
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PERFORMANCE PREDICTION
AND CALIBRATION

FOR A CLASS OF
MULTIPROCESSOR SYSTEMS

D. Vrsalovic
D. Siewiorek

Z. Segail
E. Geh ringer

22 August 1984

PLEASE ^ £ ™ nEPAJSJME&E A W » * * COMPUTER SOfc-NCE D b f A t t * ^ ^ *
1440 BOELTEK HALIi -

This research has been supported in part by the Ballistic Missile Defense Advanced Technological
Center under contract DASG-60-80-C-0057, and by National Science Foundation grant
MCS-8120270. The views and conclusions contained in this paper are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of
BMDATC, NSF, Carnegie-Mellon University or the U.S. government.

i

Table of Contents
11ntroduction
2 Refined Analytical Model

2.1 Architectural refinements
2.2 Influence of the processor and access speed
2.3 Influence of the connection throughput
2.4 Decomposition of an algorithm into processes
2.5 Variations in iteration cycle

3 Processing Power vs. Speedup
4 Sensitivity of Performance to Architectural Changes

4.1 The synchronous case
4.2 The asynchronous case

5 Decomposition Functions for Sample Parallel Applications
5.1 Matrix multiplication
5.2 Poisson equation on a square grid
5.3 Linear differential equations
5.4 Fourier transform
5.5 Parallel search

6 Single global data versus local global data copies
7 Some Common Decomposition Functions

7.1 {N; N) decomposition group
7.2 (N; VN) decomposition group
7.3 (A/; 1) decomposition group
7.4 (log N; log N) decomposition group
7.5 Linear speedup

8 Correlation with Real Workload Implementations
8.1 Processor speed variations
8.2 Speedup versus synchronization
8.3 Matrix multiplication

9 Improving a Parallel Implementation: A Case Study
9.1 Decomposition into triangles
9.2 Decomposition into hexagons

10 Conclusions

ii

List of Figures
Figure 1: General architecture of a multiprocessor system 4
Figure 2: Square decomposition of a Poisson equation 22
Figure 3: Speedup versus N for decomposition (A/; N) and synchronous implementation 33
Figu re 4: Speedup versus N for decomposition (A/; N) and asynchronous implementation 34
Figu re 5: Speedup versus N for decomposition (N; VJJ) and synchronous implementation 35
Figure 6: Speedup versus N for decomposition {N;VN) and asynchronous 36

implementation
Figu re 7: Speedup versus N for decomposition (A/; 1) and synchronous implementation 37
Figure 8: Speedup versus N for decomposition (A/; 1) and asynchronous implementation 38
Figure 9: Speedup versus N for decomposition (log A/; logN) and synchronous 39

implementation
Figure 10: Speedup versus N for decomposition (logA/; logN) and asynchronous 40

implementation
Figure 11: Molecular Dynamics Speedup, Dependency on Processor-Speed Variations 43
Figu re 12: Influence of Synchronization on Molecular Dynamics Calculations 44
Figure 13: Speedup of Matrix Multiplication 46
Figu re 14: Triangular decomposition of a Poisson PDE 48
Figu re 15: Speedup versus N for triangular decomposition of a Poisson equation 50
Figure 16: Hexagonal decomposition of a Poisson PDE 51
Figu re 17: Speedup versus N for a hexagonal decomposition of a Poisson equation 52
Figu re 18: Speedup versus N for a square decomposition of a Poisson equation 53
Figu re 19: Speedup versus N for triangular, square, and hexagonal decompositions 54

>

Ill

List of Tables
Table 1 : Parameters of the Model 6

1

A b s t r a c t

We present a model for predicting multiprocessor performance on iterative algorithms which are

made up of repeated application cycles. Each application cycle consists of some amount of access

to global data and some amount of local processing. The application cycles may be synchronous or

asynchronous, and the processors may or may not incur waiting time, depending on the relationship

between the access time and processing time. We study how performance is affected by the

processor and memory speed and the connection throughput. We also show how the model can be

generalized to allow for processing and accessing to be interleaved throughout an application cycle.

Significantly, the model permits the influence of the decomposition strategy upon the speedup to be

separated from the influence of resource utilization. We study the decompositions of several sample

algorithms, and identify several decomposition groups. The predictions of the model are compared

with experimental results for three algorithms run on the Cm* multiprocessor. Finally, using the

Poisson partial-differential equation algorithm as an example, we investigate how its decomposition

affects its performance.

2

1 Introduction

With the decreasing cost of processors, it will soon be economically feasible to connect many of

them together in a single tightly coupled multiprocessor system. Experimental systems, called

"multiprocessor testbeds," have been built to investigate performance, but a comprehensive

approach to performance prediction requires accurate models as well. In the experiment-preparation

phase, reliable performance prediction reduces the experimentation space, thus reducing the

experimentation time significantly. Once experimentation results are obtained the same models can

be used to identify target system behavior and prepare new experiments, thus closing the

experimentation cycle. Experimental results, in turn, aid in tuning the model. A model which initially

provides only rough estimates can be refined to produce accurate results for a broad range of

architectural parameters.

Most of the published multiprocessor models 1 , 2 , 3 ' 4 have been based on statistical methods,

predicting statistical mean values for performance over some time interval. It was shown5 that, in a

real-time system, system performance in short-term application cycles—as well as long-term average

behavior—is of interest. In order to evaluate this performance, the notion of cyclic processing power

was defined as the effective number of processors (that is, the number of processors not idle due to

contention) working cooperatively in every cycle.

Cyclic processing power is a measure of the system's processor utilization. Naturally one can

assume that better utilization of processors will lead to better performance but, since there are

several different parallel decompositions for the same algorithm, this is not necessarily true.

Sometimes decomposition strategies which assign shorter sub-process iteration times also tend to

lower the processing-to-global-memory access ratios of the parallel processes. Lower processing-to-

access ratios decrease the cyclic processing power CP, which in turn lowers the speedup SP. It

seems that in most cases, decomposition strategies and processing-to-access ratios influence

performance in opposite directions. In this report, we will analyze the influence of the decomposition

strategy as well as the influence of the processing-to-access ratio.

The expression given below for cyclic processing power5 CP is based on a trivial multiprocessor

model: a bus-oriented architecture with one common bus and a common memory, executing an

infinitely decomposable parallel workload. The workload is assumed to have exactly one atomic

(indivisible) access and one atomic processing period in every identical iteration, which we will call an

application cycle, or simply an "iteration." Due to the large number of iterations initial start-up

transients were neglected.

3

where

• f is the processing time within a cycle,

• f is the access time within a cycle, and

• tw is the waiting time due to contention for common resources.

Assuming a balanced load, the sum in (1) degenerates to multiplication by W, resulting in the following

expressions5 f(

balanced load
expressions5 for a synchronous (synchronization points at the beginning and end of each iteration),

and an asynchronous balanced load (without any global synchronization points)

CP = min[A/f1/p], (3)

where p is defined as

P - j ^ T - (4,
a p

The main disadvantage of this model is that it addresses a very small group of simple applications and

multiprocessor architectures. A more refined model capable of describing a wider range of

architectures and applications will be described in the following sections.

4

2 Refined Analyt ical Model

In order to develop a new model capable of dealing with a broader range of applications and

systems, one should first address the main two weaknesses of the basic model. Such a new model

should be capable of accurately describing a variety of network interconnection architectures, and of

accounting for potential pipelining, caching, or distributed common resources.

Producing a model that is capable of describing the whole spectrum of hardware architectures and

parallel workloads is impractical due to the large number of parameters such a model would require.

The approach we take in this paper by modeling upper and lower performance bounds is more

realistic, and can provide answers to two important design questions:

• What is the worst overhead that can be incurred by a parallel decomposition of some
algorithm?

• How much can this performance be improved by changing the architecture or the
implementation details, and is the improvement worth the price?

2.1 Architectural refinements
The general architecture of a multiprocessor system as considered in this text is presented in Figure

™1
Local Memories

Processors

Connection Network]

Common

Resources

Figu re 1: General architecture of a multiprocessor system

The system encompasses N processors, each having a considerable amount of a private memory for

5

local code and data. There is also a set of a common resources for storing global data. Processors

and common resources communicate via a network. The connection network itself provides only

circuit switching, not message switching. Requests for common resources are granted on a FIFO

basis rather than on the basis of a priority scheme. These assumptions allow the waiting time tw to be

modeled as a linear function of N.

In addition to A/, there are three other architectural parameters in the model:

• ps: processor speed relative to the speed of a reference processor, which we assign a
speed of 1.

• cas: common access speed. The speed of accessing common memory relative to the
speed of a reference memory with a speed of 1.

• cat: common access throughput. The value of this parameter is the number of
processors which can simultaneously access a common resource without contention.
This "value depends not only upon hardware features (e.g. architecture of the
interconnection network, and existence of multiple common resources), but also upon
the algorithm decomposition and the partitioning of global data among multiple common
resources.

A list of all model parameters is presented in Table 1. To distinguish the parameters of the

uniprocessor solution from those of the decomposed processes, the former will be denoted by

capitals and the latter by lower-case letters. The processing-to-access ratio of a workload is defined

as—

* = (5)

For the moment, let us assume that x is constant and independent of the number of processes in the

parallel decomposition (i.e. x = X for all A/), although it will be seen later that this represents only a

special case in practice. Further substitution of (5) in (2) and (3) gives—

C P - " < 1 + X > (6)
/v + x w

and
CP = min[Wf1 +X] . (7)

Note a few intuitive interpretations of these formulas: When A/ = 1, CP-1 for both the synchronous

and asynchronous case. As X gets smaller, both the synchronous and asynchronous CP approach 1,

indicating that an access-bound computation will show little speedup. For A/>1 and X>0 (the usual

6

Table 1 : Parameters of the Model

cas Common access speed, the speed at which global memory can be accessed, relative to the
speed of a reference memory, (page 5)

cat Common access throughput, the number of processors which can simultaneously access a
common resource without contention, (page 5)

CP Cyclic processing power, the number effective number of processors working cooperatively in
every cycle. (page3)

/ The access decomposition function, the ratio of global access time in a uniprocessor
implementation to global access time by an individual process in a multiprocessor
implementation, (page 9)

f The processing decomposition function, the ratio of processing time in a uniprocessor
P implementation to processing time for an individual process in a multiprocessor

implementation, (page 9)
J . _ . . Notation for the serial iterations for / from / to k by 1. (page 18)

N The number of processors in the system, (page 4)

ps Processor speed relative to the reference processor, (page 5)
SP Speedup, the ratio of the reference iteration time in a uniprocessor implementation to the

iteration time of an individual process in a parallel implementation, (page 12)

SP* Normalized speedup, the ratio between the cycle time of a particular algorithm/implementation
and that of the uniprocessor basis solution, (page 13)

t Access time for a subprocess within a cycle, (page 3)
t9 Modified access time, the time it takes to make f accesses to a memory of speed cas. (page 7)
Q ST

T Access time for a uniprocessor implementation within a cycle, (page 5)
t Cycle time, the sum of the iteration time (f + f) and the waiting time t . (page 12)
C p a W
t. Iteration time, the sum of processing and access time for a single process in an iteration, (page

12)

T. Iteration time for the uniprocessor implementation, (page 12)

tn Processing time for a subprocess within a cycle, (page 3)
Modified processing time, the time it takes a processor of speed ps to perform f units of work,
(page 7)
Processing time for a uniprocessor implementation within a cycle, (page 5)
Waiting time due to contention for a subprocess within a cycle, (pages 3,8)

TA Processing time for an iteration when local data copies are not used, (page 19)
Time to perform a single global access, assuming no contention, (page 19)
Processing time (for address calculation, etc.) associated with copying a single global data
item to or from global memory, (page 19)

p

T2
T3

7

Table 1, cont: Parameters of the Model

X processing-to-access ratio for a subprocess, equal to t /ta. (page 5)

x ' Modified processing-to-access ratio, defined as t'/t'a. (page 7)

X Processing-to-access ratio for a uniprocessor implementation, equal to 7" /T a . (page 5)

S Average utilization of an individual processor with a ps of 1. (page 12)

Peas/cat cas/cat-efficiency, the (theoretical) percentage decrease in cycle time which would occur
if cas and cat were infinite, (page 15)

Mps ps-efficiency, the (theoretical) percentage decrease in cycle time which would occur if ps were
infinite, (page 15)

p The fraction of time a processor spends performing global accesses, t /(/ + f). (page 3)
a a p

case), the CP of an asychronous computation is always greater than for a sychrounous computation.

We will now proceed to consider the influence of ps, cas, and cat on CP.

2.2 Influence of the processor and access speed

The only variable in equations (6) and (7) which is dependent on ps and cas is x. Increasing the

processor speed or will shorten f p . Similarly, increasing the common access speed will shorten ta,

and thus change x proportionately. The modified processing-to-access ratio x ' will be—

P ps

a cas

and, consequently

. f i cas

Since we have assumed that x = X for all processes, the substitution of x ' for x in (6) and (7) gives—

CP = N<Ps+casx)
{Nps + casx) w

and

CP * min [W, 1 + cas x/ps]

8

2.3 Influence of the connection throughput

To see what happens in a multiprocessor whose interconnection network allows more than one

processor parallel access to global data without degradation, the original definition of CP (1) should

be analyzed. Assuming a balanced load, (1) degenerates to—

r + r
CP = N—£ 3

t + t + f
. p a w

(10)

The waiting time of a process is obviously depends on car, the number of processes which can

simultaneously access the data without contention. If parallel access is possible, cat measures this

parallelism, and the waiting time for a process is proportional to the integer [N/cat J. (If there are

seven processes, for example, and cat is two, then the seventh process must wait for three sets of two

processes to complete their accesses; hence the waiting time is proportional to 3.) In order to keep

the performance-prediction functions continuous, let us define the waiting time of a parallel process

slightly differently,

N
cat

- 1 (11)

for the synchronous case, and

r = max
w

o, N
cat

-1
f a - < P

(12)

for the asynchronous case.5 Substituting the definitions of (11) and (12) and the result of (9) into the

definition of CP, we derive—

CP - caf N- ps + casx
Nps + cascatx

CP - min [N, cat (1 + cas x/ps)]9

(13)

(14)

which takes into account all three of the parameters defined above. It is interesting to predict the

results of a "brute-force" application of a huge numbers of processors. A few conclusions can be

drawn by analyzing the l im^^CPtA/):

• The maximal CP for synchronous systems is

CP(oo) = caf(1 +casx/ps).

o In the case of a large casx/ps (i.e. a large granularity of parallelism) a reasonable
CP could be obtained using a conservative architecture with cat equal to 1 or
nearly 1.

9

o Conversely, in a case of small casx/ps (i.e. a small granularity of parallelism) the
only means of improving CP is to use an architecture/algorithm combination with a
larger cat.

• For an asynchronous system there is no gain at all by increasing N beyond

N = cat (1 + casx/ps)

due to the fact that CP will not increase for N greater than this.

CP, however, is only one of the characteristics of a multiprocessor that affects performance, and a

more detailed sensitivity analysis will be provided in Section 4, after parameters associated with the

decomposition functions have been added to the model.

2.4 Decomposition of an algorithm into processes

When an algorithm is decomposed, local processing and common access are usually divided into N

equal parts according to some rules. These riries can be expressed as functions of A/, and need not

be identical for local processing and global access. Consequently the processing-to-access ratio of a

decomposed process will not be constant, but rather a function of N:

'fit = 7 V (15)
P

* № - t 4 t - (16)
a

m - $ 8 - = - 4 - (, 7)

a a p p

The substitution of (17) into (13) and (14) gives the final expressions for CP:

• synchronous case—

catN{psfn + casxf)
CP = ~—e § _ (18)

Npsf^ + cascatxf^

• asynchronous case—

CP = min [A/, cat (1 + cas X f /ps M] * (19)
a p

where f and fa are the processing and access-decomposition functions respectively. Theoretically, a

decomposition function can be any mathematical function of A/, but as is shown in Section 5, some

functions frequently appear in practice.

10

2.5 Variations in iteration cycle

Until now, all the expressions that we have seen for CP have been derived under the assumption

that common access and local processing are atomic operations, and that each iteration has only one

of each kind. In practice, this is seldom true—an iteration frequently consists of several interleaved

processing and access periods. We shall now proceed to consider two special cases, representing

the upper and the lower performance bounds of all possible implementations of an iteration:

Lower-bound performance (the "worst case") is encountered when synchronization is
required after each consecutive access-processing pair. The CP of a such system is—

I > p A + 'aA>
c p = (2°)

k

where k is the number of processing-access pairs in the iteration. Due to the fact that
there is a linear dependency between tw and ta and N, equation (20) yields the same result
as would only one atomic (f p , ta) pair which had a duration equal to the length of an
iteration.

• Upper-bound performance (the "best case") is achieved by the asynchronous case with
only one atomic (f p, ta) pair whose processing and access times are equal to the sum of
those which make up the iteration.

The worst case definition is intuitive, as there is obviously no worse case than for ail of the N

processes to request the common resources at exactly the same time, and then to wait for each other

to finish in order to perform simultaneous accesses again. To establish that our "best case" is in fact

optimal, however, requires a proof.

Claim: The asynchronous case of N parallel processes, each with only one atomic pair (fp, ta) per

iteration yields the best performance of all cases with access and processing periods interleaved

within the iteration.

Proof: For clarity and without loss of generality, we assume that cat, cas, and ps all have the value

of unity. Given an iteration with a single (f p, ta) pair, suppose we rearrange it into M pairs (tpk, tak)

such that 2tpk = tp and 2f a A = f a . For this case to be "better" than the original iteration then the total

waiting time must be shorter than that of the first case. If the first case had no waiting time then it was

optimal, and no further improvements are possible.

We now consider the case in which the original iteration has a positive waiting time. For this to

happen, each process must finish its processing in less time than it takes for all the processes to

complete their accesses. Hence tw = (N - 1)fa - f p and the time to complete one iteration is tp + ta + tw

11

a Nta. Since this is the time required for all processes to access the shared data, improvement on this

time is not possible, so any optimal rearrangement must complete one iteration for all processes in

Nta. Hence

£ ' a * + £ ' p * + =

'a + 'p + XX* = A " a

Therefore no rearrangement of the original one-pair iterations can reduce the total waiting time, so

the one-pair asynchronous iterations are optimal as originally claimed.

12

3 Processing Power vs . Speedup

As we have seen in Section 1, cyclic processing power (CP) is a measure of the amount of

computation which a system can perform in an algorithm-dependent iteration time tf, which is defined

as the sum of f 0 and f a . The CP of the normalized uniprocessor system is defined to be 1. In a

multiprocessor system, 8, the average utilization of an individual processor is

S = CP/N (21)

Intuitively, we expect the CP of an W-processor system to be higher than that of uniprocessor system,

but not necessarily N times more powerful, since the processors sometimes have to wait for each

other. The waiting time per cycle is tw, and the cycle time is defined as the sum of the iteration time

and the waiting time,
t = t +1 +1 . (22) c p a w x '

Usually, the amount of waiting increases with the number of processors; this is reflected in a

decreasing 5.

While it is obviously desirable for a system designer to keep resource utilization high, his main

concern is to minimize the amount of time needed to complete an application. We will use speedup

factor (SP) as a measure of the performance of a multiprocessor system compared with the reference

uniprocessor system. Speedup has been defined in several different ways.6 We shall define it as a

ratio of cycle times:

SP{N) - - 7 c —

It is useful to express SP in a slightly different form to illustrate how it is influenced by the utilization 8

and the decomposed iteration time ti (note that Tc = Tf due to the absence of degradation in the

uniprocessor implementation):

SP(N) = sJ jL - (23)
H

Speedup is thus the ratio between the reference iteration time and the decomposed iteration time,

slowed by the utilization 5. In order to calculate speedup, taking into account the processor speed ps

and the memory speed cas, we need the value of these quantities:

T. = J j l . + In- (24)
' cas ps

t = f +f - + Jj>— (25)
' A P casf psf a P

Substituting the results of (24) and (25) in (23) yields

13

T T
J + SL
cas ps

SP(N) = S 7 r
a + fi cas/ ps/ a p

Using the definition of 5 from equation (21) and substituting for CP using (18), we derive

cat / / (ps + cas X) _ M _
SP = a P 1— (26) (A/ps/ +casca/X/) p a

for the synchronous case, and, substituting for CP using (19),

. V 1
(27) SP = min ps + casX f>£±£££^_ D S

I *Ppsf +casXfa ' « N y

l ^ p a

From these equations, we can draw this general conclusion: While cyclic processing power

depends only on the ratio of the decomposition functions fp and /a, speedup depends also on their

values. In practical terms, this means that it is possible to decompose an algorithm into a set of

processes which exhibit high processor utilization but low speedup.

Normalized Speedup

We have defined speedup (23) as a function of A/, the number of processors in a system. As

mentioned above, the implementor's real goal is to minimize execution time, not simply to maximize

speedup. Toward this end, it may be necessary to change the implementation of an algorithm, the

algorithm itself, or even the underlying system architecture to obtain better performance. Speedup,

as defined above, is not an adequate measure of the improvement, because it cannot take into

account any of these factors. Notice that all of these factors affect the decomposition functions /p

and /a, as well as Tr Therefore, let us define a more general term, normalized speedup, to measure

the speed of a particular implementation with respect to a particular uniprocessor solution. We

choose this basis solution to be the uniprocessor solution with all data global rather than local. Note

that this solution is hypothetical, since we probably would not implement a uniprocessor program this

way, but it does serve as a good basis for comparison.

Normalized speedup, then, is the ratio between the cycle time of a particular algorithm and

implementation and that of the basis solution:

T
SP* = SP °basi$

where Tc is the cycle time for the uniprocessor implementation of the same algorithm.

14

Now, let us define a decomposition as an ordered pair (fp\ fa). Then the normalized speedup SP*

the same as the relative speedup for an (A/; N) decomposition.

15

4 Sensit iv i ty of Performance to Archi tectural Changes

Until now, we have discussed only relative performance. It is, of course, very useful, especially in

early design phases, to study how a proposed algorithm/architecture/implementation combination

will perform relative to some hypothetical basis solution, but the designer's ultimate goal is always to

predict absolute system performance. As mentioned first in Section 3, cycle time is the sum of

iteration tinfie and waiting time:

'c = 'p + 'a + 'v.

Both synchronous and asynchronous cases will be discussed using the following notation. The

definitions are similar to those of Section 2.4, except that the expressions for tp and ta now take into

account the processor speed ps and memory speed cas.

f = A - * = T p

* fa Ta

T T
t = —*— t = — e _

a casf P ps/ a P

4.1 The synchronous case

Substitution of (11) into (22) gives

c p a w p a
N - 1

cat
or, using the above notation,

t = NT* M + —9— (28)
c cas cat f psf

a P
Thus the cycle time is made up of two distinct components:

• A part proportional to the access time

f = a
c a cas cat f„ a

• and a part proportional to the processing time (of one iteration).

CP p S /
p

Although cycle time will always decrease as ps, cas or cat are increased, there will be some situations

in which the tcp or tca component will be so small that even bringing it down to near zero via huge

investments in hardware would improve performance very little.

Let us define ps-efficiency / i ^ , and cas/cat-efficiency ncas/caV as the theoretical percentage

decrease in cycle time when ps, or cas and cat are assumed to be infinite:

16

p s t + t
cp ca

J9R = 1 + i + 3^1

u , = = 1 +
r*ca$/cat t + f

cp ca.

Xcascaf

Xcascaf

X100

1 +
Nf x ps

X100

It is probably more cost effective to concentrate on reducing the larger of / i p 5 and pcas/cat by

increasing ps or both cas and cat.

4.2 The asynchronous case

In the asynchronous case, there are two different possibilities:

• No waiting time:
T T

t = f + f = — £ — +
c P a psf cas/

^ p a

The cycle time does not depend on cat and the efficiency factors are:

u = 1 * rps

^cas/cat = 1

casX

casX

X100

1 + X100

• Waiting time equal to [{N/cat) - 1]fa - f p . This is the case where

N
cat

- 1 K > tn a p

or
Xfacas

P S > /p[(W/caf)-1]

In this case, the cycle time does not depend on ps:

<c = — <a
c cat *

or, using the notation defined at the beginning of this section:

NT
f = §

c cas cat fA a
There is obviously no benefit to increasing ps beyond the value given by (29). The
efficiency factors are jtt^ » 0, and pcas/cat = 100 for such an asynchronous case.

(29)

(30)

17

The design process inevitably involves tradeoffs between cost and performance. It is impossible to

say which cost/performance tradeoffs should be made in a particular design, but the approach of

balancing efficiency factors (ji = l*cas/cat) may be worthwhile to consider, at least in the initial design

phases.

18

5 Decomposit ion Funct ions for Sample Parallel Appl icat ions

In this section, we will use straightforward implementations of several applications to illustrate a

method for identification of decomposition functions. There is no loss of generality in considering

simple applications, since the proposed methodology generalizes easily to more complicated

applications.

In the following development, we will employ the following notation:

• Greek letters will be used to refer to global variables.
• The symbol I ! s / J l represents the serial iterations for / from / to k by 1.
• The symbol " means assignment.
• The symbol1 w indicates that values are copied in one direction and later copied back.

The algorithms described below may be implemented in several ways, but we will consider only two

approaches, based on their use of shared data. If an algorithm requires multiple access to a shared

data segment, we must choose whether or not each process is to maintain a local copy. We will

present decomposition functions for both approaches in order to compare their performance.

Recall that in order to measure speedup, we always compare the performance of a particular

decomposition to the performance of the reference solution, which is a uniprocessor implementation

of the parallel algorithm. Strictly speaking, a uniprocessor implementation need not have any global

data—all the data can simply be local to the single processor. For the sake of comparison, however,

we will assume that the uniprocessor implementation uses exactly as much global data as its

multiprocessor counterparts. In other words, to obtain the number of global references by the

uniprocessor implementation, we derive an equation for the number of references by a

multiprocessor implementation, and then simply set N to 1.

Regardless of whether data is local or global, it takes time to access it. Collectively, the time to

perform the global data accesses makes up t . The time to perform the local accesses is included in

f . When local copies are substituted for global data, tp increases for two reasons: (1) it takes

processing time to copy the data, and (2) the time for accessing the data is now charged to t instead

of t . We will assume that the latter cost is negligible. In Section 6, we will consider the
a

circumstances which make it worthwhile to make local copies of data.

5.1 Matrix multiplication

For MxM matrices A, B and C, the solution of the matrix equation

C=AxB

19

can be decomposed into N processes,7 each assigned to a submatrix of dimension M/y/TT xM/\fFT

. We can consider the submalrices themselves as arranged in m1 rows and m1 columns, and let cRS

be the Sth submatrix in the flth row. In other words, this means that

m1 = M/VTT

(CRshj = C[(R - +/, (S - 1)m1 +/]

Now let m2 = V/V~- If « and ft refer to submatrices of A and B respectively, then the work done by

an individual process is—

If local copies are used, array values must be copied into and later out of the local workspace. The

global accesses in (31) are replaced with local ones, and the following additional copying work must

be done:

Let

• TA be the processing time for one iteration without local copies (that is, the time for one
iteration in (31))

• 7*2 be the time to perform one global access, exclusive of waiting time, and

• 7"3 be the processing time for copying a single global matrix element to or from global
memory 'that is, the time for one iteration in (32)).

Then we can derive the processing and access times (tp and fa) for an individual process by

multiplying the number of iterations by the time needed for processing and accesses, respectively,

within an iteration.

Without local copies:

tp = {m^m^mJT, = _ 1 -

2M̂ 7*
f f l = (m,m,m2mJ2T2 = — J -

Hence,

/ = N / = N
P . a

20

With local copies:

i = !_ + 1_
p N V F

, = (vTT m)27 2 = 2M2 Tl_
a . VÂT
T = A f ^ + 2 M % 7 = 2M 27 0 X = M 7 " l + 7 3 p i 3 a 2 o t

* 7 2
(Mr + TJW y —

p + r 3 \/F a

5.2 Poisson equation on a square grid

There are several algorithms for the parallel solution of a partial differential equations.8 , 9 Let us

consider first the square-grid decomposition. Other decompositions will be discussed in Section 9.

A general definition for a Poisson equation is:
Au = F (33)

where A is the Laplace operator for n variables. For the solution in a plane (/? = 2), equation (33) can

be written in finite difference form:

f. . . + f. . . + f.. , + f.. «- At.. a P. . / + 1,/ / - I , / / . / + 1 /./-1 /,/ /./
Given a decomposition based on a square grid where every processor works on a square with

dimensions m^xm^ m1 is again equal to M/V77, and the action of an individual process can be

described by—

Il91|flIi fasnbRsh - <W - 1><9W// + <"/4>K*TO>/ -1./ + <<P*S>/ +1,/
+ ^ « - i + ^ w + i l (3 4)

where q p ^ is the submatrix defined by (9 « s ^ s ' (R - i) m +/,(s-i)m +/• ^ w i s a w e i 9 h t i n 9 factor

which controls the rate of convergence.

The global matrix "wraps around/1 so that the Mth row is adjacent to the 1st row, and the Mth

column is adjacent to the first column. Hence the submatrices in the m^st row are adjacent to the

submatrices in the 1st row and those in the rr^st column are adjacent to those in the 1st column.

Thus all the elements on a square boundary are shared with neighboring squares:

&RS\ +1 j - <?*,s +1)1,/ < e t c - f o r a " boundaries)

If local copies of global data are made, the non-boundary elements need be copied only once at the

21

beginning of the process and copied back only once at the end. In the interim, they are accessed and

updated by only a single process. We may assume that this cost is negligible compared with the cost

of the entire algorithm. The significant work of copying is that required to copy all of the boundary

elements on every iteration. This can be done by a single loop which copies elements on all four

boundaries:

U r i { U i H | W leftboundary

U w + 1 " 1*RJU + V t 0 P boundary

W/c + 1,m1 " ^RSK^ f ^ h t boundary

U m ^ " (<PRS>MRK > bottom boundary (35)

We can now use the information of equations (34) and (35) to derive the decomposition functions.

Without local copies:

Only the boundary elements need to be maintained in global shared memory; all other elements may

be kept in non-shared memory (which may be "local" to the process which uses them). Different

iterations of the nested loop in (34) will require different numbers of global accesses depending on

how close the elements involved in the calculation are to a boundary. The integers in Figure 2 show

the number of atomic global accesses required to update each element of a submatrix with m1 =6.

For example, the 6's for the corner elements mean that each of its four neighbors must be read from

global memory, and the element itself must both be read from and written back to global memory.

Each iteration of the loop in (34) can be assigned to a class based on the number of global accesses

it makes. There are five different classes: 0,1, 2, 5, and 6. The processing time for any iteration is t

= 71 regardless of the number of local accesses it makes, since a local access is assumed to take

negligible time. The access time for an iteration depends on its class, with t the access time for a
3d

class-/c iteration, equal to kTx Let nR denote the cardinality of class k for the iterations on an

individual submatrix.

Class 0: Submatrix iterations [/,/] where / - 3 , . . . , m1 - 2 and / = 3 , . . . , m1 - 2.

'ao 3 5 0 " 0 = < m l - 4 > 2

Class 1: Submatrix iterations [2,/] and [m1 -1,/] where/ = 3 , . . . , m1 - 2,
[/, 2] and [/, m1 -1 j where / = 3, m1 - 2.

fa1 = 7 2 n 1 « 4 (m 1 - 4)

22

X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X 6 5 5 5 5 6 X X X X X X

X X X X X X 5 2 1 1 2 5 X X X X X X

X X X X X X 5 1 0 0 1 5 X X X X X X

X X X X X X 5 1 0 0 1 5 X X X X X X

X X X X X X 5 2 1 1 2

IO
 X X X X X X

X X X X X X 6 5 5 5 5

co X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

Figu re 2: Square decomposition of a Poisson
equation

Class 5 : Submatrix iterations [1,/] and [m1,/] where j » 2 , . . . , m 1

[/, 1] and [/, /n1 j where / • 2 mì

<a5 = 5 r 2 " 5
 = 4 K - 2)

1,
1.

Class 6: Submatrix iterations [1,1], [1,mj, [mv 1], [mvmA]

From these expressions, it is easy to derive—

a
(6n6 + 5n 5 + 2n 2 + nJT2 = 24(m1 - 1)T2 =

24M72 24T2

= M2TA 7 a = 24f 2 (M-1)

23

M2TA

i;
(m - i) V a T

24f 2 (M-1)

f„ = N f = ^_

W/7/J /oca/ copies:

Two atomic accesses will be performed for each boundary element, one to read it and another to

copy.back its value at the end of the iteration, a total of 2x4(/r)1 -1) atomic accesses per process. In

order to update these boundary elements, an additional 4m^ accesses must also be performed to read

boundary elements from neighboring processes. Each process, then, makes a total of 12m,-8

atomic accesses.
M2T. 12M7. „ M2T, + -\2MVN~T-8NT~ t = ' + 3_ _ 87 s 7 ' 3 2_

P N VAT 3 p TPN

12M 8
'• " i n * - ~6T> * (1 2 M " 8 > r n (1 2 « - 8) V F C2M-8)

2 p ^ 3 _ 3 a _ , . 2 (12Arf-8)7:

f - MM27"1-H2M73-8r3)
p ~ M 2 r i + 12Af73VF "8A/r3

^ (12M-8)VAr
a 12M-8VAT

5.3 Linear differential equations

A linear differential equation of the n th order can be transformed into a set of n linear differential

equations of the first order:

O n + 1 = AxOn + Bxin

where A and B are matrices, O is a state vector, and / is an input vector. If each processor is assigned

to a set of M/N adjacent matrix rows, the work of the ftth parallel process can be described as

follows, letting G refer to the potentially global realization of O and t to the potentially global version

of /:

W a W ! " * 0 - J ^ r o P + B . X I W] } (36)

If local copies are to be made, the/th process must copy I and Q at the beginning of each iteration,

and afterwards, copy back the updated values from O.. Hence, its additional work is—

^ i . M ^ - ^ / ^ y (37)

It is easy to derive the decomposition functions for one of the component processes described by
(36):

24

Without local copies:

M27«

N

f a = M(2M + 1) 7 2 _

T m M2T, T=M{2M + -\)T. X =
D i d « (2M + D7,

P a

W/Mi /oca/ datà copies:

t - 1 + 2MT = (M2T + 2MT) " ' 1 ' - ' 3 "
fp " U + ^ ' 3 - { M 1 + ^ ' 3 ' (M ^ + 2f3)A/

M7\ + 2r„W

MT J L + 1 _
3A/ 3

7 p = M2?", + 2M73 r a = 3M72 X = 1
3 7 - 2

 3

_ (MT, + 2T3)N
- = MT^

a 2A/ + 1

"P MT^ + 2A/r3

5.4 Fourier transform

Given a complex sequence ui for y = 1,

given by

, A/f, the discrete complex periodic Fourier transform is

/Vf

and has the inverse
M

-ikj2v/M

iki2v/M

/(si
Thus, on each iteration it is necessary to produce M new values. One reasonable decomposition is to

parcel out these U k or Uj evenly among the processors. Given such a decomposition, the work of an

individual process can be described as—

where T represents the potentially global realization of U . The additional work to make a local copy of

T is
(39)

25

Without local copies:

t =
M2T.

t. =

7 =

N

M2TN

N

M2T, TA » M<T2

fp = N

With local copies:

t_ =
M2T

T = M2T^ + MTZ

' a ' 1

7 . = M 7 2

A/ 3 v 1 3 ' [(M 7 1 + 73)A/

5.5 Parallel search

If an ordered vector G = g ;,/=1, . is to be searched for a key,1 0 a binary search would

probably be used. A parallel decomposition could assign interleaved vector segments to several

processors in order to speed up the search for a single key y. In the case that the maximum

log (M/N) iterations are required to locate the key, the work can be described by—

log(M/A/)
} (40)

(Here T is the potentially global vector G.) There can be no performance improvements via using

local copies since each global data element is accessed only once in (40), but since each processor

is using a different segment of the global data, cat can easily be made larger than 1.

26

Parallel search for a single key:

M
t = log (- ^ - + 1) 7 = (log M +1)7

l o g M - logN + 1

M
t = | 0 g (J £ - + 1) 7 2 = (log M +1)7

\OQM+ 1

log/W- log/V + 1
logM + 1

TQ = (logM + 1)^ Ta = (logM + l) r 2 X = yL

log/W + 1

p

fp = l o g M - logA/ +1

a = logM-JogA/ + 1

Parallel search for multiple keys:

Given a vector of key values Y = yA,/c = 1,... ,K, a parallel decomposition could assign the yk to

processes according to the strategy—
M

'\.WNIr.wV^*riTr<*№ ' W + y l o g — } (41)

If local copies are to be made the additional work would be:

From this, the following decomposition functions can be derived:

Without local coptes:

N
_ K(log(M) + 1)72

f a = N

T = K(log(/w) + l)7 1
7 = K(log(M) + 1)7 X = I l -

a / 2

f p . N

(42)

a

27

With local copies:

_ «00,(10 + p r , . „ T T

P A / 3 p

K(logM + 1)71 + MW73

(KtlogM + l ^ + A^gJA/

M7„

7 p = K(log(W) +1)7^/^73

_ (K{\OQM + 1)T,+MT3)N
P = KflogM + l ^ + MW7g

r a = MT2 X »
_ K(!og(M) + 1) 7 ^ M7 3

M7„

/ = 1 a

28

6 Single global data versus local global data copies

Since parallel processes often use the same global data items more than once during an iteration, it

is a viable design alternative to make a local copy of the data so that only the first reference to each

item needs to access a common resource. This section will investigate the local/global data tradeoff.

It was shown in Section 5 that changes in global data allocation and management induce changes

in the processing-to-access ratio X and the decomposition functions fD and /.
P 3

Claim: For any combination of decomposition functions of the form

fp = Nj fa = Nk (43)

the lower-bound speedup curve will have an extreme unless / = k + 1 or /c = 1.

Proof: Suppose that there exists a pair of decomposition functions for which SP has no extremes.

Then the first derivative of SP (from equation (26)) should be independent of N. Letting ps, cas, and

cat = 1 in equation (26), we derive this expression for SP:

Nfp + Xfa

We can set the derivative of SP equal to zero—

dN

and solve for the value of N at which the maximum speedup is obtained. Substituting the values from

(43), we want to solve

dN Nf+Xf P *
the numerator of which simplifies to

w / - * + 1(/c-1)+/X = o

There will be a solution to this equation unless k = 1 or k =/ +1, in which case the speedup curve has

no extreme.

Among the decompositions which have no maximum speedup are those of the form (N1) N). Of

these, the (A/; A/) decomposition is of particular interest since it is characteristic of several of the

non-copying algorithms from Section 5. In fact, that is one reason why normalized speedup (Section

3) was defined in terms of an (A/; A/) decomposition.

For decompositions which have a maximum speedup at Nmax processors, increasing the number of

processors past Nmay will actually degrade performance. If enough processors are added, the

29

decomposition will eventually be outperformed by the (N;N). Let us call this crossover point N . It is
C

the smallest number of processors for which the (A/; N) decomposition performs better.

It is very difficult to give an expression for A/ in the general case, but considering the special case

of matrix multiplication, as described in Section 5.1, let us make the assumption that the time to

iterate through a row is much greater than the processor time to copy one data element, i.e., that MT^

» f 3 . In the expressions below, the subscript 1 refers to the implementation without local copies, and

the subscript 2 refers to the copying version. Then

P2 MT^ + T3VtT a 2

2 2 ^ ' o

Except for very small matrices, it is likely that the time to iterate through a row is much greater than

the processor time to copy one data element. Assuming that

M(TJTJjN MkN 7\
f »] — 3 where k = —1—

p 2 M{T/T3)VN M/c + VAT t
3

We want to determine the number of processors N where the performance of an (A/; A/)

decomposition just equals that of the local-copy implementation. That is, we want to determine N
0

such that SP1 = SP*. (Recall that SP* refers to normalized speedup.) If we let pf, cas, and cat all

equal 1 in (26), we obtain

Thus,
(A / / + x g

s f ; =
a 2 p 2 * "basis

>; = — (44)
(W p 2

 + V a 2)

where Tc = 7*A + 7*P is the cycle time for the uniprocessor implementation of an algorithm, and "basis"

refers to the non-copying implementation. We also have

(1 + X J A / 2

SP, = (45)
1 A/2 + X 1A/

Setting (44) and (45) equal, after some algebra, we arrive at

N - M V A T = 0

c c k

which can be solved as a quadratic equation to yield

30

M + V/w 2 -2r 3 /r 2 i2

Assuming that 7 " 3 « 7"2, we obtain

C

In other words, if 7"3 is insignificant with respect to 7"2, it is profitable to make local copies as long as

the number of processors is at least somewhat less than the number of matrix elements. However, as

7 3 increases with respect to 7"2, Nc tends to decrease.

On the other hand, for a decomposition like the local-copies version of matrix multiplication, the

maximum speedup is attained with a much smaller number of processors. The value of N which yields

maximum performance can be calculated from

dSP*
dN

= 0

For the case of the local-copies version of matrix multiplication, (44) becomes

/cA/M(1 + f tpM(1+X1)
SP: =

(Nf + XJ) " N V W k + MkX + X / V F
^2 2

To solve for the extreme, we set the numerator of the derivative dSP2/dN equal to zero:

M d + X ,) * - NVN~k + MkXA + X^VN~ - N ^ - V A T k - N - X , - l
2\TN~

= 0

2/3
Assuming that M 2 » X 1 , this is a cubic equation in VN whose solution is N = (2/WX^ .

31

7 Some Common Decomposition Functions

In order to evaluate the theoretical results, an emulation system was built for Cm*,1 1 a

multiprocessor with a structure similar to the modeled system. It consists of a user-interface process

and 25 identical test processes, each emulating an atomic (f . f J pair. Test processes communicate

with the user interface via a global vector allocated to the processor on which the interface process is

running. Each test process shares a different segment of this vector with the interface, where its

control variables are stored. All test processes share another segment which represents shared data.

The control variables of a process are defined as the reference values of tp and ta% the number of

iterations per experiment, and the presence or absence of interprocess synchronization. The user

may change the value of a specific control variable and start the experiments by commands to the

interface process.

Each test process records its starting and finishing times, and reports them to the interface at the

end of each experiment. Unfortunately, time measurements are invasive, and contention for the

system's single clock register perturbs the measurements.

Besides the invasive measurement technique, certain model imperfections and emulator

characteristics perturb the measured behavior. Some of them are caused by the fact that the

interconnection network in Cm* can only approximate a multiprocessor architecture with a circuit

switching network. If it were not for these perturbations, the measured behavior would be exactly as

predicted, since the emulated workload exactly matches the modeled system. These measurements,

then, do not address the question of whether the emulated processes are similar to actual parallel

applications.

Imperfections in the model and the emulator can be summarized as follows:

• Invasive experimentation environment (especially due to timing measurements).

• Effects related to modeling a processing time which is usually of the form

instead of the
r

assumed by the model. 7" is partially due to the experimentation environment.

• Effects connected with modeling an access time which is usually of the form

32

7
var

a, 7/xecf / a
instead of the

a

a
assumed by the model. 7
generation.

3,
is partially due to the monitoring, and atomic access

'fixed

• The influence of nonuniform atomic access times due to the differences between the
intercluster and intracluster access times in Cm*.

• Delays from queueing and processing by the Kmaps rather than the pure circuit-
switching assumed by the model.

• Effects of the software-locking routines used by the emulator to implement atomic global
accesses of variable duration. As the number of processors increases, t grows shorter,
and eventually the computation and access time required to set and release the lock
tends to perturb the relationship between t and f f l.

Four characteristic (f . M pairs were simulated for X = 10, X = 35, and various numbers of processors, a p

In all the calculations and measurements cat, cas, and ps are assumed to be 1. In this section,

emulation results along with predicted values are presented. For each of four major decomposition

groups, a mathematical expression for the speedup based on equations (26) and (27) is given. In

addition the theoretical maximum speedup is calculated from:
dSP
dN

= 0 for the synchronous case, and

for the asynchronous case (from (19).

33

7.1 (N;N) decomposition group

Synchronous case—Figure 3:

(1 + X)N
SP = N + X

N = o o max

SP - 1 + X
max

ft 16.00
%

£ 74.00

«2.00

fO.OO

8.00

6.00

4.00

2.00

o X = 35
• X = 10

Dotted lines—predicted
Solid lines—measured

5 10 15 20 25
Number of processors

Figu re 3: Speedup versus N for decomposition (A/; N)
and synchronous implementation

34

Asynchronous case—Figure 4:

I i 1 * 1 •

O 5 10 15 20 25
NUMBER OF PROCESSORS

Figu re 4: Speedup versus N for decomposition (A/; N)
and asynchronous implementation

SP = min[N^ +X]

35

7.2 (N; VJi) decomposition group

Synchronous case—Figure 5;

SP - (1 + x) "

max 3X 1 / 3

1.001 1 • ,
O 5 lO 15 20 25

Number of processors

Figu re 5: Speedup versus N for decomposition (N; VN)
and synchronous implementation

36

Asynchronous case—Figure 6:

SP = min [VW +X 1 VFT

N = X max
2/3*

SP
(1 + X)X 1/3

max 1 +X 2/3

5 10 15 20 25
NUMBER OF PROCESSORS

Figu re 6: Speedup versus N for decomposition (A/; VA/)
and asynchronous implementation

* 2
approx. solution for X /4>1/9

(1 + X)N 1 + X

37

7.3 {N; 1) decomposition group

Synchronous case—Figure 7:

(1 + X)W
SP =

"max

SP

N2 + X

1 +x
max 2V3T

a 3 . 5 0

* 3.00

2.50

2.00

f.50

r.oo

.50

JO

o X = 35
• X = 10

Dotted lines—predicted
Solid lines—measured

"•-•a

«5 20 25
NUMBER OF PROCESSORS

Figu re 7: Speedup versus W for decomposition (A/; 1)
and synchronous implementation

38

Asynchronous case—Figure 8:

SP = min (N + X)
1 +X

N

N
max

SP.

1 + V1 +4X
2

2(1 + X)
max 1 + V1 +4X

I*
<D
^ 5

O X = 35
• X = 10
Dotted lines—predicted
Solid lines—measured

10 15 20 25
Number of processors

Figu re 8: Speedup versus N for decomposition (N; 1)
and asynchronous implementation

N(1+X)

39

7.4 (log N; log N) decomposition group

SP • (1 + X) log N
N + X

w „ , = „ 0 3 0 be derived from N (log N -1) = X max max 5 1 max

a 3 .00

2 .50

2.0O

1.50

1.00

.50
10

o X =. 35
• X = 10

Dotted lines—predicted
Solid lines—measured

15 2 0 25
NUMBER OF PROCESSORS

Flgu re 9 : Speedup versus N for decomposition (log A/; log AO
and synchronous implementation

numeric solution only

Synchronous case—Figure 9:

40

Asynchronous case—Figure 10:

SP = min log/v,
(1 +X) log Ai

N

N = 1 + X
max

S P m f l x = I 0 Q (1 + X)

f
5 r

O X = 35
• X = 10
Dotted lines—predicted
Solid lines—measured

10 15 20 25
NUMBER OF PROCESSORS

Figu re 1 0 : Speedup versus N for decomposition (log A/; -log N)
and asynchronous implementation

7.5 Linear speedup

We now present one final decomposition group, which has not been tested empirically. This

decomposition group exhibits linear speedup: a speedup of N with N processors. Although there are

some exceptions,12 linear speedup is the best that can be expected from most algorithms. An (A/; A/2)

decomposition induces linear speedup, since

41

N2W(1 + X)
- i-~N

NN + XN
It is interesting to note that this speedup is independent of X.

42

8 Correlat ion with Real Workload Implementations

In addition to performance prediction, another very important phase of the experimentation cycle is

called identification. Identification is the process of describing the decomposition functions of a

particular parallel workload mathematically, so that specific changes can be recommended to bring

about performance improvement.***

In this section the results of three previously published experiments are used. Because the original

source code was not readily available, it was necessary to estimate the relationship between r i f 7"2,

and T,. These values were estimated -by attempting to fit the predicted curves to the measured

curves, but it should be noted that the same choice of values produces a good fit for all the curves on

each graph.

8.1 Processor speed variations

This experiment illustrates the influence of processor speed on performance. The parallel workload

was an implementation on the Cm* multiprocessor of a molecular-dynamics algorithm. It consists of

a number of parallel processes each calculating the binding energy between particles. After all

calculations are done, the final result is saved as global data to be used in the next iteration. This

description implies that local processing time for a decomposed process is variable and equal to—

• f - L .
P N

The global access time is fixed and equal to the time required for returning a final result to global

memory. Therefore

Consequently the decomposition functions are

/ = A/ f = 1 p a
To assure an atomic access for every process, a locking mechanism is used. Speedup was measured

as a function of the processor speed. While the speed of the processor hardware could not be varied,

faster processors could be simulated by replacing the slow LSI-11 floating-point calculations by

"synthetic procedures" which took less time than the calculations and returned arbitrary results.

(The goal was to study the effect of processor speed, so it did not matter that the results were

incorrect.) Since only the floating-point calculations were "speeded up," the processor speed

variation affected only one portion of Tp (and consequently only one portion of X).

^^Experimental results have been published in the referenced literature, 1 3' 7 and are reproduced here, courtesy of Robert
A. Whiteside, for the purpose of comparison with the theoretical predictions.

43

Figure 11 shows both measured and theoretical results, assuming an estimated X. Although the

synchronous case is supposed to be the "worst case," the measured performance for slow

processors is worse than the theoretical lower bound due to the inability of this implementation to

assure a balanced load. (Some processors have much more work to do than others.) Therefore

when processors are slow, and tp is dominant in the iteration, the idle processors induce a non­

monotonic performance curve, and exhibit worse performance than theoretically predicted for a

balanced load.

a 20.00
%
S 18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

A ps = 1; X = 1800 + 42
O ps = 10; X = 180 + 42
• ps = 100; X = 18 + 42
Dotted lines—predicted
Solid lines—measured

10 15 20 25
Number of processors

Figu re 11: Molecular Dynamics Speedup, Dependency on
Processor-Speed Variations

8.2 Speedup versus synchronization

In the second experiment, speedup was measured for various degrees of synchronization between

processes. Experimental and theoretical results for the two extreme cases (full synchronization and

no synchronization) are given in Figure 12. The X of the synchronous implementation is only about

44

half as large as the X of its asynchronous counterpart, due to the fact that the omitted synchronization

code consists mainly of access to common data.

The implementation for molecular dynamic simulation analyzed here is a typical one-pair

implementation (the kind considered in the proof of Section 2.5) and, for that reason, the measured

results are very close to the upper and the lower bound respectively.

I
2 5 . 0 0 ,

20.00\

15.001

10.001

5.001

o Asynchronous
• Synchronous
Dotted lines—predicted
Solid lines—measured

.0 V

10 15 20 25
Number of processors

Figure 1 2 : Influence of Synchronization on
Molecular Dynamics Calculations

8.3 Matrix multiplication

From Section 5.1, the decomposition functions for matrix multiplication with local copies are—

f IMT^ + TJN
P ~ M T 1 + r 3 V F

Let us introduce

45

k ^ L - k2 = h - (46)
'2 '3

to express the relationship between access and processing speeds without reference to particular

hardware technologies.

We ran the local-copies algorithm on Cm*. The constants /c1 and k2 were measured at 1.694 and

3.678 respectively. Correlation of the experimental and predicted curves is quite good, but falls off

somewhat as more processors are added due largely to the undecomposable constant overhead

added to each process by the need to perform loop initialization and to read the clock (the 7V of
nixed

Section 7). This overhead grows more significant as processors are added and the work per process

declines. To try and factor out the effect of this overhead, which we call 74> we solved the system of

equations
T 4 + 483T1 = 82.3 msec.(measured processing time for M = 48 without local copies)

T 4 + 2437\I = 10.3 msec.(measured processing time for A/f = 24 without local copies)

The results of 7 t = 7.4x10" 4 and 7*4 = 1.14x10 ~ 2 "predicted" the execution time for M = 36 within 1%.

From this, we derived the revised decomposition functions

„ *f 37 i M2T„ M2T0

t m T + 1- + 2- t = 1-
P 4 N VN A,

We can proceed as before to derive equations to predict speedup. These equations are graphed

against the observed values in Figure 13. The measured values are everywhere within 5% of the

predicted values. The close correspondence deteriorates slightly for increasing values of N. One

reason is likely the fact that the initialization of the inner loop grows more significant as it gets shorter;

for M a 24 and N as 16, the inner loop is executed only six times before it terminates.

46

Q.

3
0)
0)

18.00,

15.001

12.00\

9.00\

6.0O\

3.00L

A M = 48
O M = 38
• M = 24

Dotted lines—predicted
Solid lines—measured

8 12 16
Number of processors

Figure 13: Speedup of Matrix Multiplication

47

9 Improving a Parallel Implementation: A Case Study

A major motivation of performance prediction is to narrow the space of experimental alternatives.

As an example, we will present a case study based on the widely known algorithm for solving Poisson

partial differential equations. This case study refines the analysis of this algorithm which has been

presented in Section 5.2, which considered a decomposition of the grid into squares.

Data elements are global if they occupy positions on a boundary between partitions of the grid

belonging to different processors. The access time f is proportional to the number of boundary

elements. On the other hand, the processing time t is proportional to the surface—the number of

elements in a partition. Hence, a decomposition which assigns a processor to a partition with a larger

surface-to-boundary ratio will yield a larger X, and hence better performance.

For comparison, we will present two decompositions other than the square decomposition.

Although all three decompositions are members of the (A/; VN) group, their different processing-to-

access ratios X and slight differences in decomposition functions produce slight differences in

performance.

9.1 Decomposition into triangles

Let us assume that a surface is divided into triangular areas, each with base a -1 and height a.

Then a square of size a x a can be divided into two triangles of the kind shown in Figure 14. (Actually,

the regions are only "approximately" triangles, due to the inflection at the middle of the hypotenuse,

an inflection which is necessary to allow two such regions to fit exactly into a square.) As in Section

5.2, elements on a boundary are stored in global memory. In order to partition the MxM grid into N

triangles, it must be divided into N/2 two-triangle squares, each with dimension a = V2 M/VJi.

Without local copies:

As in Section 5.2, the number of global accesses required to update elements near the boundary

depends on their position within the triangle. As before, each of these elements are classified

according to the number of global accesses made to it per iteration. Figure 14 shows the class to

which each element belongs. Let n. denote the cardinality of the class/ for an individual triangle, and

the access time to update an element in class /.

Class 1 : n (a -6) + (a -5) = 2a-11

Class 2: t 2 a - 4
Class 3: 3 2

Class 4 : n 4 a - 5

48

6 X X X X X X X X X X X X X X X

6 5 X X X X X X X X X X X X X X

5

CO 4 X X X X X X X X X X X X X

5 1 2 •4 X X X X X X X X X X X X

5 1 0 2 4 X X X X X X X X X X X

5 1 0 0 2 4 X X X X X X X X X X

5 1 0 0 0 2 4 X X X X X X X X X

5 1 0 0 0 0 2 5 x x x x x x x x
5 1 0 0 0 0 1 4 X X X X X X X X
5 1 0 0 0 0 0 2 4 x x x x x x x
5 1 0 0 0 0 0 0 2 4 x x x x x x
5 1 0 0 0 0 0 0 0 2 4 x x x x x
5 ^

• 0 0 0 0 0 0 0 0 2 4 x x x x
5 1 0 0 0 0 0 0 0 0 0 2 4 x x x
5 2 1 1 1 1 1 1 1 1 1 1 3 5 x x
6 5 5 5 5 5 5 5 5 5 5 5 5 6 6 X

14: Triangular decomposition of a Po

t a5
57«,

<a6 - QT2

ns = (a -4) + (a -3) + 3 = 2 a - 4

n 6 = 5
Class 5:

Class 6:

Based on the number of elements in each class, decomposition into triangles without local copies can

be described by these equations. The constants k 1 and k2 are as defined in (46).

M2T,
*P = ~~N~

<a - ! > / -
;=i

18V1FM
-23

_ rtl 18V2M-23VW _
T = [18V2 M - 2 3] - — - r„

(18VT W-23)\/A/

Tp = M2TA Ta = (18V2 M-23)T2

X =
M2T.

(18V2 M-23)7"2 (18V2 M-23)

fp = N

(18\/2M-23)VTV
a " 18V2 /W-23VW

49

With local copies:

Each triangle contains 3a - 4 boundary elements. It takes 6a - 8 accesses to copy these elements

back and forth. In addition, another 3a accesses are needed to read boundary elements from

adjacent triangles. Thus, each process makes a total of 9a - 8 = 9V2" M/VN - 8 global accesses.

t - M % + 9 V ^ M 7 3 . 8 7 _ T M2T^ + 9V2MT3VN-873A/
p ^ Vft 3 ~ p (M2T^ + 9V2 MTZ - 8f3)A/

2
7 = W 2 ^ + 9V2 M7- - 8 f r = 9V2 M f 2 - 87 2 X 51 h + h

9 V 2 M - 8 1 K
f _ N(M2T^QV2 MT3-8Ta)

F M2T^ + 9V2 MT3VW -8A/T3

(9 V T M-Q)VN~
* 9V2" M-aVW

Speedups for various dimensions of the element grid are shown in Figure 15. When k2 is high,

copying is relatively inexpensive, so it pays off, almost regardless of the number of processors N.

With a low k2, copying is not productive unless the number of processors is fairly high. Note that the

non-copying version attains its maximum speedup at N = 31, after which contention causes it to

decline.

9.2 Decomposition into hexagons

Imagine that the grid is again divided into squares of dimension ax a, with a being 2M/VN. Let us
now divide the grid into hexagons, each of which occupies one-fourth of a square, as shown in Figure
16. If we let

a M
b = A

4 2VN
then the access and processing times can be calculated from the number of atomic accesses for
each element given in Figure 16.

50

a 18.00,
%
4)
,§. 16.00
0)

14.00

12.00

10.00

8.00

6.00

4.00

2.00

Without local copies: k1 = 20; M = 100
With local copies: k-| = 20; ka = 10; M = 100
With local copies: k-| = 20; k2 = 1; M = 100
With local copies: k1 = 20; k2 = 0.1; M = 100

— o

10 20 30 40 50
Number of processors

Figure 15: Speedup versus N for triangular decomposition of a
Poisson equation

Without local copies:

Class 1 : fa1 = T2 " l " 2(6-1)

Class 2: 'a2 = 2T2 "2 =
2(b-2) + 2(b- D

Class 3: 'a3 = *T2 n 3 = 2

Class 4 : 'a4 = 4T2 "4 =
2(b - 2) + 2 (0 - D

Class 5: 'a5 = 5T2 n 5 = 2(b + 2)

Based on the number of elements in each class, the decomposition functions can be calculated as:

51

X X X x x 5 5 5 5 5 5 5 x x x x x x x x x x X X
X X X x 4 2 1 1 1 1 1 2 4 x x x x x x x x x X X
X X X 4 2 0 0 0 0 0 0 0 2 4 x x x x x x x x X X
X X 4 2 0 0 0 0 0 0 0 0 0 2 4 x x x x x x x X X
X 4 2 0 0 0 0 0 0 0 0 0 0 0 2 4 x x x x x x X X
5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 x x x x x X X
X 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5 x x x x X X
X X 4 2 0 0 0 0 0 0 0 0 0 0 0 2 4 x x x x x X X
X X X 4 2 0 0 0 0 0 0 0 0 0 2 4 x x x x x x X X
X X X x 4 2 0 0 0 0 0 0 0 2 4 x x x x x x x X X
X X X x x 4 2 1 1 1 1 1 2 4 x x x x x x x x X X
X X X X X X 5 5 5 5 5 5 5 x x x x x x x x x X X
X X X X X X x x x x X X x x x x x x x x x x X X
X X X X X X x x X X X X x x x x x x x x x x X X
X X X X X X X X X X X X x x x x x x x x x x X X
X X X X X X X X X X X X x x x x x x x x x x X X
X X X X X X X X X X X X x x x x x x x x x x X X
X X X X X X X X X X X X x x x x x x x x x x X X
X X X X X X X X X X X X x x x x x x x x x x X X
X X X X X X X X X X X X x x x x x x x x x x X X
X X X X X X X X X X X X x x x x x x x x x x X X
X X X X X X X X X X X X x x x x x x x x x x X X
X X X X X X X X X X X X x x x x x x x x x x X X
X X X X X X X X X X X X x x x x x x x x x x X X

Figu re 16: Hexagonal decomposition of a Poisson PDE

Ta = 6(3M-2)7 2 X =

(3W-2)VW

'a - £ , ' * " , -
/ = 1

k
6(3M-2) 1

-127 2 = 6(3M-2)72.
(3M-2)VW
3M-2.VN

3M-2VÂ/

With local copies:

The hexagon has six sides. If the two horizontal sides are considered to have b + 1 elements, then

the other four sides each consist of b - 1 elements, for a total of 65 -2 boundary elements, each of

which must be copied back and forth. Also, 2(b + 1) +4b elements from neighboring hexagons will

be referenced, for a total of 186 - 2 nonlocal references.

52

I
4)

25.00r

20.00

Without local copies: k1 = 20; M = 100
With local copies: k-\ = 20; k 2 = 10; M = 100
With local copies: = 20; k 2 = 1; M = 100
With local copies: ki = 20; k 2 = 0.1; M = 100

15.00

10.00

5.00

10 20 30 40 50
Number of processors

Figure 17: Speedup versus N for a hexagonal decomposition of a Poisson
equation

M2T

N
QMT
VN

M271 + 9Wr,VA/-27N
I - - 2 7 , = T 1 2

(M 2 r i + 9Mr3-2r3)A/

W 2

M2/c 1
K 2

(M 2/c 2 + 9M-2)A/

fP = M 2T 1 + 9 M r 3 V N - 2 r 3 W " M% + 9MVN-2N
F (M2T, + 9MT3-2T3)N

" M 2T 1 + 9M7a ~~

(9M-2)VW

The speedup versus the number of processors for various grid dimensions M is shown in Figure 17.

Again, a lower * 2 induces a greater speedup, and the non-copying implementation reaches a

53

maximum speedup, this time at N = 39. Notice that whether or not copies are made, for all values of N,

the hexagonal decomposition exhibits a better speedup than the triangular decomposition, owing to

its lower boundary-to-surface ratio.

A square has a boundary-to-surface ratio smaller than a triangle but larger than a hexagon. (For

example, a 144-element hexagon would have 34 boundary elements, a 144-element square would

have 44, and a hypothetical 144-element right triangle would have approximately 46.9.) Thus we

would expect a square decomposition to show a speedup somewhere between those shown by

triangular and hexagonal decompositions. Figures 18 and 19 show that this is indeed the case.

a 20.00

!
8 18.00
<5)

16.001

14.00

12.00

10.00

8.00

6.00

4.00

2.00

• • - Without local copies: k-j = 20; M = 100
- - With local copies: k<| = 20; k 2 = 10: M s 100
— With local copies: k̂ = 20; k 2 = 1; M = 100

— With local copies: kf = 20; k 2 = 0.1; M = 100

—©

10 20 30 40 SO
Number of processors

Figu re 18: Speedup versus N for a square decomposition of a Poisson
equation

54

A 20.QO.

tO 20 30 40 SO
NUMBER OF PROCESSORS

Figu re 19: Speedup versus N for triangular, square, and hexagonal
decompositions

55

10 Conclus ions

We have defined a simple multiprocessor model, which was then enhanced to accommodate

processors and memories of different speeds. The model has shown that improving processor or

memory speed is only effective up to a point. The model bounds the worst performance that can be

expected from a synchronous algorithm and predicts the best performance that can be achieved by

an asynchronous one.

The performance of the multiprocessor implementation of an algorithm is frequently expressed in

terms of speedup. Speedup is a function of the way an algorithm is decomposed. We have defined

decomposition functions for the processing and access times, which tell how the per-process times

change as the number of processors is increased. Algorithms can be divided into decomposition

groups based on these functions—groups which display characteristic speedup curves for varying

numbers of processors.

Several multiprocessor algorithms have been studied in detail; some of them have been

implemented on the Cm* multiprocessor. Measurements have been made for differing

decomposition strategies and numbers of processors.

The experimental measurements show that even a simple analytical model can be a solid base for a

multiprocessor performance prediction. Since the model parameters represent real workload

characteristics, rather than some average values expressed by probabilities, they give us the

opportunity to evaluate the sensitivity of performance to different parameters independently. Due to

the factors enumerated in Section 7, the measured performance sometimes differs significantly from

the predicted one, but the correlation between the modeled and the measured curves is obvious.

Although the simple analytical model presented here gives satisfactory results, there are several
areas for improvement.

• It was shown that the upper andjower bounds could be predicted if a workload with only
one atomic (f p, ta) pair is assumed. Can operators and an associated calculus be found,
such that when applied to a workload, characteristic times will give a resulting {t , t) pair
which predicts the performance of a parallel workload more closely than the original
model?

• Sometimes better performance can be achieved if each process makes local copies of
global data. Even better performance could be achieved if the amount of local
processing (73) needed to produce these copies is kept low. Hence, the possibility of
providing architectural support for global-to-local (and local-to-global) data transitions
should be explored. For example, broadcasting global data could facilitate the
generation of local copies.

56

• In order to make the t to N dependency linear, circuit-switching interconnection
networks are assumed in this paper. Models should be provided for the cases where this
dependency is nonlinear.

• It was also assumed that all the work of executing a parallel program can be neatly
decomposed into N parallel processes. It is more likely that some fixed amount of local
processing and/or global access will have to be done in every process anyway.
Therefore, decomposition functions other than

should be investigated.

• Several classic parallel workloads have been measured. However, comparisons are often
difficult due to implementation differences. Classification of these workloads into
decomposition groups would make it easier to compare them. In this way, benchmarking
could be done on the basis of typical decompositions rather than typical algorithms.

Multiprocessors bring a new dimension to the already very complex experimentation space of

uniprocessors. Only good models accompanied by structured programming can narrow this space.

The multiprocessor-system design cycle can be shortened only if experiments are carefully selected

with the assistance of a performance model, and measured results are analytically identified.

Acknowledgments
The authors would like to thank David Black for an improved version of the proof in Section 2.5.

57

References

1. Marsan, M. A. and Gerla, M., "Markov Models for Multiple Bus Multiprocessor Systems," IEEE
Trans, on Computers, Vol. C-31, No. 3, March 1982, pp. 239-248.

2. Baskett, F. and Smith, A J . , "Interference in Multiprocessor Computer Systems and
Interleaved Memory," Comm. ACM, Vol. 19, No. 6, June 1976, pp. 327 - 334.

3. Bhandarkar, D.P., "Analysis of Memory Interference in Multiprocessors," IEEE Trans, on
Computers, Vol. C-24, No. 9, September 1975, pp. 897 - 908.

4. Marsan, M.A. and Gregoretti, F., "Memory Interference Models for a Multimicroprocessor
Model with Shared Bus and Single External Common Memory," Euromicro J., February 1981,
pp. 124-133.

5. Vrsalovic, D. and Siewiorek, D.P., "Performance Analysis of Multiprocessor Based Control
Systems," Proceedings of the Real-Time Systems Symposium, December 1983, pp. 73-78.

6. Kruskal, CP. , "Searching, Merging, and Sorting in Parallel Computation," IEEE Trans, on
Computers, Vol. C-32, No. 10, October 1983, pp. 942 - 946.

7. Whiteside, R., Hibbard, P., and Ostlund, N., "A Case Study in the Application of a Tightly
Coupled Multiprocessor to Scientific Computations," in Parallel Computations, Rodrigue, G.,
ed., Academic Press, 1982, pp. 315 - 364.

8. Hoshino, T. and Shirakawa, T., "Load Flow Simulation of Three-Dimensional Boiling Water
Reactor Core by PACS-32 Parallel Microprocessor System," Nuclear Technology, Vol. 56, No.
3, March 1982, pp. 465-477.

9. Hoshino, T., Kawai, T., Shirakawa, T., Higashino, J . , Yamaoka, A., Ito, H., Sato, T. and Sawada,
K., "PACS: A Parallel Microprocessor Array for Scientific Calculations," ACM Transactions on
Computer Systems, Vol. 1, No. 3, August 1983, pp. 203 - 221.

10. Baer ef a/., "Binary Search in a Multiprocessing Environment," IEEE Trans, on Computers,
Vol. C-32, No. 7, July 1983, pp. 667 - 677.

11. Jones, A.K. and Gehringer, E.F. editors, "The Cm* Multiprocessor Project: A Research
Rewiew," Tech. report, Carnegie-Mellon University, 1980.

12. Jones, A. and Schwarz, P., "Experience using multiprocessor systems—a status report," ACM
Computing Surveys, Vol. 12, No. 2, June 1980, pp. 121-165.

13. Whiteside, R., Hibbard, P., and Ostlund, N., "Conventional and Systolic Parallel Algorithms for
Monte Carlo Simulations of Molecular Motion", Submitted to ACM Transactions on Computer
Systems.

14. Allen, A. O., Probability, Statistics, and Queueing Theory with Computer Science Applications,
Academic Press, 1978.

15. Singh, A. and Segall, Z., "Synthethic Workload Generation for Experimentation with
Multiprocessors," Tech. report, Carnegie-Mellon University, 1982.

16. Vrsalovic D., Siewiorek D.P., Segall, Z. and Gehringer, E., "The Influence of Parallel
Decomposition Strategies on the Performance of Multiprocessor Systems", submitted to the
International Conference on Fifth Generation Computer Systems, Tokyo, Nov. 6 - 9,1984.

58

17. Hockney, R.W., "Characterizing Computers and Optimizing the FACR(I) Poisson-Solver on
Parallel Unicomputers," IEEE Trans, on Computers, Vol. C-32, No. 10, October 1983, pp. 933-
941.

18. Siomalas, K.O. and Bowen, B.A., "Performance of Cross-Bar Multiprocessor Systems," IEEE
Trans, on Computers, Vol. C-32, No. 7, July 1983, pp. 689 - 695.

19. Lang, T., Valero, M. and Fiol, M.A., "Reduction of Connections for Multibus Organization,"
IEEE Trans, on Computers, Vol. C-32, No. 8, August 1983, pp. 707 - 715.

20. Vaughan, R.F. and Anastas, M.S., "Limiting Multiprocessor Performance Analysis,"
Proceedings of the Conference on Parallel Processing, 1979.

21. Korn, D., "Timing Analysis for Scientific Codes Run Under Washcloth Simulation,"
Ultracomputer Note #24, Courant Institute, N.Y.U., 1981.

22. Lavenberg, S. editor, Computer Performance Modeling Handbook, Academic Press, Notes
and Reports in Computer Science and Applied Mathematics, 1983.

23. Ferrari, D., Computer Systems Performance Evaluation, Prentice-Hall, 1978.

24. Vrsalovic, D., Siewiorek, 0., Segall, Z., and Gehringer, E., "Performance prediction for
multiprocessor systems," 13th International Conference on Parallel Processing, Bellaire, Ml,
Aug. 21 - 24,1984 (to appear)

