in the 
context of a specific, real compiler and to show how these techniques interact to produce 
high quality code. Another effect of this presentation, however, is to illuminate aspects of 
compiler optimization which have received little or no attention from researchers. 

There is an unfortunate tendency for textbooks and journal articles to focus on topics 
which can be formalized. Thus much paper has been devoted to syntax analysis and to 
those relatively few optimization topics which lend themselves to this type of treatment, 
e.g., that evaluation order of expressions which minimizes register use. We do not oppose 
formalization — it is essential, and, indeed, we will use a great deal in this paper. However, 
the appearance of many papers on a few topics together with a paucity of papers covering 
complete compilers, tends to breed more papers on the same subjects and leave other 
important problems untouched. We sincerely hope that one effect of this paper will be 
stimulate research on some of these problems. 

Three specific assumptions are made in the remainder of this paper: 

1. The compiler being described is for Bliss/11 [Wul72a] which is similar to Bliss/10 
[Wul71]; a brief introduction to the language is included as Appendix B. The 
impact of the Bliss/11 language on the compiler strategies arises primarily from 
three properties of the language: 

a) Bliss does not contain an explicit goto statement [Wul72b]. The absence of a 
goto obviates the need for certain global flow analysis and permits a more 
highly recursive and regular structure in the compiler. 

b) Data is typeless. Certain aspects of more conventional compilers for dealing 
with type conversion and doing correlated case analysis during code generation 
will not be discussed since they do not apply. 

c) Any expression may be used as an accessor for a data structure. Therefore all 
expressions are treated uniformly, i.e., there are no special case optimizations 
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applied to data accessor1:, (e.g., array indices). These optimizations are 
subsumed into the general strategies of the optimizer. 

2. The problem domain for which Bliss/11 is intended, the development of production 
quality systems programs, warrants the expenditure of a relatively large amount of 
compile-time in order to achieve run-time efficiency. An explicit goal of the design 
is to produce better object code than that written by good systems programmers 
on moderately large programs (say longer than 1000 instructions). 

3. Some optimizations involve a speed/size tradeoff. Since the object code is to run 
on a mini-computer these tradeoffs have generally been made in favor of the 
smaller (slower) alternative. 

The structure of the paper is first to present a notational scheme in terms of which an 
overview of the Bliss/11 compiler will be presented, and then to discuss the various pieces 
of the compiler. The latter section describes the components in some detail, not all of which 
each reader will want or need to read in depth. Hence the latter portion of the paper is 
divided into subsections from which the reader is encouraged to pick and choose. 
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II. A DESCRIPTIVE NOTATION 

Conceptually a compiler is a transducer which accepts a program 

source -> COMPILER -> object 

in its "source" language form and produce an equivalent "object" language form. For logical 
clarity, and sometimes from necessity, a compiler is broken into several "phases." A 
common diagram which illustrates these phases is 

source LEXICAL SYNTAX CODE _ ^ object 
"^ANALYSIS ^ANALYSIS "P^ODUCTION^ 

These phases may execute serially (as in overlaid "multiple pass" compilers) or act as 
coroutines. The diagram above need not distinguish between these modes of operation. In 
either case some "unit" of the program (anything from a single atom to the entire program) 
is successively operated upon by each phase. In this view the diagram above is intended 
only to show data dependencies between the phases—not control flow between them. 
(Control flow follows, but need not coincide with, the data dependencies.) 

Diagrams of the simplicity of that shown above will not be adequate, however. While 
certain phases must be executed in a prescribed order, others may be performed in 
arbitrary orders; it may be possible to organize several logical phases into a single physical 
one. In order to describe these dependencies we have adopted the following notation: 

1) A program shall be described as consisting of a linearly ordered set of "phases;" 
each phase is represented by a rectangular box with a single arrow entering it and 
another arrow leaving it. Each phase is to be thought of as a transducer accepting 
input language Lj and producing output language Lj+i. 

2) The box representing each phase may be divided into a number of vertical 
"columns." The box, say Pj, then represents a physical phase (operating over an 
entire unit in Lj) which is divided into logical phases, Pji , . . . ,Pj n > which operate 
serially on the unit of Lj. 
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p m P ~ P « Li+1 
i,l i,2 i,3 

3) Each column may be divided horizontally into "rows" which are sub-phases of the. 
column which may be executed in an arbitrary order. 

4) Rows may be subdivided again into subcolumns, those into subrows, etc. as desired. 
In each case horizontal separation denotes left-to-right serial dependency, vertical 
separation (within a column) denotes the absence of such a dependency. 

Consider the following example: 

This diagram describes a system composed of two physical phases, P and Q. P accepts 
units of l_o to produce units of L i . Similarly Q accepts units of Li to produce units of L2. 
Within the physical phase P are logical phases Pi,...,Ps. From the diagram we see that the 
sets {Pi,P2?P3}j {P4}> and {P5,P6>P7,P8} are independent (may be executed in arbitrary 
order), but within these sets Pi must precede both P2 and P3, and P5, P6,P7, and Pg are 
serially dependent. 
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III. AN OVERVIEW OF THE BLISS/11 COMPILER 

Using the diagramatic notation developed in the last section, the structure of the 
Bliss/11 compiler is shown in Figure 1. In the case of Bliss/11, the program unit to 
which each physical phase is applied is the subroutine. Thus the source text for an entire 
subroutine is read and the phase LEXSYNFLO applied to it producing intermediate form 
In turn DELAY, TLA,..., and FINAL are applied to the intermediate representations 
Li,L2,...,L6 for the same subroutine producing, respectively, L2,L3,...,L7. The next 
subroutine is processed only after all phases have been applied to its predecessor. A 
consequence of choosing the subroutine as the unit to which successive phases are applied 
is that optimizations are applied to this unit, i.e., no optimizations are applied which involve 
detailed structural knowledge of more than one subroutine simultaneously. 

The general attributes of the major phases are summarized below and then explained in 
more detail in the following sections. 

LEXSYNFLO: This phase performs lexical analysis, declaration processing, syntax 
analysis, and flow analysis. The input is the source program unit in 
character string form. The output consists of: (1) a set of symbol 
table entries, (2) a tree representation of the parsed program unit, and 
(3) a set of lists (generally threads running through the tree) which 
define feasible global optimizations (constant expressions which may be 
moved out of loops and the like). 

DELAY: Delay has three primary functions: (1) to determine the "general 
shape" of the object code to be generated, (2) to estimate the "cost" 
of each (linear) program segment, and (3) to determine the evaluation 
order for expressions. By the "general shape" of the object code, we 
mean those properties of the operators (e.g., commutativity) or 
properties of the target machine (e.g., indexing) which may be used to 
simplify the computation of a value. Decisions are also made at this 
point whether any (or all) of the "feasible" global optimizations are, in 
fact, desirable. Actual machine code is not generated; rather various 
flags and fields are set to guide optimal local code generation in a later 
phase. The cost metric is used to guide selection of evaluation order 
and in register allocation. The output of this phase is identical to that 
of LEXSYNFLO (i.e., symbol table, tree, etc.) except that certain 
information has been added to the tree to signal the subsequent phases 
of the compiler concerning the shape, cost, and execution order of the 
code to be generated. 

TLA, RANK, PACK: The function of these phases is what is frequently called "register 
allocation" in other compilers; the difference being that not only 
registers, but memory locations, are allocated as well. The entities 
which are assigned to locations (registers or memory) include both 
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compiler-generated temporaries and user-defined "local" variables. 
The output of this phase includes that of DELAY plus the bindings. 

CODE: The function of the CODE phase is to produce locally optimal code for 
each tree node, hence its output is a representation of the target 
machine language (the tree is discarded at this point). In some cases 
the locally optimal code is completely determined in DELAY; in these 
cases the action of CODE is trivial. In many cases, however, further 
analysis is required. For example, it is CODE'S responsibility to 
determine the optimal sequence of shift and mask instructions to move 
an arbitrary subfield of one word to an arbitrary position of another. 

FINAL: FINAL has two responsibilities. First, it contains a collection of 
relatively ad hoc "peephole" optimizations - for example, to change 
jump instructions which jump to another jump instruction into ones 
which jump directly to their ultimate destination. Second, it prepares 
the final listing and object code files. 

It would be ideal if there were complete algorithms to guarantee the production of 
optimal programs. A few such algorithms are known [Set70, Ges72] and are used in the 
Bliss/11 compiler; more often, however, such algorithms do not exist and heuristics must be 
used. The sequence of phases in the compiler has been designed to provide as much global 
information as possible on which to base the heuristic decisions. Thus, for example, 
generation of code is postponed until after both the general shape of the code and binding 
of temporaries are known. Consequently special properties of the hardware may be 
exploited within this known context. Similarly, binding of temporaries is done only after the 
execution order has been firmly established and cost estimates obtained on the basis of the 
general shape of code to be generated; the first of these permits an accurate 
characterization of the "lifetime" of the temporary and the second permits realistic trade­
offs to be made between allocating competing entities to registers. Again, evaluation order, 
general shape, and cost decisions are made in the context of "feasible" global optimizations. 
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IV. COMPILER SPECIFICS 

The intent of this section is to examine in some detail the algorithms (and heuristics) 
used in each (sub) phase of the compiler. Since the topics of lexical and syntactic analysis 
have been extensively treated elsewhere, and since we make no special claims for our 
approach, these topics are treated rather cursorily, the emphasis is placed on the later 
phases of the compiler. 

IV. 1. LEXSYNFLO 

As discussed earlier, the primary function of LEXSYNFLO is to generate a tree 
representation of the executable portion of a program unit together with auxiliary 
information such as symbol table entries and feasible optimizations. It consists of several 
subphases: (1) LEX which performs lexical analysis, (2) SYN which performs syntactic 
analysis and declaration processing, (3) KFOLD which performs compile-time arithmetic, 
logical, and relational operations (sometimes called constant folding), and (4) GFEAS which 
forms the actual trees and detects feasible global optimizations. Although implemented as a 
set of potentially recursive subroutines, these subphases actually bear a coroutine relation 
with each other with the central control residing in SYN. The subphases are discussed 
separately below. 

IV. 1.1 LEX 

The function of the LEX module is to convert the input source text into atoms (or 
lexemes) for use by later phases of the compiler. LEX is essentially a finite state machine 
which reads source programs and produces lexemes. Lexemes are the smallest units of 
program used by the rest of the compiler, and consist of the internal representations of 
identifiers, reserved words, special characters, and literal values. LEX supports multiple 
input streams which may arise from text files named by the source program or from macro 
and structure invocations. We shall not be concerned with these aspects, however. 

IV.1.1a What's in a Lexeme? 

All lexemes contain a type field which specifies the kind of atom represented by the 
lexeme; in addition, each lexeme carries type dependent information: 

Literal lexemes contain the actual 16 bit literal value. String literals are represented by 
lexemes containing a pointer to a linked list structure in which the string is stored. 

Delimeter lexemes contain a class (declarator, open bracket, operator, etc.) and an index 
into a table of routines for performing syntax analysis. Operator lexemes also contain a 
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priority which controls association of operators and operands (e.g., this assures that 
A+B*C is treated as A+(B*C)). 

Identifier lexemes contain a pointer to the symbol table entry for the identifier. 

IV. 1.1b Symbol Table Structure 

The symbol table consists of three logically separate tables: the Name Table (NT), the 
Hash Table (HT), and the Symbol Table (ST). These three tables are linked together along 
several lists which allow easy recognition, insertion, and deletion. The relations between 
these tables, and the linkages between them, are illustrated in Figure 2 and explained 
further in the following paragraphs. 

A hashing function converts the text representation of an identifier to an index into the 
hash table. Since more than one identifier may hash to the same index, the HT entry serves 
as the head of a singly linked list of name table entries. (All of the lists in the symbol table 
structure are effectively list implemented stacks, i.e., they obey a LIFO discipline.) 

Each NT entry contains the actual text representation of the identifier and serves as the 
head of a singly linked list of all ST entries for that name (block structure makes it possible 
to have more than one ST entry for any given identifier). The HT entry also serves as the 
head of a singly linked list of ST entries for its hash value. Each ST entry contains a 
pointer to its NT entry. 

The algorithms for inserting an entry into the symbol table and for recognizing existing 
entries are quite simple, and should be fairly obvious from the structure. 

To find the existing symbol table entry associated with a name, first form the hash 
function value associated withthe name, then scan the name table entries which are 
threaded together from this hash table entry until a character string match is found 
between the name and the string stored in the name table. The symbol table entry 
for the currently defined symbol with that name is pointed to by the NT entry. 

To create a new symbol table entry for a name, e.g., when that name is 
(re)declared, search for an NT entry associated with the name as above; if no NT 
entry is found, create one and place it on the proper HT list. Create a symbol 
table (ST) entry, and "push" it onto the (possibly empty) stack of entries associated 
with the NT entry. 

Deletion of entries from the symbol table is less intuitive than the insertion and 
recognition algorithm above, although easily implemented. At the end of a block, all ST 
entries created in that block must be removed from the symbol table. Since each ST entry 
contains the block level at which it was created, purging the symbol table is simply a matter 
of deleting all ST entries whose declaration level is equal to the current block level. These 
entries are easy to find because the most recent ST entries are at the tops of the ST lists 
pointed to by the hash table. The algorithm is: 

Scan down the hash table and at each entry, delete the ST entries at the top of the 



(7) Name table thread: 

(2) Symbol stack thread: 

runs from HT through all NT entries with the same HT index. 

runs from NT through ST entries with same name; since this 
thread is in reverse declaration order, the entry pointed at by 
an NT entry is always the most recently declared instance of 
the named entity. 

(3) Name table backpointer: every symbol table entry contains a backpointer to its name 
table entry. 

( ? ) Symbol table list: this thread runs through all ST entries associated with the 
same HT index and is in reverse declaration order; used to 
remove ST entries at the end of a block. 

Figure 2. Symbol Table structure. 
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ST list until the declaration level of the top item is less than the current block level 
or the list is empty. 

In reality, symbols must only be removed from the ST at the end of a block in the 
sense that we want to prevent re-recognition. The entry itself continues to exist as long as 
there are references to it. To this end, symbols removed from the ST are linked onto a list 
of purged symbols. The symbols on this list are actually deleted after code has been 
generated for the current subroutine. 

While it would be possible to process an entire program from source to lexemes in a 
separate pass independent of the rest of the compiler, this is neither necessary nor 
desirable. The syntax analyzer operates having knowledge only of a current "window" into 
the program. This window is maintained by LEX and consists of two lexemes — a current 
symbol and a current delimeter. These are stored in the global variables SYM and DEL. 
(SYM may at times contain the "empty lexeme" since two delimeters may occur successively 
in a valid program.) 

LEX interfaces with syntax analysis through the routine RUND (Read Until Next 
Delimeter). RUND is called to update the window by placing the next symbol lexeme (if any) 
in SYM and the next delimeter lexeme in DEL. 

IV. 1.2 A Meta Comment on Switching 

In several of the phases to be described below (syntax, delay, tnbind, and code), a left-
to-right depth-first tree traversal is done. In each of these traversals the actions to be 
performed depend upon the type of node. A uniform mechanism is used in each phase to 
accomplish the necessary switching between these actions. 

Each type of tree node is uniquely associated with some delimiter in the source 
language (e.g., the node associated with a conditional expression is associated with the if 
delimiter). Each delimiter lexeme contains a unique, small integer; this integer is stored in 
the node to identify the node type. Each phase of the compiler contains a vector of the 
addresses of node-specific action routines. Switching to the appropriate routine is 
accomplished by performing a subroutine call indirectly through this vector.* 

Since traversals and node-specific actions are handled similarly in each phase, an 
understanding of this mechanism will be assumed in each of the discussions below. 

•For those familiar with Bliss, the following is an example of how this switching is actually 
done in the syntax phase: 

bind synplit * plit (soperator, scompound, sif, £...etc. for all syntax routines/S); 

macro xctsyntax = (.synplit[.DEL])( ) $; 

Each occurrence of the macro "xctsyntax" corresponds to a call on whichever syntax routine 
handles the construct typified by the delimiter lexeme in DEL. 



12 LEXSYNFLO 

IV. 1.3 SYN 

The compiler uses the top down method of syntax analysis Known as recursive descent 
[Gri7 1]. The structure of the language lends itself nicely to this method. Recursive descent 
involves a separate, potentially recursive routine to parse each different construct in the 
language; each routine Knows the format of its associated construct. Several properties of 
the Bliss/11 language that maKe it possible to use the technique effectively: 

1. Every construct is uniquely identifiable by a Key meta-variable (e.g., whenever an if 
lexeme is encountered, an if expression follows).* 

2. It is possible to parse the language without bacKup. 

3. The definition of the language does not contain the left recursion problem. 

4. Bliss/11 is an expression language. This means that all switching between the 
syntax routines can be done in a central routine. When a particular construct 
expects to find a sub-expression , it merely calls this central routine to parse it. 
This routine maKes use of the lexeme for the Key meta-variable mentioned above to 
do the switching between routines. The switching technique itself is the one that 
was described in Section IV. 1.2. 

5. Bliss/11 is an operator language (between any two terminals (literals, symbols) at 
least one delimiter will appear). As a consequence, the syntax analyzer need only 
"see" at most two lexemes of the input stream at once. These are: the "current 
symbol" (SYM) and the "current delimiter" (DEL). These lexemes maKe up the 
window described in Section IV. 1.1 above. 

The tasK of the syntax analyzer is to transform the infix notation of the input stream 
into a n-ary tree. We treat only the Key meta-variables as operators. Thus there is an if 
operator whose operands are a boolean part, a then part, and an else part. 

IV. 1.3a The Recognizer 

Building a recognizer for Bliss/11 is a fairly easy tasK. A control routine, EXPRESSION, 
performs the switching; all that the construct associated routines need do is maKe repeated 
calls on EXPRESSION, checKing for the occurrence of necessary delimiters in between. For 
example, the syntax of an if statement is: if ei then e 2 else 63. The recognizer for if first 
calls EXPRESSION to parse ex. It then checKs for the presence of then, and if it is not 
there, it indicates an error. If it is present, it then calls EXPRESSION to parse e 2 . Finally, 
it checks for an else and if it is found, it calls EXPRESSION to parse e 3 . 

Figure 3 illustrates several language constructs and recognizer routines for them. Note 
that they all have similar formats; they initialize error pointers, do the actions specific to the 
construct, and finally set more error pointers before exiting. 

•Note that some meta-variables are used in two different ways (do, while, until). LEX can 
always tell which use is appropriate in context, and return the proper version of the lexeme. 
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routine sif= 
begin 
! recognize if eo then ei else e 2 

init; ! initialize error pointers 
ruex; ! parse eo* 
if .del neg "then" 

then return error( ); 
ruex; ! parse ei 
if .del egl "else" 

then ruex; ! parse e 2 if else present 
end; 

routine swhile= 
begin 
! recognize while eo do e± 
injjj ! initialize error pointers 
ruex; ! parse eo 
if .del neq "do" 

then return error( ); 
ruex; ! parse ei 
end; 

*ruex is an abbreviation for the sequence of instructions rund( ) (read until next delimiter) 
and expression ). 

Figure 3. Recognizer routines for if and while. 

IV. 1.3b The Translator 

We are not interested in simply building a recognizer, but rather a translator. The 
translator, of course, differs from the recognizer in that it must do something with what it 
has parsed. In our case it builds a tree representation of the program. To do this, the 
recognizer routines are augmented with an auxilary stack (referred to simply as "the stack" 
for the rest of this section). The purpose of the stack is to hold the root(s) of subtrees 
while their ancestor(s) is (are) being parsed. Upon entry to a construct-associated routine, 
the current top of stack is marked so that this constructs intermediate results do not get 
confused with those results already developed at an outer level of the parse. At the end of 
a construct-associated routine, the contents of this stack (from the mark to the top) used to 
create a tree node. 

Specifically, the translator for an if statement calls EXPRESSION to parse e^. When 
EXPRESSION returns, a lexeme pointing to the sub-tree for ei is in SYM (this lexeme is 
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called a graph table lexeme). It is then pushed onto the stack. The translator then checks 
for the presence of the tlien (reporting an error if it is not found), calls EXPRESSION to 
parse e 2 and pushes the result onto the stack. If the else is present, EXPRESSION is asked 
to parse e 3 and again, the result is put on the stack. If else is absent, a literal zero is put 
on the stack instead. Finally, a routine called MAKGT is called to take the contents of the 
stack and make a tree node out of them. When it returns, the lexeme pointing to the node 
is in SYM. 

Figure 4 illustrates the translator routines for the constructs that were described in 
Figure 3. Again note the similarity of their formats. 

Because we are interested in doing global optimizations, the translator becomes a bit 
more complicated than the description above indicates. A module called FLOWAN which will 
be described below recognizes possible global optimizations. The flow analysis routines 
operate "inside out" and are invoked by the syntax routines. In particular, one flow analysis 
routine may be optionally called before a call on EXPRESSION and another is optionally 
called after EXPRESSION returns. Flow analysis routines are also potentially called before 
and after calls on MAKGT. The actions of these routines will be described in 
Section IV. 1.5. 

Figure 5 illustrates the translator routines with links to the flow analysis module. Note 
that these, too, are similar in format: 

1. Initialize the error pointers and mark the current top of stack. 

2. Do the construct specific actions. 

3. Make a tree node from the connents of the stack between the mark and the new 
top of stack, and reset the stack to where it was on entry. Place a pointer to the 
new node in SYM. 

IV. 1.4 Syntax Error Reporting and Recovery 

In order to help the programmer pinpoint errors, the lexical analysis routines note and 
record the line number and beginning character position of each lexeme. Individual syntax 
routines save these values for the opening bracket of the syntactic construct (e.g. begin, if, 
etc.), and the most recent "intermediate" bracket (e.g., the most recent ";" in a blocK). 
When an error is detected an error message is printed describing the error together with 
pointers to the most recently scanned symbol and the opening and intermediate bracKets. 

Once an error has been detected, a forward scan is made in an attempt to find a 
meaningful context in which syntax analysis can resume. Generally such a place is following 
a close bracKet - notably ")", "end", or ";". However, if in the process of maKing this 
forward scan an open bracKet is encountered, the syntax analyzer recurs to attempt the 
analysis of the interior of the bracKeted construct. After the interior of the construct has 
been analyzed, the forward scan resumes. 
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routine sif= 
begin 
! translate if eo then ei else e 2 

init; ! initialize error pointers and mark the syntax stack floor 
ruexpush; ! parse eo and put a lexeme for the sub-tree on the stack* 
if .del neg "then" 

then return error( ); 
ruexpush; ! parse ei and put a lexeme for the subtree on the stack 
if .del egl "else" 

then ruexpush ! parse e 2 and put a lexeme for the subtree on the stack 
else push(zero); ! if no else, default to literal zero 

symmakgtCiD; ! make a tree of the if expression 
end; 

routine swhile= 
begin 
! translate while eo do ei 
init; ! initialize error pointers and mark the stack floor 
ruexpush; ! parse eo and put it on the stack 
if .del neg "do" 

then return error( ); 
ruexpush; ! parse ei and put it on the stack 
symmakgt("while-do")s ! make a tree of the while expression 
end; 

•ruexpush is an abbreviation for the sequence of instructions rund( ); expression( ); 
push(.sym) where sym contains a lexeme for the expression scanned after the call on 
expression. 

Figure 4. Translator routines for if and while. 

IV.1.5 FLO 

Before describing the actual strategies for global flow analysis in the Bliss/11 compiler 
a semi-formal treatment of the approach will be given. The formulation is due to Geschke 
[Ges72] and the actual implementation, except for representation issues, models the 
formulation quite closely. 
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outine sif= 
begin 
! translate if eo then ei else e 2 

init; ! initialize error pointers and mark the syntax stack floor 
ruexpush(fifO); ! parse eo and put a lexeme for the sub-tree on the stack* 
if .del neg "then" 

then return error( ); 
ruexpush(fif 1); 
if .del egl "else" 

then ruexpush(fif2) 
else push(zero); 

finCif",fif); 
end; 

! parse ei and put a lexeme for the subtree on the stack 

! parse e 2 and put a lexeme for the subtree on the stack 
! if no else, default to literal zero 
! make a tree of the if expression** 

routine swhile= 
begin 
! translate while eo do ei 
init; ! initialize error pointers and mark the stack floor 
ruexpush(fwhO); ! parse eo and put it on the stack 
if .del neg "do" 

then return error( ); 
ruexpush(fwhl); ! parse ej and put it on the stack 
fin("while-do",fwh); ! make a tree of the while expression 
end; 

*ruexpush(fif0 )is an abbreviation for the sequence of instructions <call flowan for 
preprocessing eo>; rund( ); expression( ); push(.sym); <call flowan for postprocessing eo>5 
where sym contains a lexeme for the expression scanned after the call on expression. 

**fin("if",fif) is an abbreviation for the sequence <call flowan for preprocessings 
sym<-makgt(Mif"); <call flowan for post processings 

Figure 5. Translator routines for if and while with flow analysis linkages. 

IV. 1.5a Theoretical Background 

We begin by considering the ordering relations inherent in a representation of a 
program P. There are several: the lexical order of the input text, the precedence-induced 
order of evaluation, both data-sensitive and data-insensitive order induced by control flow, 
and so forth. Two such orderings are important to the development. 

The first is the order that results from considering a program as a mapping from its set 
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of input variables to its set of output variables. This ordering, called the essential ordering 
and symbolized by ' V , is the ordering on evaluation of expressions that results from the 
application of the data flow and control flow semantics of a language L to the set of 
expressions E in a program P. The optimizations to be considered will regard the essential 
order as immutable. 

The second ordering allows the selection of subsets of the total set of expressions in a 
program which at a given point are of interest to an optimization strategy. A representation 
of a program defines (at least partially) an evaluation order on its set of expressions. The 
ordering inherent in this particular representation may or may not correspond to the 
-(-ordering. 

The initial ordering on a program is symbolized by V . Intuitively, the relation e < e' 
expresses the notion that in a straightforward evaluation (i.e., that performed by a classical 
one-pass, non-optimizing compiler) of this representation of the program, the evaluation of e 
would necessarily have preceded the evaluation of e\ Alternatively, the •<-ordering 
captures the notion of a linear flow of control passing through the related expressions. This' 
ordering reflects the precedence relationships of the program; it also reflects the sequential 
nature of execution as in the case of a compound expression. It does not, on the other 
hand, necessarily reflect the subnode relationship between nodes. Below we give a precise 
definition of the initial order for Bliss; other languages would require a different set of 
definitions. 

Definition 

The initial ordering on the set of expressions E of a Bliss program is defined as follows: 

Let e be a well-formed Bliss expression. Define S(e) = {e1 * E: e* <i e and e1 is a 
subexpression of e} u {e}. One of the following cases applies for e: 

ei <binop> e 2 : ei <i e, e 2 « e 
<unop> ei < e 
begin ej ; . . . ;e n end: < S(e j + i) (l<kn), e n < e 
case en of set e i ; ... ; e n tes: eo < e, eo < S(et) (l<i<n) 
if eo then ei else e 2 : eo < S(ei),eo < S(e2),eo < e 
select eo of nset ei:e 2 ; ... ; e 2 n _i :e 2 n tesn: 

e 0 < e, e 2 i _i < e 2 j (l<i<n), e 0 < S(e 2 i_i ) (l<i<n), 
e 2 i - i < S(e 2 i) (l<i<n) 

while ei do e 2 : ex < S(e2) 
do ei while e 2 : ei < S(e2) 
incr 1 from ei to e 2 by e 3 do 64: 

ei < e 2 < e 3 < e, ei < S(e2), e 2 < S(e3), e 3 < S(e4) 
eotei? > e n) : e» < Stej+i) (0<i<n), e n < e 
leave <label> with ei : ei <J e. 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

(7) 
(8) 
(9) 

(10) 
(11) 

Then e initial^ precedes e1 (notation: e < e') if and only if in the ^-transitive closure 
of E there is a subset {e x , ...,e k} such that e < ei < ... <J ek < e\ 
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In the case of simple non-control expressions the «-ordering reflects the precedence-
induced ordering of the binary operation. Most languages, however, contain control 
environments whose components are potentially <-order independent. Consider the 
following compound expression: 

(A *- ,B; C «- .D; E - .F), 

where A, F are distinct variables. Certainly the <-order of execution of these three 
assignments can be altered. For example 

(E *- .F; A <- .B; C - .D) 

produces the same effect. Even within the context of a simple expression such as 

.A * .B + .C * .D 

the commutivity of the V operator is reflected in the fact that the <i-order of the two 
multiplications is not defined. Nevertheless, the «-order still reflects the requirement that 
both products be evaluated before the addition. Our observations to this point on the 
<-order and <-order can be summarized by noting that in general the «-order is weaker 
than the «<-order, i.e., e -< e' implies that e <J e1 whereas the converse does not necessarily 
hold. In some instances the fact that e has been placed "before" e' (in the < sense) by the 
programmer is essential and sometimes it is not. The optimization strategies discussed 
below will alter the ^-ordering in a program. Since the validity of such an alteration is 
constrained by the -<-ordering, a means must be provided for expressing the validity of 
transformations of a program. Given a pair of expressions e, e' where e < e', two aspects 
of the essential ordering can be identified that decide the validity of an optimizing 
transformation re-ordering e and e'. 

Definition 

Let e i , e 2 * E. ej is a necessary constituent of e 2 (notation: ei < e2) if and only if (iff) 
(1) ei is a subexpression of e 2 , and 
(2) evaluation of e 2 requires prior evaluation of 

At first sight conditions (1) and (2) above may appear redundant. Indeed, if the 
language is Algol, they are redundant. However, in an expression language such as Bliss 
they are not (e.g. compound expressions). 

Definition 

Let e i , e 2 $ E. The expression ei is an essential predecessor of e 2 (notation: ei « e2) iff 
(1) ei < e 2 

(2) there exists a context such that the evaluation of the sequences {ei,e2} and {e 2} 
( { e 2 ? e l ) a n d ( e i } ) m a y produce distinct values for e 2 (ei). 
It is important to understand the relationship between the orderings < and « and the 
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-(-ordering. If these orderings are considered in their standard mathematical 
representations as subsets of ExE, then their relationship can be stated as; {-<} c {<} u 
{ « } . Hence it follows that if e < e' or e « e' then e -( e'; or equivalently if e does not 
precede e' in the -(-ordering then e i e' and e e'. 

Definition 

Let ei,e2 * E. e i is independent of e 2 (notation: ei o e2) iff ei i e 2 , e 2 + e i , ei <}fc e 2 , 
e 2 <jfc e i . 

Independent expressions are those whose -(-ordering is not determined by the semantics of 
the language. The usefulness of these primitive relations will become apparent during the 
discussion of the optimization strategies involving code motions. 

Next we introduce an equivalence relation called congruence on ExE which is an 
extension of the equality relation on E. Intuitively, two expressions are congruent if there 
exists a one-to-one correspondence between them that preserves the tree structure and in 
which the corresponding nodes are identical operators or terminals. More precisely, the 
elements of E, considered as nodes in the tree representation, can be decomposed into non­
terminal (N) and terminal nodes (T). Moreover T itself can be decomposed into names and 
literals. Hence congruence is defined as follows: 

Definition 

Let e, e' * E. e is congruent to e' (notation: e ^ e') iff either 
(1) e, e' i N, 

e[operator] = e'[operator], 
e[# of operands] = e'[# of operands] = n, and 
e[operandj] ^ e'[operandj] (l<i<n); 

(2) e, e' t T, 
e and e' are equal literals or identical names* 

The notion of common subexpression (cse), which specifies a subset of the collection of 
all redundant computations, is defined in terms of the primitives developed so far.** 

Definition 

e and e' are common subexpressions (cses) (notation: e = e') iff 

*The statement that e and e' are identical names is stronger than character string equality. 
Here we mean that they in fact refer to the unique variables accessible by that identifier 
within the present environment. 

**It should be noted that the concept of common subexpressions as defined here is a subset 
of the concept as it has been used in some earlier papers. We shall refer to the more 
global concept as "redundant expressions," which is consistent with yet other papers. The 
redundant computations not captured by our definition are covered by other notions 
introduced later. 
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( l ) e ^ e ' , 
(2) e < e' or e' < e, and 
(3) assuming e < e', V e" such that e < e" < e', e <fc e". 

The intuition to be conveyed by this definition of a cse is that if e = e', then (1) the 
values returned from the evaluation of e and e' are always identical and (2) the control flow 
of P is such that whenever e' is evaluated then e has been evaluated prior to it (or vice 
versa). The components of the definition mirror this intuition by saying that (1) e and e' 
are congruent, (2) the evaluation of e initially precedes e' (or vice versa) by definition of 
the <J-ordering, and (3) all the expressions that intervene between e and e' have the 
property that they do not produce side-effects that affect the value of e (equivalently: e') 
nor does e produce side effects on them. The latter condition says intuitively that the 
evaluation of e' is unnecessary since its value is available from the evaluation of e. 

The literature on object code optimization in the presence of control flow identifies a 
collection of optimization strategies called code motions. The collection of code motion 
optimizations about to be described are all predicated on a recursive inside-out approach for 
their detection. For example, in detecting code motions relative to an if-then-else control 
environment, the detection proceeds by first invoking the optimization on the "then" and 
"else" expressions. The optimization on each of these expressions will (1) detect the 
feasible optimizations within its own local environment, and (2) return information to be used 
in detecting optimizations relative to the if-then-else environment. This overall approach 
requires that a means be provided for stating precisely what information about the sub­
components of a control expression is required in order to detect optimizations for the 
control expression itself. The notion of a linear block, |S is introduced for this purpose. 
Roughly speaking, (3 corresponds to those subexpressions of e through which a linear (i.e., 
<-order) flow of control passes. 

Definition 

Let e < E and E' = {e1 i E: e' is a subexpression of e}. The linear block (S relative to e 
(notation: (3|e) is the set (3|e = {e* < E': e" < ej. 

Since in the context of the use of 0|e the expression e is quite often obvious, "|e" is 
simply omitted in most cases; otherwise, by convention, the linear block relative to ej will 
be denoted by (3j. In flow diagrams, linear blocks are depicted as unbroken vertical lines 
(flow passing from top to bottom): 

i » 

The following definition introduces three sets which make the succeeding definition less 

cumbersome. 



LEXSYNFLO 21 

Definition 

Let e $ (3, (3 a linear block. 
pro-dominator((3,e) = {e' < (3: e* < e, e' « e }, 
epi-dominator((3,e) = {e' < |3: e < e', e « e'}, 
post-dominator((3,e) = {e1 ( (3: e < e', e' <t> e}. 

The pro-dominator set contains those elements of (3 which initially precede e such that they 
produce a side effect on e or e produces a side-effect on them. The epi-dominator set 
differs from the pro-dominator only in that its elements initially follow e. Intuitively the 
pro-dominator (epi-dominator) contains those elements of (3 which prevent the movement of 
e backward (forward) to the head (tail) of (3 because they produce a side-effect on e or 
vice versa. The post-dominator set consists of those elements of (3 which initially follow e 
and are not independent of e. Hence the post-dominator consists of those elements which 
prevent the movement of e forward either because of a side-effects relationship or because 
their evaluation requires the evaluation of e. It follows from the definitions of " « " and " o " 
that: epi-dominator((3,e) £ post-dominator(|3,e). 

Definition 

Let (3 be a linear block. 
prolog((3) = {e « (3: pro-dominator((3,e) « 0}, 
epilog(|3) = {e * (3: epi-dominator(j3,e) = 0}, 
postlog((3) «= {e $ (i: post-dominator(|3,e) = 0}. 

Note that it follows immediately that postlog((3) £ epilog((3). 

Code Motion Optimizations 

We can now define various code motion optimizations. Consider, for example, a 
branching control construct of the form shown in Figure 6 where < functions as a selector 
among the n branches. This form of control represents both if-then-else and case types of 
control environments. 

The first feasible optimization exploits code motions out of the linear blocks (3i, .. . ,(3n 

to produce a flow diagram of the form shown in Figure 7. The linear blocks a and u> 
contain those expressions factored forward and backward from all of the branches, (3j. 

A primary goal of the development is to provide a means of concisely describing the set 
of feasible members of sets such as a and to. To that end an operator on the power set of 
E is introduced. 
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Figure 6. An n-way branching structure. 

€ 

Figure 7. a and w code motion. 
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Definition 

Let E i , . . . ,E n be subsets of E. The formal intersection of the sets Ej is defined as 

AEj = {e $ E: V i, l<i<n, 3 e } < Ej such that e as ej}. 

While formal intersection is different from ordinary set intersection the analogy should be 
obvious; it differs from set intersection in that the equivalence relation of equality of 
elements is replaced by that of congruence. 

The notion of formal intersection provides us with a powerful tool to concisely define 
the sets a and a>. 

Given a forked control environment with branches ei, ... ,e n, the domain of elements (a) 
available for pre-evaluation is described by: a £ A prolog((3|). The domain of 
elements {u>) available for post-evaluation is described by: to Q A postlog((3|). 

Moreover, 

Given a forked control environment with selector expression < and branches ej = e$) 
and ( V = /Vlej'., l ^ n . Then the set of expressions whose evaluation at the merge 
point would be redundant is the set: A epilogC<5 

The looping constructs we shall consider consist of a body (Si and a predicate to be 
evaluated on each iteration. We shall consider two types, a "while-do" form which has its 
test at the top of the loop and a "do-while" with its test at the bottom of the loop. These 
constructs are illustrated in Figures 8a and 8b respectively. Other forms of loops such 
as counting types can be modeled by these forms. 

The first optimization is the pre-evaluation of the "loop invariant expressions," i.e., 
those whose values do not change on any iteration of the loop. 

Given a loop control environment, the set of loop invariant expressions is described by: 
X = prolog((3) n epilog((3), where (3 is the linear block relative to the compound 
expression ((3i; fa) in the "do-while" case and (fo; 0i) in the "while-do" case. 

The description has intuitive appeal since it simply states that any expression whose 
evaluation is not affected by occurring either before or after the loop is not changed by 
execution of the loop. 

Cyclic Re-evaluations 

The cyclic nature of loop control gives rise to a particular class of "redundant" 
computations. Consider the example shown in Figure 9. Clearly the expression .A*.B is 
not invariant throughout the loop. However if the expression .A*.B were pre-evaluated at 
entry to the loop and stored in a temporary T and if after each computation of A or B the 
expression .A*.B were again evaluated in T, there would be no need to re-evaluate .A*.B at 
the top of the loop on each iteration. The restructured computation is shown in Figure 10. 
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Figure 8. "while-do" and "do-while" constructs. 

Figure 9. Sample looping construct. 
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T<-.A*.B 

.T 

A<-

T«-,A*.B 

.T 

.T 

Figure 10. p code motion in a loop. 

Given a loop control environment where |3 is the linear block relative to the expression 
(015 ft?) (Mdo-while") or (fai &i) ("while-do"), the set of expressions whose evaluations 
at the head of (3 are redundant to evaluations at the tail of (3 are described by the set: 
P = prolog((3) A epilog((3). 

Finally, let us point out how loops participate in the exposure of the set of redundant 
expressions to their surrounding environment. 

In the case of a "while-do" construct (Figure 8a) the set of expressions whose 
values are available on exit from the loop is the set epilog^; fe). 

For the case of a "do-while" construct (Figure 8b) the set of available expressions 
on exit is epilog («; (3i; fo). 
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IV. 1.5b FLO Implementation 

In the preceding theoretical background the importance of congruent expressions should 
be obvious. Therefore the structure of FLO has been organized to make the recognition of 
congruent expressions extremely efficient. Because it is efficient to do so, cses (in the 
sense defined above) are also detected at the same time. Figures 11 and 12 illustrate the 
data structures used for this recognition - principally a set of threads running through the 
tree representation of the program. 

GTHREAD (GT) 

FPARENT (FP) 

CSPARENT (CSP) 

FSTHREAD (FT) 

CSTHREAD (CST) 

VALIDITY 

Figure 11. Data fields for FLO. 
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Suppose the set of expressions in a particular program is denoted by E and that a 
subset of these, C, are congruent. Each element of E is a node in the tree representation 
of the program. One element of the set C is designated to act as the representative of the 
class and is called the "formal parent" of the class. Every element of the class contains a 
reference to the formal parent (FPARENT) field in Figure 11). Furthermore, the elements 
of C may be partitioned into one or more sets of cses, Co,...,Cn, each of which is a unique 
collection of cses. An element of each of the sets Cj is designated as the representative of 
the set and called its "cse parent." Elements of Cj all contain a reference to this 
representative (CSPARENT field in Figure 11). Elements of Cj are threaded together from 
the representative (through the CSTHREAD field) and CS-parents are threaded together 
from the formal parent (through the FSTHREAD field). Formal parents for expressions 
involving the same root operator are threaded together (through GTHREAD,Figure 11); this 
thread is rooted in an auxiliary vector called GTHASH. 

The following discussion is divided into two pieces which are actually merged in the 
implemenation. The first piece deals with the recognition of cses "on-the-fly;" that is, as 
the program is parsed and the tree representation program is built. The second piece of 
the discussion deals with recognition of additional redundant expression evaluations which 
cannot be safely recognized "on-the-fly" and with detection of feasible code motion 
optimizations. 

On-The-Fly Recognition 

Congruent expressions and (most) cses are recognized as the program is parsed and the 
tree representation is built. Two expressions are congruent iff: (1) they involve the same 
operator, (2) they involve the same number of operands, and (3) all of their corresponding 
operands are congruent. Therefore, to determine whether an expression which is just being 
built is congruent to an existing one the compiler searches the GTHREAD corresponding to 
the operator of the new expression. Each node on this list is the representative of a 
distinct equivalence class under congruence. Hence, for each node on the list the compiler 
tests to see whether the number of operands is identical to that of the new expression and 
checks whether the corresponding operands are congruent. Note that e = e' if and only if 
e[FPARENT] = e'[FPARENT] so the latter check is simple. If the new expression is not 
congruent to existing ones, the node is added to the GTHREAD thread as the representative 
(formal parent) of a new equivalence class; otherwise, a check is made to determine whether 
the new expression belongs to one of the cse classes. 

Expressions e and e' are cses, e = e', iff: (1) e ~ e', (2) e < e*, and (3) Ve" ) e < e" 
<J e', e e". The first condition, congruence, is detected as described above. The second 
and third condition are encoded in the VALIDITY field (Figure 11) in a manner which will be 
described below. The general strategy is, having detected that a new expression is 
congruent to one or more extant ones, to scan from the formal parent through the cse 
parents (via the FSTHREAD) to determine whether there exists one of these whose value is 
valid at that point. If so, the new expression is added to the appropriate set; otherwise, 
the expression becomes the cse parent of a new set. 

The validity field consists of six subfields as shown in Figure 13: 

PD "purged," one bit, set when node is permanently invalid for cse recognition. 
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Figure 12. FLO links in the Graph Table. 
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RM 
JM 

MM 

CRLEVEL 

MKLEVEL 

"real mark," one bit, set when node is invalid in the current linear block, 
"join mark," one bit, set when real-mark must be set at join of a forked 
construct. 
"must mark," one bit, set when effect of a side-effect must be noted later, 
"creation level," encoding of the linear block, j3, in which the expression 
was created. 
"mark level," encoding of the outermost linear block, (3, in which the 
expression was marked, i.e., invalidated. 

PD RM JM MM CRLEVEL MKLEVEL 

Figure 13. Subfields of VALIDITY. 

These fields are maintained, together with global variables CEILING and FLOOR, such 
that the value represented by a node is valid if: 

- P D A -RM A (CRLEVEL < CEILING) A (CRLEVEL > FLOOR) 
The encoding of the validity field is possible because of the fully nested (i.e., no goto) 
nature of Bliss and the "inside-out" invocation of the recognition mechanism. This 
mechanism will be explained in the context of the processing of two specific syntactic 
constructs; the if-then-else and do-while. Before describing the handling of these 
constructs, however, several aspects of the implementation must be described. 

(1) A global variable, LEVEL, is maintained such that its value is incremented whenever 
a new linear block is encountered and reset when the end of that linear block is 
detected. Therefore a necessary, but not sufficient,* condition for e < e1 is 
e[CRLEVEL] < e'fCRLEVEL]. (The variables CEILING and FLOOR assume values of 
LEVEL and define a "window," FLOOR < L < CEILING, in which "on-the-fly" 
recognition of cse's is possible. The interpretation of these variables will be 
discussed in context below.) 

(2) Whenever a side-effects producing operation, e.g., assignment or subroutine 
invocation, is encountered the "must mark" bit of nodes whose value depend upon 
the affected variables is set. As may be seen from the definition of validity given 
above, setting this bit does not invalidate the value of the node. The semantics of 
Bliss specify that the effect of side-effects need to be accounted for at prescribed 
places, notably at the semicolon. Hence, at the appropriate points a primitive, 

^ n ? 0 ^ 1 ! ? 1 5 n 0 t , S U f f i c i e n t s i n c e l i n e a r b l o c k s •* the same nesting level need not satisfy 
the .nrtia ordenng; for example, the then and else portions of the conditional are at the 
same nesting level, but neither initially precedes the other. 
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"markmmnodes," is invoked to convert MM-bits to RM-bits (at this time the mklevel 
field is also set). 

(3) The construction of the recursive-descent parser is such that any invocation of the 
driver, EXPRESSION, can be (optionally) preceded and/or followed by invocation of 
a context-specific flow primitive. The particular case of the conditional expression, 
for example, involves invocation of six flow primitives, tcHs* a s shown below. 

if then ei else 
T T T T T T 
fo h h h U h 

Ignoring the recognition of the OC and to sets described earlier, the flow primitives for 

the conditional expression are: 

f i : markmmnodes; increment (ceiling); 

f3: markmmnodes; refresh; 
f 4 : 
f$: markmmnodes; refresh; decrement (ceiling); join; 

where 
markmmnodes: Ve(e[rm] <- e[rm] v e[mm]; e[mm] <- 0); 
increment(x): (level «- level + 1; x <- level); 
refresh: Ve(if e[crlevel]> ceiling 

then e[pd] *- 1 
else if e[mklevel]> ceiling 

then(ef jm] *- e[jm] v e[mm] v e[rm]; e[rm] <- e[mm] <- 0)); 
decrement(x): (level «- level - 1; x «- level); 
join: Ve > efmklevel] > level (e[rm] «- e[rm] v e[jm]); 

The operation of this collection of routines is probably best explained by tracing its 
execution for the expression "if e<> then ei else e2." The boolean expression, eo, is an 
element of the linear block determined by the context in which the entire expression occurs. 
If eo contains uses of cses created earlier they will be recognized; new cses may be 
created in eo5 if eo produces side-effects, the MM bits of affected nodes will be set. After 
eo has been parsed, however, a flow primitive, f i , is invoked. One of the prescribed places 
in Bliss at which side-effects are to be accounted for is following a boolean expression, 
hence "markmmnodes" is invoked to set RM bits. At this point LEVEL and CEILING are 
incremented to reflect that a new linear block will be entered to evaluate e i . 

During the parse of ei cses will be recognized, potentially new cse parents generated, 
MM and RM bits set, etc. After ei has been completely parsed the flow primitive f$ is 
invoked and performs "markmmnodes" and "refresh." The purpose of refresh is: (1) to 
"purge" all nodes created "in the attic," i.e., with a creation level > CEILING, and (2) to set 
the "join mark," JM, bit of nodes invalidated in the attic (and simultaneously reset their RM 
and MM bits). During the left-to-right parse of the program we must assume that values 
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created on one branch of the conditional will not be available after the forks rejoin; hence 
the purge of nodes created in the attic (we'll come back and pick up values created on both 
branches later). On the other hand, nodes created prior to the branch and invalidated on 
one branch will be available for the other; hence nodes marked along the branch are reset 
to "valid" (RM reset to zero). The JM bit of these nodes is set, however, to serve as a 
reminder that the value of the expression will not be available after the forks rejoin. 

The else-branch, e 2 , is treated similarly. Notice, however, that neither CEILING nor 
LEVEL is altered since both branches, even though they are distinct linear blocks, are at the 
same nesting level. Also, after e 2 is parsed, LEVEL and CEILING are reset and "join" is 
invoked to set the RM bits correctly for nodes which were invalidated along either (or both) 
branches. 

The do-while expression invokes flow primitives fg-fg as shown below: 

ei do eo while 
T T T T 
F6 b fs F9 

where 

f$i increment (floor); 
F7: markmmnodes; 
fa* 
fg: markmmnodes; decrement (floor); 

Since, in the case of a do-while, both eo and ei are guaranteed to be executed at least 
once,there is major problem with "on-the-fly" recognition of cses. We wish to prevent 
recognition of expressions whose value may be valid on the first execution of the loop, but, 
because of side-effects later in the loop, will be invalid on the second and subsequent 
iterations. The manipulation of FLOOR, together with the definition of "valid" expressions 
given earlier, prevent recognition of such expressions. Values available prior to the loop 
and not altered by the loop are detected at a later stage in a manner which will be 
described below. 

Other Redundant Expressions and Code Motion Optimizations 

The detection of the remaining redundant expressions and feasible code motion 
optimizations hinges primarily upon formation of the prolog, epilog, and postlog sets 
described earlier. To facilitate the formation of these sets a new global variable, the 
"atomic-block-count" or ABCOUNT, is introduced. This variable monotonically increases 
whenever side effects are invoked; an auxiliary stack is maintained such that the top 
element of this stack contains the value of ABCOUNT when the current linear block was 
entered. Also, each symbol table entry for a variable in a program is augmented with two 
sets — CHANGELIST and USELIST. Whenever a value is changed as well, an entry 
consisting of the atomic block count and a pointer to the node at which the action occurred 
is made in the appropriate set. The sets themselves are represented by linked lists; the 
references are ordered in a manner which minimizes the search time for the intersection 
operators. 
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The prolog set consists of those expressions which have no essential predecessors in 
the block. This set is formed "on-the-fly" as the program is parsed. A newly formed node, 
e, belongs to the prolog of its linear block iff no previous operation in the linear block has 
had a side effect on the operands of e. There are three interesting cases: 

(1) e = ei<binop>e2: e * prolog(|3) iff e± * prolog((3) A e 2 * prolog((3) 

(2) e = .ei : e < prolog(|3) iff 

(a) ei is a variable and e[changed] < ABCOUNT Vx i 
CHANGELIST(e)(X[ABCOUNT] < ABC0UNT(j3)), where ABCOUNT(0) is the top of 
the auxiliary stack of ABCOUNT values described above, 

(b) or ei is an expression and ei d prolog(0) 

(3) e - <constant>: by definition, all constants are in prolog((3) 

Although these definitions are recursive, the information necessary to make the first 
test, (1), can be (and is) encoded in a single bit in each node. 

The epilog set consists of those expressions in a linear block such that no expression 
following them in the linear block has a side-effect pn them; that is, they are not the 
essential predecessor of any expression in the block. It follows from the earlier discussion 
of "on-the-fly" recognition of cses that 

e d epilog({3) iff e * (3 A PD A RM 

Thus, at the end of a linear block, a simple linear scan of the expressions is adequate to 

determine membership in epilog((3). 

The postlog set contains those expressions in a linear block which are neither essential 
predecessors nor necessary constituents of the expressions which initially follow them in the 
linear block. Since postlog(j3) Q epilog((3), it is only necessary to determine those nodes 
which are not necessary constituents of following nodes; in the case of Bliss the only 
candidates are non-value-producing components of a compound expression (e.g., e i , e 2 , 
e n - i in (ei; ...; e n _i ; en)) and hence a simple tree walk from the root of the linear block will 
detect the elements of postlog((3). 

Returning to the example of the conditional expression 

11 eo then ei else e 2 

T T T T T T 

fo h h h U h 

and concentrating only on those operations necessary to detect feasible optimizations not 

exposed in the previous section, we have 
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f2* pushflow; 
pri «- prolog; epi *- epilog; poA *- postlog; popflow; 
pushflow; 

fs : P?2 «- prolog; ep2 «- epilog; p©2 «- postlog; popflow; 
a p r i A pr2J to <- poj A p025 n «- epi A ep2? 

where: (1) "pushflow" increments ABCOUNT, pushes the stack of these values, and sets up 
a new prolog set: (2) "popflow" pops the stack of ABCOUNT values, creates the "prolog," 
"epilog," and "postlog" for the linear block and return a reference to them; and "A" is the 
formal intersect operator. Note, that the set "n" is the set of expressions created on both 
branches whose values are therefore available after the merge point; expressions whose 
values are available after the merge point, because they were created prior to the fork 
point, are handled by the mechanism described previously. 

Although we have avoided describing all the details of the implementation, we hope that 
the description is adequate to suggest the general approach. Before leaving the subject of 
FLO it should be re-emphasized that the only action taken is to detect feasible optimizations. 
The full tree representation of the program remains. Threads have been added to link 
together cses and separate lists have been built to identify feasible code motions,-but no 
transformations have been performed on the tree itself. Hence later phases, especially 
DELAY, may choose to exploit these feasible optimizations or not depending on context. 

IV.2. DELAY 

As mentioned previously, DELAY has three primary functions: (1) to determine the 
"general shape" of the ultimate object code to be produced, (2) to form an estimate of the 
cost of each program segment, and (3) to determine evaluation order for the expressions in 
a program segment. Although it is impractical to specify how each of these functions is 
implemented for each syntactic construct, detailed discussions of various important situations 
will be given. 

Before proceeding to details, however, an overview of the DELAY strategy is desirable. 
All of the various functions (subphases) of DELAY are performed on a single tree walk. 
Node specific routines are invoked on the way down the tree by the mechanism described in 
Section IV. 1.2; the general form of one of these node-specific routines is: 

(1) Determine whether the feasible optimizations discovered by FLO are, in fact, 
desirable in the present context. 

(2) Make some decisions concerning the nature of the "preferred shape" of the 
operands of this node in terms of the node type and the context in which it occurs. 

(3) Invoke the appropriate node specific routines on fine operands of this node passing 
"context" to them based on the decisions made in (2). 



34 
DELAY 

(4) Determine the "general shape" of the code to be generated for this node given both 
the context in which it occurs and the "general shape" of its operands (determined 
in (3)). 

(5) Estimate the "cost" of the code associated with the node (and its descendants). The 
estimated cost is expressed both in terms of code size and number of registers 
involved. 

(6) Determine the preferred evaluation order for the operands (if appropriate). 

At each level of this tree walk it is necessary for the node-specific routine to know 
something (not everything) about the context in which the specific node occurs. This is 
done by having each routine pass relevant context information to its descendants. Specific 
types of context information will be dealt within subsequent sections; some examples of the 
type of context information passed down from level to level are given below: 

(1) The kind of value needed: In certain contexts the value of given expression may 
not be needed at all, in other cases the result of an expression may be used to 
generate control flow, and finally, in many contexts the value of an expression must 
be a genuine bit pattern. 

(2) The kind of addressability required of the expression: The expression appearing on 
the lefthand side of an assignment operator must specify the address of a location 
into which a value will be stored. The expression on the righthand side of an 
assignment operator, on the other hand, must evaluate to the value to be stored. 
Because of asymmetries in most hardware the two contexts are not identical; hence 
the expression delayers must know which of the two contexts applies. 

(3) Sign preference: In many cases it is less expensive, locally, to generate the 
negative of a result rather than the value with its correct sign. In some cases this 
local optimality leads to global optimality and in others it does not, depending on 
global context. 

All of these will be explained in greater detail below. For the reader who may not be 
familiar with the instruction set of the PDP-11, Appendix A contains a brief description of 
the machine. 

1V.2.1 ^termination of Desirabje Feasibje Opjimizations 

The feasible o r a t i o n s detected by FLO ^ e X ^ ^ 
not all are. We shall illustrate using vanous cses. Consider, P 
assignment expression 

X<-.A 
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where ".A" is a cse. Generally the value of a common subexpression is loaded into a 
register; doing so, however, may not produce optimal code. If, for example, there are 
precisely two uses of the common subexpression. 

X «- .A 

If the value of ".A" is treated as a cse and loaded into a register, the following code would 
be produced 

MOV A,R0 
MOV R0,X 

MOV R0,Y 

If, on the other hand we ignore the fact that ".A" is a cse, we produce 
MOV A,X 

MOV A,Y 

Both code sequences occupy six words; however, the latter has two advantages: it 
involves one fewer instruction executions (hence is faster), and it avoids tying up a register 
over some span of the program (registers are a scarce resource on the PDP-11). If there 
were more than two uses of ".A", however, as a cse the situation would be quite different, 
as is illustrated by the following, more interesting, example: 

X «- ..(.A+4) 

where "..(.A +4)" is a cse. Following the usual strategy of loading the value of a cse into 
register would produce the following code: 

MOV A,R0 
MOV @4(R0),R0 

MOV R0,X 

We might, however, have produced the following code: 

MOV A,R0 
MOV 4(R0),R0 

MOV <E?R0,X 
Or the following: 

MOV A, R0 

MOV @4(R0),X 
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Which of these alternatives is best depends upon more global context. The first 
alternative requires four words of code to form "..(.A+4)1' in a register and no additional 
code for each use. The second alternative involves the same amount of code but involves 
an additional memory reference for each access. The third alternative involves only two 
words initially but requires an extra word of code for each reference. If there are only two 
references to M..(.A+4)" all three alternatives require the same amount of code, but the third 
is best since it requires one fewer instruction executions. If ".(.A+4)" is also a cse, the 
second alternative is best in terms of code size and requires one fewer registers. 

IV.2.2 Determination of Evaluation Order 

Consider the following arithmetic expression: a*b+(c+d)/(e+f). A simple left-to-right 
code generation scheme would produce code similar to the following: 

a*b -> Rl 
c+d -> R2 
e+f -> R3 
R2/R3 - R2 
R1+R2-*R1 

However, the following sequence will produce the same result and requires one fewer 

registers. 

c+d-»Rl 
e+f - R2 
R1/R2-R1 
a+b -> R2 
R2+R1 -> R2 

Obviously since (c+d)/(e+f) requires two registers but produces its result in a single register. 
the second of these may be used for the evaluation of a*b. Several authors [Nak67, 
Red69, Set70] have noted the advantages of rearranging the evaluation order in such cases 
and have given essentially equivalent algorithms for determining an evaluation order which 
minimizes the maximum number of registers used. These algorithms label each node with 
the number of registers necessary to evaluate that node (including its subnodes) and then 
specify that the preferred evaluation order (for a binary operator) is to evaluate that 
subnode which requires the maximum number of registers first, thus leaving enough 
registers free to evaluate the other subnode. 

The labeling algorithm is simple. Consider a binary expression d of the form 
" ^ b i n o p ^ " and let r « j ) be the number of registers required to evaluate t\. Then r(0, 
the number of registers required to evaluate the entire expression is: 

(1) r « i ) * r«2)s r ( 0 = max(r^i), r(^)). In this case the operand requiring the 
larger number of registers should be evaluated first, leaving r ( 0 - l 
registers free. Since the other operand requires at most r ( 0 - l 
registers no additional registers are required. The entire 
expression can be evaluated using only r(0 registers. 
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(2) r((i) «= r(^)* r(0 = rfc iM. In principle either expression may be evaluated 
first. Since the expression evaluated first leaves its result in a 
register only r « i ) - l will be left free. Since the other subnode 
also requires r(*i) registers the total number of registers required 
will be r fc iM. 

Unfortunately the algorithm described above does not account for the possibility of 
cses. In fact, no computationally reasonable algorithm (i.e., other than complete 
enumeration) is currently known to determine optimal evaluation order when cses exist. 
Therefore the Bliss/11 compiler uses an approximate technique which includes the scheme 
above as a degenerate case. 

Consider a node <o w»th subnodes <i and <2- Assume that the evaluation of <i will 
require three registers but, because it involves the last use of two cses, the evaluation also 
results in freeing two registers. Further, assume the evaluation of (2 requires four 
registers and does not involve any cses. Finally assume no new cses are generated. The 
situation is characterized by the diagram in Figure 14. Prior to the evaluation of *o s°me 
number of registers, r, will be occupied and following the evaluation, independent of the 
order of evaluation of *i and *2> r-1 (-r-2+1) registers will be occupied. (Two registers 
are freed by the evaluation of <i, but one extra is needed to hold the value of Our 
objective is to minimize the maximum number of registers, k, needed at any point during the 
evaluation process. 

r-1 

u 

<3,2> <4,0> 

Figure 14. Determination of number of registers required to evaluate ( 0 . 

The algorithm described above, which does not account for common-sub-expressions, 
would specify that «2 should be evaluated first; this results in k = r+4. However, if <i is 
evaluated first, only r-1 registers will be in use after its evaluation; hence we obtain 
k - r+3. 

The example suggests that for each node, if we knew how many cse values were 
"created" (first use) and "deleted" (last use) below that node a precise determination of the 
optimal evaluation order would be possible. Suppose each node, i n were labeled with a 
triple <Uj ,c j ,d j>, where: 
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U i = 

CI = 

registers "required" for the evaluation of ^ in the same intuitive sense as 
above; the derivation of form Uj is the purpose of the following analysis. 

total number of cses "created" during the evaluation of <j 

dj = total number of cses "deleted" during the evaluation of €j. 

Now consider a binary expression with nodes labeled as shown in Figure 15. Prior to the 
evaluation of <o some number of registers, r, will be "in use," i.e., holding the values of 
various partial results and/or cses. After the evaluation of fo> independent of the order of 
evaluation of di and r+l+(cj+C2-di-D2) registers will be in use. At some point during the 
evaluation of <o a n c * its descendants a maximum number of registers, r+k, will be in use; in 
general the value of k does depend upon the order of evaluation and this is the value we 
wish to minimize. 

R+K R + L + ( C 1 + C 2 - D 1 - D 2 ) 

^ ^ C P D ^ < U 2 , c 2 , D 2 > 

Figure 15. Determination of number of registers required to evaluate «0.. 

Under the assumption that c, and d, are known, which is equivalent to saying that the 
first and last uses of all common-sub-expressions are known, the number of registers that 
will be in use after each of « i and i2 are evaluated is: 

where 

&(0 « 0 if < is a terminal node 
1 if d is a non-terminal node. 

The number of registers required to evaluate <0 « <l * evaluated first, u 1 2 , and the number 
required if d2 «s evaluated first, u 2 i , are then given by 

u i 2 - max(ui,U2+l,I+n(*b*2)) 
U2i = max(ui+l, U2, I+n(*i>*2)) 
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where 

H(*i>*2) - 1 if both *i and <2 are terminal nodes and/or cses which 
are not last uses (i.e., neither register may be re-used) 

0 otherwise 

Clearly we will choose the evaluation order depending upon whether U12 is smaller than 
U21 or vice versa. The labeling scheme is then 

u 0 = min[max(ui,u2+l, I*r?«i,<2)), max(ui+l,u2,I+n(<i,<2))] 
C 0 « C i + C 2 + 7 ( ^ ) + 7 ( « 2 ) 

d 0 = di+d2 • X « i ) A « 2 ) 

where 

7(0 * 1 if i is a cse creation 
0 otherwise 

\ (0= 1 if < is the "last use" of a cse 
0 otherwise 

Unfortunately this scheme cannot be used. It depends on knowing which are the first and 
last uses of cses. This information cannot be known until the evaluation order is fixed, and 
hence cannot be used to determine the evaluation order. The analysis does, however, 
suggest the approximate technique used in the compiler. 

For various reasons the compiler requires that the creation of a cse value be done by 
that instance of the expression which occurs earliest in the initial order; hence Cj is known. 
It does not, on the other hand, specify which is the last use; hence, dj cannot be 
determined exactly. However, if nj is the number of occurrences of a cse, then l/(n s-1) is 
the probability that any particular use is the last. The compiler uses exactly the algorithm 
implied by the analysis above except that it substitutes 

\ « j ) = l/(n|-l) if <j is a cse use (not creation) 
0 otherwise. 

It should be noted that the algorithm is exact if no cses are present (nj = 2). 

In addition to the evaluation order determinations based on register usage, another set 
of evaluation order decisions are based on a measure of the code complexity of the 
subnodes. We shall consider two cases: the order of evaluation of the operands in a 
boolean expression and the order of placement of the then and else portions of a conditional 
expression. 

The semantics of Bliss specify that: (1) the operands of a boolean (notably and and or) 
may be evaluated in any order, and (2) a boolean which produces a flow result (e g , in th"e 
boolean expression of a conditonal) need only be evaluated as far as necessary to determine 
truth or falsity of the expression. Therefore, in a construct of the form " i f ^ and i2) 
then... it is advantageous to first evaluate whichever of ^ and <2 is most likely to 
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determine the falsity of "<i and dz w ' th the least effort. Lacking knowledge of the 
probability of the truth or falsity of the expressions $1 and ^ 2 independently, the compiler 
simply chooses to evaluate the least complex one first. Note that the issue of register-use-
complexity is irrelevant here since the and itself need never be formed. The complexity 
measure used is the (approximate) amount of code required to evaluate the operands. 

The pecularities of the target machine give rise to another use of the code-complexity. 
Consider the conditional expression 

il *0 then *i else (2 

which is obviously equivalent to 

if D2t *o then * 2 else <i 

Normally one would not expect one of these forms to be preferable to the other (unless, of 
course, a symmetric set of relational operators were not available). However, the fact that 
the conditional branch instruction on the PDP-11 can branch only a short distance makes 
whichever form places the smaller (less complex) code segment in the then portion more 
advantageous. 

IV.2.3 Target Paths and Unary Complement Operators 

These two topics will be discussed together since they are frequently, but not always, 
related. In particular in this section we shall choose our examples from the plus, "•", 
operator where the two are inextricably intertwined. 

Consider a binary expression, whose operands are ( i and <2- Suppose that the 
results of and <2 are available in temporary locations (registers) h and t2 respectively and 
that the results of the entire expression is to be produced in t<>. If the operator of «o, call 
it opo, is commutative, two instruction sequences are possible:* 

(1) ti - » t 0 ; t 0 opo t 2 - » t 0 

or 
(2) t2 -* t 0 ; t 0 opo ti ~> t 0 

We refer to a subnode as lying on the "target path" of its ancestor if the value of that 
node is first moved to the ancestor's temporary and then operated upon by its sibling; thus 
in d M i is on the target path.** 

*In this section we are purposely avoiding the question of whether <i or iz » s evaluated 
first; see Section IV.2.2. 

**It is clearly advantageous for a node on the target path and its ancestor to use the same 
temporary location (in which case the move can be eliminated); see Section IV.3.1. 
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The term "unary complement operators" seems to have been introduced by [Fra70]. 
More formal treatments than will be given here may be found in [Set70] and [Bea72]. The 
term refers to the fact that the properties of real numbers and boolean values may be 
exploited to reduce the complexity of evaluating certain expressions. Identities such as t h e 
following a r e used: 

(1) x - y = x+(-y) 
(2) x - y = - (y -x) x,y are real (or integer) values 
(3) x*y s (- x)*(-y) 
(4) a A b « ~-(~av~b) a,b are boolean values 

The set of identities exploited may also be extended to include those related to the machine 
repesentation of values such as, for two's complement machines, -a » ^a+1. 

The term "unary complement" is derived from the properties of negate and complement 
that they are their own inverses, e.g., —a • a. However, the term is also applied to those 
cases in which one of these operators may be subsumed into a binary operator at a higher 
level in the tree. To see the effect of these transformations consider the expression "-
y*(a -b) '\ A simple left-to-right evaluation of this expression would produce code of the 
form: 

y Rl 
-R l -* Rl 
a -+ R2 
R2-b-»R2 
R1*R2 -> Rl 

By applying identities (2) and (3) given above it is possible to rewrite this expression as 
y*(b-a) which produces 

y -> Rl 
b - R2 
R2-a -> R2 
R1*R2-+R1 

By further changing the evaluation order to "(b-a)*y" as specified in above we obtain 

b -> Rl 
Rl-a -» Rl 
Rl*y-*R1 

In order to apply these transformations it is not necessary to perform actual 
transformations of the tree; rather a set of fields may be added to the tree to specify 
which, if any, transformations have been performed. In the remainder of this section we 
shall concentrate on the binary plus operator and its interaction with the unary negate and 
with common-sub-expressions. For these transformations the following set of fields are 
adequate: 
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NEG (1 bit) = 0 the result is "correct," i.e., has the same sign as specified in the 
source program 

1 the result is the negative of that specified in the source program 

NDT (1 bit) = 1 the result is not contained in a "destroyable temporary;" this will 
be true of all programmer-defined variables and common-sub­
expressions 

0 the result is contained in a "destroyable temporary" 

TPATH (1 bit) = 0 the target path is the left (natural) descendant operand 
1 the target path is the right descendant operand 

NLOD (1 bit) • 0 load the value of the target path operand with sign unmodified 
1 load the negative of the value of the target path operand 

OP encoding of the operator to be performed 

The transformations to be described will utilize the NEG and NDT fields of the operands 
of a node to determine the NEG, TPATH, NLOD, and OP fields of the node. To make an 
intelligent determination, however, it is necessary to know something about the global 
context in which the expression represented by the node occurs; in particular for a ' V node 
it is necessary to know whether, in the context of its immediate ancestor, it is preferable to 
develop the positive or negative of the value represented by the "+" node in the source 
program. Therefore whenever a delay routine is called the caller may specify its 
preference for various attributes of the operand. In the particular case of the sign of an 
operand the caller may specify: (1) the correct sign is preferred (but the opposite sign is 
acceptable), (2) the opposite sign is preferred (but the correct sign is acceptable), (3) the 
correct sign must be generated', or (4) either is equally acceptable. 

For the purposes of this section the delay routine for the plus operator has the 

following structure: 

(1) determine sign preference for one operand (e.g., the "left" one) 
(2) delay that operand, passing sign preferences from (1) 
(3) determine the sign preference for the other operand 
(4) delay that operand, passing sign preference from (3) 
(5) determine NEG, TPATH, NLOD, and OP based on caller's sign preference and the 

attributes of the operands. 

A full explanation of the determination of sign preference in (1) is rather tedious but is 
based on considerations such as, if the caller prefers the negated result, it is preferable for 
at least one operand, and possibly both, to be negated. Decision tables for the sign-
preference decisions are given in Figures 16 and 17. 

After the operands of a V 1 node have been delayed it is possible to use a decision 
table such as that shown in Figure 18 to determine the NEG, TPATH, NLOD, and OP fields 
of the "•" node itself. While most of this table should be obvious, a few things should be 
noted: 
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GIVEN PREF 
CONTEXT NDTL NDTR 

PREF 

DON'T CARE 0 0 + 
or 0 1 + 

POSITIVE 1 0 + 
PREFERRED 1 1 + 

0 0 — 

NEGATIVE 0 1 
PREFERRED 1 0 -

1 1 -
0 0 

MUST BE 0 1 + 
POSITIVE 1 0 -

1 1 • + 

Figure 16. Sign preference for left operand of V \ 

(1) As noted earlier, it is advantageous for an ancestor node and its target path 
descendant to use the same temporary location. Although the advantage is not 
enforced at this point in the compiler the prototype code shown in the code field 
assumes it will be exploited; this was done to accent the situations in which an 
explicit move is required. 

(2) In some cases the caller's sign request cannot be satisfied without additional code. 
It should be clear that it never requires more code to modify the sign at a higher 
level in the tree; hence, since these requests are not binding, the caller's 
preference is ignored. 

(3) In two cases the caller's preference could be satisfied without additional code by 
using a "load negative." The PDP-11 does not have such an instruction, however, 
and hence the request is not honored. These two cases would be changed for a 
machine for which "load" and "load negative" incurred comparable costs. 

The actual implementation of the decisions represented by Figure 18 consists of 
computing an index (based on the caller's sign preference, NEGi, DTi, NEG2, and DT2), 
using this index to extract the information represented in the table and storing the extracted 
information into the node. 
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GIVEN 

CONTEXT NEG, DT„ DT r 

PREF 

DON'T CARE 
or 

POSITIVE 
PREFERRED 

0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

DC 
DC 
+ 
DC 
+ 
DC 
+ 

NEGATIVE 
PREFERRED 

0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

DC 

+ 
DC 
DC 

DC 

MUST BE 
POSITIVE 

0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

DC 
DC 
+ 
DC 
+ 
+ 
+ 
+ 

Figure 17. Sign preference for right operand of "+". 

IV.2.4 Other Delaying of the Plus Operator 

Other delaying operations are possible on addition besides those described in the 
previous section; in particular, the indexing portion of address calculation provides a 
potential implicit addition. Exploitation of such operations is highly machine specific. Thus, 
while optimizations analogous to those described in this section are possible on most 
machines, the details will vary widely (on machines such as the IBM 360, for example, 
where double indexing is possible). Because of the machine specific nature of these 
optimizations we shall assume that the reader is familiar with the PDP-11 addressing 
structure. 

To see the effect of these optimizations, consider the following trivial program: 

(EXTERNAL A,B,C; A«-.(A+.B+3+.C)+4) 
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Figure 18. Target path and unary complement decision for 
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The code produced by the compiler for this example is: 

MOV mC,Rb 
ADD (fi>#B,R5 
MOV A+3(R5),R5 
ADD *4,R5 
MOV R5,A 

Examination of this example will show that both "A+" and "+3" were performed implicitly by 
indexing in the MOV instruction. 

In order to perform this type of optimization two kinds of information are necessary -
the context in which the expression occurs and the "state" of similar optimizations performed 
on its operands. Once again, although some of the optimizations are applicable to other 
operators, we shall focus on the plus operator for a concrete example. 

Because of asymmetries in the PDP-11 addressing structure, and, indeed, in that of 
most machines, it is desirable to distinguish two contexts in which an expression may occur; 
that of an operand and that of an address. Consider the expression ".A+4" in the two 
examples below and the difference in the code produced for each: 

(a) X «- .A+4 (b) X +- .(.A+4) 

MOV A,X MOV A,R0 
ADD #4, X MOV 4(R0), X 

In (a) the expression ".A+4" is an operand and its value must actually be generated 
somewhere. In (b) the value of ".A+4" is not needed explicitly - only implicitly in forming 
an address - and thus may be formed when needed by the indexing operation. 

Since the ancestor of a node is aware of the context in which its descendant occurs, 
context information is passed down from ancestor to descendant by the mechanism which 
should be familiar by now. The descendant, in turn, passes context information to its 
descendants and generates code (if any) as appropriate on the basis of the state of its 
descendants, sets its own state and returns to the ancestor. In the particular case of the 
address vs. operand context, four context specifications are permitted: 

(1) operand Code must be generated, as in example (a) above, to form the 
value of the expression. 

(2) temporary This is essentially equivalent to the "operand" case except that 
the value must be generated in a compiler-generated 
temporary, i.e., a register. This case is used almost 
exclusively for frequently used cses. 

(3) address Exploitation of indexing, etc., is possible and desirable. 

(4) arbitrary Either form is allowed and the called routine is free to 
generate the "least expensive" form; the caller will generate 
appropriate code if he doesn't like what he gets back. 
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The delaying actions in the case that an "operand" (or "temporary") is requested are 
controlled exclusively by the target path, unary complement operators, and evaluation order 
discussed previously; here we will focus on "address" (or "arbitrary") requests. For these 
there are six "interesting" states which correspond, roughly, to addressing modes which may 
be optimized further; they are: 

These are simple literal values. 

These are names which will have an absolute 
address when the program is loaded. They would 
be equivalent to literal values except they involve 
an unknown, and unknowable, relocation constant. 

The value of the node is contained in a temporary, 
i.e., a register. 

The value of the node is the result of adding a 
literal to a value contained in a temporary; i.e. 
indexing is indicated. 

TRN temp + relocatable name Similar to TL except, again, for the unknown 
relocation constant. 

Z other All other cases. 

The state for an expression is determined from the states of its operands. Rules for 
deriving these states are given in Figure 19. Each entry in this table contains three pieces 
of information (the first and/or third of which may be empty): the code produced (if any), 
the new state, and the compile time operations necessary to derive the parameters of the 
new state. In order to describe these attributes of the state transition To, T i , and J2 are 
used to name the temporary of the node and its left and right operands respectively, Lo, L i , 
and L 2 denote the corresponding literal parameters associated with the T and TL states; and 
No> Ni , and I M 2 denote the corresponding relocatable names associated with the RN and TRN 
states. For example, consider the expression *o which is actually " * i + * 2 > " a n c* assume that 
the content for <o requires an "address." Further suppose that the states of <i and i2

 a r e 

TL and TRN respectively. Then the table specifies that the contents of the two temporaries 
should be added together and the resulting state should be TRN with the resulting name 
differing by a (known) constant amount (Li). 

The effect of these transformations in a larger context may be seen by returning to the 
example introduced at the beginning of this section: 

(EXTERNAL A,B,C; A <- .(A + .B + 3 + .C) + 4) 

The tree of the assignment expression is shown in Figure 20 with its arcs labeled by 
the context information which would be passed down (a = address, 0 s operand, b s 

arbitrary). The states of the nodes and code generated for each are shown in Figure 21. 
It should be noted that: 

L literal 

RN relocatable name 

T temporary 

TL temp + literal 
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Figure 19. Exploitation of addressing modes in a "•' 



DELAY 
49 

(1) New temporaries (Ti,T2J3) a r e introduced only where explicit code is generated. 
Otherwise the temporaries are assumed to propogate up the tree. (In fact, 
comparison of the tree with the code shown earlier shows that all the temporaries 
have been bound to the same register, R5.) 

(2) Note the transition of the highest V node is different - the transition is not given 
in our table because the V ' node receives an "operand" request from the V " 
node. 

A 
A 

A 
A 

A 
B 3 

Figure 20. Tree of example program with context information. 
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/ \ -
A(RN) + (T) T 3 . - . T 2 + 4 

/ \ 
. (Z ) 4 (L) 

+ (TRN,N=A+3) 

/ \ 
A(RN) + (TL,L=3) T ^ + . B 

. ( Z ) + CTL,L=3) T ^ C 

/ \ 
B(RH) 3(L) • (Z) 

C(RN) 

Figure 21. Tree of example program with state information. 

IV.3. Temporary Name Binding 

The phases TLA, RANK, and PACK are collectively referred to as "temporary name 
binding," or TNBIND. The function of these phases is to allocate temporary storage 
locations, both registers and memory. The majority of these temporary locations are used 
for generating and holding intermediate results and common-sub-expressions; however, 
explicitly declared "local" and "register" variables are assigned by the same mechanism. The 
compiler makes virtually no distinction between compiler and user defined temporaries, and 
none will be made in this discussion. 
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TNBIND consists of three phases. The first, TLA, creates "temporary names," TN's, to 
represent the location in which results will be held; at this stage the TN's are not bound to 
actual locations - they are purely symbolic. During TLA a "targeting" strategy attempts to 
insure that results will be placed in optimal locations (see below) and information is gathered 
on how the temporary is used and on the "lifetime" of the temporary. An optimization 
unrelated to TN binding, that of label targeting is also performed during TLA. The second 
phase, RANK, uses the information gathered by TLA to create a list of all TN's in order of 
their "importance." The final phase, PACK, actually assigns (binds) the TN's to actual 
locations - it does so by binding the most important TN's first to the most desirable 
locations. Each of these phases is described in more detail below. 

IV.3.1 TLA 

The discussion of TLA is divided into five pieces: targeting, cost determination, lifetime 
characterization, the run-time stack, and label assignment. 

lV.3.1a Targeting 

Consider the following simple program: 

(own x,y; routine f(z) = (local I; l<-.x+.z; .1);...) 

The tree for the routine is shown in Figure 22. For convenience the nodes in this tree 
have been labeled in the order that they would be encountered while backing out of an 
execution-order tree walk. In principle, of course, a*unique temporary name could be 
associated with each node plus one additional TN for the local variable, I. To do so, 
however, would lose much of the structural information available in the tree. One of the 
prime goals of TLA is to avoid such loses. 

TLA is organized as a set of mutually-recursive, node-specific action routines. An 
execution-order tree-walk is performed invoking these routines at each node in a manner 
analogous to that in DELAY. Each routine is passed a (possibly null) TN as its "target." If 
possible and reasonable, the node-specific routine will use this target TN for the result of 
its node. It does so by passing the target TN to the routine which will handle its "target-
path" sub-node — recall that the "target-path" was determined in DELAY. Upon return 
from the action-specific routines for its subnodes, which will assign TN's for their results, it 
is necessary to resolve the target request from above with what was actually done below. 
In the simple case the target path will have been assigned to the target TN, and that TN will 
be used for the current node as well. Other cases are more complex and will be discussed 
below; however, first let's return to our example. 

The root node "8:routine" has no ancestor and hence is not passed a target. The 
node-specific action, however, knows this and also knows that the value of a routine is 
returned in a standard place. It therefore creates a TN, say to, and passes this as a target 
to its subnode. The node specific action for compounds passes no targets to all but the last 
subnode; the last subnode is passed the target from above. The node specific action for 
store, V " , is quite complex, but in cases such as that shown will pass the location of the 
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8:rout ine 

7:compound 

3: . 

Figure 22. Tree of example routine. 

left-hand-side as a target to the right-hand-side. Thus after the compound the state is 
characterized by the diagram in Figure 23 in which targets are shown by directed arrows 
adjacent to the tree and assignments are indicated in parentheses next to the node. Notice 
that the "compound" had to resolve the request that its result be placed in to with the fact 
that its last subnode placed its result in t[. Such resolutions are invariably made in favor of 
leaving the value where it is since at most one "MOV" is implied and it might as well be 
generated higher in the tree. However, at this stage we can note that it would be "nice" if, 
even though to and ti are distinct temporary names, they were bound to the same location. 
Therefore another mechanism, "preferencing," is introduced. If two or more TN's belong to 
the same preference class they will (if possible) be bound to the same location by PACK. In 
particular, for this example it is possible to use the same register (R0) for both the value of 
the routine and the local " I " , and the code produced for the entire routine is: 

F: MOV Z,R0 
ADD 
RTS PC 

X , R O 

With this introduction to the function of TLA we can return to the complexit.es of TLA 
complexities arise because 0 . node-specific ,d,osyncrac,es and 

S ^ ^ p r i s s t o r i s . The generic form of node specific act.ons ,s (roughly). 

http://complexit.es
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1 

7: compound (t. j) 

Z : . (A) 3 : . ( t 2 ) 

Z X 

Figure 23. Tree with temporary names assigned. 

if u(node) then  
begin 
if c(node) then target «- A 
{perform node-specific action, place actual binding in tn}; 
if c(node) then binduses (node,tn); 
end 

where 

u(node) • true iff the node is a common-sub-expression use. 
c(node) = true iff the node is a common-sub-expression creation, 
binduses binds all uses of a given common-sub-expression creation to the same 

TN as the creation. 

Nodes which represent neither uses nor creations of common-sub-expressions are handled 

8 : rout ine ( t n ) 
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as described previously. Uses of cse's, on the other hand, are simply ignored since their 
temporary names are assigned when the creation node is handled. Creation nodes ignore 
their target in order to insure that later ranking and packing treat the cse as an independent 
entity. 

It is impossible to treat all of the node-specific actions; however, two will be discussed 
as examples - the "typical" binary operator and if-then-else. These were chosen to 
illustrate the difference between arithmetic and control operators. In order to present 
these examples some functions and predicates are needed: 

functions 

tla(node,target) invoke the appropriate node-specific action on the specified node, 
passing it the specified target TN. TLA returns a (possibly 
different) TN. 

gettn create a new temporary name and return it. 

wantpref(t l,t2) form the union of the preference classes of the temporary names 
t landt2 . \ / 

bindset(set) 

predicates 

&(node) 

perform the "tla" operation on each node which is a member of the 
specified set; this function is applied, for example, to the a and u> 
sets associated with an if-then-else. 

true iff the result specified by the node is "destroyable," i.e., is 
not a us^r-defined variable or cse with remaining uses. 

T(nodej) true iff the ith subnodeof the specified node is its "target path." 

tnneeded(node) true iff a result temporary is needed for the specified node. 

Now consider a binary node, <, with subnodes i± and <2- The node-specific action is: 

TN*-target; 
Mia « i , jf T « i ) then TN else A); 
r«-tla « 2 , if *«2) then TN else A); 
temp«-A; 
if TN=A then 

if T ( « i ) then (if then TN*-I else temp«-l) e\se 
if T(«2) then (if &K2) then TNf-r elsq, temper); 

if tnneeded(Q then J 

(if TN=A then TN«-gettn( ); wantpref(TN,temp)); 

Thus the action is first to perform "tla" on the subnodes, passing the target down along the 
target path. Next, if there was no target, the resultant TN for the target path is closen if it 
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is destroyable. If, on the other hand, there was no target and the TN on the target path is 
not destroyable, a new temporary name is created and added to the preference class of the 
target-path result. 

Now consider an if-then-else node, (. Such a node actually has five subnodes 

where <i is the cc-set, i2 the boolean, i$ and U are the then and else parts, and (5 is the 
a;-set. The node specific action is: 

bindset«i); 
t la« 2 .A) ; 
tt«-tla«3.A); 
te*-tla«4,A); 
if tnneeded (0 then (TN«-gettn(); wantpref(TN,tt); wantpref (TN,te)); 
bindset (̂5); 

This coding is, perhaps, surprising in that it makes no use of the target. Perhaps one might 
have expected something of the form 

TN«-target 
bindset«i); 
tlaK2,A>; 
tt«-tla («3,TN)i 
te<-tla «4 ,TN) ; 
if TN = A a tnneeded (0 then TN«-gettn( ); 
if TN * tt then wantpref (TN,tt); 
if TN * te then wantpref (TN,te); 
bindset «s ) ; 

This form would, indeed, be more consistent with the targeting philosophy. However, 
experience has shown that the latter form will tie up a temporary name over too great a 
span of the program. 
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IV.3.1b Cost Determination 

Each temporary name may be used more than once and may be used in each instance in 
one of several ways - e.g. as a simple value, as an index quantity, etc. In the case that 
there are insufficient registers to hold all the temporary values needed at one time we 
would like those in registers to be the "most important" ones and those in memory to be of 
lesser importance. We have chosen to define the importance in terms of a cost measure. 
The measure currently used is: 

C • E (1 + m(node) * a (node) * (loopdepth + 1)) 
uses 

where 

m(node) is a measure of the number of memory references implied in accessing 
the result represented by the node and is implied by the addressing 
mode determined by DELAY. For example, register mode has a cost of 
0, deferred register mode has a cost of 1, deferred indexed mode has 
a cost of 3, etc. 

a (node) is a measure of the number of instructions which will be generated to 
implement a given node; this measure is usually 1, but can be 
considerably larger for a bit-field extraction (for example). 

Actually two such measures are accumulated during TLA - a "max" and "min" version. 
The two versions are identical in form, but differ in that one (max) assumes the temporary 
will be allocated in memory, and the other (min) assumes the temporary will be allocated to 
a register. 

Notice the term "loopdepth + 1" tends to heavily weight the importance in favor of 
temporary names which occur inside loops. 

IV.3.1c Lifetime Determination 

The characterization of the lifetime of a temporary is one of those extremely important 
problems for which no truly satisfactory solution exists in the literature. The simplest 
scheme is to characterize the lifetime in terms of a linear span from its earliest to latest use 
in the program. This scheme is unsatisfactory in the context of forked constructs. 
Consider, for example, 

... t ... if (3 then 7 else (... < ...) 

The linear measure would prevent the use of the location of the expression V 
throughout the entire body of V even though this might be legitimate. The other extreme 
is to characterize the lifetime of a location along each possible flow path. While this affords 
a complete solution, it entails recording a great deal of data. The scheme used in the 
Bliss/11 compiler is a compromise which has worked quite satisfactorily. 



Temporary Name Binding 57 

During TLA each node is labeled with two values, a "Ion", or "linear order number," and 
"fon", or "flow order number". The Ion is a unique, monotonically increasing value assigned 
in execution order. Thus the Ion specifies a relative position in the final program where the 
code for a specific node will go. The fon, on the other hand, monotonically increases along 
a flow path but is the same for the head of each branch eminating from a fork. The 
<lon,fon> pairs for a hypothetical case expression are illustrated in Figure 24. 

<2,2> 

<3,3> 

<4,4> 

<5,5> 

<6,6> 

<7.7> 

<1 ,1> 

<8,2> 

<9,3> 

<10,2> 

<11,3> 

<12,4> 

<13,5> 

<14,8> 

Figure 24. Lon-fon values for a case expression. 

Since fon<lon, the set of possible <lon,fon> pairs is representable by the set of points 
on or below the diagonal in the first quadrant of 2-space as shown in Figure 25a. We 
choose to represent the lifetime of a temporary name by four points which define a 
rectangle in this space - its Ion and fon values of first and last use (lonfu, lonlu, fonfu, 
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fonlu). This lifetime may be seen graphically in Figure 25b. Two temporary names are 
considered contemporaneous if the rectangles representing their lifetimes intersect. In such 
a case they cannot be allocated to the same location. 

0 o 
<4-l 

fonlu 

fonfu 
/ l i f e t ime > 
/ / / / / / / / 

lonfu 
I 
lonlu 

1 

T 
Ion 

4 5 Ion 

Figure 25. Graphical representation of the lon-fon space. 

The lonfu, lonlu, fonfu, and fonlu are noted during TLA as the temporary names are 
assigned to nodes by a function "span" invoked by each node-specific action routine. In 
particular, "span" is invoked on the subnodes of a given node in order to establish that the 
result represented by the subnode is still "in-useM at the parent. 

IV.3. Id The Run-Time Stack 

Generally this paper has avoided the description of the run-time environment for 
compiled programs. This section will deviate from that practice in order to describe one of 
the more important issues treated by TNBIND. The environment of a routine consists of a 
stack containing (possibly) some local variables, saved registers, return address, and actual 
parameters of the routine as illustrated in Figure 26. A single register, SP, points to the 
current top of this stack; no other pointers into the stack are maintained, hence all items in 
the stack are indexed relative to this register. A typical routine call Mf(.x,.y)" for example, 
produces 

MOV X,-(SP) 5 PUSH X 
MOV Y,-(SP) ; PUSH Y 
JSR PC,F ; CALL F 

This places the actual parameters and return address on the stack and transfers control to 
the routine T \ The body of T\ in turn, saves registers, creates and deletes locals, etc., 
and pops the return address off of the stack when it returns. Now, the point of all this is 
that neither the called routine nor the caller removes the actual parameters - not right away 
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SP = r6 SP = r6 

locals 

saved 
r e g i s t e r s 

r e t u r n address 

actual 
parameters 

/ / / / 

Figure 26. The runtime stack. 

at least. Rather, the caller leaves these two locations on the stack for possible use for 
either temporaries or locals. The effect of this strategy is illustrated by the following 
example: 

routine r(x)= 
begin local a,b; 
a*-f(x); b*-g(); 
return .a+.b 
end; 

The code produced for this routine is: 

R: MOV X,-(SP) 
JSR PC,F 
MOV R0,@SP 
JSR PC,G 
ADD (SP)+,R0 
RTS 

PUSHX 
CALL F 
STORE VALUE OF F IN A 
CALL G 
FORM .A*.B 
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In this particular case the local "a" is allocated to the location "created" by the parameter 
push from "f(.x).M the local "b" is allocated (because of the targeting/preferencing 
mechanism described earlier) to R0. Notice that in this case the created local is also 
deallocated "for free" by the auto-increment addressing in "ADD (SP)*,R0." The mechanism 
which achieves this is described later in the section on FINAL. 

In order to exploit this optimization the compiler must keep track of the number of 
"dynamic temporaries" created by pushing parameters and must occassionally generate code 
to remove some or all of them. In particular, dynamic temporaries must be removed: (1) at 
the "bottom" of a loop - so that the stack depth will be the same for the next iteration, (2) 
at the "join" of a forked construct - so that the stack depth will be the same through all 
paths leading through the join,* (3) whenever the number of such temporaries seems 
"unreasonably large." 

The "dynamic temps" are implemented by simulating the stack at compile time. The 
node-specific routine for actual parameters "opens" dynamic temps for parameters. These 
are "closed" again at the points mentioned above, e.g. at the bottom of loops, etc. "Open" 
and "closed" periods for the dynamic temporaries are represented in a manner to be 
described below in the section on PACK. Information is passed to the code phase to effect 
run-time stack adjustment in a field in each node. TLA sets this field, the "dynamic-temp-
depth" field, to the depth of the simulated stack at that point in the program. The code 
phase emits instructions to adjust the stack whenever its simulated stack depth differs from 
that set in the node. 

IV.3.1e Label Assignment 

Label assignment has nothing whatsoever to do with the main topic of this section, 
namely temporary name binding. However, label assignment is performed during TLA and 
therefore will be discussed here - albeit briefly. Label assignment is another targeting 
process. Consider, for example, as if-then-else expression of the form 

if (-<]) and i2 then £3 else 

The node-specific routine for if passes to the and node two labels - a "true" label which is 
that of the then part, <3, and a false label which is that of the else part, The and node 
generates no code; but the node-specific routine for and passes the false label to both of 
its operands: the true label passed to its left operand is that of its right operand, while the 
true label passed to the right operand is the true label input to the and node. The 
node-specific routine also does not generate code, it merely inverts the input labels. The 
effect of label targeting may be seen in the following example: 

if .x<y and (.x>l or .y t 0) then x«-l else y« - l 

•The number is reduced to the minimum of the number generated along any single path on 
those paths which generate more than this minimum number. 
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which produces the following code 

CMP X,Y 
BGT L2 
CMP X,#l 
BGE L I 
TST Y 
BEQ L2 

L I : MOV #1,X 
BR L3 

L2: MOV *1,Y 
L3: 

IV .3.2 RANK 

The function of the RANK phase is simply to order all temporary names so that the 
PACK phase may process them in order of their importance. At the same time the 
temporary names are separated into four catagories depending on their individual 
requirements for binding: (1) specific register,* (2) some register,* (3) a memory (stack) 
location, and (4) either a register or a memory location. The majority of TN's fall into the 
fourth catagory. 

Ranking is based on both the cost measure and lifetime characterizations described 
earlier. Specifically, the ranking is based on 

C 
(fonlu-fonfu) 

where C is the "max* cost measure discussed earlier. The effect of this ranking criterion is 
to treat TN's whose uses are distributed over a large span as less important than those with 
similar cost measures but more compact uses. 

IV.3.3 PACK 

Before proceeding to a description of the pack algorithm itself we must discuss the 
mechanism by which the availability of various locations, whether registers or in memory, 
are represented. Specifically, each location, l j , is represented by a set, L§; the elements of 
Lj are temporary names. Initially all Lj are empty. The following functions and predicates 
are defined on temporary names and then sets: 

*BHss programs may declare that certain variables must be allocated to a register or to a 
specific register. 
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predicates 

empty(L) 

interset(ti,t2) 

fits(t,L) 

functions 

open(L) 

close(L,lon,fon) 

reopen(L,lon,fon)= 

tryfit(t,L) 

true iff the set L is empty 

true iff the lifetimes of the temporary names t i and t2 do 
not intersect 

true iff Vti<L(~ intersect(t,ti)); 

if empty(L) then L«-{z,i} else ERROR where z and i are 
special "dummy" temporary names that have lieftimes of 
<0,0,0,0> and <oo,oo,oo,<x» respectively. 

L«-L U {c} where c is another "dummy" temporary name 
specially created with a lifetime of <lon,oo,fon,<x». 

[f empty(L) then open(L) else if 3 I i L lifetime(t) « 
<x,oo,y,oo> then L«-(L-t)ut| where lifetime (t|) * 
<x,lon,y,fon> 

if fits (t,L) then (L<-Lu{t}; thru) else false 

Note: in terms of these predicates, the "stack simulation" alluded to in Section IV.3.1d 
is actually a stack of these sets. A set is reopened each time a simulated parameter push is 
done, and one or more sets are closed each time the simulated stack is cut back. 

The packing algorithm consists of considering each temporary name and attempting to fit 
it into various sets. The order of consideration is 

1st) 
2nd) 
3rd) 
4th) 

those TN's that must be bound to a specific register 
those TN's that may be bound to any register 
those TN's that must be bound to a memory (stack) location 
the remaining TN's} these are treated in order of "importance" as defined 
by the RANK phase. 

For those TN's which must be bound to a specific register the register is opened if this 
has not already been done; then "tryfit" is attempted. If "tryfit" succeeds everything is 
fine; otherwise a fatal error is signaled. 

For those TN's which may be bound to any register, tryfit is attempted on all open 
registers. If no open register can hold the TN an attempt is made to open another one - if 
no register can be found a fatal error is signaled. 

For those TN's which must be bound to a memory (stack) location "tryfit" is attempted 
on all the dynamic temporaries created during the TL phase. (The dummy TN's inserted by 
successive "close" and "reopens" will prevent these TN's from fitting unless the dynamic 
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temporary is available over its entire lifetime.) If no dynamic temporary is suitable, an 
attempt is made to fit the TN into an open "static temporary." (The static temporaries are 
allocated and deallocated at routine entry and exit respectively.) If the TN won't fit into an 
open static temporary, a new one is opened. 

For the remaining TN's, which constitute the majority, either registers or memory may 
be used. These TN's are considered in order of their importance and for each the following 
sequence of attempts is tried: 

1) try to use the TN's preference, if any. 
2) try an open register. 
3) if the difference between the maximum and minimum cost measure computed in 

TLA is sufficiently small it isn't worth opening a new register (which will have 
to be saved and restored) so try to use currently open dynamic and static 
locals. 

4) try to open another register. 
5) if locals were not attempted in step 3, try them now. 
6) open a static local. 

IV.4. Code 

It might appear that after the previous phases have completed code generation would 
be trivial; after all, redundant computations have been detected and eliminated, (near) 
optimal execution order has been determined, temporary variables have been carefully 
allocated to the available registers, etc. It would appear that the only remaining task is to 
perform an execution-order tree walk and generate the code appropriate to each node (if, 
indeed, any is required). This is in fact what must be done, but would that it were as easy 
as this glib statement suggests! 

There are few descriptions of code generators in the literature [Low69, Hop69, Gri71] 
for a very good reason. It falls to the code generator to cope with, and hopefully exploit, 
the idiosyncracies of the target machine. While not conceptually difficult, an honest attempt 
to exploit the target machine involves a great deal of special case analysis. Performing that 
analysis is both tedious to do and to explain, yet it is extremely important. In the final 
analysis the quality of the local code has a greater impact on both the size and speed of the 
final program than any other optimization. 

Lest we bore the reader (and ourselves) too much, we shall present only two aspects of 
the code generator, namely generating the code to move a value from one arbitrary field to 
another arbitrary field and generating the code for the control of an incr loop (the Bliss 
counterpart of the Algol for or Fortran DO). Neither example will be presented in full detail, 
nor do we claim that either example, or the two together, is representative of the problems 
faced by other compilers or even the remainder of this one. The purpose in presenting 
these examples is merely to illustrate the level of detailed analysis necessary in order to 
generate good quality local code. 
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The general strategy of code generation is to perform an execution-order tree walk 
invoking node-type specific routines. The mechanism used to implement this tree-walk is 
identical to that used in DELAY and TNBIND. The responsibility of each specific routine is 
to generate the optimal local code for that node given that the code for its subnodes has 
already been generated. In the exposition we shall use the following functions, predicates, 
and conventions: 

(1) functions 

7(op,ai,a2) 

oc(node) 

gl 

pl(lab) 

p(node) 
s(node) 

v(opnd) 

T(node) 

C(e) 

emit a PDP-11 instruction "op" with addresses ai and a2i 
&2 is omitted in the case that "op" is a unary. 

generate an address of the form used by 7 which is the 
location of the result represented by the node "node." 

get a "compiler generated" label which is distinct from all 
previously generated labels. 

place a label, "lab," at the current point in the instruction 
stream. 

retrieve the "position," p, and 
"size," s, of the result represented by "node" within the 
word whose address is given by "a(node)." 

in the case that "opnd" describes a literal value, get that 
value; undefined otherwise. 

extracts the temporary location (if any) in which the result 
of "node" will reside at execution time; the composite 
function cc(T(node)), denoted ocr(node), generates the 
appropriate address of this temporary. 

causes the code associated with expression e, if any, to be 
generated. 

(2) predicates 

&(node): 

X(opnd): 

z(opnd): 

o(opnd,s): 

true iff the result represented by "node" is contained in a 
"destroyable" temporary, i.e., is not either a user-defined 
variable or a common-sub-expression with remaining uses. 

true iff the operand is a literal 

true iff the operand is the literal zero, i.e., X(opnd) A 
v(opnd) = 0 

true iff the operand is a literal all of whose last s bits are 
one, X(opnd) A [((v(opnd) A (2TS -1)) - 2 T S - 1 ] 
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(3) conventions 

(a) It will be convenient to adopt a more compact node/subnode naming convention 
than is used in the compiler itself. In particular we shall refer to the node itself as 
eo and its subnodes as ei , e2y etc. (left-to-right) respectively. We shall, further, 
extend this convention to the functions and predicates described above. Thus, for 
example, oci 2 oc(ei), v2

 88 v(e2), pi - p(ei), etc. 

(b) Brackets, { }, are used to enclose instruction to be generated, thus 
{ADD x,y; ASH y} 5 7(ADD,cc(x),a(y)); 7(ASH,ay) 

IV.4.1 Generating Data Moves 

The problem we wish to consider is that of generating code to move the contents of 
some arbitrary field in one word to an arbitrary field of another word; in terms of Bliss 
source code, such moves arise in contexts such as 

x<5,3> «- .y<9,2> 

In terms of the tree shown in Figure 27, we are concerned with generating code for e©. 
No code will have been generated for either ei or e2, but DELAY will set fields in ei and e2 
such that 

cci is the address of x, <x2 is the address of y 
Pi = 5, Si = 3, P2 = 9, S2 = 2 
etc. 

/i\ 1 
X 5 3 p t r 

/l\ 
Y 9 Z 

Figure 27. Tree for x<5,3> .«- .y<9,2> . 
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Since the PDP-11 does not contain instructions for general sub-field moves, or even for 
field extraction and insertion, the effect must be achieved by an appropriate sequence of 
shifting, masking, etc. The variety of sequences possible for doing this is expanded 
significantly by the presence of the byte manipulation instructions and by the lack of 
instructions for multiple position shifts. Therefore, before proceeding to the description of 
the move generation itself we shall introduce several functions which handle the special 
cases of field isolation and positioning. 

(1) Clearfield (node, posn, size): 

This function clears (sets to zero) the subfield of the operand described by "node." 
The following cases are treated: 

(a) full word (posn « 0, size = 16): use the CLR instruction. 
(b) byte (posn = 0 or 8, size = 8): use the CLRB instruction.* 
(c) otherwise: use the BIC instruction with an appropriate literal mask as the 

source operand.** 

The rationale for these cases arises from the observation that since CLR and CLRB 
are unary operators and BIC is a binary the latter will occupy one additional word 
of code space and cause one additional memory reference at execution time. 

(2) isolate (node, posn, size): 

This function is complementary to "clearfield" in that it clears (sets to zero) 
everything but the specified subfield; it considers the same cases. 

(3) dial (node, fp, fs, tp, ts): 

This function moves a subfield of the result represented by "node" to another 
subfield in the same word.*** The source subfield is described by a position and 
size, fp and fs respectively, and the destination subfield is similarly described by tp 
and ts. No special cases are treated by "dial" per se, but rather by another 
function "shift" described below. The action of "dial" is simply: 

shift(node,fp,tp,min(fs,ts)); isolate(node,tp,min(fs,ts)) 

•Here, and elsewhere in this exposition, we will ignore a level of complexity introduced by 
the fact that byte operations do not operate in quite the same way when the destination is a 
register as they do when the destination is memory. 

**Here we choose to ignore another level of complexity arising from the restriction that 
word instructions must specify an even word address. 

***Here we are ignoring the complexity introduced by the possibility that the result 
represented by "node" is not "destroyable" - i.e., it is a common-sub-expression whose 
value will be needed again (or it is a user-defined variable). 
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(4) shift (node, fp, tp, size): 

This function shifts a subfield of a specified size from one position, fp, to another, 
tp. The lack of multiple bit shift or rotate instructions together with the presence 
of the byte operations, especially SWAB, make this a fairly complex decision based 
on the distance of the shift, the size of the field, and the relative and absolute 
positions of the source and destination subfields. The following special cases are 
recognized: 

(a) -5 < tp-fp < 4: The straightforward option of generating a series of shifts 
in the intended direction is best. 

(b) 8 < abs(tp-fp) < 12: Best here is to generate a SWAB followed by a 
series of shifts in the intended direction. 

(c) abs(tp-fp) > 12: Here we would like to use the rotate instructions to 
rotate the field out one end of the word and in the other. We must 
however, remember that all the rotate operations move the carry bit 
around as if it were part of the word or byte being rotated; one more 
instruction must be generated than we would otherwise generate. 

(d) 5 < abs(tp-fp) < 7: We wish to generate a SWAB and a series of shifts in 
the direction opposite to the one intended. Complications are introduced 
here by the possibility that the source or destination field overlaps both 
bytes of the word, in which case we should either wait to generate the 
SWAB until enough shifts have been generated to move the field wholly 
within one byte, or if the field is too large for one byte, we should use 
rotates rather than shifts and worry a little harder than in part (c) about 
the carry bit. The exact algorithm we use is: 

(1) if size > 8, generate a SWAB, then a byte rotate (RORB or ROLB) 
to accommodate the carry bit by putting it in a harmless place, and 
then a series of full word rotates 

(2) if size < 8, generate a series of shifts (in the prescribed direction), 
inserting a SWAB as soon as the field is wholly within one byte 
(which condition must occur sometime, or the intended shift would 
move the field past a word boundary). 

In all the above discussion it should be noted that, strictly from considerations of 
programming convenience, the routine SHIFT in the compiler does not distinguish situations 
when it could either generate a shift (ASR or ASL) or a rotate (ROR or ROL) from situations 
when it must generate a rotate, and simply always generates rotate instructions. A few 
examples of generated code might clarify the above description; suppose A is the machine 
address generated for node: 

ffi t£ Size code 
2 5 9 ROL A; ROL A; ROL A (three shifts) 
2 1 3 SWAB A; ROL A; ROL A; ROL A 
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114 2 ROR A; ROR A; ROR A; ROR A 
1 7 9 SWAB A; RORB A; ROR A; ROR A 
7 1 9 SWAB A; ROLB A* 1; ROL A; ROL A 
1 7 8 ROR A; SWAB A; ROR A 
2 8 8 ROR A; ROR A; ROR A; SWAB A 

We shall introduce one more function before proceeding to a description of the move 
operation. This function tests a single bit in a word and generates a branch to a specified 
label if that bit is set to zero. 

(5) bittest (node, bit, lab): 

This function generates a test of the specified bit in the result specified by a node 
and will generate a branch to the specified label which will be taken if the bit is 
zero at execution time. The following cases are treated: 

(a) bit = 15: {TST cc0; BPL lab} 
(b) bit = 7: {TSTB a 0 ; BPL lab} 
(c) bit = 0 A S(node): {ROR a 0 ; BHIS lab} 

* (d) bit - 14 A S(node): {ASL a05 BGT lab} 
(e) bit = 6 A S(node): {ASLB a 0 ; BGT lab} 
(f) otherwise: {BIT *lTbit,a0; BEQ lab} 

As with several of the special cases treated earlier, the rationale is that the unary 
operators (TST, ROR, etc.) require one fewer words of code and one fewer memory 
reference at execution time then the default BIT sequence. 

Given the code generation functions described above we can now describe the 
operation of generating code for moving a field of one word to a field of another. In 
analyzing the kind of code one would like to produce for any particular such move it 
becomes apparent that various subcases arise in connection with the position and size of the 
subfields of each of the words involved. These cases are: 

full word: p = 0, s = 16 
byte: p = 0 or p = 8, s = 8 
bit: p = anything, s • 1 
other: all other fields 

The various cases of movement from one of these types of fields are treated separately 
by functions mo-rr\y as specified by the following table: 

destination field type 
word byte bit other 

word mo m7 mi m4 

byte rr>2 mi m7 
ni4 

bit ir»6 r*5 m7 m7 

other m3 m4 m7 
m4 



Code 69 

The functions are explained below: 

mo (full-word to full word case): 
z(e 2): {CLRcci} 
otherwise: {MOV cc 2,ai} 

mi (full word or byte to byte case):* 
z(e 2): {CLRBcci} 
otherwise: {MOVB cc2,ai} 

m2 (byte to full word cases)*: 
{CLR cci; BISB a2,cci} 

m3 (arbitrary field to full word):* 
{MOV a2,cci}; shift(ei,p2,0,s2); isolate(ei,0,s2); 

n̂4 (any field to arbitrary field):* 
z(e 2): clearfield(ei,Pi,$i) 
o(e 2): {BIS #(2Ts1-l)*2Tp1,a1} 
otherwise: clearfield(ei,pi,si); dial(e2,pi,si,p2,s2); {BIS a 2 , a i ) 

ms (single bit to byte):* 
clearfield(ei,Pi,8); l«-gl; bittest(e2,p2,l); {INCB a i } ; pl(l) 

mg (single bit to full word):* 
clearfield(ei,0,16); l<-gl; bittest(e2,p2,l); {INC a i } ; pl(l) 

IH7 (move to/from arbitrary one bit field):* 
Me 2 ) A [ (e2) mod 2=1]: {BIS #2Tp2a,ai} 
X(e2) A [ (e2) mod 2=0]: {BIC #2Tp2,ai} 
otherwise: clearfield(ei,pi,l); l«-glj bittest(e2,p2,D; 

if pi -0 or pi=8 then {INCB a i} else {BIS *2Tp 2,ai}; 
pl(l) 

Some examples of various assignment expressions and the code they generate are given in 
Figure 28 . 

*Once again we are ignoring the complexities which arise due to: (1) the non-symmetric 
propert.es of byte operators with respect to registers and memory, and (2) word boundary 
problems with word instructions. wunaary 

http://propert.es
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Source Object (all constants are octal) 

X .Y; MOV @>#Y,X 

X<0,8> .Y<8,8>; MOVB (5>*Y+l,e5)#X 

X<0,8> 0; CLRB <S»*X 

x<5,3> 7; BISB *340,(S>*X 

X<13,2>.Y<3,2>; MOVB <s*Y,R5 
SWAB R5 
ROL R5 
ROL R5 
BIC #117777,R5 
BIC #60000 , (»*X 
BIS R5,mX 

X < 3 , 1 > . Y < 4 , 1 > ; BICB *10,(S>**X X < 3 , 1 > . Y < 4 , 1 > ; 
BITB #20,(S>»Y 

BEQ LSI 
BIS *10,<S>*X 

L S I : 

X < 0 , 8 > . Y < 5 , 1 > ; CLRB p»»X X < 0 , 8 > . Y < 5 , 1 > ; 
BITB »40,(R>#X 

BEQ LS2 
INCB (S>*X 

L«2: 

X < 1 4 , 2 > . Y < 0 , 2 > ; MOVB «B«Y,R5 X < 1 4 , 2 > . Y < 0 , 2 > ; 
ROR R5 

ROR R5 
ROR R5 
BIC #37777,R5 
BIC *140000 ,P )»X 

BIS R5,Pi#X 

Figure 2 8 . Code produced for some assignment expressions. 

I V . 4 . 2 Generating the incr kQ°£ SO ĝ-

In this section we wish to examine the generation of the code for the incr expression -
w H c U ^ m " c Z ^ r l o i the A.go. for statement or Fortran DO statement. The form 

of the incr expression is: 
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[ncr i from ei to e 2 by e3 do 

The semantics of Bliss specify that the counter variable, i, is to be initialized to the 
value of e i . Then the expression e4 is to be repeatedly evaluated (with i being increased 
by the value of e3 after each such execution of e4) so long as the value of i is not greater 
than e 2 . The values of e 2 and e3 are computed only once - before e4 is evaluated the first 
time. Associated with an incr expression are also the x and P s e ^ s described in 
Section IV. 1.5; the expressions in these sets must be evaluated prior to entering the loop 
body. 

The "general case" code for the incr expression is shown below. The opportunities for 
optimizing this code arise when certain of these are constants. 

evaluate ei and store into i 
evaluate e 2 

evaluate 63 
evaluate x?P expressions 
branch to L2 
L I : evaluate e4 (the body) 
increment i by e3 

L2: compare i and e 2 and conditional branch to L I 

Consider, for example, the following loop: 

INCR I FROM .X TO .Y BY .Z do (.Y+3)<-.(Y+3M; 

This loop produces the following code: 

Load ei into i (R4 in this case) 
Evaluate the X set (".Y+3" in this case) 

Branch to the end condition test 
The body! 
Increment the loop index 
Compare and branch back if not done 

(In this particular case FLO noted that both the end condition, ".Y", and the step size, 
".Z", were invarient in the loop; therefore neither was explicitly loaded into a temporary. 
This observation is purely the result of FLO and will not be discussed here.) 

Now consider a similar loop with all of ei, e 2, and e3 being constants: 

INCR I FROM -10 TO -1 BY 1 DO (.Y*3)«-.(.Y*3M; 

MOV @#X,R4 
MOV @>#Y,R5 
ADD #3,R5 
BR L3 

L2: INC ©>R5 
ADD <ra#Z,R4 

L3: CMP R4,(5>#Y 
BLE L2 
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The code produced for this loop is: 

MOV #177766,R4 
MOV ©#Y,R5 
ADD *3,R5 

LS2: INC :s>R5 
INC R4 
BLT LS2 

Two things have happened. First since both the beginning and ending values of the index 
variable are known at compile time, the branch to the conditional test preceding the first 
iteration is eliminated. Second, since the data manipulation instructions set the condition 
codes the comparison itself can often be avoided. In this case the identity i < -1 s i < 0 
was exploited since the condition code settings resulting from the "INC R4" may then be 
used directly. 

In order to fully explain the code generation for the incr expression it is convenient to 
introduce a few more functions and predicates: 

(1) notecode: returns a unique identification of the most recent instruction 
generated; used in conjunction with "anycodesince" below. 

(2) anycodesince(c): the parameter must be the value returned by some previous 
call on "notecode." The value of "anycodesince" will be true 
iff any code has been generated since the corresponding call 
on notecode. 

(3) genmove(ei,e2): generates code to move the result of the expression ei to the 
location named by the expression e25 this is precisely the 
function described in the previous section. 

The algorithm for generating the code for the mcr expression is then: 

l l« -gl ; l2*-gl; C ( e i ) ; genmove(ei,i); C(e2); c«-notecode; C(e3); C(x) ; C(p); 
if z(e 2) A X(ei) A anycodesince(c) then {TST i; BR 12} else 
if X(eA) v X(e2) v [ (ei) > (e2)] then {BR 12}; 
pidl) ; C(e 4); 
{ADD a 3 , i}; 
pKI2); 
if z(e 2) then {BLE 11} else 

jf X(e2) A (e 2 )=- l then {BLT 11} else {CMP a2,i; BLE 11} 

One of the cases covered by this algorithm was not covered by the previous discussion. 
Consider the case of a loop whose end condition is zero but the starting point is not known 
at compile time; for example 

INCR I FROM .X TO 0 BY 1 DO <body> 
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In this case the action of incrementing the index variable at the end of the loop will set 
and therefore an explicit "TST" instruction is not needed when this path 

\llr^?' T V e r > b 6 f 0 r e * h e f i r $ t t i m e t h e <b0dy> i s e x e c u t e d « i s pessary to insure 
the condition codes are set properly. Therefore the following code is generated: 

MOV X, R5 
<any x a n d P code> 
TST R5* 
BR U 2 

L$l : <body> 
INC R5 

L«2: BLE LSI 

IV.5. FINAL 

Ah, finally.. 

FINAL is the last of the several phases of the compiler and has two responsibilities: (1) 
performing a collection of ad hoc optimizations on the code produced by CODE, and (2) 
preparation of the final listing and relocatable code. The latter aspect is irrelevant to the 
purpose of this paper and will not be discussed. The optimizations performed at this stage 
all result from looking only at the object code and make no use of the more global context 
available in the tree representation; these optimizations include those which have been 
called "peephole" optimizations [McK65]. 

It is reasonable to ask why further optimizations should be necessary at this stage, 
especially such ad hoc, low level ones as will be described, given that reasonable care has 
been taken in the earlier phases. There are three reasons. First, some information isn't 
known until the code is generated. We shall see several examples of this, but, for example, 
the code generator will happily create a branch instruction whose target is another branch. 
It is better, of course, for the first instruction to branch directly to its ultimate target. 
Second, adjacent instructions in the code stream may have been generated from widely 
distant points in the tree; what seemed like good local code at each of those points may not 
look so clever when juxtaposed. Third, the operation of the FINAL optimizations themselves 
create new adjacency relations which may then admit reapplication of one or more of its 
other optimizations. 

*This instruction is generated only if any code intervened between the "MOV x,R5" and this 
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IV.5.1 The Final Data Structure 

FINAL receives its input from the CODE module in the form of a doubly linked list. This 
data structure allows FINAL to add and/or delete instructions anywhere in the code stream 
and to scan the code in both the forward and reverse directions. The items qn this list are 
of two types: code cells and label cells. Each code cell contains a description of a complete 
PDP-11 instruction. Each label cell marks a position in the object code addressed by an 
instruction in one of the code cells. Label cells have a sublist consisting of items called 
reference cells. There is a unique reference cell for each instruction that refers to a given 
label and that reference cell contains a back pointer to the instruction. This data structure 
is illustrated in Figure 29. 

IV.5.2 Ihe First Subpjia_$e 

The first phase of FINAL is a loop that examines each item in the code stream and calls 
an appropriate routine to perform optimizations for that type of item. If during this loop a 
change is made to the code stream, a flag is set and the loop will be repeated. Only when a 
pass is completed in which no changes are made will FINAL progress to its second phase. 
The discussion below is keyed to the actions taken for the various types of cells 
encountered during the loop. 

Label Cells. The first thing that is done when a label cell is encountered is to delete 
adjacent labels in the code stream and attach their reference cells to the remaining label 
cell. If the set of reference cells for a particular label is empty, this label is not needed and 
is deleted. Otherwise, the instructions named by these reference cells are scanned for 
unconditional branch instructions that address this label. All possible pairs of these 
unconditional branches are examined by a "back-over" procedure, called "cross-jumping." 
which exploits the fact that the code sequences preceding the two branches will merge at 
the label. The sequence of code cells preceding both branches (any preceding label cells 
are ignored) are compared and, if identical sequences are found, each code cell in one 
sequence is replaced by a branch to the corresponding code cell in the other sequence. 
Later optimization will remove unnecessary branch instructions which may be introduced by 
this procedure. 

Consider, for example, the following example: 

if .x then x «- .y • .z else x «- .w + .z 

which might produce the following code (before and after this portion of FINAL) 

L I : 

Before Final After Cross-lumping 
BIT »1,X BIT #1,X 
BEQ L I BEQ L I 
MOV Y,X FINAL MOV Y,X 
ADD Z,X BR L3 
BR L2 BR L2 
MOV W,X L I : MOV W,X 
ADD z,x L3: ADD Z,X 
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Figure 29. The FINAL data structure. 
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L2: L 2 ! 

This optimization is one of those mentioned in the introduction as being impossible until 
the object code is produced. It is, to us, surprisingly effective. 

Unconditional Branch Instructions. The first thing done when optimizing an unconditional 
branch is to delete all code cells following it until the next label cell is reached since any 
such code is unreachable. This will, for example, eliminate the redundant "BR L2" in the 
previous example. The label referenced by a branch is then compared with the label 
following the branch. If they are the same, the branch instruction is deleted. Otherwise, a 
"branch-chaining" procedure is executed. "Branch-chaining" consists of testing for a branch 
that addresses an internal label which precedes another branch which in turn may address a 
label which precedes another branch, etc. The entire length of such a chain is searched and 
each branch in the chain is changed to use the same addressing as the last branch in the 

chain. 

Finally, after the branch-chaining procedure, the cross jumping procedure described 
above is applied to the code sequences preceding the branch and the label referenced by 
the branch. 

Conditional Branch Instructions. First, the item following the conditional branch is 
checked to determine whether it is the label addressed by the branch. If this happens, the 
branch is deleted. Otherwise, this item following the conditional branch is checked to see if 
it is an unconditional branch immediately followed by the label addressed by the conditional. 
In this case the unconditional branch is deleted and the sense of the conditional branch is 
reversed. If this fails to occur, the next code cell (intervening label cells may now be 
ignored) is found and tested for being an unconditional branch to the same label; if it is, the 
conditional branch is deleted. 

If the conditional branch is not deleted by one of the above criteria, "branch-chaining" 
is performed on it. Notice that conditional branches may only appear as the first element of 
a branch chain. 

The utility of the optimizations of both conditional and unconditional branches arises 
from two sources: (1) the effect of the optimizations themselves sometimes create the 
conditions in question, and (2) since the optimizations are desirable due to (1), and 
therefore present, the CODE module can be somewhat simpler if it need not worry about 
creating such conditions. To see the effect of these optimizations taken together, consider 
another (fake) example: 

[f .x then x «- .y • .z + .w else (y .q; w «- .r; x <- .y + ,z • .w) 

Notice that ".x • .y • .z" is not a common-sub-expression or eligible for a-motion due to the 
assignments in the e|se branch; it is eligible for ^-motion - a fact which we wish to ignore 
here for expository purposes. The code generated would then be: 

BIT *1,X 
BEQ L I 
MOV Y,R0 
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ADD Z,R0 
ADD W,R0 
MOV R0,X 
BR L2 
MOV Q,Y 
MOV R,W 
MOV Y,R0 
ADD Z,R0 
ADD W,R0 
MOV R0,X 

L2: 

Although the optimizations will not happpen in the order described below, for purposes of 
exposition we will describe them as though each is performed as a separate pass. First 
cross jumping will produce 

BIT 1,X 
BEQ L I 
BR L6 
BR L5 
BR L4 
BR L3 
BR L2 

L i t MOV Q»Y 
MOV R,W 

L6: MOV Y,R0 
L5: ADD Z,R0 
L4: ADD W,R0 
L3: MOV R0,X 
L2: 

Eliminating unreachable instructions (the branches) and then removing unreferenced labels 
will yield the following: 

BIT #1,X 
BEQ L l 
BR L6 

L l : MOV Q,Y 
MOV R,W 

L6: MOV Y,R0 
ADD Z,R0 
ADD W,R0 
MOV R0,X 

Finally, the "condition reversal" applied to the "BEQ" followed by removal of the 
unreferenced label will produce: 

BIT #1,X 
BNE L6 
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MOV Q,Y 
MOV R,W 

L6: MOV Y,R0 
ADD Z,R0 
ADD W,R0 
MOV R0,X 

Although the example above is somewhat contrived it does serve to illustrate that the action 
of some of the FINAL optimizations create situations where others become operable. 

Test and Compare Instructions. Test and compare instructions do not modify their 
operands, but are executed solely for their effect of setting condition codes. Any test or 
compare instruction where the next code cell is neither a conditional branch, nor the start of 
a branch-chain sequence leading to a conditional branch may be deleted, since all other 
instructions will change the condition codes. 

Literal Operands. Some machine operations, such as "add," "subtract,11 "or," and "nand," 
often have literal constants as one operand. When such an instruction is located, the literal 
constant may be one of a set of special cases. For example, an "add" of a literal zero can 
be deleted (provided the next instruction is not a conditional branch) or a "move" of a literal 
zero can be made into the shorter instruction "clear." 

If the literal is not one of the special cases, the items following in the code stream are 
examined until a label, a branch instruction or an instruction accessing the data operated on 
by the original literal is found. If the item on which this scan terminates is another literal 
operation of the same type then this literal is modified appropriately and the original 
instruction is deleted. Literal adds and subtracts to registers scan backwards as well as 
forwards in order to attempt to make use of the PDP-lTs auto increment and auto 
decrement addressing modes. 

Addressing Optimization. The PDP-11 hardware recognizes eight different addressing 
modes. However, FINAL recognizes 38 different addressing constructs. These constructs 
are differentiated by such considerations as whether the register being used for indexing is 
the program counter, push down stack pointer or some other general purpose register and 
whether or not the indexing base contains a reference to an own variable location. Some of 
these constructs are more desirable than others because they execute faster, or take less 
space, or are more amenable to future optimization. FINAL attempts to use what it 
considers the best form of addressing. 

In particular, whenever FINAL is asked to optimize a "move" or "clear" instruction it 
considers the source and destination operands as containing identical data. The code stream 
following the instruction is scanned. Scanning stops if a label cell, unconditional branch 
instruction or an instruction that might modify either operand or might destroy the 
addressing of either operand (e.g., a register used in an index operation) is encountered. If 
either of the operands appears in a scanned instruction, that operand is replaced by the 
other if the resulting form is "better." 

Redundant Store Optimization. One other optimization also occurs with "move" and 
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"clear" instructions. In this case, a scan is made backwards from the data store until a 
branch or an instruction that might use the destination location is found. During this scan 
any instruction whose sole purpose is to modify the destination location of the data move is 
a "redundant store" and is deleted. 

IV.5.3 The Second Subphase 

The above completes the description of FINAL'S first phase. When no more first phase 
optimizations are possible, then the second phase begins; this phase makes a single pass 
over the code stream and performs various bookkeeping operations, as well as modifying 
certain instructions to equivalent, simpler forms. (For example, "increment" m,nstructions 
are formed from "ADD *l,x.") 

The major bookkeeping function is to compute the length and relative location of each 
instruction. Unfortunately this is not yet completely possible. The PDP-11 branch 
instruction takes two forms; there is a one word branch instruction, BR, which can only 
branch to instructions located within 128 words of itself, and there is a two word branch 
instruction, JMP, which can transfer to any location in memory. Conditional branches are 
the short form; hence if the destination is more than 128 words away, the conditional must 
be fabricated from the reverse conditional and a JMP. This requires a total of three words. 
As a result, the second phase of FINAL can only determine the minimum and maximum length 
of each instruction; it then uses these to compute a minimum and maximum relative position 
for each instruction and label. 

IV.5.4 The Third Subphase 

FINAL now enters its third phase in order to resolve the length and relative position of 
each instruction. It does this by scanning for the instructions whose minimum and maximum 
lengths are different. By taking differences between the minimum and maximum locations of 
the instruction and the label it references, it is possible to compute the minimum and 
maximum possible distances between the instruction and the label. If the maximum possible 
distance is less than 128, then the short form branch is formed and the maximum length is 
set the same as the minimum length. If the minimum possible distance is greater than or 
equal to 128, then the long form branch is generated and minimum length is set to the 
maximum length. As FINAL scans for those instructions whose minimum and maximum 
lengths differ, it also updates the minimum and maximum locations of all the instructions and 
labels. The code is repeatedly scanned until a pass is completed during which no changes 
are made. The correct location of each instruction and label is its minimum location and all 
instructions of unresolved length will take their short form and minimum length. It follows 
that this is safe from the fact all unresolved instructions between any still unresolved 
branch-label pair will take their short form. 



80 

V. CONCLUSION 

As stated in the introduction, our goal in this paper has been to describe the various 
optimizations used in a specific, real compiler and to show how these optimizations interact 
to produce high quality code. We hope that a secondary effect of the exposition has been 
to pinpoint areas in which further research is needed. While no single aspect of the 
compiler has been described at the level of detail of the implementation itself, we expect 
that most knowledgable systems programmers can infer the implementation from the material 
which is presented. 

In this conclusion, rather than recap what has already been said explicitly, we would like 
to focus on what has only been said implicitly — namely, those areas of compiler 
optimization which lack adequate formalization and/or for which complete algorithms are not 
currently known. Our experience has shown that, in some intuitive sense, the size, 
complexity, and bug-proneness of each of the compiler phases is inversely proportional to 
the degree of formalization to which that area has been subjected. 

In listing areas for further work there is a great temptation to order them by their 
"importance" in terms of their effect on the quality of the resultant code. We have resisted 
that temptation. The fact is that they are all important. Given our initial goal of producing 
code which is better than that produced by human programmers, a change of even a few 
percent is significant. Moreover, even a single extra instruction in a deeply nested loop may 
have an effect on execution time completely disproportionate with its static effect on 
program size. Hence, the following list is simply ordered by the phases in the Bliss/11 
compiler within which the problem arises. 

(1) DELAY 

(a) Evaluation order: As noted in the text, Bliss/11 uses a heuristic extension of a 
well-known algorithm for choosing the evaluation order of expressions in order 
to minimize the number of in-use registers. A complete algorithm, or at least a 
better heuristic, is badly needed which works in the presence of globally 
redundant expressions (including those involved in code-motion optimizations). 

(b) Desirable vs. feasible optimizations: This is currently done on a completely ad 
hoc basis, and requires a very detailed knowledge of the target machine. It is, 
in fact, an instance of a more general problem of deciding when to commit to an 
optimization. 

(c) Exploiting addressing hardware: The mechanisms used in DELAY, and discussed 
in Section IV.2.4, are critical to producing object code which exploits the target 
machine. We believe that these ideas can be generalized and expressed in a 
machine-independent way. 
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(2) TNBIND 

(a) Targeting and preferencing are ideas which we have not seen in the literature 
before. They have a significant effect in Bliss/11, and we believe they can be 
generalized in a machine-independent way. 

(b) Floating temporaries: Bliss/11, like most compilers, dedicates a location 
(usually a register) to hold the value of a temporary (or user variable) over its 
entire lifetime. There are many contexts in which this is non-optimal, but we 
know of no computationally reasonable formulation which avoids this 
commitment. 

(c) Lifetime characterization: The lon/fon characterization of the lifetime of a 
temporary is relatively inexpensive, but incomplete. A scheme is needed which 
is both computationally reasonable and (more) complete. 

( 3 ) CODE 

When all is said and done, the quality of highly local code is absolutely essential 
to the overall performance of the object program produced by a compiler. No 
matter how clever the other phases of the compiler, if the local code is sloppy, 
the compiler will be a disaster. Because of the highly machine specific nature 
of CODE it is possibly inevitable that the construction of this phase will be 
relatively ad hoc. However, it is not the ad hoc nature of the implementation of 
this phase which disturbs us, but rather the generation of the special cases 
which should be considered by the implementation. The set of cases treated in 
the text for general data moves, for example, represents a substantial 
investment of intellectual effort, has been modified many times as new cases 
were uncovered, and still has no guarantee of being exhaustive. It seems 
reasonable to us that the generation of these cases can be mechanized. 

(4) FINAL 

All of FINAL is ad hoc, yet its effect is significant. It is very hard to determine 
whether FINAL would be so important if more complete algorithms existed at 
earlier stages of the compilation process; nevertheless, the actual 
implementation is highly regular — suggesting to the authors that its effects 
could be both formalized and extended. It is also difficult to avoid drawing 
analogies between certain aspects of FLO and FINAL (notably cross-jumping); 
we would like to believe that the analogy is more than accidental. 

We would like to conclude by presenting our view on the importance of efficiency. It is 
fashionable in some circles, especially some academic ones, to depreciate the importance of 
efficiency. The argument goes: "It is programming time, not execution time, that matters. 
What difference does it make if the program runs one minute or two?" This argument is 
often used, for example, to encourage the use of some of the newer, often less efficient, 
programming languages. 



8 2 Conclusion 

It is difficult to argue with this. In fact we don't for our own programs. Our time is 
much more important than the machine's. However, the other fellow's program (yours) is an 
entirely different matter! Every second that his program executes ours can't. If his 
program is inefficient, we are the ones who suffer, not him. The problem of efficiency is 
not one of how long it takes to run a program, but rather one of obtaining the maximum 
benefit from a finite resource. 

The reason that compiler optimization is important is that programmer efficiency and 
execution efficiency need not be a choice we must make. Optimization is a technological 
device to let us have our cake and eat it, too — to have both convenient programming and 
efficient programs. 
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APPENDIX A 

PRIMER ON THE PDP-11 

In order to understand and appreciate some of the optimizations described in this paper 
some understanding of the target machine, the PDP-11, is necessary. This appendix is not 
a definitive description of the PDP-11. It is, rather, a brief description of some of the 
addressing features and enough of the instruction set to allow the reader to understand the 
examples; in particular the i/o and interrupt structure of the machine are totally ignored. 

Basic Properties 

The PDP-11 is a "mini-computer" with a word size of 16 bits; memory is byte (8 bits) 
addressable. Because a memory address is constrained to exist in a single word, directly 
addressable memory is limited to 2 1 G (64K) bytes or 2 1 5 (32K) words. The processor 
contains eight "general purpose" registers (r0-r7) two of which are assigned specific uses 
(r6 « SP and is used as a stack pointer for subroutine calls and r7 • PC and is the program 
counter). A ninth register in the processor, called the "program status register", PS, 
contains a set of condition code bits which are set by the action of data manipulation 
instructions. The condition code bits are 

Z = 1 iff the result of the operation was zero 
N - 1 iff the result of the operation was negative 
C - 1 iff the result of the operation produced a carry out of its most significant bit 
V = 1 iff the result of the operation produced an arithmetic overflow 

The data manipulation instructions of the PDP-11 are classified as either unary 
(monadic) or binary (diadic). In both cases the instructions may be used as zero address 
(i.e., stack oriented with reverse polish operators) or single address (conventional general 
register) architecture. Binary (diadic) instructions may, in addition, be viewed as two 
address (memory-to-memory). 

Addressing Structure 

In this section we shall use one of the binary operators to illustrate the addressing 
options, namely "MOV src, dst" which moves a word from the location specified by the 
source address, "src", to the location specified by the destination address, "dst". 

The group of binary instructions are encoded in a 16-bit word as shown below. 

OPERATOR 
(4 bits) 

SOURCE 
(6 bits) 

DESTINATION 
(6 bits) 
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The source and destination fields are coded identically as shown below. As should be 
obvious, these six bit fields are not adequate to hold memory addresses; rather some 
encodings of these fields specify that words following the instruction contain operands or 
addresses. 

mode d reg 

The "reg" field always specifies one of the eight processor registers. The "d" bit, when 
set, specifies one level of indirection or "deferral". The meanings of the mode field values 
are given below for d = 0 (one level of indirection should be added to these descriptions for 
d « 1). 

m=0 register mode The operand to be used in the instruction 
is contained in the register specified by the "reg" 
field. 

m « l auto-increment mode The register specified by the "reg" field contains the 
address of the operand to be used. After being used 
the specified register is incremented. (The register 
is incremented by either one or two depending upon 
the nature of the instruction - "byte" instructions 
increment the register by one and "word" instructions 
increment the register by two.) 

m«2 auto-decrement mode The register specified by the "reg" field specifies the 
address of the operand to be used. However, before 
being used the value of the register is automatically 
decremented by either one or two as in the m= 1 
case.) 

m-3 index mode The register specified by the "reg" field is used as an 
index register and is added to the 16-bit word 
following the instruction in order to obtain the address 
of the operand to be used in the instruction. The PC 
is automatically incremented (by 2) to point beyond 
the index word. 

The following notations, used by the PDP-11 assembler, will be used to illustrate the 
wide range of addressing constructs possible on the PDP-11:* 

r register mode (m=0, d=0) 
£>r indirect register mode (m=0, d=l) 
(r)+ auto-increment mode (m=l, d=0) 
«£>(r)+ indirect auto-increment mode 
-(r) auto-decrement mode 
@-(r) indirect auto decrement mode 

•In this table the symbol "r" is used to denote any of the eight processor registers and "x" 
denotes a constant. 
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x(r) indexed mode 
fl>x(r) indirect indexed mode 

Three special cases involving the use of the program counter as the register named in 
an address specification are worthy of special note: 

(1) literal operands: The notation "*x" denotes + (PC) addressing where the 
literal, V , has been placed in the word following the 
instruction; the effect is to use the literal V itself as the 
operand. 

(2) relative addressing: The location of a data item may be expressed as a 
displacement of the current instruction. This is the 
preferred method of accessing data. Hence a symbol, e.g., 
"A", is generally interpreted as Ma(PC)M addressing where 
cc is some appropriate constant. Deferred relative 
addressing, M<$A", is, of course, possible. 

(3) absolute addressing: In a few cases relative addressing, as in (2), is 
undesirable; in these cases absolute addressing, denoted 
<fi)#A, is possible. Absolute addressing is actually M<s>+(PC)M 

mode. 

The following list illustrates some of the variety possible with the single MOV instruction 
given the variety of addressing modes; in the center column of this list, memory is 
abbreviated to MmM, register to V , and literal to T . The lengths (in words) of the various 
forms are also given. 

Instruction Effect Length 

MOV r0,rl r-to-r (1 word) 
MOV r0,X r-to-m (2) 
MOV X,r0 m-to-r (2) 
MOV 5(r0),rl m (indexed)-to-r (2) 
MOV r0,5(rl) r-to-m (indexed) (2) 
MOV X,Y m-to-m (3) 
MOV 3(r l ) , - l ( r0) m (indexed)-to-m (indexed) (3) 
MOV *17,r3 l-to-r (2) 
MOV #17,X l-to-m (3). 
MOV #17,5(r2) l-to-m (indexed) (3) 
MOV rl, -(SP) push r contents onto stack* (1) 
MOV (SP)+,r0 pop stack contents into r* (1) 
MOV #6,-(SP) push 1 value onto the stack* (2) 
MOV X,-(SP) push m contents onto the stack* (2) 
MOV (SP)+,X pop stack contents into m* (2) 

*Note that by convention the PDP-11 stack grows "down" toward lower addresses, thus, 
for example, a "push" operation involves decrementing the stack r. 
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Of course, many more combinations are possible; these are sufficient to illustrate the 
flexibility of the addressing mechanism and to illustrate the various optimizations. 

The Instruction Set 

In this section we shall enumerate the PDP-11 instructions needed for the examples in 
the text. There are four instruction groups in the PDP-11 of interest to us, each with its 
own instruction format. 

BinaryGroup: 

UnaryGroup: 

BranchGroup: 

Jump Group: 

op source destination 

op destination 

op offset 

op reg, or destination 

Binary Group 

The "binary group" instructions specify two addresses - a source address and a 
destination address. In general these instructions perform an operation between source and 
destination operands and place the result in the destination. The relevant instructions are: 

MOV* move source to destination 
ADD add source to destination 
SUB subtract source from destination 
CMP* compare source and destination; set condition codes; no operands modified 
BIS* "bit set", form inclusive or of source and destination in destination 
BIC* "bit clear", form nand of source and destination ( src A dst) in destination 
BIT* "bit test", form and of source and destination; set condition codes; no operands 

modified 

Unary Group 

The "unary group" instructions specify a single address - the destination. In general 
these instructions perform an operation on the destination operand and return it to the 
destination location. The relevant instructions are: 

CLR** clear destination word to zero 
COM** complement the destination operand 
NEG** negate the destination operand 
INC** increment the destination operand by one 
DEC** decrement the destination operand by one 
TST** compare the destination operand to zero; set the condition codes 

•These instructions also have a "byte form", e.g., MOVB which moves a byte (8 bits) from 
source to destination. 

••These instructions also have a "byte form", e.g., CLRB which clears a single byte. 
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ROR** rotate right 
ROL rotate left 
ASR arithmetic shift right 
ASL arithmetic shift left 
SWAB swap the two bytes of the destination (word) operand 

It should be noted that all the shift instructions (ROR, ROL, ASR, ASL) are single bit 
shifts of the specified type; also, the rotate instructions involve 17 (not 16) bits - the 
"carry bit", C, of the condition codes participates in these shifts. 

Branch Group Instructions 

These instructions branch conditionally on the setting of the condition codes. The 
instructions do not specify the address of the branch, but rather, an offset from their own 
location (i.e., the value of PC). Since the offset is eight bits and denotes a word 
displacement, branches are limited to -128 or +127 words from their own location. The 
relevant instructions are: 

BR branch (unconditional) 
BEQ branch on equal (to zero) 
BNE branch on not equal 
BMI branch on minus 
BPL branch on plus 
BLT branch on "less than" 
BGE branch on "greater or equal" 
BLE branch on "less than or equal" 
BGT branch on greater than 
BHI branch on higher 
BLOS branch on lower or same 
BLO branch on lower 
BHIS branch on higher or same 

Two things should be noted about these instructions. First, all relational (e.g., BLE) 
are comparisons against zero. However, since the compare instruction, CMP, performs an 
implicit subtract, a sequence such as "CMP A,B; BLE LABEL" corresponds to a branch on 
the relative magnitudes of A and B. Second, the branches BHI, BLO, etc. are termed 
"unsigned comparisons" since they treat the items as unsigned (positive) 16-bit numbers. 

Jump Group Instructions 

This group includes three instructions: (1) the unconditional jump, JMP, (2) the 
subroutine call instruction (JSR), and (3) the subroutine return instruction, RTS. 

The JMP and JSR instructions specify normal addressing and, thus, are not constrained 
as to the distance which may be jumped as the branch instructions are. 

The JSR and RTS instructions are more involved than is necessary for our purposes. 
The only forms used are "JSR PC,SUBR" and "RTS PC" which together have the effect of 
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transferring control to a subroutine leaving the return address on the stack, and of returning 
from a subroutine. 

JMP jump 
JSR jump to subroutine 
RTS return from subroutine 
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APPENDIX B 

A SHORT PRIMER ON BLISS 

The Bliss language is used throughout this paper for examples. This appendix has been 
included for those who may not be familiar with the language. This primer is not a complete 
description of Bliss - it is, rather, an introduction to those aspects of the language used in 
the examples. More complete information on the language may be found in [Wul71, 
Wul72a]. 

Bliss is a descendent of Algol 60 in that it has block structure* a similar expression 
format - including operator precedence, similar control constructs, and potentially recursive 
procedures (called "routines").- It differs from Algol in its interpretation of identifiers, the 
omission of a goto, and the fact that it is expression-oriented rather than statement-
oriented. Because of its resemblance to Algol, this primer will concentrate on the 
differences. 

INTERPRETATION OF NAMES 

A Bliss program operates with and on a number of storage "segments." A segment 
consists of a fixed and finite number of "words." A word may be "named;" the value of a 
name is called a "pointer" to the word. Identifiers are bound to names by declarations. 
Thus the value of an instance of an identifier, say x, is not the value of the word named by 
x, but rather a pointer to x. This interpretation requires a "contents of" operator for which 
the symbol "." has been chosen. 

This context independent interpretation of identifiers as pointers is maintained 
consistently throughout the language. It is the operators of Bliss which place an 
interpretation on the value of an expression. So, for example, the assignment operator 'V" 
interprets its right hand operand as a value which is to be stored in the word pointed to by 
the value of the left hand operand. As a result the effect of the Algol assignment statement 
"A:=B+C" is identical to the Bliss assignment "A«-.B+.C". This interpretation of names also 
allows the computation of pointers in Bliss so that the effect of the assignment 
"(A+3)«-.(A+5)" is to store the value of the fifth location past A into the third location past 
A. 

CONTROL STRUCTURES 

Bliss is a block-structured, go-to-less, "expression language." That is, every executable 
construct, including those which manifest control, is an expression and computes a value. 
Expressions may be concatenated with semicolons to form expression sequences. An 
expression sequence is evaluated in strictly left-to-right order and its value is that of its last 
(rightmost) component expression. A pair of symbols, begin and end, or left and right 
parentheses, may be used to embrace such an expression sequence to form a simple 
expression. A block is a special case of the construction which contains declarations. 
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Other than expressions and functions, control mechanisms in Bliss fall into four classes; 
conditional, selection, looping, and leave. The conditional expression 

jf eo then ei else e? 

is defined to have the value ei just in the case that eo evaluates to true (a one in the low 
order bit) and e2 otherwise. The abbreviated form "if eo then ei" is considered to be "if eo 
then ex else 0." 

The conditional expression provides two-way branching. The case and select 
expressions provide n-way branching: 

case eo of set e i ; e2i e n tes 

select eo of nset e i : e2i e2 n - i* e2n tesn 

The case expression is executed as follows: (1) the expression eo is evaluated, (2) the 
value of eo is used as an index to choose one of the e/s (0<j<n). The value of eo is 
constrained to lie in the range 0<eo^n. The value of the case expression is et (i»eo). The 
select expression is similar to the case expression except that eo is used in conjunction with 
the e2 j - i ' s to choose among the e2/s. The execution of the select expression above is 
described by the following equivalent Bliss expression. 

(T«-e; V«— 1; if ei eg[ .T then V*-e25 ... if e 2 n - i §9l J then V«-e2nJ .V) 

Hence the value of the select expression is that of the last e2j to be executed or -1 if none 
of them is executed. 

The loop expressions imply repeated execution (possibly zero times) of an expression 
until a specific condition is satisfied. There are several forms, some of which are: 

do eo while ei 

incr <id> from eo to ei by e? do es 

In the first form the expression eo is repeated so long as ei satisfies the Bliss definition 
of true. The second form is similar to the "step ... until" construct of Algol, except (1) the 
control variable, <id>, is implicitly declared to be local to the incr expression, and eo, e i , 
and e2 are evaluated only once (before the evaluation of the loop body, e3). Except for the 
possibility of a leave expression within e3 (see below) the value of a loop expression is 
uniformly taken to be -1. 

The control mechanisms described above are either similar to, or slight generalizations 
of constructs in many other languages. Of themselves they do not remove the 
inconveniences generated by removing the goto. Another mechanism is desirable — the 
leave mechanism. A leave is a highly structured form of forward branch which is 
constrained to terminate coincidentally with some control environment in which the leave is 
nested. The general form is: 
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leave <label> with <expression> 

where <label> must be attached to a control environment within which the leave expression 
is nested. A leave expression causes control to immediately exit from a specified control 
environment. The <expression> defines the value of the environment. 

Finally, functions are defined and called in Bliss in a manner similar to that in Algol, 
except that there are no specifications and all parameters are implicitly call-by-value. The 
value of a function is the value of the expression forming its body. 
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APPENDIX C 

A COMPLETE EXAMPLE 

In this Appendix we will attempt to present a complete example, that is, to take a short 
Bliss program and to show the effects of some of the various optimizations in the order in 
which they are applied. There are inherent difficulties in this attempt: in order to keep the 
example to tolerable length the program must be short; in order to illustrate several 
optimizations it must be fairly rich. The result of these two considerations is a contrived 
program. We must also lie a bit in the presentation in order to avoid tedious detail. 

The example we shall consider is the simple program shown below: 

begin 
external f.g; 
structure bytearraylul • li*j](.bytearray+(.i-l)*j-l+.j)<0,8>; 
own bytearray a[8,8]; 

deer i from 8 to 1 do 
deer j from 8 to 1 do 

if .i egl .j then a[.i,.j]<-0 else 
jf .i gtr .j then a[.i,j]«-f(.i+.j) else a[.i,.j]<-g(.i+.j); 

end; 

If you care, and it certainly isn't essential to an understanding of the following material, 
the effect of this program is to initialize a two-dimensional, Fortran-style (1 origin indexing) 
array. The upper triangular elements are initialized so that a^ « f(i*j), the lower triangular 
elements are initialized so that a^ « g(i+j), and the diagonal elements are set to zero. Thus 
the resulting matrix is shown in Figure C - l . 

Since we shall be primarily concerned with the tree representation of the program it 
may be simpler to think in terms of the program as it would appear after the structure 
accesses have been expanded and defaults supplied, namely: 

begin 
external f,g; 
own a[64]; 

deer i from 8 to 1 by. 1 do 
deer j from 8 to 1 by 1 do 

if .i egl .j then (a+(.i-l)*8-l+.j)<0,8>«-0 else 
if .i gtr .j 

then (a*(.i-1)*8-l*.j)<0,8>*-f(.i+.j) 
else (a+(.i-1)*8- l+.j)<0,8>«-g(.i*.j); 
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1 0 f ( 3 ) f ( 4 ) f ( 5 ) f ( 6 ) f ( 7 ) f ( 8 ) 

o 

f ( 9 ) | 

| g < 3 ) 0 f ( 5 ) f ( 6 ) f ( 7 ) f ( 8 ) f ( 9 ) f ( l 0 | 

| g ( 4 ) g ( 5 ) 0 f ( 7 ) f ( 8 ) f ( 9 ) f ( l 0 ) f ( H I 

| g ( 5 ) g ( 6 ) 8 ( 7 ) 0 f ( 9 ) f ( i o ) f ( 1 1 ) f ( 1 2 | 

| g ( 6 ) 8 ( 7 ) 8 ( 8 ) 8 ( 9 ) 0 f ( 1 1 ) f ( 1 2 ) f ( 1 3 | 

| g ( 7 ) g ( 8 ) 8 ( 9 ) 8 ( 1 0 ) 8 ( H ) 0 f ( 1 3 ) f ( 1 4 | 

| g ( 8 ) 8 ( 9 ) 8 ( 1 0 ) 8 ( H ) 8 ( 1 2 ) 8 ( 1 3 ) 0 8(15)1 

| g ( 9 ) 8 ( 1 0 ) 8 ( H ) 8 0 2 ) 8 ( 1 3 ) 8 ( H ) 8 ( 1 5 ) 0 1 

Figure C - l . Array produced by sample program. 

The final code produced for this example is given in Figure C -2 ; the purpose of this 
appendix is to demonstrate how this code is generated. 

Figure C-3 shows the form of display we shall use to illustrate the tree representation 
of this program. Indentation is used to denote levels in the tree; vertical lines connect 
subnodes of a given node. The numbers along the left edge of the diagram identify the 
nodes. The symbol "<j>" is used to denote the identical subtrees formed by the structure 
accesses. Subsequent figures will show various types of information in the tree nodes; no 
one figure contains all the information in order to avoid cluttering up the diagrams with too 
much detail. 

Figures C-4a through C-4d illustrate the tree after LEXSYNFLO but before delay. In 
particular, the CSTHREAD, CSPARENT, etc. fields have been attached to those nodes for 
which they are interesting. (A field is "interesting" here if it doesn"t name itself or contain 
a null value.) In particular notice that 

1. The subtree corresponding to "a+(.i-l)*8-l" has been recognized as constant 
in the inner loop (that is, the node corresponding to this subtree is in the X-'ist 
attached to the inner loop). 
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MOV #10,R1 ; initialize outer loop index in R1 

L I : MOV R1,R5 
ASL R5 
ASL R5 
ASL R5 
ADD *A-9,R5 ; form (A • (.i-l)*8-l) in R5 

L3: MOV *10,R3 ; initialize inner loop index in R3 
L5: MOV R5,R4 

ADD R3,R4 5 form entire address (A + (.i-l)*8-l*.j) in R4 
CMP R1,R3 
BNE L8 ; branch if .i * .j 
CLRB (S>R4 5 zero the diagonal element 
BR L9 

L8: MOV R1,R2 
ADD R3,R2 ; form (.i+.j) outside the if expression 
CMP R1,R3 
BLE L13 ; branch if ,i < .j 
MOV R2,-(SP) ; push the argument and call T 
JSR PC,F 
BR L15 ; branch to end of conditional 

L13: MOV R2,-(SP) ; push the argument and call "g" 
JSR PC,G 

L15: MOVB R0,(fPR4 ; perform assignment for either branch 
TST (SP)+ ; restore stack state at end of loop 

L9: DEC R3 5 decrement inner loop index 
BGT L5 5 loop if > 1 
DEC R1 ; decrement outer loop index 
BGT L I ; loop if > 1 

Figure C-2. Final version of code with annotations. 

2 . The subtree corresponding to M+.j", which is a routine call parameter on both 

forks of the last [f expression, has been recognized as a candidate for -motion 

and has been attached to the cr-list of that if node. 

In this simple case, no other common subexpressions or interesting feasible 

optimizations were detected by FLO. 

Figure C-5 illustrates the subtree for the expression M(a+(.i-l)*8-l+.j)M after DELAY 
but before TNBIND (most of the interesting effects of DELAY occur in this subtree). Note 
the following obvious changes. 

(1) In i(4) the multiplication by eight has been changed to a shift by three. 

(2) In i(3) the evaluation order of the operands has been reversed (by reversing 
the subnodes themselves). This will reduce the number of registers needed to 
compute "a+(.i-l)T3". 
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Figure C-3. Tree representation of the example. 
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Less obvious, perhaps, is the fact that the field settings shown in C-5 have effectively 

converted the expression 

a+(.i-l)*8-l 
into 
(a-9)+.iT3 

Figure C-6 shows (partially^ the temp name assignments and lon/fon values resulting 
from TLA (the ion/fon of "uninteresting" nodes have been deleted to emphasize those of 
greater importance). Figure C-7 illustrates the rectangular regions in the lon/fon space 
which characterize the "lifetime" of the various temporary names. In this particular case the 
lifetimes all overlap and herre the diagram is a bit uninteresting — all the temporary names 
are assigned to different registers. Packing is also rather uninteresting since all the 
temporaries may be bound to registers. 

Figure C-8 illustrates the code as generated by CODE. Several things should be noted: 

1. Since the loop bounds are fixed, no code has been omitted to check them on 
. the first time through. 

2. The loop termination conditions, e.g. ".i < 1", have been modified to compare 
against zero; this is always more efficient on the PDP-11, but especially so 
when the condition codes have been implicitly set by an arithmetic operation. 

3. Stores of zero hrvn been performed by the more efficient CLRB instruction. 

Comparison of Figures C 2 and C-8 shows the effect of FINAL; in particular note: 

1. The sense of jome conditionals has been reversed to save a BR instruction. 

2. Operations involving constant arithmetic have been modified. In particular, 
"ADD *2,SPH has been modified to "TST (SP)+" and "SUB #1,R" has been 
changed to "DLC R " in two places. 

3. Cross-jumping has eliminated one "MOVB R0,£>R4" instruction. 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

deer 

- i 

- 8 

- 1 

- 1 

- deer (X = < 1 6 ( 2 » ) 

- J 
- 8 

- 1 

- 1 

i f ( o=16) 

. i 

• j t 
h*i6 

i f ( t f = < 2 6 » 

I- g t r 

t t p 2 2 

c a l l 

t + (FrAKENT=26, FSTHREAD=33) 

t 30 
c a l l 

JU+. (FPARENT=26, FSTHREAD=0) 

t . 1 

Figure C-4a. 
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16(1) 

16(2) 

16(3) 

16(4) 

16(5) 

16(6) 

16(7) 

16(8) 

16(9) 

16(10) 

16(11) 

t 

- 1 

Figure C-4b. 

23(1) 

23(2) 

23(3) 

23(4) 

23(5) 

23(6) 

23(7) 

23(8) 

23(9) 

23(10) 

23(11) 

+ (FPARENT=16(1)) 

| - - (FPARENT=16(2)) 

•+ (FPARENT=16(3)) 

• a 

•* (FPARENT=16(5)) 

(FPARENT=16(6)) 

. i 
1 

L. 8 

\ -

t: 
t 

l~ 1 

Figure C-4c. 

30(1) 
30(2) 

30(3) 

30(4) 

30(5) 

30(6) 

30(7) 

30(8) 

30(9) 
30(10) 

30(11) 

. (FPARENT=16(1)) 
| « - (FPARENT=16(2)) 

L + (FPARENT=16(3)) 

t * (FPARENT=16(5)) 

- (FPARENT=16(6) 

U 8 

Figure C-4d. 
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i (D 
(2) 

(3) 
(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
(10) 

( I D 

+ (state=T, NDT=1) 
- - (s tate=T, NDT=1) 

- + (state=TRN, RN=a-8) 
Lt (state=TL, L=8) 
I | (state=TL, L ^ l , OP='+') 

Figure C-5. 
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1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

deer ( lon=14, 
L i 

fon=-11) 

- 8 

- 1 

- 1 

Ldecr ( lon=13, fon=10) 

- j 
. 8 

- 1 

- 1 

- i f ( lon=12, fon=9) 

| - e q l 

. i 

• j 

where c o ^ is 

t 

16(1) 
16(2) 
16(3) 

16(4) 

16(5) 

16(6) 

16(7) 

16(8) 

16(9) 

16(10) 

16(11) 

^ « , 6 ( l o n - 5 , fon=5, TN2) 

i f 

U gtr 

t 1 

t tp 2 2 ( lon=8, fon=8, TN2) 

c a l l ( lon=7, fon=7, TN4) 

t: ( lon=6, fon=6, TN3) 

L . j 

t (p 3 0 (lon=11, fon=8, TN2) 

c a l l (lon=10, fon=7, TN5) 

( l o n - 9 , fon=6, TN3) 

+ • ( lon=5, fon=5, TN2) 
f - - ( lon=4, fon=4, TNI) 

| - + ( lon=3, fon=3, TNI) 

| - t ( lon=2, fon=2, TNl) 

L. - ( lon=1, fon=1, TNl) 

L 3 
L_ a 

Figure C-6. 
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1 2 3 4 & 6 7 8 9 iV) 11 1213 14 Vs 1*6 H 

Ion - » 

Figure C-7. lon/fon space for the example. 
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MOV *10,R1 
L l : MOV R1,R5 

ASL R5 
ASL R5 
ASL R5 
ADD #A-9,R5 

L3: MOV #10,R3 
L5: MOV R5.R4 

ADD R3,R4 
CMP R3,R1 
BEQ L6 
BR L8 

L6: CLRB if&R4 
BR L9 
MOV R1,R2 
ADD R3.R2 
CMP R1,R3 
BGT L10 
BR L13 

L10: MOV R2,-(SP) 
JSR PC,F 
MOVB R0,«5»R4 
BR L16 

L13: MOV R2,-(SP) 
JSR PC.G 
MOVB R0,<s>R4 

L16: ADD #2,SP 
SUB *1,R3 
BGT L5 
SUB #1,R3 
BGT L l 

Figure C-8. Code produced by CODE. 
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